Vom Schradt Arom: Mustard, Same 7/00)

RECONNAISSANCE REPORT

on the

Lorraine 885083

JAJAY PROPERTY

CLAIMS:

LORRAINE NO.1-12, LORRAINE 1 FR, LORRAINE 2 FR, LORRAINE 3 FR, LORREX NO. 1-2, GK#1-11, GK#18-21, GK#109 FR, GK#110 FR, GK#111 FR, GK#112 FR, STEELE #1-4, BOOT #6, BOOT 10, STEELHEAD 1-2, SH 8-10, DOROTHY 1-7, DOROTHY NO.1, DOROTHY NO.3, ELIZABETH NO.1, PAL 1-4, PAL 6-10, PAL 12-27, PAL 30-44, PAL 47-48 BOBINO #1, BOBINETTE, FIONA, ISABELLE, SUZANNE, DUCK 1-4

Lat. 55° 55' Long. 125° 27'

NTS 93N/14W, 94C/03W

OMINECA MINING DIVISION

Owner and Operator: LYSANDER MINERALS CORP (LYSANDER GOLD CORP.)

By

JAY W. PAGE P. GEO.

MINCORD EXPLORATION CONSULTANTS LTD.

December 14, 1999

TABLE OF CONTENTS

INTRODUCTION LOCATION AND ACCESS **LOCATION MAP PYSIOGRAPHY PREVIOUS EXPLORATION MINERAL TNURE CLAIM MAP 1999 EXPLORATION PROGRAM RESULTS AND INTERPRETATION CONCLUSIONS AND RECOMMENDATIONS** SAMPLE LOCTION AND RESULTS MAPS REFERENCES **COST STATEMENT CERTIFICATE OF QUALIFICATION** SAMPLE DESCRIPTIONS **GEOCHEMICAL CERTIFICTES**

Page 1 Page 2 **Figure 1** Page 1&2 Page 2 to 4 Page 4 to 7 Figure 2 Page 8&9 Page 9 to 13 Page 13 Figures 3 to 15 Page 14 to 16 Page 17 Page 18 **APPENDIX 1 APPENDIX 2**

INTRODUCTION

In August and September of 1999 Mincord Exploration Consultants Ltd. at the request of Lysander Minerals Corp (now Lysander Gold Corp.) carried out a geochemical sampling program on the Jajay copper-gold-PGE property. The objective being to follow-up copper, gold, platinum and palladium anomalies that were discovered in talus fines and seepage samples collected in 1996 and 1997. One to two geologists and one assistant carried out fieldwork during the period August 14th to September 3rd, 1999. A second visit was made to the property in early October. Exploration work focused on areas with geochemical anomalies peripheral to the main known showing, and was based out of 3 fly-camps. These were established on the Steele #3 (southeast of the Lorraine prospect), on the Dorothy 3 (Elizabeth showing), and on the Pal 48 (north end of the property) claims. Additional work was carried out on the MacKenzie showing (extreme southern claims) from a base on Silver Creek. All access to the property was by helicopter. A total of 48 rock and 121 talus fines / seepage / silt samples were collected.

The Jajay property is located in the Omineca Mining Division, approximately 280 km northwest of Prince George, BC. The property is underlain by the Duckling Creek Syenite Complex, an alkalic phase of the Jurassic-Cretaceous Hogam Batholith.

LOCATION & ACCESS

The Jajay property is located in the Swannell Ranges of the Omineca Mountains, and near the headwaters of Duckling Creek. This location is approximately 280-km northwest of Prince George, British Columbia. Road access to the Lorraine prospect, which forms the heart of the Jajay property, is most commonly via Fort St. James and Germansen Landing on the Omineca Mining Road. However, recent logging activity in the area has pushed industrial logging roads to within a few kilometres of the property from the southeast (via Germansen Landing and Mackenzie), from the southwest (via Leo Creek and Fort St. James) and from the north (via Osilinka and Williston Lake). The new logging road approaching from the southwest has bridged the Omineca River and now provides access to the BC Rail terminus at Lovell Cove on Takla Lake.

The new logging roads and the Lorraine \ Omineca Mining road provide access to the central and lower elevation parts of the property. Most of the property, however, still requires access by helicopter. The closest permanent helicopter bases are located in Fort St. James and Smithers, although helicopters are sometimes seasonally based at Tchentlo Lake Lodge, Silver Creek Camp, Germansen Landing and the Osilinka Logging camp.

PHYSIOGRAPHY

The Jajay property is located in a mountainous section of the Swannell Ranges which is truncated to the north and south by the broad, subdued river valleys of the Osilinka and Omineca Rivers. Elevations on the property range from approximately 1000 metres on Duckling Creek to around 2000 metres on some ridge tops. Pleistocene

glaciation has incised a number of north and east-facing cirques, which interrupt the general north-south lineation of the topography. Cirque floors are generally found at 1550 to 1600 metres elevation. Tarns, although present, are rare. Other periglacial features, such as stone stripes, frost boils and nivation hollows are common in the alpine. There is currently no active glaciation on the property. Talus development is extensive on the northern and eastern slopes, while the southern and westerly slopes are commonly vegetated. Glacial till and fluvioglacial outwash blanket the valley bottoms, limiting most outcrop exposures to streambeds below tree line. A thick growth of mature spruce, pine and balsam covers much of the lower elevation areas extending up to tree line at approximately 1650 metres elevation.

PREVIOUS EXPLORATION

The focus of most previous exploration on the Jajay property has been the Lorraine prospect, with somewhat less attention being paid to the Dorothy and Elizabeth showings.

In the early 1900's, prospectors and local natives had noted the malachite-stained bluffs of Lorraine Mountain, but it was not until 1931 that the property was first staked. The Consolidated Mining and Smelting Company Limited acquired the Lorraine property in 1943, but dropped it in 1947 after some limited surface sampling.

Kennex (a subsidiary of Kennecott) acquired the Lorraine property in late 1947. And in 1948-49, under the name of Northwestern Explorations Limited, they mapped, sampled and drilled the property. Five widely spaced AX diamond drill-holes were completed in the Upper Main zone. Regional prospecting, undertaken during this program, traced copper-mineralized float found on the east side of Duckling Creek, up to the Dorothy and Elizabeth Breccia showings. In 1949, Northwestern followed-up this new discovery with a program of mapping, line-cutting, hand trenching and diamonddrilling. Four AX diamond-drill holes, totaling 442 metres, were drilled at the Dorothy showing; the best intersection assayed 0.48% copper over 109 metres.

Limited exploration was carried out in the area during the 1950's and early 1960's. In 1951, H. Warren and D. Barr carried out a biogeochemical survey in the Dorothy / Elizabeth area. In the early 1960's Kennco Explorations (Western) Limited carried out a program of mapping, silt and soil sampling, and geophysical (IP and magnetometer) surveys in the area, and in 1963, they drilled 2 AX diamond-drill holes (DDH DY-1, 2). Sufficient assessment work was generated by this work to hold the Dorothy 2-post claims until 1972, after which cash in lieu of work was paid to hold the property.

The Lorraine property then lay dormant until it was optioned to Granby Mining Company Limited in 1970. During the period 1970-73, Granby enlarged the property and carried out a major exploration program of geological mapping, rock and soil sampling, trenching and drilling. A total of 3,992 metres of diamond drilling and 2,470 metres of percussion drilling were completed on the Main Zone. By 1973, the Main zone had been sub-divided into two zones and a preliminary estimate of reserves calculated. The Lower Main zone was inferred to contain 5,500,000 tonnes grading 0.6% copper and 0.1 grams

per tonne gold, and the Upper Main zone was inferred to contain 4,500,000 tonnes grading 0.75% copper and 0.34 grams per tonne gold. A cut off grade of 0.4% copper was used in the calculations.

The Lorraine and Dorothy properties were inactive during the remainder of the 1970's and through most of the 1980's. In 1989, Kennecott Canada Inc. began a reassessment of the gold-copper potential of the Lorraine and Dorothy properties, prompted in part by the Mount Milligan discovery. The property was expanded, and an initial orientation program was contracted to C.E.C. Engineering Ltd. in 1990. This included road rehabilitation, establishing grids, geological mapping, soil sampling, and geophysical (IP and magnetometer) surveys.

In 1991 Kennecott resumed management of the property and embarked on a 12hole (2,392 metres) diamond-drill program in the Lorraine area, with 9 holes drilled in the Lorraine Extension (later called the Bishop) zone, 2 holes drilled in the Webber zone and 1 hole drilled in the North zone. Detailed geological mapping and petrographic studies were begun during this program. The exploration program also extended to the Dorothy / Elizabeth areas. Work consisted of road construction (from the Dorothy / Duckling Creek access road to the Elizabeth Breccia area), test pitting, rock sampling, IP surveys and the diamond drilling of 6 NQ holes for a total of 961.6 metres. The first 3 holes were drilled at the Dorothy showing in the vicinity of Northwestern's 1949 drill-holes, the remaining 3 holes were drilled along the Dorothy / Duckling Creek road south of Dorel Creek. The most significant intersection was in hole D91-1 which averaged 0.34% copper and 0.12 grams per tonne gold over 121 metres.

In 1993, Kennecott drilled another 2 holes (the 3rd hole was lost in overburden) in the Lorraine property, along with detailed rock chip sampling of the Main and Extension zones.

In 1994 Lysander Gold Corporation optioned the Lorraine property from Kennecott and carried out a 10-hole diamond-drill program (1,221.4 metres), which was focused on the higher-grade sections of the western part of the Upper Main (3 holes) and Bishop (7 holes) zones. The success of this program led to the optioning of the adjacent Boot-Steele claims to protect a possible southeastern extension of the Bishop zone.

Lysander continued drilling in 1995 with a 26-hole, 3843.53 metre program. A total of 23 holes (2903 metres) were drilled on the Upper Main Zone in 1995, proving that mineralization occurs as steeply-dipping, irregular masses. Two holes were drilled in the Bishop zone in 1995; however, neither hole intersected economic mineralization suggesting that faulting is an important feature in the Bishop zone. A single "wildcat" hole drilled on Jeno Ridge also failed to intersect economic mineralization. The program drew attention to a potential copper resource that exists in mineralized talus below the Upper Main zone.

In 1996, the importance of the ring structure, then assigned the name Jajay, was recognized and this prompted Lysander to option the Dorothy and Steelhead properties,

and to consolidate the claim position by staking the encompassing Pal claims. Initial work in 1996 on the expanded Jajay property included a geochemical program of sampling soils, talus fines, seepage sediments and rocks over the western third of the ring structure. A 10-hole diamond-drill program in 1996 probed extensions of the Upper Main and the Bishop zones. Significant intersections included hole 96-44 which cut 32.2 metres of 1.49% copper in the Bishop zone.

Lysander continued drilling in 1997 with an 8-hole (1146.3 metres) program. 4 holes were drilled in the Dorothy showing, 3 holes in the Bishop zone and 1 hole in the Ato area (Bobinette claim). In the Bishop zone, hole 97-47 intersected 64 metres of 0.58 % copper and 0.24 grams per tonne gold. The geochemical program was continued in 1997 and a limited amount of follow-up sampling was carried out. Numerous copper and gold anomalies were identified in both of the 1996 and 1997 geochemical surveys. Subsequent reanalyss of some of these samples resulted in the identification of several PGE anomalies.

In 1998, compilation and analysis of the property data resulted in a new (pittable) ore resource estimate of 31.0 million tonnes grading 0.66 % copper, 0.17 grams per tonne gold and 4.7 grams per tonne silver.

MINERAL TENURE

The Jajay project is made up of four optioned properties and 49 claims acquired by staking, for a total of 108 claims (1019 units). Lysander Minerals Corp (now Lysander Gold Corp.) own all of the claims. The Lorraine and Dorothy properties are subject to agreements with Kennecott Canada Inc., the Boot-Steele property is subject to an agreement with Richard Haslinger and Larry Hewitt, and the Steelhead property is subject to an agreement with Alvin Jackson. The remainder of the claims were staked by Lysander and are not encumbered. A listing of mineral tenures is as follows:

Claim Name	Record #	# units	Expiry Date	Expiry Year
Pal 1	346810	6	31-May	2001
Pal 2	346811	20	30-May	2001
Pal 3	346812	20	1-Jun	2001
Pal 4	346813	20	11-Jun	2001
Pal 6	346815	20	11-Jun	2001
Pal 7	346816	20	11-Jun	2001
Pal 8	346817	15	9-Jun	2000
Pal 9	346818	20	9-Jun	2000
Pal 10	346819	20	9-Jun	2000
Pal 12	346820	15	10-Jun	2000
Pal 13	346821	20	12-Jun	2000
Pal 14	346822	15	12-Jun	2000
Pal 15	346823	20	6-Jun	2001
Pal 16	346824	20	7-Jun	2001
Pal 17	346825	20	7-Jun	2001
Pal 18	346826	20	6-Jun	2001
Pal 19	346827	20	5-Jun	2001
Pal 20	346828	8	2-Jun	2001
Pal 21	346829	20	31-May	2001
Pal 22	346830	8	7-Jun	2001
Pal 23	346831	20	7-Jun	2000
Pal 24	346832	20	6-Jun	2000
Pal 25	346833	20	4-Jun	2000
Pal 26	346834	20	4-Jun	2000
Pal 27	346835	20	2-Jun	2000
Pal 30	346838	20	2-Jun	2000
Pal 31	346839	20	3-Jun	2000
Pal 32	349774	20	11-Aug	2001
Pal 33	349775	12	16-Aug	2000
Pal 34	349776	8	16-Aug	2002
Pal 35	349777	10	14-Aug	2000
Pal 36	349778	20	17-Aug	2000
Pal 37	349779	20	17-Aug	2000
Pal 38	349780	20	17-Aug	2000
Pal 39	349781	20	17-Aug	2000
Pal 40	349782	15	16-Aug	2000
Pal 41	349783	15	20-Aug	2000
Pal 42	349784	12	18-Aug	2000
Pal 43	349785	20	21-Aug	2000
Pal 44	349786	20	20-Aug	2000
Pal 47	350425	15	24-Aug	2001
Pal 48	350016	12	23-Aug	2000
Bobino 1	346808	10	7-Jun	2001
Bobinette	346809	10	8-Jun	2000

Claim Name	Record #	# units	Expiry Date	Expiry Year
Fiona	352235	1	9-Oct	2000
Isabelle	352236	1	9-Oct	2000
Suzanne	352237	1	9-Oct	2000
Steelhead 1	334766	8	6-Apr	2001
Steelhead 2	334767	8	6-Apr	2001
Sh 8	334773	1	6-Apr	2001
Sh 9	334774	1	6-Apr	2001
Sh 10	334775	1	6-Apr	2001
Lorraine 1	243499	1	17-Sep	2006
Lorraine 2	243500	1	17-Sep	2006
Lorraine 3	243501	1	17-Sep	2006
Lorraine 4	243502	1	17-Sep	2006
Lorraine 5	243503	1	17-Sep	2006
Lorraine 6	243504	1	17-Sep	2006
Lorraine 7	243505	1	17-Sep	2006
Lorraine 8	243506	1	17-Sep	2006
Lorraine 9	243507	1	22-Jun	2006
Lorraine 10	243508	1	22-Jun	2006
Lorraine 11	243509	1	22-Jun	2006
Lorraine 12	243510	1	22-Jun	2006
Lorraine 1FR	245449	1	31-May	2006
Lorraine 2FR	245450	1	31-May	2006
Lorraine 3FR	245451	1	31-May	2006
Lorrex 1	243646	1	4-Sep	2006
Lorrex 2	243647	1	4-Sep	2006
GK 1	245043	1	3-Jul	2006
GK 2	245044	1	3-Jul	2006
GK 3	245045	1	3-Jul	2006
GK 4	245046	1	3-Jul	2006
GK 5	245047	1	3-Jul	2006
GK 6	245048	1	3-Jul	2006
GK 7	245049	1	3-Jul	2006
GK 8	245050	1	3-Jul	2006
GK 9	245051	1	3-Jul	2006
GK 10	245052	1	3-Jul	2006
GK 11	245053	1	3-Jul	2006
GK 18	245054	1	3-Jul	2006
GK 19	245955	1	3-Jul	2006
GK 20	245056	1	3-Jul	2006
GK 21	245057	1	3-Jul	2006
GK 109 FR	245452	1	31-May	2006
GK 110 FR	245530	1	25-Jul	2006
GK 111 FR	245453	1	31-May	2006
GK 112 FR	245531	1	25-Jul	2006
Dorothy 1	241431	12	20-Nov	2002

Claim Name	Record #	# units	Expiry Date	Expiry Year
Dorothy 2	241432	12	20-Nov	2002
Dorothy 3	241433	12	20-Nov	2002
Dorothy 4	241434	12	20-Nov	2002
Dorothy 5	241961	12	14-May	2002
Dorothy 6	241962	15	14-May	2002
Dorothy 7	241963	18	14-May	2002
Dorothy #1	243511	1	16-Jul	2002
Dorothy #3	243512	1	16-Jul	2002
Elizabeth #1	243513	1	27-Aug	2002
Steele #1	240496	20	29-Apr	2003
Steele #2	240497	20	29-Apr	2003
Steele #3	240498	20	29-Apr	2003
Steele #4	240499	20	29-Apr	2003
Boot 6	242900	15	30-Oct	2001
Boot 10	303913	20	5-Sep	2002
Duck 1	371543	1	31-Aug	2000
Duck 2	371544	1	31-Aug	2000
Duck 3	371545	1	31-Aug	2000
Duck 4	371 546	1	31-Aug	2000
MacKenzie 1	372404	20	6-Oct	2000
MacKenzie 2	372405	20	6-Oct	2000
MacKenzie 3	372406	20	6-Oct	2000
MacKenzie 4	372407	20	6-Oct	2000
MacKenzie 5	372408	8	6-Oct	2000

1999 EXPLORATION PROGRAM

The objective of the 1999 geochemical sampling program was to follow-up copper, gold, platinum and palladium anomalies that were discovered in talus fines and seepage samples collected in 1996 and 1997. 1-2 geologists and 1 assistant carried out fieldwork during the periods August 14th to September 3rd, 1999. Exploration work focused on areas with geochemical anomalies peripheral to the main Lorraine prospect, and was based out of 3 fly-camps established on the Steele #3 (southeast of the Lorraine prospect), Dorothy (Elizabeth showing) and on the Pal 48 (north end of the property) claims. Prospecting and helicopter pad construction was carried out on the MacKenzie showing from a base camp on Silver Creek. All access to the property was by helicopter. A total of 48 rock and 121 soils/talus fines/seepage samples were collected.

Steele #3

Two fly-camps were established on the Steele #3 claim; the first located on Jeno Ridge near the "BM" breccia occurrence (at 1900 metres elevation), and the second at tree-line in the prominent circu south of the Bishop zone.

The BM breccia, which has been sampled by previous exploration programs has been shown to contain highly anomalous concentrations of platinum group metals. The breccia was re-sampled and the area prospected on August 14th. Two rock samples were collected. No additional occurrences of the breccia were found, other than the downslope trend of several exposures of the BM breccia. A reconnaissance line of 8 soil samples was taken on the grass-covered west side of Jeno Ridge to prospect for a possible western extension of the breccia mineralization under cover.

Several days (August 15th to 19th) were spent following-up anomalous samples in the southernmost cirque of Steele #3. Talus fines sampling in 1996 had identified anomalous gold geochemistry coming from both the north and southeast walls of this cirque; and in addition, re-analysis of the fines in 1999 had identified several weak (<15 ppb) platinum anomalies on the north side of this cirque. Exploration this year included prospecting and sampling of several gossans in the cirque, discovery of a zone of malachite-stained, mineralized syenite outcrop and the infill sampling of talus fines on the north and south cirque walls. The newly discovered mineralized zone is located in the north-central part of the cirque at approximately 1740 m elevation, below the line of talus fines and seepage samples collected in 1996. Five short soil sample lines were run over the area to test the geochemical response of the mineralized outcrop and the shear zone. A total of 19 rock samples, and 46 soil and talus fines samples were collected in the cirque.

Dorothy (Elizabeth)

August 22 & 23, 1999 were spent prospecting and sampling the Elizabeth breccia and surrounding area on the Elizabeth 1, Dorothy 3 and Dorothy 4 claims by 2 geologists and 1 assistant. Infill sampling of several copper anomalies in talus fines and seepage samples was also carried out. The Elizabeth breccia was relocated and found to be partly exposed over about a 10-metre width above a 1991 a cat road. There is little evidence of previous work at the showing; a shallow hand trench, now obscured by the cat-road and a few sample ribbons are the only evidence of prior exploration. A total of 10 Rock samples and 26 talus fines and seepage samples were collected in this area.

PAL 48

Two areas were prospected and sampled by 1 geologist and 1 assistant from a flycamp established in a north-facing cirque on Pal 48. The first area examined was the Steelhead 1 claim on August 26, 1999. A total of 10 talus fines samples were taken at 50m spacing on the hillside above a group of anomalous seepage samples (Numbers 111345 to 111350) which were collected in 1996. The following 3 days (August 27 to August 29, 1999) were spent prospecting and sampling the Pal 48 claim area. Much of this time was focused on the hillside above two 1996 talus fine samples, which had yielded a multi-element anomaly. A total of 12 rock samples and 28 talus fines were collected from the Pal 48 claim.

MacKenzie Showing

Two showings, one massive and one semi massive were located on Duckling Creek following up a description provided by Terry Mackenzie, who had worked in this area in the 1980's. The MacKenzie showings were staked (Duck 1-4), and sampled on August 31, 1999. 1 geologist and an assistant collected a total of 5 rock samples and 1 silt sample. The MacKenzie showing was visited again on October 1-2 when helicopter pads were built at each of the exposures. It is believed that the two showings, which occur on the eroded incised edge of the creek, represent fissure infilling of sulfides derived from a porphyry occurrence.

RESULTS & INTERPRETATION

A posting of sample locations and results is included in figures 3 though 15. The results of this work is summarized as follows:

Steele #3

The BM breccia on Jeno Ridge was the focus of the first fly camp. This homolithic breccia is an small irregular zone of fracture fillings / dilations containing angular breccia fragments up to 10 cm long of intense, biotite-altered, gray syenite with a sulfide rich matrix. Locally the breccia contains up to 40% pyrite, bornite and malachite, combined. The gray syenite host displays intense biotite alteration within a few metres of the breccia, in places up to 60% of rock is composed of biotite. Numerous pink K-feldspar veinlets to 1cm thick crosscut through the host and appear to be associated with the breccia. They are unaltered and unmineralized. Many of the K-feldspar crystals appear to be pegmatitic, even within the limited space of the veinlets, suggesting that that the residual melt contained a hydrous / volatile component. This would help to explain the presence of the anomalous platinum group element geochemistry.

Nov. Iling

Re-analysis of the BM breccia confirmed the precious metals content (Au: 5972 ppb; Ag: 134.8 ppm; Pt: 399 ppb; Pd: 948 ppb). The soil samples collected on the grassy slope to the west of the breccia returned 1 significant anomaly (#C99-ST-001 Pd: 41 ppb). This may be the result of mechanical, down-slope dispersion from a westward extension of the breccia under cover.

Prospecting and sampling in the southernmost cirque of Steele #3 yielded a number of geochemical anomalies in talus fines, soil samples, and the discovery of a zone of malachite-stained, mineralized syenite in the north-central part of the cirque at 1740 m elevation. This outcrop is below the line of talus fines and seepage samples collected in 1996. Mineralization consists of disseminated blebs of pyrite, chalcopyrite and bornite in a medium-grained, malachite-stained, magnetite-rich, gray syenite. The mineralization was traced, discontinuously for approximately 50 metres and is found adjacent to and on the south side of a shear zone. Visibly mineralized gray syenite returned analysis values of 0.71 % copper and 974 ppb gold (P99-ST-006), and 0.45% copper and 563 ppb gold (P99-ST-013). A sample of a pink syenite in contact with a malachite-stained, syenitemagnetite breccia (P99-ST-008) returned higher copper values 1.70 % and a gold value of 53 ppb. The syenite-magnetite breccia itself returned values of 0.54% copper and 369 ppb gold.

A 10-cm wide quartz vein in the shear zone was noted to contain disseminated specks of bornite and pyrite, and when analyzed, was found to contain 18,974 ppb gold. A sample of the silicified, limonitic host rock (syenite?) for the shear zone returned 1071 ppb gold. This shear zone, as exposed in a creek bank is 3-4 metres wide.

Soil sampling across the cirque floor and in the vicinity of the mineralization yielded a number of anomalies in both copper and gold. A soil sample (C99-ST-024) near mineralized outcrop returned values of 347-ppm copper and 40 ppb gold. Samples (C99-ST-018 & 019) taken near the sheer zone and above the mineralized syenite outcrop yielded low copper values but 114 ppb and 247 ppb gold, respectively. Clearly these samples reflect different sources for each anomaly; copper from the mineralized syenite and gold from the shear zone. Another soil sample (C99-ST-025) on trend with the shear zone returned 1230-ppb gold and 103-ppm copper (re-analysis). A group of copper anomalies (but with low gold values) in soils south of the mineralized syenite (C99-ST-014: 305 ppm Cu; C99-ST-015: 914 ppm Cu; C99-ST-021: 279 ppm Cu) suggest a bedrock source for the copper, perhaps mineralized syenite. This copper anomaly remains open to the west and southeast. Platinum and palladium values are generally low, except for soil samples C99-ST-011, 040 & 042 which returned 42, 40 & 45 ppb palladium respectively and remain unexplained.

Talus fines collected in the Steele #3 cirque returned mixed results. Along the north slope of the cirque, the anomalous gold analysis of 495 ppb returned by 1996 talus fines sample #104154 was not reproduced by samples C99-ST-038, 039, 046 which bracketed the 1996 sample. However, sample C99-ST-047, located 100 metres to the northeast, yielded 1311-ppm copper and 107 ppb gold. Moderately anomalous copper

Π

Π

geochemistry was identified in the northwest corner of the cirque. Samples C99-ST-043 & 044 returned 734 ppm and 1514 ppm copper respectively. A sample of soil from a maroon-coloured, hematitic gossan in this area yielded 591 ppm copper and 96 ppb gold.

The talus fines collected along the south slope of the cirque repeated most of the previous gold anomalies, except for #103165 (226 ppb gold) which was bracketed by samples #C99-ST-049 & 050 and which returned 56 ppb & 65 ppb gold respectively. The 1996 gold anomalies in samples #103168 & 103170 (103 ppb, 134 ppb gold) were repeated by samples C99-ST-053, 054, 055 & 056 (335 ppb, 130 ppb, 227 ppb & 118 ppb gold). A rock (float) sample of limonitic intrusive containing pyrite and a quartz veinlet (sample # P99-ST-019) returned 307 ppb gold. The source for the gold in talus fines is probably the prominent sheer zones cutting through the south wall of the cirque.

Dorothy (Elizabeth)

The location and sampling of the Elizabeth breccia was the primary focus of work in the Dorothy area. The Elizabeth breccia is an intrusive breccia, possibly localized by a fault, and cemented with a bornite-chalcocite-malachite matrix. The breccia fragments are generally small, less than 10 cm in length, angular and bleached / clay altered. Vuggy open spaces in the breccia are common. The sulfide matrix is fine-grained and comprises approximately 40% of the rock. A composite grab sample (P99-DE-001) assayed 22.16% copper; precious metals values were relatively low. Samples of bleached, clay-altered and chalcocite-bearing intrusive (M99-DE-002 & 003) were collected near the northern margin of the breccia and returned values of 1360 ppm and 5641 ppm copper, and 81 ppb and 127 ppb gold respectively. A line of 6 talus fines samples (C99-DE-001 to 006) was taken several hundred metres upslope from the Elizabeth breccia. Most contained very low copper values, except for the first sample at the end of the cat road which returned 361 ppm copper. This may suggest a north-south alignment to structures hosting the copper mineralization in this area.

North of Dorel Creek, a 1999 talus fines sample # 972013 had returned 1876 ppm copper. Re-sampling (C99-DE-007) did not reproduce this anomaly (514-ppm copper). Upslope, 200 metres to the northwest, an outcrop of weakly mineralized mafic syenite returned 1722 ppm copper (sample #M99-DE-004), a talus fines sample (#C99-DE-008) taken near by contained 748 ppm copper.

Several samples were taken along the road following the Duckling Creek valley, approximately due west of the Elizabeth breccia. Road cuts along this area expose a gray syenite that is pervasively mineralized with minor amounts of pyrite and chalcopyrite, although the sulfide content locally exceeds 1%. Sample M99-DE-007 (006A) returned 6097-ppm copper and negligible gold. Talus fines collected along the first dogleg of the Elizabeth breccia road (#C99-DE-009 to 023) returned values in the 200 to 500 ppm range. These appear to be above general background values, but are not interpreted to be of special interest because outcrop in this area is weakly mineralized, and in addition, they are downslope from the Elizabeth breccia.

Two seepage samples (#974060 & #974062) taken at 1200 metres elevation below the Duckling Creek road had returned anomalous values of 2476 ppm and 1052 ppm copper, respectively. However, 3 follow-up seepage samples (#C99-DE-024, 025 & 026) which bracketed the anomalous samples were unable to reproduce the anomaly.

Pal 48 (Steelhead 1)

The Talus fines samples collected on the Steelehead 1 claim returned values ranging from 176 ppm to 536 ppm copper, within the range of the 1996 talus fines samples collected here. They provide little information to explain the 1996 seepage sample anomalies below, other than to suggest that the anomalies are indeed due to seepage.

Talus fines samples collected on the Pal 48 claim were moderately anomalous and they identified two area of interest. The southeast wall of the cirque produced three anomalous talus fines samples: sample numbers C99-PAL-002, 0044 & 005, which returned 1211 ppm, 1390 ppm and 1215 ppm copper, and 13 ppb, 69 ppb and 29 ppb gold, respectively. These are moderately anomalous values in this area. The highly anomalous copper values found in the 1996 talus fines were not repeated; however, the samples were found to have been taken from the toe of a relic rock-glacier, and are transported anomalies. It is believed that they originated from the general area of this year's samples #C99-PAL-002 to 005. Malachite-stained gray syenite float was found on this hillside float (rock sample P99-PAL-003 returned 7477 ppm copper), which together with the anomalous talus fines suggests that a zone of mineralization exists upslope.

Talus fines samples #C99-PAL-019 & 021 returned values of 1055 ppm and 1294 ppm copper from the southwest side of the cirque. Several pieces of malachite-stained float (rock sample P99-PAL-009 returned 3886-ppm copper) were also found in this area; however, no pattern is evident to the anomalous samples found so far.

A small zone of chalcopyrite-molybdenite mineralized monzonite was found in the cirque floor at about 1640 metres elevation. Both talus fines (Sample numbers C99-PAL-024 to 026) and rock samples (sample numbers P99-PAL-010 to 012) returned anomalous copper-molybdenum values.

MacKenzie Showing

The Mackenzie showing on Duckling Creek was found to consist of two showings separated by 250 metres of clay bank. The first showing consists of a lenses of massive pyrite-chalcopyrite exposed in a creek cut-bank. This mineralization appears to be hosted by an intensely fractured, chlorite-rich, intermediate to basic intrusive with a late potassic overprint consisting mainly of cross-cutting K-feldspar veins. A second showing located 250 metres to the south consists of a one metre wide massive chalcopyrite lens dipping into the creek bank. Analysis of this lens (sample #P99-DUCK-005) returned 20.75% copper, 127.6 ppm silver and 6764 ppb gold. Sample P99-DUCK-001, a 1.6 metre channel sample across mineralized outcrop at the northern showing, returned 2.68%

copper 16.1-ppm silver and 408 ppb gold. Grab samples P99-DUCK-002 to 004 taken in the vicinity of #P99-DUCK-001, returned 26314 ppm, 8147 ppm and 4422 ppm copper respectively.

CONCLUSIONS & RECOMMENDATIONS

The 1999 field program was successful in finding mineralization at several different locations on the Lorraine property and follow-up exploration work is warranted at all of the sites visited.

Geophysical surveys should be completed at the MacKenzie discovery, at the southern most circue syenite showing on the Steele #3 claim and at the new copper – molybdenum discovery in the vicinity of samples C99-PAL-024 to 026 on the Steelhead 1 claim.

The cat road, which ends immediately below and to the south of the Elizabeth breccia, should be extended. A switchback should be constructed here going higher above the breccia by zigzagging back in a northern direction.

Diamond drill testing will be required to further evaluate all of these targets.

REFERENCES

Archambault, M., Price, B.J. and Rebagliati, C.M. (1991): 1990 Exploration Report, Lorraine Property; *C.E.C. Engineering Ltd.* for *Kennecott Canada Inc.*, Unpublished private report, 23 pp. with extensive appendices and 11 plates.

Bishop, S. (1994): 1993 Geochemical and Diamond Drilling Report on the Lorraine Property; *Kennecott Canada Inc.*, Unpublished private report, 20 pp. with appendices.

Bishop, S. and Fingler, J. (1992): 1991 Exploration Report, Lorraine Property; *Kennecott Canada Inc.*, Unpublished private report, 54 pp. with extensive appendices and maps.

Bishop, S.T., Heah, T.S. and Lang, J.R. (1995): Alkalic Intrusion Hosted Copper-Gold Mineralization at the Lorraine Deposit *in* Porphyry Deposits of the Northwestern Cordillera of North America; *CIM*, Special Volume 46, pp. 623-629.

Garnett, J.A. (1971): Duckling Creek Area, Hogem Batholith; B.C. Dept of Mines & Pet. Res., GEM 1971, pp. 203-219.

Garnett, J.A. (1973): Lorraine, Lorrex; B.C. Dept of Mines & Pet. Res., GEM 1973, pp. 370-378.

Garnett, J.A. (1973): Geology and Mineral Occurrences of the Southern Hogem Batholith; B.C. Dept of Mines & Pet. Res., Bulletin 70, 75 pp.

Gravel, J. (1990): Dorothy Project - 1990 Soil Geochemical Survey NTS 93N/14; ; *Prime Geochemical Methods Ltd.* for *C.E.C. Engineering Ltd.*, Unpublished private report consisting of 30 maps.

Gravel, J. (1997): Soil, Talus Fines and Seepage Geochemistry of the JAJAY Project, NTS 94N 13/14 Germansen Landing Area, British Columbia; Prime Geochemical Methods Ltd. for Lysander Gold Corporation, Unpublished private report dated July, 1997 and consisting of 105 maps.

Gravel, J. (1997): Soil, Talus Fines and Seepage Geochemistry of the JAJAY Project, Steel Creek and Dorothy Areas NTS 94N 13/14 Germansen Landing Area, British Columbia; *Prime Geochemical Methods Ltd.* for *Lysander Gold Corporation*, Unpublished private report dated December, 1997 and consisting of 18 maps.

Gravel, J. (1999): Memo to Bill Morton and Jay Page Re Work program on JAJAY Project; *Prime Geochemical Methods Ltd.* for *Lysander Gold Corporation*, Unpublished private report dated August 23, 1999 and consisting of 16 maps.

Hammond, W.P. (1948): Report on Exploration and Development in the Omineca District; *Granby Mining Company Limited*, Unpublished private report, 41 pp. with appendices.

Hammond, W.P. (1949): Report on the Omineca Project; Northwestern Explorations, Limited; Unpublished private report, 29 pp. with appendices.

Koo, J.H. (1968): Geology and Mineralization in the Lorraine Property area, Omineca Mining Division, B.C.; University of British Columbia, Unpublished M.Sc.Thesis, 107 pp.

Lowe, D.F. and Prater, J.D. (1966): Progress Report on the Leaching of Samples from the Lorraine Prospect, British Columbia, Canada; *Hydrometallurgy Research Group* for *Kennco Exploration (Western) Limited*, Unpublished private report, 7 pp.

Page, J.W. (1998): Geological Compilation Report - Lorraine Property; *Mincord Exploration Ltd.* for *Lysander Gold Corporation*, Unpublished private report, 15 pp. with appendices.

Pothorin, C. and Bishop, S. (1992): 1991 Exploration Report Dorothy Property; Kennecott Canada Inc. pp. 33 with extensive appendices.

Price, B.J. and Copeland, D.J. (1990): Assessment Report, Lorraine Property; C.E.C. Engineering Ltd. for Kennco Explorations (Western) Ltd., Unpublished private report, 15 pp. with appendices.

Richardson, P.W. (1995): Assessment Report Describing the 1995 Drilling Program Lorraine Property; *Richardson Geological Consulting Ltd.* for *Lysander Gold Corporation*, Unpublished private report, 12 pp. with extensive appendices.

Richardson, P.W. (1997): The JAJAY Project, Assessment Report Describing the 1996 Geological, Geochemical and Drilling Programs on the Lorraine, Steelhead, Dorothy and Boot Steel Properties and the Pal Claims; *Richardson Geological Consulting Ltd.* for *Lysander Gold Corporation*, Unpublished private report, 22 pp. with extensive appendices.

Stevenson, R.W. (1961): Compilation Report on Previous Work & Claim Expiry Dates; *Kennco Explorations (Western) Limited*; Unpublished private report, 11 pp.

Stevenson, R.W. (1961): Report on Geochemical Survey; *Kennco Explorations (Western) Limited*; Unpublished private report, 4 pp.

Stevenson, R.W. (1962): Interim Report; Kennco Explorations (Western) Limited; Unpublished private report, 8 pp.

Stevenson, R.W. (1963): Interm Report; *Kennco Explorations (Western) Limited*; Unpublished private report, 9 pp.

Stevenson, R.W. (1970): Resume of Data on the Lorraine Deposit, Omineca Mining District, B.C.; Kennco Explorations (Western) Limited; Unpublished private report, 9 pp.

Wilkinson, W.J. (1973): Report on Lorraine Exploration Program 1972; The Granby Mining Company Limited, Unpublished private report, 11 pp.

Wilkinson, W.J. (1974): Lorraine Deposit; The Granby Mining Company Limited, Unpublished private memorandum, 4 pp.

Wilkinson, W.J., Stevenson, R.W. and Garnett, J.A. (1976): Lorraine *in* Porphyry Deposits of the Canadian Cordillera; *CIM*, Special Volume 15, pp. 397-401.

COST STATEMENT

-

î î

1

Į.

11

J. Page P.Geo	Aug 11 - Aug 31	22 days @ \$450	\$9,990	
-	Sept 1 - 13	13 days @ \$450	5,850	
	Nov 1 - 2	2 days @ \$450	900	
J.W. Morton P.Geo	Aug 20 - 24	5 days @ \$450	2,250	
	Sept 10	1 days @ \$450	450	
	Sept 29 - 30	2 days @ \$450	900	
	Oct 1 - 2	2 days @ \$450	900	
J.P Charbonneau	Aug 10 - Aug 31	23 days @ \$250	5,750	
	Sept 1 - 3	3 days @ \$250	750	
	Oct 1	1 day @ \$250	250	
Mike Mustard	Sept 29 - 30	2 days @ \$250	500	
	Oct 1	1 day @ \$250	250	
Commercial Airfares: Vancouver-Prince George Rtn		401		
	Vancouver-Smithe	ers Rtn	738	
Camp Rental 23 days @ \$100			2,300	
Consumables and Field Equipment			1,700	
Truck rental			2,650	
Hotel			1,434	
Expense accounts (incl	udes some fuel)		866	
Fuel (not in expense accounts)				
Freight	·		269	
Drafting supplies				
Telephone			91	
Helicopter	15.5 hours @ \$847	7	13,129	
Analysis of 169 soil and rock samples				
(30 element ICP with additional gold and platinum group metal determinations)				

TOTAL

\$55,119

Certificate of Qualifications

I, Jay W. Page, hereby certify that:

I am a graduate of the University of British Columbia, holding a B.A. in Geography/Geomorphology (1977) and a B.Sc. in Geology (1984).

I am a registered member, in good standing as a Professional Geoscientist, with the Association of Professional Engineers and Geoscientists of the Province of British Columbia, registration number 19596.

I have been employed in mining exploration since 1977 by Placer Development Ltd., D.G. Leighton & Associates Ltd., Bema Industries Ltd., AGIP Canada Ltd., Beaty Geological Ltd., Westex Exploration Ltd., and Mincord Exploration Consultants Ltd.

I have visited the Jajay property, and I supervised the 1999 exploration program described in this report.

I have no interest, direct or indirect, financial or otherwise in Lysander Minerals Corp. or any of their assets including mineral properties, nor do I expect to receive any.

I give my consent to Lysander Minerals Corp. to use this report in a company prospectus, statement of material facts or other public document.

Signed this 14th day of December 1999 in the District of Coldstream, British Columbia.

Jay W. Page, P.Geo.
APPENDIX 1

i.

Sample Descriptions

1

.

SAMPLE NUMBER	LOCATION / CLAIM / AREA	SAMPLE TYPE	SAMPLER / DATE	DESCRIPTION / NOTES
STEELE 3 - JEN	O RIDGE			
P99-ST-001	STEELE 3 - Jeno Ridge @ 1905m elevation.	Grab sample of BM breccia outcrop	JWP 15/8/99	Syenite breccia, showing intense biotite and k-feldspar alteration, locally contains up to 30% bornite with intense malachite development. Breccia matrix includes k-feldspar crystals to several cm, suggesting growth under high vapour/volatile pressure.
P99-ST-002	STEELE 3 - Jeno Ridge @ 1940m elevation.	Grab sample of outcrop	JWP 15/8/99	Hematitic breccia from ridge top.
STEELE 3 - SOL	JTH CIRQUE			
P99-ST-003	STEELE 3 - south side of south cirgue @ ~1700m elevation.	Grab sample of outcrop	JWP 16/8/99	Limonitic/sideritic zone (+/-sheer?) of altered biotite- magnetite syenite.
P99-ST-004	STEELE 3 - north side of south cirque @ 1740m elevation.	Grab sample of float, close to source.	JWP 16/8/99	Quartz vein, 6-8 cm thick, contains 1-2% rust boxwork, minor bornite, malachite, chalcopyrite. Hosted by gossenous soil zone/sheer trending @ 80 and ~3-4 m. wide as exposed by creek.
P99-ST-005	STEELE 3 - north side of south cirque @ 1740m elevation.	Grab sample of outcrop, as exposed by stream.	JWP 16/8/99	Rusty-weathering, limonitic & silicified host (syenite?) for sheer with small quartz veinlets carrying minor pyrite and chalcopyrite.
P99-ST-006	STEELE 3 - north side of south cirque @ 1735-1740m elevation.	Grab sample of outcrop	JWP 16/8/99	Grey, medium-grained, biotite-pyroxene-magnetite syenite containing disseminated & fracture controlled blebs of bornite. Malachite stain in weathering rind.
P99-ST-007	STEELE 3 - north side of south cirque @ 1710m elevation.	Grab sample of outcrop	JWP 17/8/99	Homolithic syenite breccia with magnetite matrix and malachite staining. Small area exposed: 1 x 0.5 m.
P99-ST-008	STEELE 3 - north side of south cirque @ 1710m elevation.	Grab sample of outcrop	JWP 17/8/99	Coarse-grained pink biotite-syenite with malachite staining. Adjacent to, and could be host to, breccia described by P7 above.
P99-ST-009	STEELE 3 - north side of south cirque @ 1715m elevation.	Grab sample of outcrop	JWP 17/8/99	Medium-grained grey to grey-pink biotite-syenite with minor blebs of pyrite, +/- trace chalcopyrite? mineralized area is just a small patch, not typical.
P99-ST-010	STEELE 3 - north side of south cirque @ 1720m elevation.	Grab sample of subcrop	JWP 17/8/99	Grey syenite with tiny blebs of pyrite +/- chalcopyrite, similar to P9 above.
P99-ST-011	STEELE 3 - north side of south cirque @ 1735-1740m elevation.	Grab sample of outcrop	JWP 18/8/99	Pink-grey biotite-pyroxene syenite from upper part of o/c of sample P6, sample has less magnetite and little visible sulphide mineralization.
P99-ST-012	STEELE 3 - north side of south cirque @ 1735-1740m elevation.	Grab sample of outcrop	JWP 18/8/99	Pink-grey biotite-pyroxene syenite from lower part of o/c of sample P6, sample has several % magnetite and no visible sulphide mineralization. Syenite is coarser-grained and more pink coloured than P6.

•

.

٠,

SAMPLE NUMBER	LOCATION / CLAIM / AREA	SAMPLE TYPE	SAMPLER / DATE	DESCRIPTION / NOTES
P99-ST-013	STEELE 3 - north side of south cirque @ 1735-1740m elevation.	Grab sample of outcrop	JWP 18/8/99	Pink-grey biotite-pyroxene syenite from northwest corner of o/c of sample P6, sample is epidote-altered and contains minor disseminated pyrite and is malachite stained.
P99-ST-014	STEELE 3 - north side of south cirque @ 1740m elevation.	Grab sample of outcrop	JWP 18/8/99	Pink-grey syenite with prominent biotite books, trace of disseminated pyrite.
P99-ST-015	STEELE 3 - north side of south cirque @ 1730m elevation.	Grab sample of subcrop	JWP 18/8/99	Medium-grained, grayish-pink, biotite chlorite-altered- pyroxene syenite with minor pyrite, bornite and malachite.
P99-ST-016	STEELE 3 - north side of south cirque @ 1720m elevation.	Grab sample of outcrop	JWP 18/8/99	Fine-grained pink syenite with 1% disseminated, tiny pyrite cubes.
P99-ST-017	STEELE 3 - north side of south cirque @ 1790m elevation.	Grab sample of outcrop	JWP 19/8/99	Rusty-weathering siliceous breccia, 0.5m wide, 110/85S. weathered surfaces show siliceous rims on syenite(?) fragments. but no quartz veining.
P99-ST-018	STEELE 3 - north side of south cirque @ location of talus fines sample 104153	Grab sample of float	JWP 19/8/99	Bits of cream-coloured, siliceous rock with weathered-out pyrite boxwork.
P99-ST-019	STEELE 3 - southern talus slope	Grab of talus	JWP 20/8/99	Rusty-weathering syenite with disseminated pyrite and quartz vein.
P99-ST-020	STEELE 3 - southern talus slope	Grab of talus	JWP 20/8/99	Rusty-weathering syenite with disseminated pyrite. Syenite is k-feldspar rich.
P99-ST-021	STEELE 3 - southern talus slope	Grab of talus	JWP 20/8/99	Rusty-weathering syenite breccia with tiny carbonate veinlets.
DOBOTHY - FU				
P99-DE-001	DOROTHY 4 - Elizabeth breccia area	Grab of talus	JWP 22/8/99	Syenite breccia with bornite (+/-chalcocite) -malachite matrix.
P99-DE-002	DOROTHY 3	Grab sample of outcrop	JWP 22/8/99	Biotite-altered intrusive (diorite?) with minor pyrite, trace chalcopyrite and lots of magnetite.
N00 DE 001	DOPOTHY A read at	Crob comple of suteres	EN 22/8/00	Dark calcurat histita risk intrusive reak containing up to 5%
M99-DE-001			DIVI 22/0/99	pyrite +/- chalcopyrite.
M99-DE-002	DOROTHY 4 - Elizabeth breccia area	Grab sample of outcrop	BM 22/8/99	Bleached, clay-altered with relic magnetite and black amorphous blebs.
M99-DE-003	DOROTHY 4 - Elizabeth breccia area	Grab sample of outcrop	BM 22/8/99	Bleached, clay-altered rock as above, but more siliceous. Contains black copper/manganese (?) wad.
M99-DE-004	DOROTHY 3	Grab sample of float	BM 22/8/99	Mafic-rich syenite, malachite stain, only one piece from blow down. Lots of pink K-feldspar and manganese stain on float in this area.

٦

1

 \neg

 $\overline{}$

J

r

>

1

SAMPLE NUMBER	LOCATION / CLAIM / AREA	SAMPLE TYPE	SAMPLER / DATE	DESCRIPTION / NOTES
M99-DE-005	DOROTHY 4 - road-cut	Grab sample of over grown talus, local source	BM 23/8/99	Diorite with 2% pyrite, minor chalcopyrite, and a trace bornite, cut by quartz-feldspar veinlet.
M99-DE-006	DOROTHY 4 - road-cut	Grab sample of over grown talus, local source	BM 23/8/99 -	K-feldspar altered syenite with patchy silicification and "blue' colour. Contains several % pyrite, minor chalcopyrite and bornite, also perhaps chalcocite as fracture coatings. Sulphides are fracture controlled.
M99-DE-007	DOROTHY 4 - road-cut	Grab sample of outcrop	BM 23/8/99	Diorite with 1-2 % pyrite and trace chalcopyrite. Minor silicification.
M99-DE-008	DOROTHY 4 - road-cut	Grab sample of outcrop	BM 23/8/99	Coarse-grained biotite syenite with large biotite books, lots of magnetite and minor bornite.
PAL 48 CLAIMS				
P99-PAL-001	PAL 48 - southeast ridge top	Grab sample of outcrop	JWP 26/8/99	Rusty-weathering grey syenite with minor pyrite and a trace of chalcopyrite introduced with quartz vein.
P99-PAL-002	PAL 48 - southeast ridge top	Grab sample of outcrop	JWP 26/8/99	Rusty-weathering grey syenite with 2% pyrite and 1% magnetite. Fracture control of pyrite.
P99-PAL-003	PAL 48 - southeast talus slope	Grab sample of talus	JWP 27/8/99	Malachite stained pink syenite.
P99-PAL-004	STEELEHEAD 1 - ridge top	Grab sample of outcrop	JWP 28/8/99	Grey/pink syenite fault breccia, epidote alteration, hematite matrix, minor malachite staining.
P99-PAL-005	STEELEHEAD 1 - ridge top	Grab sample of outcrop	JWP 28/8/99	Mafic-rich grey syenite with K-feldspar vein and replacement envelope containing possible small specks of bornite.
P99-PAL-006	STEELEHEAD 1 - ridge top	Grab sample of outcrop	JWP 28/8/99	Bleached, sericite chlorite-altered grey syenite with minor disseminated and fracture fillings of pyrite. Possible trace of chalcopyrite.
P99-PAL-007	STEELEHEAD 1 - ridge top	Grab sample of outcrop	JWP 28/8/99	Mafic-rich syenite with disseminated specks of pyrite and possible bornite.
P99-PAL-008	STEELEHEAD 1 - Talus slope of cirque @ 1720m elevation.	Grab sample of talus	JWP 28/8/99	Silicified syenite (?) breccia with vuggy quartz, 1% pyrite as disseminated blebs and stringers and minor chalcopyrite.
P99-PAL-009	PAL 48 - southwest talus slope @ 1730m elevation.	Grab sample of talus	JWP 28/8/99	Syenite with 1-2 cm pink K-feldspar vein and many malachite-covered blebs disseminated in alteration envelope.
P99-PAL-010	PAL 48 - southwest slope near camp @ 1640m elevation	Grab sample of talus, 10-15m down slope from source.	JWP 29/8/99	K-feldspar rich (altered?) syenite(?) with disseminated and fracture-fillings of pyrite, chalcopyrite and molybdenite rosettes.

· • • •

1

1

7

1

.

SAMPLE NUMBER	LOCATION / CLAIM / AREA	SAMPLE TYPE	SAMPLER / DATE	DESCRIPTION / NOTES
P99-PAL-011	PAL 48 - southwest slope near camp @ 1645m elevation	Grab sample of outcrop	JWP 29/8/99	Outcrop (3m wide x 2m high) of potassic-altered coarse- grained intrusive containing a few percent of disseminated blebs pyrite, chalcopyrite and molybdenite. Magnetite forms blotches and vague stockworks.
P99-PAL-012	PAL 48 - southwest slope near camp @ 1645m elevation	Grab sample of outcrop	JWP 29/8/99	Same outcrop as above sample P11, sample is more potassic-altered and contains a 1 cm wide quartz vein
P99-OMINECA-001	Omineca Forestry Road 5.8 km past Omineca Bridge	Grab sample of outcrop	JWP 30/8/99	Limonitic, earthy material from sheer zone
P99-OMINECA-002	Omineca Forestry Road 5.8 km past Omineca Bridge	Grab sample of outcrop	JWP 30/8/99	Bleached and altered fine-grained intrusive, magnetite rich, minor quartz-carbonate veining.
MACKENZIE SH	OWING			
P99-DUCK-001	DUCK 1 - Duckling Creek	1.8 metre Channel Sample	JWP 31/8/99	Channel sample across rubbly outcrop with up to 50% pyrite and extensive malachite staining. Patches up to 1-2 cm of chalcopyrite are found in the pyrite. Orientation unknown, best guess is a NE trend. Extensive K-feldspar alteration of host rocks.
P99-DUCK-002	DUCK 1 - Duckling Creek	Grab sample of outcrop	JWP 31/8/99	Sample taken 10m above P1. Very limonitic, massive pyrite in spots, disseminated and fracture control of chalcopyrite. Extensive malachite staining.
P99-DUCK-003	DUCK 1 - Duckling Creek	Grab sample of outcrop	JWP 31/8/99	Sample taken 10m above and 30m south of P1. again very limonitic, with massive pyrite in spots. A smaller zone: 1m x 3m. Extensive malachite staining.
P99-DUCK-004	DUCK 1 - Duckling Creek	Grab sample of outcrop	JWP 31/8/99	Sample taken 1m above P1. Host is very dark-coloured with pyrite veinlets, malachite staining.
P99-DUCK-005	DUCK 3 - Duckling Creek	Grab sample of outcrop	JWP 31/8/99	Massive sulphide lens at lower/downstream exposure from sample site P99-DUCK-001. Massive pyrite, very limonitic and in places earthy. Malachite and azurite staining. Lens is about 10m x 1m wide, varies 0.6m to 2m wide.

}

*

٦

<u>}</u>

1

1

JAJAY PROJECT 1999 SOIL SAMPLES

~

÷

[

SAMPLE	LOCATIO	DN		SA	MPLE DESCR	RIPTION
NUMBER	AREA ELEV	ATION (m)	SLOPE	TYPE	DEPTH (cm)	COLOUR
C99-ST- 001	STEELE #3 - Jeno Ridge	1890	15	soil	40	brown
C99-ST- 002	STEELE #3 - Jeno Ridge	1890	15	soil	40	med. brown
C99-ST- 003	STEELE #3 - Jeno Ridge	1890	15	soil	30	brown
C99-ST- 004	STEELE #3 - Jeno Ridge	1890	15	soil	20	dark brown
C99-ST- 005	STEELE #3 - Jeno Ridge	1890	15	soil	40	med. brown
C99-ST- 006	STEELE #3 - Jeno Ridge	1890	20	soil	40	brown
C99-ST- 007	STEELE #3 - Jeno Ridge	1900	20	soil	50	med. brown
· C99-ST- 008	STEELE #3 - Jeno Ridge	1900	20	soil	50	med brown
C99-ST- 009	STEELE #3 - Jeno Ridge	1980	30	soil	50	brown
C99-ST- 010	STEELE #3 - Jeno Ridge	1995	0	soil	25	light brown
C99-ST- 011	South Cirque - Soil lines	1730	10	soil	50	dark brown
C99-ST- 012	South Cirque - Soil lines	1730	25	soil	50	med. brown
C99-ST- 013	South Cirque - Soil lines	1730	15	soil	30	brown
C99-ST- 014	South Cirque - Soil lines	1730	15	soil	60	brown
C99-ST- 015	South Cirque - Soil lines	1740	10	soil	20	brown
C99-ST016	South Cirque - Soil lines	1740	5	soil	20	med. brown
C99-ST- 017	South Cirque - Soil lines	1740	20	soil	30	brown
C99-ST- 018	South Cirque - Soil lines	1740	10	soil	40	light brown
C99-ST- 019	South Cirque - Soil lines	1730	10	soil	50	brown
C99-ST- 020	South Cirque - Soil lines	1710	20	soil	40	med. brown
C99-ST- 021	South Cirque - Soil lines	1730	32	soil	50	med brown
C99-ST- 022	South Cirque - Soil lines	1730	30	soil	30	light brown
C99-ST- 023	South Cirque - Soil lines	1730	20	soil	30	light brown
C99-ST- 024	South Cirque - Soil lines	1720	25	soil	30	brown
C99-ST- 025	South Cirque - Soil lines	1715	20	soil	30	light brown
C99-ST- 026	South Cirque - Soil lines	1710	5	soil	30	dark brown
C99-ST- 027	South Cirque - Soil lines	1690	28	soil	30	brown
C99-ST- 028	South Cirque - Soil lines	1695	30	soil	40	green
C99-ST- 029	South Cirque - Soil lines	1705	25	soil	40	brown
C99-ST- 030	South Cirque - Soil lines	1710	25	soil	30	brown
C99-ST- 031	South Cirque - Soil lines	1720	10	soil	30	brown
C99-ST- 032	South Cirque - Soil lines	1720	10	soil	30	brown
C99-ST- 033	South Cirque - Soil lines	1755	5	soil	40	brown-green
C99-ST- 034	South Cirque - Soil lines	1760	10	soil	40	light brown
C99-ST- 035	South Cirque - Soil lines	1755	10	soil	30	light brown
C99-ST- 036	South Cirque - Soil lines	1750	30	soil	30	light green
C99-ST- 037	South Cirque - Soil lines	1750	25	soil	30	light green
C99-ST- 038	South Cirque - Soil lines	1770	30	soil	50	light green
C99-ST- 039	South Cirque - Soil lines	1780	30	soil	30	light green
C99-ST- 040	South Cirque - Soil lines	1/70	25	soil	30	brown
C99-ST- 041	South Cirque - Soil lines	1770	10	soil	30	light brown
C99-ST- 042	South Cirque - Soil lines	1/70	15	soil	50	light brown
C99-ST- 043	South Cirque - North slope	1800	30	Talus Fines	20	brown
C99-ST- 044	South Cirque - North slope	1800	20	Talus Fines	20	med. brown
C99-ST- 045	South Cirque - North slope	1800	25	I alus Fines	30	Drown
C99-ST- 046	South Cirque - North slope	1800	45	Talus Fines	30	Drown
C99-S1-047	South Cirque - North slope	1800	40	raius Fines	40	Drown
<u> </u>	South Cirque - Gossen	1/85	30	SOII	40	maroon
C99-51-049	South Cirgue - South slope	1620		Talus Fines	30	DIOWII
C99-51-050	South Cirque - South slope	1600			10	
C99-51-051	South Cirgue - South slope	1580		Talus Fines	30	DIOWII
052	South Cirque - South slope	15/5	25	i alus Fines	10	light prown

•

;

.

JAJAY PROJECT 1999 SOIL SAMPLES

-

£.

٢

-

Γ

~

....

-

~

SAMPLI	E	LOCATIC)N		SA	MPLE DESCI	RIPTION
NUMBE	R	AREA ELEV	ATION (m)	SLOPE	TYPE	DEPTH (cm)	COLOUR
C99-ST-	053	South Cirque - South slope	1575	35	Talus Fines	20	med. brown
C99-ST-	054	South Cirque - South slope	1570	30	Talus Fines	10	med. brown
C99-ST-	055	South Cirque - South slope	1575	32	Talus Fines	20	brown
C99-ST-	056	South Cirque - South slope	1575	40	Talus Fines	20	dark brown
C99-DE-	001	Dorothy-Elizabeth Area	1440	30	Talus Fines	30	light brown
C99-DE-	002	Dorothy-Elizabeth Area	1450	30	Talus Fines	40	light brown
. C99-DE-	003	Dorothy-Elizabeth Area	1465	35	Talus Fines	20	light orange brown
C99-DE-	004	Dorothy-Elizabeth Area	1490	40	Talus Fines	30	orange brown
C99-DE-	005	Dorothy-Elizabeth Area	1495	30	Talus Fines	20	orange brown
C99-DE-	006	Dorothy-Elizabeth Area	1475	28	Talus Fines	50	orange brown
C99-DE-	007	Dorothy-Elizabeth Area	1465	32	Talus Fines	40	orange brown
C99-DE-	008	Dorothy-Elizabeth Area	1515	35	Talus Fines	20	orange brown
C99-DE-	009	Dorothy-Elizabeth Road cut	1250	25	Talus/soil	40	orange brown
C99-DE-	010	Dorothy-Elizabeth Road cut	1250	25	Talus/soil	40	orange brown
C99-DE-	011	Dorothy-Elizabeth Road cut	1250	28	Talus/soil	50	olive brown
C99-DE-	012	Dorothy-Elizabeth Road cut	1250	25	Talus/soil	40	orange brown
C99-DE-	013	Dorothy-Elizabeth Road cut	1260	15	Talus/soil	30	light olive brown
C99-DE-	014	Dorothy-Elizabeth Road cut	1265	30	Talus/soil	50	light brown
C99-DE-	015	Dorothy-Elizabeth Road cut	1270	15	Talus/soil	50	medium brown
C99-DE-	016	Dorothy-Elizabeth Road cut	1280	25	Talus/soil	40	brown
C99-DE-	017	Dorothy-Elizabeth Road cut	1295	25	Talus/soil	40	orange brown
C99-DE-	018	Dorothy-Elizabeth Road cut	1295	15	Talus/soil	30	orange brown
C99-DE-	019	Dorothy-Elizabeth Road cut	1305		Talus/soil	30	dark brown
C99-DE-	020	Dorothy-Elizabeth Road cut	1310	30	Talus/soil	40	med. olive brown
C99-DE-	021	Dorothy-Elizabeth Road cut	1315	25	Talus/soil	20	dark brown
C99-DE-	022	Dorothy-Elizabeth Road cut	1325	30	Talus/soil	40	orange brown
C99-DE-	023	Dorothy-Elizabeth Road cut	1255	15	Talus/soil	40	orange brown
C99-DE-	024	Dorothy-Elizabeth Area	1200	30	Seepage/soil	50	brown
C99-DE-	025	Dorothy-Elizabeth Area	1200	25	Seepage/soil	?	dark brown
C99-DE-	026	Dorothy-Elizabeth Area	1200	26	Seepage/soil	30	orange brown
C99-SH-	001	Steelhead	1760	30	Talus Fines	20	orange brown
C99-SH-	002	Steelhead	1755	28	Talus Fines	10	light brown
C99-SH-	003	Steelhead	1760	28	Talus Fines	20	brown
C99-SH-	004	Steelhead	1765	30	Talus Fines	40	brown
C99-SH-	005	Steelhead	1755	35	Talus Fines	60	brown
C99-SH-	006	Steelhead	1760	24	Talus Fines	30	med. orange brown
C99-SH-	007	Steelhead	1765	36	Talus Fines	30	orange brown
C99-SH-	008	Steelhead	1765	30	Talus Fines	40	light orange brown
C99-SH-	009	Steelhead	1770	28	Talus Fines	30	brown
C99-SH-	010	Steelhead	1770	25	Talus Fines	40	medium brown
C99-PAL-	001	PAL 48 Claim	1700	38	Talus Fines	30	dark brown
C99-PAL-	002	PAL 48 Claim	1700	45	Talus Fines	30	dark brown
C99-PAL-	003	PAL 48 Claim	1705	45	Talus Fines	40	dark brown
C99-PAL-	004	PAL 48 Claim	1710	45	Talus Fines	10	dark brown
C99-PAL-	005	PAL 48 Claim	1710	36	Talus Fines	30	brown
C99-PAL-	006	PAL 48 Claim	1705	40	Talus Fines	20	dark brown
C99-PAL-	007	PAL 48 Claim	1705	35	Talus Fines	35	med. brown
C99-PAL-	800	PAL 48 Claim	1710	35	Talus Fines	20	orange brown
C99-PAL-	009	PAL 48 Claim	1705	35	Talus Fines	5	dark brown
C99-PAL-	010	PAL 48 Claim	1700	30	Talus Fines	25	light brown

j.

ŗ

ļ

ţ

.....

.

÷

,

ł

JAJAY PROJECT 1999 SOIL SAMPLES

ſ

Γ

Γ

Γ

~

~

-

SAMPLE	LOCATI	ON		SA	MPLE DESCR	RIPTION
NUMBER	AREA	/ATION (m)	SLOPE	TYPE	DEPTH (cm)	COLOUR
C99-PAL-011	PAL 48 Claim	1705	35	Talus Fines	20	dark brown
C99-PAL- 012	PAL 48 Claim	1700	30	Talus Fines	40	dark brown
C99-PAL- 013	PAL 48 Claim	1700	30	Talus Fines	45	orange brown
C99-PAL- 014	PAL 48 Claim	1710	25	Talus Fines	20	light brown
C99-PAL- 015	PAL 48 Claim	1695	33	Talus Fines	20	med. brown
C99-PAL- 016	PAL 48 Claim	1710	25	Talus Fines	40	light brown
C99-PAL- 017	PAL 48 Claim	1715	37	Talus Fines	20	med. brown
C99-PAL- 018	PAL 48 Claim	1725	38	Talus Fines	30	dark brown
C99-PAL- 019	PAL 48 Claim	1730	25	Talus Fines	20	dark brown
C99-PAL- 020	PAL 48 Claim	1730	45	Talus Fines	30	med. brown
C99-PAL- 021	PAL 48 Claim	1730	32	Talus Fines	40	dark brown
C99-PAL- 022	PAL 48 Claim	1715	40	Talus Fines	40	medium brown
C99-PAL- 023	PAL 48 Claim	1700	25	Talus Fines	30	light brown
C99-PAL- 024	PAL 48 Claim	1640	34	Talus Fines	?	orange brown
C99-PAL- 025	PAL 48 Claim	1640	35	Talus Fines	30	orange brown
C99-PAL- 026	PAL 48 Claim	1645	35	Talus Fines	40	orange brown
C99-PAL- 027	PAL 48 Claim	1600	23	Talus Fines	30	orange brown
C99-PAL- 028	PAL 48 Claim	1600	32	Talus Fines	30	orange brown

١.

ł

Sec. Sec.

: : :

1

:

ł

APPENDIX 2

1

r

-

~

-

٢

-

Γ

Analytical Certificates

TE de la companya	Mi	<u>nco</u>	rd	Ext	olor	at:	<u>ion</u>	CO 325	nsu	lta	nt: Vanc		td.	PRO	JEC	<u>T I</u>		ANDI	<u>ER</u> V Par	Fi	lle	#	99	030	72					
SAMPLE#	Mo	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn	Fe %	As ppm	U	Au	Th Sr ppm ppm	Cd ppm	Sb ppm	Bi ppm p	V	Ca %	ې , در P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	K %	W	Au
P00-ST-001	6	00707	08	165	134 8	27	26	708	4 62	~2	<8	6	<2 224	9.6	0	53	70	2 54	120	11	13	66	62	08	-7	1 03		76	~ ~ ~	52/
P99-31-001	2	188	90 8	85	1 0	2	18	2201	4.02	7	~8	-2	2 70	7.0 Z	21	- 23	101	5 03	173	16	26	.00	306	.00	رب ۲	52	.07	.70	5	J24 1
P99-51-002	2	52	12	112	1.6	66	40	2485	6 38	ģ	<8	~2	2 100		5	8 3	200	0.8/	286	16	1/.3	2 72	22%	.01	2	. 92	.02	.01	6	•
P00-ST-00/	30	86%	1526	281	113 0	12	2	163	1 25	43	<8	21	<2 25	4.2	68	<3	0	16	00%	1	40	01	438	< 01	~7	.04	< 01		16	2100
P99-ST-005	2	566	86	292	5.7	59	29	1772	5.43	4	<8	<2	2 439	6.2	3	10	182	8.62	.108	8	143	1.70	222	.04	<3	.79	.01	.27	9	113
P99-ST-006	2	7178	20	57	9.0	11	11	585	4.02	4	<8	<2	6 145	.2	<3	4 2	227	.90	.289	20	24	.25	253	.07	<3	.41	.07	.29	2	98
P99-ST-007	4	5419	22	91	6.6	35	150	452	10.99	<2	<8	<2	3 40	<.2	<3	5	86	.14	.016	2	7	.06	94	.04	3	.25	.06	.24	<2	43
P99-ST-008	2	17259	6	151	.9	28	100	626	2.81	<2	<8	<2	3 79	.8	<3	<3	53	.44	.146	10	18	.57	251	.07	<3	.84	.05	.54	<2	7
P99-ST-009	3	344	7	32	.3	4	5	254	1.39	7	<8	<2	<2 853	.5	<3	<3	49	1.36	.030	2	18	.21	55	.04	7	2.31	.61	.25	<2	
P99-ST-010	2	8466	119	76	15.4	20	19	738	4.81	<2	<8	<2	4 301	1.7	<3	17 2	207	1.03	.107	7	24	.32	95	.11	<3	1.06	.34	.31	2	22
P99-ST-011	1	199	<3	41	.7	13	12	553	3.51	4	<8	<2	3 415	<.2	3	<3	133	1.02	. 184	8	22	.43	192	.08	<3	1.53	.62	.32	4	1
P99-ST-012	2	56	4	98	.6	20	17	928	4.59	2	<8	<2	2 202	×.2	· <3	<3 2	213	1.88	.252	15	42	.85	154	.11	<3	1.70	.61	.52	2	
P99-ST-013	1	4517	16	96	7.3	14	16	804	4.91	- 4	<8	<2	3 156	<.2	<3	<3 2	263	.90	.202	13	33	.52	330	.10	<3	.59	.07	.29	<2	64
P99-ST-014	2	124	9	83	.7	15	13	826	3.90	7	<8	<2	3 310	<.2	<3	<3	180	1.30	.194	15	32	.88	127	.12	6	1.81	.52	.60	3	
P99-ST-015	2	582	5	52	.9	12	13	602	3.83	2	<8	<2	2 399	<.2	<3	<3	184	1.46	.197	11	26	-44	59	.08	7	1.91	.66	.46	2	5
P99-ST-016	1	13	<3	12	<.3	<1	1	232	.57	<2	<8	<2	378	<.2	<3	<3	20	.53	.009	5	8	.02	124	.01	<3	.20	.09	.14	4	9
RE P99-ST-016	2	12	4	12	.3	3	1	237	.59	<2	<8	<2	3 81	<.2	<3	<3	21	.56	.009	5	8	.02	137	.01	<3	.20	.08	.13	4	3
P99-ST-017	9	15	10	86	.9	19	16	1530	4.25	9	<8	<2	2 177	.4	<3	<3	118	10.08	.093	4	47	2.42	38	<.01	5	.21	.01	.08	8	
P99-ST-018	5	27	18	8	<.3	9	5	227	1.09	5	<8	<2	2 125	<.2	<3	3	31	.17	.040	3	15	.11	129	.01	<3	.30	.04	.22	5	4
P99-ST-019	3	23	3	42	1.1	8	9	1028	2.38	7	<8	<2	2 60	<.2	<3	<3	57	2.85	.051	8	19	.52	112	<.01	<3	.37	.01	.11	9	57
P99-ST-020	1	4	3	71	.5	6	9	2261	2.63	2	<8	<2	3 83	.2	<3	<3	38	6.97	.022	7	11	1.69	23	<.01	<3	.41	.03	.10	3	
P99-ST-021	1	7	11	135	.7	10	14	2793	3.53	5	<8	<2	2 126	.3	<3	3	63	10.47	.034	12	9	2.55	23	<.01	7	.26	.01	.07	5	1
STANDARD C3/AU-R	27	66	37	' 179	6.4	39	12	826	3.49	57	23	3	22 32	25.6	22	28	82	.61	.093	19	184	.61	162	.09	21	1.97	.04	.17	16	49
STANDARD G-2	2	5	- 4	42	<.3	7	5	555	2.04	<2	<8	<2	5 74	< 2	<3	4	39	. 66	.097	8	78	.59	229	. 12	<3	. 95	.07	.49	- 3	<

GROUP 1D - 0.50 GM SAMPLE, 3 MLS 2-2-2 AQUA REGIA, 1 HOUR AT 95 DEG. C, DILUTED TO 10 MLS. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED. (10 gm)

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: AUG 25 1999 DATE REPORT MAILED: Sept 1/99

Data

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACME ANALYTICAL

Mincord Exploration Consultants Ltd. PROJECT LYSANDER FILE # 9903073 Page 2

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm j	Th Sr opm ppm	Co D	SI ppr	b B npp	i \ m.ppr	√ Ca ⊓ %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B opm	Al %	Na %	К %	W ppm	Au* ppb	
C99-ST-035 C99-ST-036 C99-ST-037 C99-ST-038 C99-ST-030	<1 <1 <1 <1	50 29 260 211	9 <3 9 8	146 162 104 89	.6 .3 .3 .4	137 118 64 62 87	48 57 39 36 54	1327 1141 988 859 1347	6.79 10.09 8.33 8.46 6.31	8 14 12 13	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	2 172 2 22 5 267 5 242 2 38	· .4		4 < 3 < 3 <	3 197 3 309 3 287 3 293	7 2.25 9 2.45 7 2.67 3 2.49 5 2 95	.281 .757 .814 .799 985	20 35 39 37 40	369 279 146 153 127	3.64 2.13 1.33 1.04 2.25	281 107 86 68 105	.18 .04 .04 .05	4 <3 <3 <3 <3 z	2.49 1.63 1.39 1.11	.02 .04 .02 .02	.85 .72 .47 .39	<2 <2 <2 <2 <2 <2	10 <1 9 15 7	
C99-ST-040 C99-ST-041 C99-ST-042 C99-ST-043 C99-ST-043	10 <1 45 4	496 227 66 734	4 10 6 11	121 106 117 184	.4 .6 .3 .6 <.3	45 61 51 24 34	35 36 41 31 38	1302 829 1158 1336 2445	8.97 6.71 9.61 7.31 8 18	46 7 69 17 17	10 10 <8 15 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<2 359 <2 359 2 219 2 440 2 50			3 < 3 < 3 < 5 <	3 64 3 23 3 23 3 58 3 30 3 43	7 2.19 2 2.13 8 3.93 7 .60 2 1.32	.789 .717 1.086 .258	53 51 51 11 24	134 107 98 62 55	1.12 1.40 1.32 1.67 2.77	63 154 44 103 206	.05 .10 .12 .23	-3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -	3.03 2.29 1.85 2.24 2.62	.02 .01 .01 .02 .02	.15 .43 .29 .82	<2 <2 <2 <2 <2 <2 <2 <2 <2	5 7 5 23 24	
C99-ST-044 C99-ST-045 C99-ST-046 C99-ST-047 C99-ST-048 C99-ST-049	<1 <1 <1 <1 10 2	48 103 1311 591 40	5 14 5 82 15	88 143 104 125 113	.4 .5 .4 .3 <.3	55 70 65 20 11	33 59 38 23 16	1113 1050 998 1227 3612	7.74 9.52 8.45 5.74 5.24	8 16 10 6 7	<8 <8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 100 2 410 3 240 2 49 <2 33			4 < 3 < 3 < 4 <	 3 29 3 29 3 29 3 30 3 24 3 17 	0 1.96 1 3.69 9 2.31 0 .26 1 .41	.333 1.305 .748 .188 .196	17 55 35 22 13	138 73 149 28 21	1.27 2.22 1.27 1.03 .29	31 63 104 33 111	.15 .05 .06 .05 .02		1.90 2.07 1.37 1.80< 1.02	.01 .02 .02 .02	.08 .41 .32 .17 .04	<2 <2 <2 23 <2	2 1 78 138 56	
C99-ST-050 C99-ST-051 C99-ST-052 RE C99-ST-056 C99-ST-053	1 2 1 2 6	37 26 57 14 32	9 11 10 6 2 16	54 38 84 35 137	<.3 <.3 .3 .3 .7	12 12 13 6 17	11 5 15 5 20	961 303 1613 377 4219	4.14 3.16 4.05 2.77 5.21	2 3 5 3 7	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	4 20 <2 70 2 13 <2 20 4 9	3 <.2 5 <.2 4 <.2 3 <.2		3 < 3 < 3 < 3 <	<3 15 <3 13 <3 14 <3 14 <3 14 <3 14	6 .49 4 .52 4 .94 6 .23 6 .63	.171 .060 .249 .105 .149	13 7 27 12 31	20 27 21 15 22	.37 .39 .62 .11 .38	35 62 147 77 177	.06 .07 .02 .01 .01	<3 <3 <3 <3 <3	.70 1.40 1.45 1.06 1.06	.02 .01 .03 .01 .01	.06 .04 .07 .03 .05	<2 <2 <2 <2 <2 <2	34 27 54 189 207	
C99-ST-054 C99-ST-055 C99-ST-056 STANDARD C3/AU-S STANDARD G-2	2 1 25 25	18 30 14 62	3 16) 12 9 2 35 3	99 119 36 167 45	.6 1.0 <.3 5.8 <.3	12 17 5 38 8	15 19 5 11 4	2853 3192 387 789 561	4.40 5.06 2.74 3.46 2.20	9 7 3 59 <2	<8 <8 <8 22 <8	<2 <2 <2 <2 <2 <2 <2	3 4 3 4 <2 2 21 3 4 7	9 < 6 < 9 < 0 24 8 <	2 < 2 < 2 1	3 4 3 4 9 2 3 4	<3 13 <3 16 <3 11 24 8 <3 4	3 .52 1 .98 4 .23 0 .60 4 .71	.145 .216 .110 .093 .101	30 38 12 18 8	16 22 15 169 82	.19 .31 .11 .61 .63	82 90 81 153 239	.01 .01 .01 .08 .13	<3 <3 <3 20 <3	.83 .83 1.10 1.91 1.03	.01 .01 .01 .04 .09	.04 .04 .03 .17 .52	<2 <2 <2 17 2	165 199 86 58 1	

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_____FA

ME LI (ISO	YT. 9002	- L Acc	A	TO	R Co.	LT:	r		<u> </u>	E	~p3	INC-	ר דר		: Ot	N	BC	i ili. Lastas	<u>`. 1r</u>	- 1	F	F	(6r ·	ז 53	-	} F.	T	04)	1	171	
Å Å	r	Mind	core	d E:	xpla	ora	tio	n C	GI onsi	EOCH 1lta	HEMJ	CAI 3 Lt	LAI td.	PR	YSI: DJE(S CI	ERT: LYS/	IFI AND	CAT: ER	E Fil	e #	99	030	73	P	age	1			44	A
	=						e e e	110	- 325	Howe	St.,	Vanc	ouver	BC V	6C 1Z	7 S	ubmit	ted l	by: Ja	ny Page											
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V mqq	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	к %	W ppm	Au* ppb
C99 -ST-001 C99 -ST-002 C99 -ST-003 C99 -ST-004 C99 -ST-005	1 1 2 2 1	104 216 199 65 122	<3 <3 4 7 7	99 91 125 71 82	.6 .5 .4 .6	34 34 35 24 28	24 23 30 15 19	762 676 1251 1026 657	6.38 5.53 5.95 5.41 4.93	4 7 7 4	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	2 <2 <2 <2 <2 <2	229 283 229 141 170	.2 <.2 <.2 <.2 <.2	4 6 3 <3 5	3 <3 <3 <3	243 209 215 188 169	1.51 1.53 1.32 .96 1.02	.560 .524 .462 .397 .365	32 31 29 25 23	66 54 50 51 45	.96 1.06 1.33 .53 .94	86 163 150 103 109	.08 .09 .11 .06 .07	<3 <3 <3 <3 <3	1.80 2.54 2.07 1.40 1.85	.01 .01 .01 .01 .01	.16 .11 .39 .07 .10	<2 <2 <2 <2 <2 <2	10 11 50 18 22
C99-ST-006 C99-ST-007 C99-ST-008 C99-ST-009 C99-ST-010	1 1 1 1	108 189 135 171 9	5 5 7 8 4	60 54 82 138 39	.4 .3 .6 <.3	25 25 28 30 9	17 17 19 33 24	499 654 681 2273 2488	5.02 3.91 4.23 5.27 1.65	6 3 <2 <2 4	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	2 <2 <2 <2 <2 <2	207 231 185 338 58	<.2 <.2 <.2 <.2 <.2	3 3 3 6 <3	ব্য ব্য ব্য ব্য ব্য	192 142 147 204 37	1.25 1.29 1.11 2.06 3.32	.466 .516 .432 .561 .067	30 32 28 33 8	43 35 38 40 2	.67 .55 .73 1.98 .08	87 134 141 244 203	.07 .07 .06 .06 <.01	<3 <3 <3 <3 <3	1.88 2.28 2.26 1.70 .31	.01 .01 .01 .02 <.01	.08 .16 .14 .43 .07	<2 <2 <2 <2 <2 <2	. 6 8 6 27 5
C99-ST-011 C99-ST-012 C99-ST-013 C99-ST-014 C99-ST-015	<1 2 2 3 2	69 152 132 305 914	3 8 10 32 14	168 123 107 268 205	.7 .6 .3 .5 .9	62 52 52 66 45	50 36 22 48 30	1382 1201 739 2415 1413	8.77 7.12 6.73 6.30 6.39	5 3 9 22 13	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	2 2 8 2	363 201 164 46 205	.4 .3 .2 <.2 .4	3 6 5 8 8	ব্য ব্য ব্য ব্য	321 264 231 187 252	3.65 2.13 1.18 .84 1.58	1.084 .555 .374 .291 .358	41 32 17 29 29	103 146 218 119 129	2.33 1.75 1.65 2.88 1.72	217 166 106 63 162	.07 .13 .16 .16 .11	ও ও ও ও ও ও	2.03 2.08 2.25 2.76 2.57	.02 .02 .02 .02 .02	.58 .36 .27 .65 .32	<2 <2 <2 <2 <2 <2	8 29 8 6 14
C99-ST-016 C99-ST-017 C99-ST-018 C99-ST-019 C99-ST-020	1 1 2 6 4	58 70 65 59 589	13 5 63 53 6	89 109 160 136 160	.6 .4 .7 .8 .5	108 113 111 114 49	37 41 49 56 39	752 943 1882 1805 1880	6.07 6.81 7.21 6.75 7.37	4 2 4 4	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	2 2 2 2 2	237 113 93 112 141	<.2 <.2 .9 .2 .4	9 8 9 6 3	<3 <3 <3 <3 <3	175 192 195 156 307	1.70 1.32 1.01 1.12 2.25	.338 .278 .241 .323 .380	20 15 21 17 28	305 309 323 275 157	2.75 2.82 2.65 3.08 1.84	295 260 304 266 161	.15 .20 .17 .15 .13	ব্য ব্য ব্য ব্য ব্য	2.48 2.75 2.75 2.49 2.45	.02 .02 .01 .02 .01	.73 .74 .21 .45 .32	<2 <2 <2 <2 <2 <2	4 111 252 12
RE C99-ST-020 C99-ST-021 C99-ST-022 C99-ST-023 C99-ST-024	4 2 2 <1 1	597 279 179 116 347	11 9 23 53	161 141 121 150 159	.7 .9 .8 .5 .8	49 99 67 91 53	40 61 32 44 30	1909 2662 818 1300 1099	7.38 8.29 7.24 7.15 6.38	7 13 2 4 3	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	2 4 2 2 2	143 480 149 119 94	<.2 .6 .3 .2 <.2	9 9 7 4 6	<3 <3 3 4 <3	308 249 213 221 208	2.28 3.57 1.26 1.60 1.28	.385 1.083 .225 .373 .363	28 60 13 23 16	158 214 211 269 133	1.87 4.18 2.05 2.41 1.92	162 706 166 115 53	.13 .07 .18 .14 .11	ব্য ব্য ব্য ব্য ব্য	2.48 4.15 2.56 2.53 2.62	.01 .03 .02 .02 .02	.32 1.48 .30 .34 .08	<2 2 <2 <2 <2	9 91 10 29 42
C99-ST-025 C99-ST-026 C99-ST-027 C99-ST-028 C99-ST-029	1 13 2 1 1	103 91 66 15 103	10 30 11 4 21	121 134 77 271 155	<.3 2.1 1.0 .6 .4	32 17 23 43 91	27 25 13 41 45	1426 2629 614 2097 1527	6.32 6.29 5.63 5.29 7.42	4 5 <2 <2 5	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2	2 <2 2 4 <2	58 43 36 344 140	<.2 .5 <.2 <.2 <.2	5 11 4 9 8	<3 3 <3 <3 <3	191 94 140 160 225	.89 .40 .33 2.92 1.37	.195 .237 .115 .723 .306	11 7 6 52 16	104 31 107 52 299	1.08 2.57 .43 2.34 2.45	52 105 46 106 144	.13 .01 .08 .05 .12	<3 <3 <3 <3 <3	1.88 1.92 1.07 1.99 2.26	.01 <.01 <.01 .02 .02	.05 .08 .06 .75 .30	<2 <2 <2 <2 <2 <2	1230 72 18 1 56
C99-ST-030 C99-ST-031 C99-ST-032 C99-ST-033 C99-ST-034	1 14 1 3 1	132 183 32 85 18	11 18 8 6 <3	121 200 125 108 79	.4 <.3 .5 .7	48 49 81 89 129	35 66 42 41 38	2158 1861 906 833 556	7.41 9.24 6.53 7.46 6.19	<2 11 4 4 <2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 <2 2 2 2 2	77 317 118 240 309	.4 .6 <.2 <.2 <.2	3 9 9 8 7	<3 <3 <3 <3 <3	224 320 186 246 151	1.41 2.81 1.57 1.72 1.72	.231 .523 .300 .429 .362	11 26 17 22 20	169 90 232 292 418	1.38 2.24 2.62 2.61 2.95	116 198 75 397 525	. 15 . 12 . 17 . 16 . 13	ব্য ব্য ব্য ব্য	2.34 2.95 2.48 2.36 2.57	.01 .01 .01 .02 .02	.18 .14 .27 .76 .80	<2 <2 <2 <2 <2 <2 <2	6 4 1 5 3
STANDARD C3/AU-S STANDARD G-2	27 2	63 4	35 5	171 44	6.0 <.3	37 8	11 4	784 547	3.41	58 3	25 <8	2 <2	22 4	30 79	24.3 <.2	23 <3	24 <3	81 41	.59 .69	.091 .099	18 8	174 79	.60 .61	154 238	.08 .12	18 <3	1.95 1.04	.04 .10	.17 .52	17 2	56 <1
		ICP THIS - SA	5 S LEA AMPLE ples	00 GR/ CH IS TYPE begin	AM SAN PART SOII	APLE	IS DI OR MN AU* are R	GESTE FE S - AQU eruns	D WIT R CA A-REG and	H 3ML P LA (IA/MII <u>'RRE'</u>	2-2-2 CR MG BK EXI are F	2 HCL- BA TI TRACT, Reject	HNO3 B W GF/ t Rer	-H2O AND AA FI	AT 95 MASSIV NISHEI	DEG. VE SUI D. (1	C FOI LFIDE O gm)	R ONE AND		AND IS ED FOR	S DILU NA K	JTED AND	TO 10 AL.	ML WI	TH W	ATER.					
DATE RECE	IVED	: 4	AUG 25	5 1999		ATE	REP	ORT	MAII	ED:	A	ng	31/4	îG	SI	GNED	BY	<u>C</u> .	h	····]·	D. TO	YE, C	LEON	G, J.	WANG	; CER	TIFIE	р в.С	. ASSA	AYERS	
All results	are co	onside	ered	the co	onfide	entia	l pro	perty	of t	ne cli	ient.	V Acme	assu	nes t	he lia	abili	ties	for a	ctual	cost	of the	e ana	lysis	only.			,	Dat	a	FA	

				-		aryar	100	6 - 7	50 N.	Pen	der	St.,	Var	cauv	er BC	¥60	-215	S	ubmit	ted by	(al.)	Pag	10			n an		w	z				
SAMPLE#	Mo ppm	DD Ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm p	Co spm j	Min P pm	F4 %	As ppm	U PPM	Au ppn	Th ppm	sr ppm	Cd ppm	Sb ppm	Bli ppm	¥ ppn	Ca X	₽ X	Le ppn	Cr pom	Ng X	Ba ppn	71 X	8 ppm	Al X	Na X	K X	ppin	ppb	ppb	Pd' Pl
N99-0E-001 N99-0E-002 N99-0E-003 N99-DE-004 N99-DE-005	2 1 3 <1 6	816 1360 5641 1722 619	3 3 3 8 3 3	25 12 16 47 6	.9 1.4 .7 5.3 .3	50 16 23 13 12	67 4 11 15 14 9 22	435 71 83 552 92	7.48 .77 1.05 5.79 1.63	9 5 6 5 5	<8 <8 <8 14 <8	~~~~~~	<2 <2 <2 10 <2	262 48 43 252 76	1.5 <.2 <.2 .8 .2	8888 8888 8	93373	198 44 45 488 37	.81 .72 .74 4.77 1.17	.084 .134 .130 1.614 .239	3 11 3 98 7	64 8 8 13 8	1.69 .18 .17 .43 .20	81 16 8 60 17	.30 .07 .07 .03 .08	34333 333	3.55 1.03 1.15 .33 .73	.18 .11 .10 .09 .08	.64 .03 .03 .07 .05	~~~~~	34 81 127 297 15	<1 5 <1 8 2	
N99-DE-006 N99-DE-006A N99-DE-008 P99-DE-001 P99-DE-002	3 4 1 46 <1	222 6097 146 99999 327	43436	6 22 38 291 16	<.3 3.2 .3 2.7 <.3	15 21 1 6 44 16	26 42 10 28 10	101 65 301 203 202	1.93 3.78 3.61 1.71 3.39	B 5 3 7 4	\$ \$ \$ \$ \$	~~~~~	86486	48 210 35 39 139	.2 <.2 <.2 6.1 .2	04000 000	3 3 3 3 3 3 3 3	43 30 146 101 219	.69 .58 .74 .29 1.81	. 191 . 112 . 174 . 137 . 097	3 7 9 3 3	16 6 11 23 100	.38 .14 .58 .51 .53	35 17 48 15 39	.10 .07 .11 .07 .10	0000 0000	.78 .73 .94 .99 2.01	.08 .11 .08 .03 .31	.11 .06 .25 .03 .08	~~~~~	5 726 12 102 16	2 <1 4 2 10	
P99-DUCK-001 P99-DUCK-002 P99-DUCK-003 P99-DUCK-004 P99-DUCK-005	25 74 56 2 12	26810 26314 8147 4422 99999	7 8 5 3 3	150 161 75 66 606	16.1 19.7 5.6 2.1 127.6	17 18 8 7 18	21 (29 (43) 13 (31	682 676 512 623 85 1	9.40 6.89 6.86 5.00 8.87	11 7 9 5 36	3 3 3 3 3 12	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	~~~~~	80 111 173 69 7	3.5 3.0 1.3 1.4 14.4	8 6 3 3 20	12 11 6 3 <3	190 96 124 150 35	1.03 .89 1.91 1.04 .05	. 134 . 103 . 133 . 152 . 041	4 1 5 4 1	13 10 7 11 53	1.12 1.01 .65 1.20 .25	46 36 23 51 13	.15 .11 .11 .15 .03	00000 00000	2.10 1.46 2.56 1.55 .44	.03 .04 .04 .05 <.01	.29 .20 .14 .33 .10	<2 56 3 <2 302	408 310 110 58 6764	3442	
P99-0NI NECA-001 P99-0NI NECA-002 P99-PAL-001 P99-PAL-002 P99-PAL-003	8 <1 56 2 2	146 97 234 317 7477	3 4 3 3 3	332 100 13 11 122	.5 .4 .7 .4 <.3	83 49 5 6 8	96 37 43 1 5 34 5	263 1 714 113 105 202	0.56 6.15 2.68 2.57 .68	15 7 5 9 6	\$ \$ \$ \$ \$ \$	~~~~	~2 ~2 3 5 2	56 351 55 43 53	2.0 1.5 <.2 .2 .8	3 3 3 3 3 3 3 3	15 5 3 3 3 3	113 215 94 68 57	.46 10.24 .62 .87 1.42	.036 .397 .137 .195 .254	8 11 6 20 7	27 47 7 6 5	.36 4.30 .28 .26 .40	330 586 43 17 48	<.01 .01 .11 .12 .07	34333	.66 .32 .76 .70 .87	.01 .02 .07 .07 .06	.07 .16 .06 .07 .05	4 2 3 2 2	10 4 5 3 2	1 2 3 2 2	
P99-PAL -004 RE P99-PAL -004 P99-PAL -005 P99-PAL -006 P99-PAL -007	<1 <1 1 1 1	1135 1064 225 541 118	6 5 4 (3 3	53 50 33 16 39	.6 .6 (.3 .5 (.3	4 9 2 11	7 1 7 1 15 4 19	297 244 331 159 346	2.15 2.03 5.00 1.00 5.65	3 6 2 3 2	<8 <8 <8 <8 <8	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<pre>2 2 2 3 2 2</pre>	53 51 47 70 44	.3 .4 .6 .3 .8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<3 <3 5 5 3 4	123 117 214 53 287	4.20 3.99 .93 1.11 .89	.226 .214 .185 .162 .123	11 10 6 5 3	4 4 14 5 14	.94 .89 .56 .19 .68	47 46 587 48 139	.09 .09 .09 .08 .15	00000 0000	.99 .96 .66 .70 .86	.08 .09 .06 .07 .05	.06 .07 .06 .05 .17	2 3 2 2 V	10 8 4 12 7	<1 1 2 3 3	
P99-PAL - 008 P99-PAL - 009 P99-PAL - 010 P99-PAL - 011 P99-PAL - 012	2 <1 363 11 23	1514 3886 2807 2901 834	<3 <3 4 9 3	14 254 63 31 23	.6 .4 1.8 2.8 .6	4 10 3 3 3	12 10 20 23 7 12	037 647 138 249 208	2.81 5.03 1.80 1.63 1.28	12 4 5 Q Q	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<u> </u>	<2 <2 7 6 5	72 50 17 26 27	,3 1.8 ,8 ,3 ,3	22222	04000	10 206 14 14 24	4.59 .92 .27 .43 .37	.006 .176 .032 .022 .038	11 9 4 2 4	28 9 12 11 13	.17 1.17 .21 .27 .31	59 111 40 241 46	<.01 .17 .05 .03 .07	00000	.04 1.35 .49 1.05 .52	.01 .05 .04 .06 .04	.01 .43 .13 .16 .19	10 <2 5 5 5 5	15 3 54 41 8	3 7 (1 1 (1	,
STANDARD C3/FA100 STANDARD G-2	27 2	70 3	34 7	178 45	6.2 <.3	38 7	12 4	799 559	3.50 2.15	55 <2	22 <8	2	22 4	31 82	25.7 <.2	19 <3	27 3	82 42	.59 .71	.096 .103	18 8	178 81	.62 .63	160 244	.08 .13	20 <3	2.06	.04 .10	.17 .53	17 2	49 4	47 1	
GROUP UPPER ASSAY - SAMP <u>Sample</u> DATE RECEIV	1D - LINII RECO PLE TH IS bes	0.50 S - A MENDEI PE: R innin SEP	GM S/ G, AL D FOI DCIK <u>g 'Rt</u> 3 19	IMPLE J, HG t ROCI AI t ar	, 3 ML , W = K AND U ^{AR} PT <u>e Reru</u> DATS	S 2-7 100 f CORE ** P[Ing ar S RE	2-2 A PPN; I SAMP SAMP Market SPOR	QUA R MO, C LES I ROUP RE' 9 T M2	EGIA, CO, CD F CU 38 BY ICQ R9	1 H , SB PB Z FIR ject D:	IOUR IN AS IE AS Ref	AT 9 , TH :> 1 :SAY :UNS.	15 DE 1, U 13, J 8 AN	4 B 4 B 4 AG > 14 LYS 4	;, DIU = 200 30 PF 15 B1		NEC	10 H 10, P 100 100	ILS, (0 8, ZN, 0 PPB (30 gr	CP-ES (NI, 1 n)	ANALI MN, J	1515. 15, 1	LEA 7, LA	, C.	s pai = 10	RTIA 0,000	L FOR O PPM	SCHI G; CI	E MIR	IED	s. B.C.	Assay	ſĒŔ

)

.

]

1

----1

٦

· -]

- 1

் பி

)

		Ţ	<u>Ys</u>	and	er	Gç	<u>1d</u>	<u>Co</u>	750	vrat W. Pe	tio	n st.	PRC	DJE	CT Iver I	JA. BC V	JAY 60 21	ia I	711(Submi	e # tted	99 byı	03: Jay	254 Page		Pa	ge	1					l	
SANPLE#	Ho ppm	Cu ppm	Pb ppm	Zn	Ag ppn	N1 ppm	Co ppn	Hrs ppm	Fa X	As ppn	U PPM	Au ppm	th ppm	18 1990	Cd ppm	Sb ppn	B 1 ppm	V ppm	Ca X	P X	La pom (Cr ppm	Ng X	Be ppm	11 X :	B PPM	Al X	NB X	K X I	N 1 PPM	Au** I ppb	Pt** P ppb	de+ ppb
C99-DE-001 C99-DE-002 C99-DE-003 C99-DE-004 C99-DE-005	1 1 2 3	361 54 93 84 196	<3 4 <3 5 5	69 49 67 79 64	,4 <.3 .3 .3 ,4	12 6 8 11 11	20 6 11 14 13	773 320 426 524 444	5.23 4.12 4.87 4.53 4.97	6 2 4 3 8	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$	8888B	3 2 2 3 3	98 63 73 67 93	<.2 <.2 <.2 <.2 .3	3 3 3 3 3 3 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	210 154 179 ^{::} 154 173	.36 .21 .27 .19 .42	.109 .106 .169 .131 .204	14 6 8 6 9	24 18 25 21 22	.77 .24 .58 .48 .63	49 54 52 69 67	.04 .05 .06 .06	73333	2.61 1.36 2.61 3.10 3.39	.01 .01 .02 .02 .02	.04 .04 .04 .04 .04	88888	6 13 7 4 3	1 6 2 (1 3	ব 4 ব 1
C99-DE-006 C99-DE-007 C99-DE-008 C99-DE-009 C99-DE-010	2 4 1 6 9	77 514 748 253 405	6 7 4 3 5	48 26 33 29 23	.4 <.3 .7 .3 .4	5 103 27 19 11	9 18 19 14 16	791 241 299 290 227	3.52 3.47 4.73 4.61 4.95	<2 2 11 5 9	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	8 8 8 8 8 8	~~~~~	55 25 25 119 168	<.2 .6 .3 <.2 .4	<3 <3 <3 <3 <3	2000	132 136 220 159 134	.21 .33 .38 .50 .58	.149 .077 .119 .133 .174	8 3 2 6 12	22 134 57 46 29	.42 1.75 1.34 .76 .49	54 45 56 56 49	.06 .21 .21 .13 .11	45000	1.84 2.47 2.22 2.94 2.72	.01 .03 .02 .02 .04	.04 .19 .27 .11 .11	22225	15 6 5 16 24	1 5 2 2 <1	1 5 (1 4 3
RE C99-DE-008 C99-DE-011 C99-DE-012 C99-DE-013 C99-DE-014	1 3 4 9 31	775 306 250 430 464	4444	34 43 40 45 34	.8 .8 .9 .6 .3	26 11 73 34 35	19 19 21 43 20	306 388 359 691 337	4.93 6.74 5.52 5.18 6.02	8 8 11 5 21	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	88888	23422	27 115 122 102 192	.3 .2 <.2 .8 <.2	00000	0 0 0 0 0 0 0 0	231 279 204 192 142	.39 1.33 .80 .75 .76	.119 .404 .261 .067 .17D	2 19 9 6 8	60 28 87 76 76	1.38 .78 1.23 1.56 1.11	63 104 114 111 69	.22 .07 .13 .20 .15	43443	2.29 2.29 3.20 3.25 5.12	.03 .02 .03 .08 .04	.28 .07 .10 .17 .17	88~88	8 7 6 8	4 <1 <1 4 2	2 2 4 3 4
C99-DE-015 C99-DE-016 C99-DE-017 C99-DE-018 C99-DE-019	4 4 9 19 6 2	278 213 226 341 130	2002	36 38 30 24 22	.5 <.3 .4 .3 .3	10 13 18 14 10	18 14 19 20 18	362 469 278 255 253	5.82 4.59 6.90 5.66 3.57	6 4 6 8 11	<8 <8 <8 <8 <8	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	54423	123 137 87 125 180	.3 <.2 <.2 <.2 <.2	00000	<3 <3 <3 7	233 167 240 216 126	1.15 1.08 .52 .74 1.36	.273 .247 .247 .144 .272	13 10 10 8 10	30 20 36 34 18	.74 .76 .53 .50 .20	128 137 122 89 104	.08 .08 .10 .09 .05	00-00	2.46 2.43 3.06 2.74 6.25	.02 .03 .03 .02 .02	.11 .11 .08 .09 .08	66668	8 4 5 13	1 1 2 4 1	2 1 2 2 <1
C99-0E-020 C99-0E-021 C99-0E-022 C99-0E-023 C99-0E-024	6 19 6 3 12	396 527 413 183 273	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	34 21 22 31 54	<.3 .4 .3 .6	81 32 27 9 16	21 24 15 14 19	326 318 241 379 556	4.53 5.88 4.87 5.11 5.64	3 16 6 8 7	<8 <8 <8 <8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	20044	122 261 117 84 62	<.2 .8 <.2 <.2 <.2	00000	00000	164 159 181 153 205	.47 .58 .50 .91 .49	.097 .201 .159 .313 .049	5 5 5 11 7	109 54 54 22 51	1.39 .71 .77 .54 .65	68 58 67 78 95	.20 .15 .13 .06 .10	00040	3.50 5.85 2.85 3.03 2.49	.03 .03 .03 .01 .02	.16 .09 .09 .06 .09	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	10 13 8 9 8	1 6 4 2 2	2 9 4 2 7
C99-DE-025 C99-DE-026 C99-PAL-001 C99-PAL-002 C99-PAL-003	52254	143 79 570 1211 897	3 5 12 11 22	24 61 143 103 115	<.3 .6 .8 1.0 1.0	4 6 11 15 13	6 12 28 35 29	186 298 2097 1747 1774	3.97 6.13 5.74 5.99 5.61	3 7 7 10 9	<8 <8 <8 <8 <8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 3 3 3 3 3	55 52 170 363 362	<.2 .2 <.2 .7 .2	00000 00000	00400	178 242 252 235 217	.41 .61 .94 1.06 1.07	.035 .555 .187 .195 .266	4 8 23 9 19	19 41 10 14 8	.24 .32 1.64 1.86 1.48	51 86 209 216 220	.09 .08 .10 .10 .09	<3 5 5 5 3 3 3	1.33 3.78 2.47 2.65 2.45	.02 .03 .02 .03 .02	.06 .05 .16 .10 .12	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 2 10 13 22	3 2 2 2 2	2 2 11 13 5
C99-PAL-004 C99-PAL-005 C99-PAL-006 C99-PAL-007 C99-PAL-00 8	8 8 12 18 16	1390 1215 666 807 414	12 4 5 7 12	98 94 89 92 87	1.3 1.0 .6 .7 .7	9 7 4 12 11	34 36 24 27 29	2044 1649 1696 1196 672	6.12 6.29 5.22 5.19 5.64	12 11 3 9 36	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	44239	267 186 116 148 210	.5 1.2 .2 <.3	0 4 0 3 0 3 0	00000	228 215 147 144 221	1.17 1.02 .50 .64 .37	.290 .279 .260 .198 .124	16 16 11 13 16	5 5 5 10 4	1.59 1.36 .84 .81 .97	238 220 107 138 111	.09 .09 .04 .07 .04	00000	2.33 2.51 2.60 2.42 3.66	.03 .02 .01 .01 .02	.16 .17 .06 .08 .05	~~~~~	69 29 17 13 37	2 1 (1 1	8 14 <1 1 2
STANDARD C3/FA100 STANDARD G-2	25 1	63 4	33 <3	162 43	5.5 <.3	34 6	11 3	780 546	3.30 2.03	56 ~2	22 <8	3	20 5	28 83	24.2	20 <3	24 <3	77 40	.54 .66	.087 .098	17 7	164 80	.58 .59	147 244	.08 .13	22 4	1.82	.04	. 16 . 55	17 3	47 <1	50 <1	48 <1
GROUP 1D UPPER LIM - SANPLE Samples b	- 0.5 IlTS - TYPE: eginn	D GN AG, SOIL	SAMP AU, RE'	LE, HG, AU" @C0	3 NL V = ** P1 Reru	5 2- 100 ** P	2-2 PPN; D**	AQUA HO, GROUI RRE!	REGI CO, P 3B Are	A, 1 CD, S By Fi Reies	HOUR SB, E IRE J	AT ISSAT	95 1 11, 1 1 8 1 1 8	DEG. U & I ANAL	C, D 8 = 2 YSIS	ILUTI 000 I By Vi	ED T PPN; LTRA	0 10 CU, /ICP.	HLS, PB, (30	ICP-I ZN, NI gm)	es ai 1, ni 0	IALYS	515. 5, V,	LEAC	H IS CR =	PAR 10,	T TAL , 000	for PPH.	SCHE	MINI	ERALS	•	
-	en S	er 3	1999	, I	JATI	I RI	5PO)	KT B	AIL	RDI	ג	P(, 19	¶ '	77	SI	GNE	DB	¥.\-	.:17	4	7	D. 10	DYE,	C.LE	ONG,	 .	vang,	CER	TIF	ED 8.	.C. AS	SAYERS

P.02/05

SEP 14'99 14:43 ER. ACME LABS

•

2

SAMPLE#	Ho	Çu ppm	Pb ppm	Zn ppm	Ag opm	Ni ppn	Co	Nn ppa	Fe	As ppm	U Inqq	Au	Th ppm	Sr ppm	Cd ppm	Sb ppn	it nqq	¥ ppm	Ca X	P X	La ppm	Cr ppm	Mg X	84 ppm	Ti X	8 ppm	AL X	Na X	K	V Ppn	Au** ppb	Pt** ppb	P
C99-PAL-009	15	907	5	102	.9	7	32	731	7.14	<2		<2	2	277	نيني ج. 2	<3	3	228	. 53	.189	9	5	1.29	116	.19	6	3.51	.01	. 15	2	7	2	
C99-PAL-010	6	502	<3	59	<.3	11	26	461	4.78	4	<8	- ē	3	82	<.2	-3	⊲3	136	.57	.209	15	12	.67	67	.08	ð	2.49	.01	.04	ā	5	4	
C99-PAL-011	6	522	6	77	- 4	-14	27	1168	5.16	2	<8	2	2	60	<.2	্র	<3	154	.54	.294	16	17	.83	85	.08	୍ଦ୍	2.84	.02	.07	2	11	3	
C99-PAL-012	4	171	4	4.5 5.6	<.3	¥ ×	11	318	5.2	2	<5	20	2	47	<.2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<5 -7	42 124	24 21	247	11	- 7	.49	12	.05	3	1.96	.03	.06	2	2	5	
C33-LWC-013	1	171			•	U	,	700	4.33	~6	•0	~~		47		~~		140	161		14	7	. 76	16	.00	9	2.13		.05	~	6		
C99-PAL-014	5	446	<3	91	<.3	3	22	1170	5.40	<2	<6	<2	8	- 34	<.2	< ই	3	151	.84	.313	20	2	.88	106	.16	3	1.73	.03	.37	2	7	- 4	
C99-PAL-015		489	13	123	.8	.8	22	1722	5.69	<2	<6	2	3	82	<.2	<3	5	231	.86	. 198	23	7	1.51	108	.07	6	2.78	- 02	.09	2	7	- 4	
C99-PAL-016 C99-PAL-017		407	7 7	104	.D. A	12	- 33	2578	6.31	10 6	<0 <a< td=""><td>0</td><td>3</td><td>327</td><td>.0</td><td>6</td><td>3</td><td>156</td><td>.95</td><td>.333</td><td>12</td><td>1</td><td>1.04</td><td>585</td><td>.04</td><td>3</td><td>2.04</td><td>.03</td><td>.19</td><td>2</td><td>ž</td><td>3</td><td></td></a<>	0	3	327	.0	6	3	156	.95	.333	12	1	1.04	585	.04	3	2.04	.03	.19	2	ž	3	
C99-PAL-018	2	661	6	91	.9	11	25	1567	4.90	i 4	<8	2	ą	408	.5	8	-3	196	1.13	.315	16	7	1.54	531	.11	હે	2.60	.02	.23	2	15	3	
600 phi 640		1000		494	•	12	44	34 77						207	-			2/0	. ~	74+	44					ور	3 34		/2		E	,	
C99-PAL-019 C99-PAL-020		206	11	144	 	12	- 20	1780	0.13 4.91	3	ov Ab	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3	610	.7 <.2	С С	্য ব	196	.75	.164	11	20	1.27	182	. 10	4	2.79	.03	. 42	~2	2	3	
C99-PAL-021	Ż	1294	14	166	1.2	11	33	2243	6.84	3	<8	<2	2	438	1.0	- 4	3	296	1.33	.313	21	5	2.14	232	. 16	ð	2.78	.03	.57	~2	28	Š	
C99-PAL-022	11	748	13	123	.6	6	21	1920	5.87	2	-48	<2	2	199	.4	ব	5	284	.72	.202	15	7	1.41	117	.11	10	2.15	.02	.18	<2	13	2	
C99-PAL-025	1	118	11	120	.9	12	ð	2706	6.0	+ 4	4	<2	Q	101	.5	3	<3	217	1.50	.240	20	22	1.65	645	.09	د>	2.76	.02	.13	~	У	5	
C99-PAL-024	20	478	10	99	.5	4	22	2212	6.28	5	-8	<z< td=""><td>- 4</td><td>54</td><td><.2</td><td>હ</td><td>ব</td><td>169</td><td>.40</td><td>.204</td><td>15</td><td>4</td><td>.60</td><td>213</td><td>.03</td><td>3</td><td>2.40</td><td>.01</td><td>.09</td><td>~</td><td>6</td><td>1</td><td></td></z<>	- 4	54	<.2	હ	ব	169	.40	.204	15	4	.60	213	.03	3	2.40	.01	.09	~	6	1	
C99-PAL-025	59	1123	12	86	.4	4	38	1668	6.04	13	<₿	~2	7	161	<.2	4	4	126	.24	.173	11	- 4	.52	123	.03	୍ଷ	2.27	.01	.11	<2	24	1	
RE C99-PAL-025	61	1135	11	87 88	.5	2	38	1000	6.13	57	<8 - 14	~2	8	179	<.2	20	् द	128	.25	.178	12	4	.53	123	.03	3	2.27	.01	.13	20	25	3	
C99-PAL-027	8	433	6	72	.5	3	16	927	6.0	÷ 4	- 78	2	<2	85	<.2	ব	ত	190	.34	.288	7	9	.89	74	.04	ર્ડ	3.26	.02	.05	<2	12	Ž	
200 AU 200			74			•		7/44	E 40	. ,	-0	-7	,	17	• •	-7	-7	704		3/3	12		4	-	of		3 77	•	47		7/		
C99-SH-001	2	225	8	91	.0	9	12	525	5.4		0 8	~2	2	70	<.2	<3	ঁও	185	.32	.252	9	12	.60	115	.09	4	2.89	.02	. 15	<2	1	2	
C99-SH-002	2	324	8	73	.3	11	15	1068	5.24	×2	<8	ē	Ž	76	<.2	<3	ও	191	.48	.234	13	15	.73	108	.05	<3	2.55	.02	.07	<2	4	Ž	
C99-SH-003	5	536	6	148	.3	13	15	683	4.6	6	<8	<2	4	50	<.2	<3	3	117	.59	.214	13	13	.78	110	.09	5	2.54	.02	.10	<2	5	<1	
CYY-SH-004	1 4	134	4	73		•	y	013	3.00	. <2	<0	~2	~2	02		43	<3	120	.20	.090	У	10	. 4 1	y i	.Ur	Q	5.33	.02	. 44	<د	1	1	
C99-SH-005	2	222	3	43	<.3	8	10	361	3.39	/ <2	<8	<2	3	60	.4	<3	<3	109	.53	.206	10	9	.49	80	. 05	3	2.48	.03	. 06	~2	<1	<1	
C99-SH-006	2	257	3	68	-4	12	11	333	5.0	2 2	<8	<2	3	53	<.2	<3	ব	156	.47	.331	12	14	.58	90	.05	5	3.58	.02	.04	2	2	2	
C99-SH-007		1/0	3	50		14	10	303 348	: 3.1/ : 3.1/		<0 <8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ב ז	36	<.2	् द्र	ত ত	94	.34	. 180	12	10	.20	100 1710	.07	0 0	2.50	.03	.03	á	<1	1	
C99-SH-009	4	310	5	67	.5	9	12	465	5.4	5	<8	<2	7	33	<.2	उ	<3	146	.43	.207	16	11	.60	82	. 10	ত	2.77	.02	.05	-Z	<1	i	
		107		13		2	45	E4.						70		-77	.7	•**	73	705	•,				07		2 26	67		~	-1		
57758-010 STANDARD C37F4100	27	402 AA	33	172	5.6	35	12	- 270 - 819)).2:) <u>].4</u>	2	<ð 23	<2 3	21 21	30	23.7	21	<3 26	100	.73	.091	14 18	172	.47 .60	0/ 158	.07	18	1.94	.05	.07	16	45	50	
STANDARD G-2	1	- 4	5	41	<.3	6	- 4	549	2.0	<2	<8	<2	- 4	95	<.2	3	<3	40	. 69	.096	7	79	.59	274	. 12	3	1.21	, 16	.59	2	<1	1	
																																	_
Sample type:	SOIL	. Sai	nole	s be	atoni	ing (REI	are	Reru	15 AM	d 78	REJ	are	Reim	ct Re	runs																	
<u> • • • • • • • • • • • • • • • • • • •</u>				<u></u>	11111			<u></u>	1121 9	- F	<u>a 1</u>				<u></u>																		

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

P.03/05

m

Data A FA 1145

A A		GEOCHEM PRECIOUS	METALS	ANAL	YSIS		AA
	<u>Lysander Go</u> 1	old Corporation PROJE	CT LYSE BC V6C 218	NDER Subrait	File # ted by: Jay	9903072R Page	TT
	1999 - 1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	SAMPLE#	Au** ppb	Pt** ppb	Pd** ppb	Carrier Carlin and Angelery (2019)	(), -:-:-::
		P99-ST-001 P99-ST-002 P99-ST-003 P99-ST-004 P99-ST-005	5972 11 2 18974 1071	399 8 8 3 3	948 12 11 <3 <3		
		P99-ST-006 P99-ST-007 P99-ST-008 P99-ST-009 P99-ST-010	974 369 53 8 224	4 17 15 3	23 40 25 6 8		
		P99-ST-011 P99-ST-012 P99-ST-013 P99-ST-014 P99-ST-015	17 6 563 10 54	34 4 4 3	7 <3 14 3 14		
		P99-ST-016 RE P99-ST-016 P99-ST-017 P99-ST-018 P99-ST-019	27 36 <2 43 307	< < 3 5 6 4 4 4	<3 <3 <4 <3 <4 <3		
		P99-ST-020 P99-ST-021 STANDARD FA100	7 23 47	3 <3 46	<3 <3 48		
GROUI - Sai	P 38 - FIRE GEOCHEM AU, PI	(, PD - 30 GN SANPLE FUSION, DORE	DISSOLVED 1X and (RRE) an	AQUA - I e Reject	EGIA, ICP A	NALYSIS. UPPER LIMITS = 1	0 PPN.
DATE RECEIVED:	SEP 3 1999 DATE REP(DRT MAILED: Sept 8/99	signed	ву.С		TOYE, C.LEONG, J. WAN	G; CERTIFIED B.C. ASSAYERS
		÷	•				

ت س

٦

P.03/03

SEP 8'99 16:46 FR ACME LABS

•••

AA L

Lysander Gold Corporation PROJECT LYSANDER FILE # 9903073R

Page 2

SAMPLE#	Au** ppb	Pt** ppb	Pd** ppb	SAMPLE gm			
C99-ST-0 C99-ST-0 C99-ST-0 C99-ST-0 C99-ST-0 C99-ST-0	35 15 36 <1	11 9 10 22 9	11 1 6 16 14	20.4 30.0 27.3 8.5 30.0		•	
C99-ST-0 C99-ST-0 C99-ST-0 C99-ST-0 C99-ST-0 C99-ST-0	40 9 41 11 42 2 43 28 44 23	8 3 3 4 5	40 9 45 6	30.0 24.3 10.4 27.2 30.0			•
C99-ST-0 C99-ST-0 C99-ST-0 C99-ST-0 C99-ST-0 C99-ST-0	45 3 46 2 47 107 48 96 49 56		7 3662	30.0 30.0 30.0 29.5 20.3			
C99-ST-0 C99-ST-0 C99-ST-0 RE C99-S C99-S C99-ST-0	50 65 51 73 52 42 T-047 75 53 335	1 2 <1 1 <1	<1 <1 <1 2	14.2 15.4 7.4 10.0 9.7			
C99-ST-0 C99-ST-0 C99-ST-0 STANDARD	54 130 55 227 56 118 FA100 50	<1 <1 <1 44	<1 2 1 46	6.1 13.7 13.5 30.0			
Sample type: SOIL PULP. Samples	beginning 'I	<u>RE' ar</u>	e Rer	runs and	'RRE' are Rejec	t Reruns.	

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

PHONE (604) 253-3158 FAX (604) 253-1716 852 B. HASTINGS ST. VANCOUVER BC V6A 1R6

GEOCHEM PRECIOUS METALS ANALYSIS

٦

)

Ń

	1006 - 750 W. Pender St., Var SAMPLE#	couver B	2 v6c 2t8	Submi Pd**	tted by: Jay Page		
		aqq	aqq		gm		
	C99-ST-002 C99-ST-003 C99-ST-004 C99-ST-005	13 19 15 17	0 4 3 2 4	15 15 7 23	30.0 30.0 30.0 30.0 30.0		
	C99-ST-006 C99-ST-007 C99-ST-008 C99-ST-009 C99-ST-010	6 8 9 19 5	12 2 8 <1	6 9 11 23 3	30.0 17.1 30.0 18.2 6.9		
	C99-ST-011 C99-ST-012 C99-ST-013 C99-ST-014 C99-ST-015	7 5 13 8 21	92 7 3 4	42 7 4 10	30.0 30.0 30.0 30.0 30.0 30.0		
	C99-ST-016 C99-ST-017 C99-ST-018 C99-ST-019 C99-ST-020	2 1 114 247 15	10 10 10 6 2	6 1 2 4 12	30.0 30.0 15.6 29.6 18.1		
	C99-ST-021 C99-ST-022 C99-ST-023 C99-ST-024 C99-ST-025	131 8 35 40 39	62938 8	11 7 8 4 12	14.9 14.6 30.0 29.6 20.8		
·	C99-ST-026 C99-ST-027 C99-ST-028 C99-ST-029 C99-ST-030	94 21 3 110 15	1 2 <1 6 11	2 <1 3 9 5	12.7 16.9 30.0 19.2 24.3		
	C99-ST-031 C99-ST-032 C99-ST-033 C99-ST-034 STANDARD FA100	8 1 5 48	4 5 10 48	13 8 6 2 49	30.0 30.0 9.6 20.8 30.0		
GROUP 3B - - SAMPLE TY	FIRE GEOCHEM AU, PT, PD - TOTAL SAMPLE FUSION, PE: SOIL PULP	DORE DIS	SOLVED IN		REGIA, ICP ANALYS	IS. UPPER LIMITS = 10 PPM	1.
DATE RECEIVED: SEP 3	1999 DATE REPORT MAILED: Sept 10	199	SIGNED	BY.C.	:	DYE, C.LEONG, J. WANG; CE	RTIFIED B.C. ASSAYER

		SAMPLE#	i Cu			
			*			
		P33-DE-0	01 22.160	·		
	GROUP 7 - MULTI ELEMENT ASS ASSAY RECOMMENDED FOR ROCK - SAMPLE TYPE: ROCK PULP	AY - 0.250 GH SAMPLE, AG AND CORE SAMPLES IF CU F	NA - REGIA DIGESTION T B ZN AS > 1%, AG > 30	0 100 ML, ANALYSED BY ICP PPM & AU > 1000 PPB P	-E\$.	
DATE RECEIVED: SEP 24	4 1999 DATE REPORT MAI	LED: Sept 24/9	g signed by:		IG, J. WANG; CERTIFIED E	J.C. ASSAYERS
		v i				,
		-				

.

· · •

يد يرد الداني

. .

ACHH ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)	852 B. HASTINGS ST. VANCOUVE	R BC V6A 186 PHONE(604)253-	3158 FAX(604)253-17
	ABBAI CERTIFIC		· · · · · · · · · · · · · · · · · · ·
Lysanger (10	06 - 750 W. Pender St., Vancouver BC V6C 2	JAJAX FILE # 9903256R	L.
	SAMPLE#	Cu %	rente di altre i la tributione di tradici.
	M99-DE-001 P99-DUCK-001 P99-DUCK-002 P99-DUCK-005 RE P99-DUCK-005	.081 2.717 2.648 20.635 20.753	
	STANDARD R-1	.821	
GROUP 7 - NULTI ELE - SAMPLE TYPE: ROCK	NENT ASSAY - 0.250 GM SAMPLE, AQUA - REGIA PULP <u>Samples beginning 'RE' are Repur</u>	DIGESTION TO 100 ML, AMALYSED BY ICP-ES. s and 'RRE' appe Reject Refung.	
DATE RECEIVED: SEP 15 1999 DATE REPOR	rt mailed: Sept 23/99 SIGNE	D BY	WANG; CERTIFLED B.C. ASSAYS
	₩ i	1	
	-		
			1

,

(180 9002	Accredited C	0.)	A B. BASTING	S ST. VANC	19 авратет 19788 нс то	A 189 PHUNE	(094)253+3158 FAX	(OV4) 2337221
	ť.	vaander Gold	Corporati	on PROJR	IS GERTIFIC TATAY I	CAIN File # 990325	ج	4
		1006 -	750 W. Pender St.	, Vancouver BC	Voc 218 Submit	ted by: Jay Page		
SAMPLE#	Mo Cu Pb Zn ppm ppm ppm ppm	Ag Ni Co Mri I ppm ppm ppm ppm	e As U Au Th X ppm ppm ppm ppm	s Sr Cd Sib ppm ppm ppm ppm p	Bi V Ca P pmippm X Xp	La Cr Mg Ba Ti pom pom % pom % pp	BALNa K ⊌Au*≐i m X X Xppm ppb	ppp ppb
C99-DUCK-001	1 53 <3 28	<,3 11 8 442 3.2	1 <2 <8 <2 2	2 73 <.2 <3	3 133 .66 .137	7 34 .43 72 .06	3 .77 .04 .09 <2 15	<1 6
GROUP 1D UPPER LIM - SAMPLE DATE RECEIVED	- 0.50 GM SAMPLE, ILTS - AG, AU, HG, TYPE: SILT AU	, 3 MLS 2-2-2 AQUA F , W = 100 PPM; NO, ()** PT** PD** GROUP DATE REPORT MO	$\begin{array}{c} \text{Heg}(A, 1 \text{ HOUR AT } 9\\ \text{CO, CD, SB, BI, TI\\ 3B - BY FIRE ASSIATLED: \\ \end{array}$	25 DEG. C, DILU 4, U & B = 2000 Ay & ANALYSIS B - 111 (49 B	TED TO 10 MLS, IC PPM; CU, PB, ZN, Y ULTRA/ICP. (30	CP-ES ANALYSIS. LEACH NI, NN, AS, V, LA, O	IS PARTIAL FOR SOME HIM R = 10,000 PPM, .LEONG. J. HANG: CERTIFI	FALS.
DATA RECEIVED	4 GEP J 1777	LAID ABEVAL M		14] 17 -			LEONG, C. MANU, CERTI	LU B.L. AUDILLA
						3		
			•					
				~				
								,

.

.)

Í

P.04/05

SEP 14'99 14:44 FR ACME LABS

NM- Ana log 4 16/01 "Ernest Henry" (Australia)

Lorraine - Jajay Project

Central British Columbia, CANADA

For decades, the copper cliffs of Lorraine have drawn prospectors and speculators, impressed by the rich metal horizons exposed in the rock faces above the scree. In the

early 1970's, the terrain now comprising the Lorraine/Jajay Property was the site of a major exploration rush involving several companies. However, the infrastructure in the area was poorly

developed at this time and property access was difficult. As copper prices declined through the 80's, many companies dropped their interest in the Lorraine properties, allowing Lysander Minerals to assemble a land package covering all the most prospective zones. It is this property which Eastfield has earned the rights to explore. With the infrastructure in the area much improved, and evidence of a new copper cycle in sight, the company believes that this project has tremendous potential for near term development.

Property Description

The Lorraine Property covers 250km² (61,890 acres) in central British Columbia. It was assembled piecemeal from adjoining claimholders over a number of years. Now this large property covers some of the most prospective terrain in the province, with a known copper-gold deposit showing near term development potential. Eastfield can earn up to a 75% interest in the property from the other stakeholders.

Copper-Gold Resource

The deposits on the Lorraine Property have a resource totaling around 32M tons, grading 0.66% copper and 0.20g/t gold. This is a higher grade than at any currently operating mine in the province of B.C. Gold, silver and other metals also occur in this deposit, which is open in at least two directions. The 2001 program will seek to enlarge the known size of the deposit through an extensive drilling program.

Platinum Group Metals

Recent rock sampling has turned up some highly anomalous values for the Platinum Group Elements, platinum and palladium. Discoveries have been made at two locations on the property. Most notable was the BM Breccia zone which yielded samples that returned an average of 1.92g/t PGE, as well as copper values of 29.9% and an average gold content of 14.52 g/t.

District Scale Exploration Potential

This is a large property with numerous areas of elevated metal content, many of which have yet to be explored. The Page Zone for instance, discovered in 1999, returned an average grade of 0.86% copper and 0.47g/t gold from 5 consecutive samples. This will be one of our targets for systematic exploration in 2001.

Land package covers many highly prospective zones in addition to an existing mineral resource of 32M tons

Geological Model

Mineralization at Lorraine is associated with the ironbearing mineral, magnetite, and with strong alteration in the intrusive rock that underlies the area. These mineral occurrences represent a class of deposit that has been most clearly identified in the large Australian Ernest Henry mine. Typically, these deposits will carry high grades of both copper and gold.

Infrastructure

Until recently, the property was difficult to access, but the spread of logging operations in the area brought good quality roads to the property. This improved access now allows vehicular traffic to reach the railhead at Takla Lake. The nearby Kemess Mine, which went into production in 1997, has also helped made Lorraine a much more attractive prospect, since it has brought high voltage power access to within 40km of the property.

Copper & Gold Grades

The Lorraine deposits have a significantly higher copper grade than the major open pit operating mines in B.C. A higher grade core exists within the deposits, where grades exceed 1% Cu and 1g/t Au, and it is hoped that further drilling may expand the high grade zones and increase the overall grades.

Resource & Value

The Lorraine deposits carry a higher gross value/ton* than any of the large open pit mines currently operating in B.C. Further drilling is expected to significantly increase the tonnage at Lorraine, bringing the project closer to the pre-feasibility stage.

> *Gross value based on \$0.90/lb Cu; \$270/oz Au; \$4.50/oz Ag; \$2.40/lb Mo

Copper Price vs Inventory

For 30 years, copper prices have been on a slow downturn while inventories have climbed. The last sharp reduction in inventories, in 1994, heralded a dramatic rise in the price of the red metal, almost doubling it's value over an 18 month period. From it's most recent peak in mid 1999, global inventories of copper have slumped dramatically. This is expected to force the price to rise above \$1 per lb.

Platinum Group Metals

The increasing use of platinum and palladium in both industry and jewelery has increased demand for these rare metals. At the same time, the world's major suppliers in Russia have seen serious disruption in production, driving prices for these metals to new and dramatic highs. Markets require a secure and reliable supply of PGE metals, and Eastfield is participating in this quest with both the Lorraíne and the Iron Lake Projects.

Corporate Info

HEAD OFFICE

325 Howe Street - suite 110, Vancouver, B.C., V6C 1Z7, Canada ph: (604) 681-7913 fax: (604) 681-9855 Tollfree in U.S & Canada: 1-888-656-6611 info@eastfieldgroup.com www.eastfieldgroup.com

STOCK EXCHANGE Canadian Venture Exchange (CDNX) Trading Symbol 'ETF'

LEGAL COUNCIL

Farris, Vaughan, Wills and Murphy Vancouver, Canada AUDITORS Hay and Watson Chartered Accountants Vancouver, Canada

TRANSFER AGENT Pacific Corporate Trust Company Vancouver, Canada

SECURITY EXEMPTION 12g 3-2(b) #82-1929 CUSIP# 27724D

ISSUED SHARES Undiluted - 17.1 Million Fully diluted - 23.0 Million

Other Eastfield Projects

Tonopah

The historic Tonopah District of Nevada has already produced 174 million ounces silver & 1.8 million ounces gold from high grade ores. Eastfield has a number of drill targets outlined in this district. The Tonopah project also encloses a low-grade open pittable gold deposit that will become economic with higher gold prices.

Crowsnest/Howell

across 16.5 meters (54 ft).

a Dany Iron Lake The Iron Lake Project is a new

platinum/palladium discovery in B.C. Extensive soil geochemical anomalies have been outlined with grab rock samples up to 1g/t PGE's. The chemistry and geology indicate a large mafic to ultramafic intrusion

with excellent potential for hosting platinum and palladium resources. This is a new property which has never been explored for Platinum Group Elements

The Crowsnest/Howell properties, in southeastern B.C. show good potential for the discovery of intrusive hosted gold deposits. The geology and style of mineralization is characterized by the prolific Cripple Creek Mine, Colorado which hosted in excess of 24 million ounces of gold. Trenching at Crowsnest has returned 0.25 oz/t Au

astfield Resources is a junior resource company based in Vancouver, Canada. We are involved in the exploration for high value metal deposits in Western North America.

Listed for trading in 1987, the company has directed over \$10 Million in exploration of its mineral projects.

Lorraine - Jajay Project

Central British Columbia, CANADA

For decades, the copper cliffs of Lorraine have drawn prospectors and geologists, impressed by the rich metal horizons exposed in the rock faces above the scree. In the early 1970's, the terrain now comprising the Lorraine/Jajay Property was the site of

Earliest known claim tag from the original Lorraine Property, dated 1929.

a major exploration rush. However, the infrastructure in the area was poorly developed at that time and property access was difficult. As copper prices declined through the 80's, many companies dropped their interest in the Lorraine properties, allowing Lysander Minerals Corp.to assemble a land package covering all the most prospective zones. It is this property in which Eastfield has obtained the right to acquire a 75% interest. With the infrastructure in the area much improved and evidence of new discoveries in sight, the company believes that the Lorraine/Jajay Project has tremendous potential for near term development.

Eastfield Resources Ltd, Suite 110 - 325 Howe Street, Vancouver, BC, Canada, V6C 1Z7 Tel: (604) 681-7913 Fax: (604) 681-9855 Toll free: (888) 656-6611 email: info@eastfieldgroup.com www.eastfieldgroup.com

Property Description

The Lorraine/Jajay Property covers 26,000 ha (64,360 ac) in central British Columbia. It was assembled piecemeal from adjoining claimholders over a number of years. Now this large property covers some of the most prospective terrain in the province, with a known copper-gold deposit showing near-term development potential. Eastfield can earn a 75% interest in the property from other stakeholders.

Copper-Gold Resource

The deposits on the Lorraine/Jajay Property had a 1998 published resource totalling 32,000,000 tonnes, grading 0.66% copper, 0.35 g/t gold, and 4.7 g/t silver.* These copper grades are higher than at any currently operating mine in the province of British Columbia. Gold, silver and palladium also occur in this deposit which is open in at least two directions.

*This resource calculation does not conform to current disclosure regulations of National Instrument 43-101.

District Scale Exploration Potential

The property is large, with numerous areas of prospective geology and mineral occurrences, many of which have yet to be explored. Four areas outside the main Lorraine deposit have been selected for priority exploration. The Steelhead, Dorothy, Rhonda and Mackenzie targets all exhibit broad areas of anomalous copper and gold.

The Steelhead area, for instance, has a copper-gold geochemical anomaly that covers an area 2km by 3km. Initial prospecting at Steelhead in 2003 resulted in the discovery of two new mineral occurrences. Several other promising targets exist within the Lorraine/Jajay property package.

Land package covers many highly prospective zones in addition to an existing mineral resource of 32M tonnes

Geological Model

Page Zone

The Lorraine deposits have been compared to such valuable Iron Oxide Gold-Copper (IOGC) deposits as the large Candelaria Deposit in Chile which hosts 470 million tons grading 0.95% copper, 0.22 g/t gold and 3.1 g/t silver. Large magnetic features southwest of the Lorraine deposits are similar to those at Candelaria and will be drill tested in the 2004 program.

Infrastructure

Recent logging operations have provided excellent access on good quality roads to the property. This improved access now allows vehicular traffic from Lorraine to the railhead at Takla Lake. The nearby Kemess mine, which went into production in 1997, has also helped make Lorraine a much more attractive prospect, since it has brought high voltage power lines to within 40 km of the property.

Copper & Gold Grades

High grade zones are typical in these deposit types and have been outlined in the Lorraine deposits. Some examples of drill intercepts in these zones are listed below:

Hole No.	Int. (m)	Cu (%)	Au (g/t)
91-7	66.7	0.95	0.34
94-8	101.5	1.42	0.62
97-37	128.0	0.84	0.30
2001-60	113.2	0.76	0.49

The Lorraine deposits have significantly higher copper grade than any of the major open pit mines operating in B.C. It is expected that with further drilling, the company will be able to expand the high grade zones and increase the overall deposit grade.

Eastfield Resources Ltd.

a junior resource company based in Vancouver, Canada, is involved in the exploration for high value metal deposits in western North America. Listed for trading in 1987, the company has directed over \$10 Million in exploration of its mineral projects. For the most up-to-date information on the company, its partners and its properties, visit the website www.eastfieldgroup.com

Corporate Info

HEAD OFFICE 325 Howe Street - suite 110, Vancouver, B.C., V6C 1Z7, Canada

Ph:(604) 681-7913 Fax:(604) 681-9855 Tollfree in U.S & Canada: 1-888-656-6611 email: info@eastfieldgroup.com website: www.eastfieldgroup.com

MANAGEMENT

J. William Morton, P. Geo., President Glen L. Garratt, P. Geo., Vice President Donald D. Sharp, CA, Vice President STOCK EXCHANGE TSX Venture Exchange (TSX-V) Trading Symbol 'ETF'

LEGAL COUNSEL Farris, Vaughan, Wills and Murphy Vancouver, Canada

AUDITORS Hay and Watson Chartered Accountants Vancouver, Canada **TRANSFER AGENT** Pacific Corporate Trust Company Vancouver, Canada

CUSIP# 27724D

ISSUED SHARES Issued - 36.7 Million Fully diluted - 44.3 Million

EASTFIELD RESOURCES LITD.

Eastfield Resources Ltd. ETF-TSX-V

Wildrose Resources Ltd. WRS-TSX-V

Alexis Resources Ltd. ALX-TSX-V

tel: (604) 681-7913 fax: (604) 681-9855 toll free: (888) 656-6611

email: info@eastfieldaroup.com website: www.eastfieldaroup.com

Suite 110 - 325 Howe Street, Vancouver, BC, Canada, V6C 127 (PD4c 03) 604) 681-7913 fax: (604) 681-9855 will be constructed by the construction of the construction of

Drill Set-up at the Lorraine Project

Crowsnest/Howell Project

EASTFIELD has been publicly listed since 1987 and has since been very active in mineral exploration in western North America. The company has maintained a focus on precious metal exploration and has added diversity with multi-metal projects such as Lorraine (Cu-Au-Ag) and Iron Lake (Cu-Au-PGM).

CORPORATE philosophy in the company has been to reduce risk and multiply exposure by bringing in funding through joint venture partners for most of our exploration projects. This has an added benefit of keeping operating costs down. A rare exception to this approach is the Lorraine Project, where management saw a unique opportunity to earn into an advanced exploration property that has near to midterm development potential. This chance was afforded by the long down-turn in mineral exploration and resource markets during the last several years. With an anticipated turn in the markets. as it seems we are now witnessing, the Lorraine Project will rapidly accelerate in value and stature.

PARTNERS will be funding two of the company's four projects in 2003. The Crowsnest/Howell Project is being funded by Goldrea Resources Ltd. who propose a budget of \$500,000. At the Iron Lake Project, Argent Resources Ltd. will be undertaking a preliminary program to outline drill targets for a second phase of exploration. Eastfield is seeking a partner for the Tonopah Project and expects an aggressive program on the Lorraine Project.

LORRAINE PROJECT

The Lorraine property encompasses 100 square miles of land, located approximately 150 km northwest of Fort St. James, B.C. This large property includes most of the past exploration properties that formed part of a staking rush in the late 1960's and early 1970's. Within this land package lies the Lorraine deposit, an alkalic porphyry Cu-Au-Ag deposit which, in 1998, was calculated to host 32 million tonnes of 0.66% copper and 0.25 g/t gold. Higher grade zones are common.

The Lorraine Project has been tremendously enhanced by the addition of the power line to the Kemess Mine and by extensive logging road development in the area. These improved logistics have changed the value of the property. Exploration by Eastfield during the last three years has greatly expanded the potential tonnage, and drill programs are continuing to add to the size of the deposit. Eastfield is earning up to a 75% interest from Lysander Minerals Corporation.

CROWSNEST/HOWELL PROJECT

The project area totals in excess of 18,000 acres in the two adjacent properties. Mineralization on the properties is characterized by both high grade and low grade-bulk tonnage styles related to alkalic intrusions. At Crowsnest, trenching has exposed 16.5 m of 8.5 g/t gold, cutting intrusive and limestones. At Howell, a drill intercept of 124 m of 0.7g/t, including 60 m of 1.23 g/t, occurs within altered limestones and indicates the large tonnage potential of the area.

The property has logging road access from the town of Fernie, B.C., which lies 40 km to the northwest. Previous exploration has outlined several large gold geochemical anomalies and Goldrea Resources, who may earn a 55% interest, will continue its exploration of the area in 2003.

IRON LAKE PROJECT

Located northeast of 100 Mile House in central B.C., this property is a new platinum-palladium occurrence that was uncovered by Eastfield management. The large mafic/ultramafic intrusion will be explored in 2003 by Argent Resources, who may earn up to a 70% interest.

Large soil geochemical anomalies for platinum and palladium show values up to 392 ppb Pd and 260 ppb Pt. Prospecting in one anomaly discovered angular boulders that routinely run 0.5 to 0.75% copper, 0.4 to 0.75 g/t gold and 0.3 to 0.6 g/t PGM.

TONOPAH PROJECT

The historic town of Tonopah, in west-central Nevada, is the home of the second largest silver producer in the state. The Tonopah district produced 1.8 million ounces gold and 174 million ounces silver at an average recovered grade of 0.21 oz/t gold and 20 oz/t silver. Eastfield has been exploring the western portion of the district where many lodes and veins were left poorly explored. Geologic interpretations led Eastfield to undertake preliminary drilling that resulted in a hole intersecting 10 feet of 0.21 oz/t gold and 8.0 oz/t silver. The company is seeking joint venture funding for this project.

CORPORATE INFORMATION

Issued Shares

29,376,651

Directors and Officers

J.W. (Bill) Morton P.Geo., President and Director.
G.L. (Glen) Garratt P.Geo., Vice Pres and Director.
D.D. (Don) Sharp CA, Vice Pres, and Director.
A. (Alan) Scott M.B.A, P.Geo., Director.
E. (Ed) Kimura P.Geo., Director

Stock Exchange

TSX-Venture Exchange (TSX-V) Trading Symbol 'ETF'

Legal Counsel Farris, Vaughan, Wills & Murphy, Vancouver

Auditors Hay and Watson, Vancouver

SEC Foreign Security Exemption (12g3-2(b) #82-1929)

CUSIP # 27724D

Historic mines at Tonopah

Vomschoot

Quesnel Trough & Au/Cu Porphyry Deposits

CAT Mountain

Another major gold/copper discovery in British Columbia

A joint venture with BP Resources Canada Limited

Summary

Formed and listed on the Vancouver Stock Exchange in 1987, Lysander Gold Corporation expects to become a significant producer of gold in the 1990's. Exploration with joint venture partner BP Resources Canada Limited is proceeding at an accelerated pace on the CAT/BET Claims in north central British Columbia with the objective of developing a major open pit gold/copper deposit similar in scope to that being developed at Mt. Milligan by Continental Gold Corp/BP Resources Canada Limited.

Background

Mt. Milligan is a name which has recently renewed great interest in gold/copper deposits in central British Columbia. Now, Lysander Gold's CAT/BET Claims comprise another prospect which is attracting increasing geological and investor interest.

The CAT/BET property hosts a gold/copper prospect with the geological features characteristic of the Mt. Milligan deposit, situated approximately 80 miles to the southeast.

Just as the Mt. Milligan project has clearly put Continental Gold Corp. on the map as a planned world-class gold producer in the next three years, the same sort of potential appears to lie ahead for Lysander.

Au/Cu Porphyries Characteristics				Cat Mountain
Magnetics:	Strong discreet magnetic anomalies (air and ground)	1	1	1
Geochemistry	: Good multi-element geochemical expression including copper and go	Id	1	1
Multiple Ore Bodies:	Often large (+ 100m tons)	1	1	1
Peripheral:	Gold/Magnetite replacement loads	1	1	1
Sulphide Systems:	Good IP response	1	1	1

Mt. Milligan's 440 million ton deposit is estimated to contain more than 6,300,000 ounces of gold and 900,000 tons of copper, making it one of the world's largest gold/copper discoveries in recent years. Production, planned to start in 1993, is expected to average 60,000 tons per day. With current reserves, the mine would have a life of 15 years. The Mt. Milligan deposit covers an area of approximately 4,000 feet by 2,600 feet and ranges to a depth of 1,300 feet. The current drill indicated reserves are 290,000,000 tons averaging 0.016 oz/ ton gold and 0.19% copper. The adjacent Southern Star deposit is about half this size, covering an area of approximately 4,300 feet by 1,000 feet and remains open past its current depth of 1,000 feet. The current drill indicated reserves here are 150,000,000 tons averaging 0.011 oz/ton gold and 0.23% copper.

Lysander's land position in the area comprises more than thirty square miles around Cat Mountain, situated along the Quesnel Trough, a rich mineral belt running in a northwesterly direction up the central spine of British Columbia.

Some of Canada's newest, and richest, gold/copper discoveries as well as major historic producers also lie along this important geological structure. These include the Princeton, Afton, Mt. Polley, Q.R., as well as the Mt. Milligan gold/copper deposits. Several hundred kilometres to the northwest, the Quesnel Trough curves back to the south to become the Stikine Arch.

Property **D**escription

The CAT/BET Claims lie approximately 125 miles northwest of Fort St. James in the Omenica Mining Division. Access to the area has recently been improved as a result of growing logging activity which has significantly increased the number and quality of roads.

Additional staking during 1989 increased Lysander's claim holdings in the area from four square miles to 31 square miles. The Company's holdings are located on and near Cat Mountain, northwest of Uslika Lake in a geological setting similar to the large tonnage Mt. Milligan discovery of Continental Gold and BP Resources Canada Limited.

The CAT Property, which contains all of the classic geological features, demonstrates an outstanding response in copper and gold and other trace elements. Trenching of gold/copper geochemical anomalies has demonstrated ore grade material in bedrock underlying these anomalies.

A joint venture agreement with BP Resources Canada Limited was executed in May 1990 whereby BP becomes the operator of the joint venture on the following claims: Cat 1-9, Cat 11, 5 units of the Cat 12, 5 units of the Cat 10 and the Betty claims totaling some 31 square kilometres. The interests in the joint venture are BP 53% and Lysander 47% respectively. Lysander, in addition, retains a 100% interest in the BET claim, most of the Cat 10, Cat 12 and all of the Cat 13-15 claims which total approximately 21 square kilometres.

CAT MOUNTAIN British Columbia

History of the Area

The porphyry gold/copper deposits of British Columbia are increasingly being recognized as an important source of gold. In light of recent developments at Mt. Polley and Mt. Milligan, it is thought that the region may eventually rank in importance with Nevada's Carlin Trend as to possible gold reserves.

The Cat property was first examined for lode gold in the 1950's and for copper in the 1970's. Work conducted included hand trenching and limited diamond drilling. The main targets tested were

Alkali Au - Cu Porphyry Model

narrow magnetite veins containing up to 30 grams per tonne gold. The BET 1 claim was staked in 1971 to cover one of these high grade veins. A regional exploration program conducted by BP in 1973, identified streams anomalous in copper in the vicinity of Cat Mountain. The Cat Claims were subsequently staked in 1975.

The first discovery of widespread gold on the Cat property, was made in 1984 by Dr. S. J. Hoffman. Using the geological model developed from the Mt. Milligan exploration program conducted over the past four years, Lysander is finding results which lead management to believe that similar potential exists on its CAT/BET Claims.

In addition to Mt. Milligan, two similar alkali porphyry gold/copper deposits south of Lysander's claims have reached the feasibility stage. Mt. Polley, a joint venture between Imperial Metals and Corona Corporation, shows reserves of 2,000,000 ounces of gold and 875,000,000 pounds of copper distributed over five ore bodies. The smaller Q.R. property of Placer Dome thus far shows gold reserves of some 200,000 ounces with copper as yet undetermined.

Finances

Lysander has been able to finance its share of the exploration work on its property through several private placements. A private placement completed in January 1990 with Teck Corporation, a major international mining company, attests to the significance of the project. Teck purchased 400,000 units at C\$0.50, which will give it a 13.2% interest in the Company, when all the warrants are exercised at C\$0.75 per share. In addition, Teck has also been granted a right of first offer to provide capital in any future equity financing which Lysander may undertake to raise funding for additional work on the CAT/BET Claims.

With this type of sound financial backing, Lysander should have no problem in meeting its financial commitments for developing this property.

Recent **E**xploration **R**esults

Lysander commenced exploration of gold anomalies on its properties during 1989. The exploration program consisted of four phases, and the claims were found to have outstanding mineral potential.

During the 1989 exploration season, trenching work opened significant widths of gold/copper mineralization. This followed aerial magnetometer surveys which defined prominent anomalies confirmed on the ground by geochemical surveys. The alkaline gold/copper porphyry intrusive on the CAT/BET Claims is very similar to the mineralization and geological settings at Copper Mountain, Afton, Mt. Polley and Mt. Milligan.

Seven NQ diamond drill holes totaling 1,811 feet were put down on the Cat and Bet properties during the year, also bringing results consistent with those at Mt. Milligan. A major area of gold/copper potential was identified near the top of Cat Mountain.

Drilling and trenching programs conducted on the property in 1989 were so successful the Company, with joint venture partner BP, have initiated a \$1.2 million exploration program in 1990.

The Cat Mountain program for 1990 will include a substantial amount of drilling. It is anticipated that significant new reserves of gold will be established in the area in the next few years, and the Lysander/BP property is expected to be among these reserves.

Gold Soil Anomaly on Magnetic Map
Management

The Company's management team is well experienced in all phases of mineral exploration, development and production.

ANDREW F. B. MILLIGAN (M.B.E., M.A.) Chairman; Director and formerly Chairman of Cornucopia Resources Ltd.; Former President of Glamis Gold Ltd.; Former President and CEO of T.R.V. Minerals Corporation.

LOU M. DUARTE (B.A.Sc., M.B.A., C.M.A.), President and Director; President of Mintax Placements Ltd.; Former President of Athena Gold Corporation; Former Executive Vice President of Operations of T.R.V. Minerals Corporation.

DONALD K. MUSTARD (Geological Engineer), Vice President of Exploration and Director; Consultant with D. K. Mustard & Associates; Director of Asamera Minerals Inc.; 1990 President of Canadian Geoscience Council; Former General Manager of Exploration of B.P. Minerals Canada.

ARTHUR T. FISHER (Mining Engineer), Vice President of Mining and Director; President of Black Swan Gold Mines Ltd.; Former Vice President of Erickson Gold Mining Corp.

ROSS O. GLANVILLE (Mining Engineer, B.A.Sc., P. Eng., M.B.A., C.G.A.), Vice President of Finance and Director, President of Glanville Management Ltd.; Director of Black Swan Gold Mines Ltd., Director of U.S. Precious Metals Inc; Director of Centurion Gold Ltd.; Former President of Giant Bay Resources Ltd.; Former Vice President of Wright Engineers.

BRUCE A. KENNEDY (Mining Engineer) Director; Managing Director of Pelsart Resources N.L., Mincorp Petroleum N.L. and Pelsart Management Services; 1990 President of Association of Mining Engineers (A.M.E.); former President and CEO of Asamera Minerals, Inc.; former Senior Vice President of Asamera Minerals, Inc.; former President and CEO of Thyssen Mining Construction Inc.

Corporate Address

Lysander Gold Corporation P.O. Box 49071 Suite 1283 - 595 Burrard Street Vancouver, British Columbia Canada V7X 1G4 Telephone: (604) 681-8069 Fax: (604) 683-2346

Solicitors

Russell & Dumoulin 1700 - 1075 West Georgia Street Vancouver, B.C. V6E 3G2

Auditors

Wong, Seims & Lee 595 Burrard Street Vancouver, B.C. V7X 1G4

Transfer Agent

Montreal Trust 2nd Floor - 510 Burrard Street Vancouver, B.C. V6C 3B9

Bank

The Bank of Montreal 595 Burrard Street Vancouver, B.C. V7X 1L7

Listing

Vancouver Stock Exchange: Symbol – LYS

Capitalization

Authorized: 20,000,000 shares Issued: 4,342,297