Aug 1+2 Aug/87 Aug 1+2, Aug 3 det/81. D.M. Paulter J.C. Stephen Exploration Std. 842413

## GEOLOGICAL AND GEOCHEMICAL REPORT

### ON THE

## GRIZ 1 AND 2 MINERAL CLAIMS

RECORD NO'S 1411 and 1412 NTS 104K/10E

#### Latitude: 58°37'N

Longitude: 132°35"W

•

# ATLIN MINING DIVISION B.C.

by

J.M. PAUTLER SEPTEMBER 30, 1982

WORK DONE: AUGUST 8 to AUGUST 20, 1982 BY; J.C. STEPHEN EXPLORATIONS LTD. FUNDED BY: NEWEX SYNDICATE

# TABLE OF CONTENTS

Th Ng P J

|                                 | Page |  |  |  |  |
|---------------------------------|------|--|--|--|--|
| SUMMARY AND CONCLUSIONS         | ٦    |  |  |  |  |
| INTRODUCTION                    | 2    |  |  |  |  |
| CLAIMS REGISTER                 | 4    |  |  |  |  |
| LOCATION AND ACCESS             | 5    |  |  |  |  |
| REGIONAL GEOLOGY                | 8    |  |  |  |  |
| PROPERTY GEOLOGY                | 9    |  |  |  |  |
| ROCK TYPES                      | 9    |  |  |  |  |
| MINERALIZATION                  | 11   |  |  |  |  |
| GEOCHEMISTRY                    | 12   |  |  |  |  |
| SOIL AND TALUS                  | 12   |  |  |  |  |
| ROCK SAMPLING                   | 13   |  |  |  |  |
| CONCLUSIONS AND RECOMMENDATIONS |      |  |  |  |  |
| STATEMENT OF EXPENDITURES       |      |  |  |  |  |
| APPENDIX I SAMPLE DATA SHEETS   |      |  |  |  |  |

APPENDIX II STATEMENT OF QUALIFICATIONS

# LIST OF ILLUSTRATIONS

,

| Figure |              | <u>Title</u> | Page |
|--------|--------------|--------------|------|
| 1      | LOCATION MAP | 1:1,000,000  | 6    |
| 2      | CLAIM MAP    | 1:50,000     | 7    |

# Map

| I   | GRIZ CLAIMS, GEOLOGY                   | In Pocket of Report |
|-----|----------------------------------------|---------------------|
| II  | GRIZ CLAIMS, GEOCHEMISTRY (Ag, As, Au) | In Pocket of Report |
| III | GRIZ CLAIMS, GEOCHEMISTRY (Pb, Zn)     | In Pocket of Report |
| IV  | GRIZ 1, SE GRID, SOIL GEOCHEMISTRY     | In Pocket of Report |
| ۷   | GRIZ 1, NW GRID, SOIL GEOCHEMISTRY     | In Pocket of Report |

## SUMMARY AND CONCLUSIONS

- 1. GRIZ 1 and 2 consist of 24 units and are located 120 kms southeast of Atlin, B.C.
- The claim group was staked in 1981 to cover several small occurrences of galena-sphalerite mineralization with associated silver values.
- 3. A crew of 2 to 4 people spent 42 man days on the property between August 8 and August 21, 1982.
- 4. The claims are occupied by a large Tertiary feldspar porphyry body with various phases which intrudes Jurassic and Triassic sedimentary rocks.
- 5. The property was mapped at a scale of 1:8,000 on an air photo enlargement.
- A soil grid was established in the southwest part of the property. No significant results were obtained.
- 7. A 1981 soil grid was extended in the northwest section of GRIZ 1 to define the limits of an anomaly. The anomaly was found to continue and is of substantial size.
- 8. It is recommended that blasting and trenching be conducted within the area of anomalous soil values.
- 9. A large part of GRIZ 2 claim overlaps earlier staking by Chevron Minerals and it is recommended this claim be dropped.

#### INTRODUCTION

The 20 unit GRIZ 1 claim and 4 unit GRIZ 2 claim were staked in August, 1981 on the basis of several small occurrences of gold, silver, lead and zinc mineralization.

Work conducted in 1981 consisted of detailed geological mapping of four trenches at a scale of 1:50, limited geological mapping of the property at 1:31,680 and prospecting on the northwest side of the property. A soil/talus grid was established in the area around the trenches and a highly anomalous area was indicated.

The 1982 program involved detailed mapping of the property at a scale of 1:8,000 on an air photo enlargement, additional hand trenching between the four 1981 trenches and the extension of the 1981 soil/talus grid to define the extent of the anomaly. Another soil grid was also established on the southeast part of the property. This grid consisted of 137 samples. Forty-seven soil samples were added to the 1981 grid. Reconnaissance sampling across the property totalled 4 talus 35 soil and 30 rock samples.

The topography of the claims consists of a plateau area at 4,500 - 5000 feet in the northwest section and a large ridge at 4,000 feet with several smaller ridges, in the southeast sections. A smaller northeast trending valley cuts through the GRIZ 2 claim.

- 2 -

Vegetation on the plateau area and on the highest part of the large ridge is sparse. It consists of grass, moss and some patches of thick balsam trees and shrubs. Most of the southeastern part of the large ridge and the smaller ridges have been burnt about 10 years ago and are covered by second growth. The sides of the main valley and the southern part of the ridge are covered by a thick balsam and spruce forest.

Drainage on the claim group is provided by numerous creeks which drain into the main valley and also the smaller valley. Both valleys contain swampy southwesterly flowing creeks. The drainage of the plateau area is generally poor with many swampy areas.

- 3 -

# CLAIMS REGISTER

| <u>Claim</u>   | Record Number | <u>Record Date</u> |
|----------------|---------------|--------------------|
| GRIZ Group One |               |                    |
| Griz l         | 1411          | Aug 14, 1981       |
| Griz 2 ·       | 1412          | Aug 14, 1981       |

Griz 1, consisting of 20 units, has been grouped with the 4-unit Griz 2 claim for assessment purposes.

.....

.....

## LOCATION AND ACCESS

The Griz 1 and 2 claims, (map sheet 104K/10E), are located approximately 15 kms north of Trapper Lake, which is 132 kms southeast of Atlin, B.C. (Refer to Figure 1), Latitude and longitude are  $58^{0}37'N$  and  $132^{0}35'W$ .

Adjoining the claims on the north side is Chevron's 20 unit EMU claim. Much of the Griz 2 claim overlaps Chevron's 20 unit Way 5 claim. (Figure 2).

Access to the property is by helicopter from Atlin or Dease Lake.





). N

C.

#### REGIONAL GEOLOGY

The regional geology has been mapped by the GSC at a scale of 1:250,000 and is published as Tulsequah-Juneau map sheet 104K.

GRIZ 1 and 2 are situated in the area of a Late Cretaceous to Early Tertiary quartz feldspar porphyry intrusion which is one of many that form a west-northwesterly trending belt from Trapper Lake to Yonakina Mountain. These intrusive bodies are in close spatial association with the Sloko volcanic rocks of the same age which are limited to a larger northwesterly trending belt along the eastern edge of the Coast Mountains. The Sloko volcanic rocks are of interest due to the number of gold occurrences found associated with them.

#### PROPERTY GEOLOGY

#### ROCK TYPES

Mapping at a scale of 1:8,000 was carried out on an air photo enlargement, (MapI). The rock types are discussed below.

#### Unit 3 - Feldspar Porphyry

Almost the entire GRIZ 1 and 2 properties consist of feldspar porphyry of which various phases are present.

٠

#### Unit 3a - Unaltered Effusive Feldspar Porphyry

This phase of the unaltered porphyry is aphanitic to fine-grained, greenish-grey to pinkish in colour and contains white to pink feldspar phenocrysts. Biotite and hornblende phenocrysts can be present. This phase appears to be an effusive variety of the porphyry.

#### Unit 3B - Altered Silicified Porphyry

Unit 3a contains zones on the outcrop scale of altered, silicified porphyry with remnant feldspar phenocrysts evident. Minor pyrite is common and very minor disseminated galena and sphalerite have been observed in this rock type.

#### Unit 3c - Very Silicified Porphyry

This unit is very similar to unit 3b except it is more extensively silicified. Feldspar phenocrysts are difficult to discern. Quartz stringers a few millimeters in size are common and a few larger quartz veins up to 20 centimeters wide have been

observed. Pyrite is common and is sometines abundant in these silicified areas. Minor galena and sphalerite are rarely present. A pattern to the silicification is not evident.

#### Unit 3d - Quartz Breccia

This unit is actually a siliceous to cherty rock with rusty feldspar porphyry fragments. Manganese staining is common in this rock type when disseminated galena, sphalerite and pyrite are present.

#### Unit 3e - Hypabyssal Feldspar Porphyry

This phase of the porphyry is fine grained, green in colour and contains few feldspar phenocrysts. Some biotite phenocrysts are present. No silicified equivalents of this unit were observed. The hypabyssal phase is generally restricted to the northwest part of GRIZ 1 but a small amount was also found on the adjoining GRIZ 2 claim.

#### <u>Unit 2 - Takwahoni Black Shale</u>

Two outcrops of fine grained black shale of the Takwahoni Formation were observed in the centre of the GRIZ 1 claim. The black shale occurred below the feldspar porphyry.

#### Unit 1 - Stuhini Group Andesite

This unit was not observed on GRIZ 1 or 2.

#### MINERALIZATION

Several small occurrences of galena and sphalerite mineralization have been found on the GRIZ 1 property. In addition to these found in 1981, a small zone with very disseminated galena and sphalerite was located just east of the GRIZ 1, NW soil grid.

Further hand trenching on the four trenches discovered in 1981 was not very promising. Trenching proved to be difficult due to the abundance of highly altered and weathered rock in the vicinity. Some additional galena-sphalerite mineralization was noted along the extension of Trenches 2 and 3.



## GEOCHEMISTRY

#### SOIL AND TALUS

5

A topochain and compass soil grid was established on the southeast section of GRIZ 1. Refer to Map I, II or III for location. A few small galena-sphalerite occurrences had been found in this area as well as one low anomalous silver value. It was hoped that the grid would define any anomaly that may exist. Samples were taken at 20 metres apart. A total of 137 samples were collected and analyzed for Au, As, Ag, Pb and Zn. The soil grid and results are shown on Map IV.

The 1981 soil/talus grid on the northwest part of GRIZ 1 (Map I, II or III), was extended. An additional 47 samples were added to the grid to determine the extent of a Pb-Zn anomaly found in 1981. All samples were geochemically analyzed for Au, Ag, Pb and Zn. The 1981 and 1982 results are shown on Map V.

Reconnaissance soil and talus samples were also collected throughout the claims.

#### METHOD

The soil samples were collected from the 'B' horizon at depths of 2 to 30 cm using a grubhoe or rock hammer. Occasionally the 'A' or 'C' horizon had to be used. Samples were placed placed in water-proof Kraft paper bags and sent to base camp where they were dried and sifted to -35 mesh. The samples were then sent to Chemex Labs, North Vancouver for analysis. In the lab the soils were first pulverized to -100 mesh. The gold content in ppb was determined by aqua-regia digestion and chemical extraction followed by atomic absorption. Silver and arsenic in ppm were determined by perchloric-nitric acid degestion and atomic absorption analysis.

#### RESULTS

 $\boldsymbol{\psi}^{\dagger}$ 

The GRIZ 1, SE grid did not return promising results The contour map prepared from the results, (Map IV), shows only isolated high Pb-Zn values. Two Pb values of 213 and 220 ppm were the highest obtained. There were only four isolated Zn values above 250 ppm Zn ranging up to  $480^{\circ}$  ppm Sn.

The extention of the GRIZ 1, NW grid was more promising. (Map V). The limits of the anomaly have still not been entirely defined. An area approximately 120 m wide by 300 m long falls above the coincident 100 ppm Pb and 200 ppm Zn contours. The trenches dug in 1981 fall into very narrow similarly anomalous zones bordering the main anomaly. The lower part of the anomalous zone may be a result of soil slippage from the upper part of the anomaly. Values range up to 800 ppm Pb and 1100 ppm Zn.

Interesting results were not obtained from the reconnaissance soil and talus samples. Results are plotted on Maps II and III.

#### ROCK SAMPLING

Due to the fifficulty of hand trenching along the extent of the 1981 trenches, mapping and detailed sampling could not be undertaken. Two samples along the western extent of Trench 2 were taken where mineralization was visible, and 3 samples were collected

along the extent of Trench 3.

One of the samples west of Trench 2 ran 3.08 ounces per ton Ag, 3.08% Pb and 2.60% Zn. The northern extent of Trench 3 contained a value which ran 0.60 ounces per ton Ag, 0.44% Pb and 0.59% Zn which is slightly better than the 1981 values for the trench.

The reconnaissance rock samples were not interesting except for a 16.5 ppm Ag value to the north of the GRIZ 1, NW soil grid. The rock was silicified feldspar porphyry with pyritiferous surfaces. All results are plotted on Maps II and III.

1.1

#### CONCLUSIONS AND RECOMMENDATIONS

Detailed geological mapping of the property, additional hand trenching between and around 1981 trenches, the establishment of a soil grid on GRIZ 1, SE and the extension of the GRIZ 1, NW soil/talus grid were all completed in 1982. A total of \$6,677.00 was spent on this program.

A significant Pb-Zn soil anomaly on the GRIZ 1, NW grid was further outlined in the 1982 season. Additional anomalous results were obtained from rock samples along the extent of the 1981 trenches.

Future work should concentrate on the main soil anomaly. The outcrop appears to be close to the surface but is too weathered for hand trenching. Therefore, blasting is recommended in this area in order to find the source of the anomaly.

The southeast part of the GRIZ 1 claim and the GRIZ 2 claim are relatively uninteresting areas. It is recommended that the 4 unit GRIZ 2 claim be dropped on this basis and because Chevron's WAY 5 claim overlaps most of the claim.

Respectfully submitted, J.C. Stephen Explorations Ltd.

J.M. Pautler

t

# STATEMENT OF EXPENDITURES

## WAGES AND BENEFITS

( ...

5

| J.M. Pautler | Geologist | Aug. 8-17,1982 | 1950.+15% | \$723. |           |
|--------------|-----------|----------------|-----------|--------|-----------|
| S. Kay       | Assistant | Aug. 8-17      | 1750.+15% | 714.   |           |
| N. Silins    | Assistant | Aug. 10-19     | 1400.+15% | 519.   |           |
| A. Candy     | Assistant | Aug. 10-20     | 1200.+15% | 490.   |           |
|              |           |                |           |        | \$2426.00 |

FOOD AND CAMP SUPPLIES

42 man days @ \$14.

\$ 588.00

,

## GEOCHEMISTRY

| 4   | talus | s samples | s for Au | J Ag F | ⁰b Zn 0  | \$11.65   | \$ 46. |
|-----|-------|-----------|----------|--------|----------|-----------|--------|
| 45  | soil  | samples   | for Au   | Ag Pl  | o Zn Q   | \$8.40    | 378.   |
| 145 | soil  | samples   | for Au   | Ag Pl  | o Zn As  | @ \$11.65 | 1689.  |
| 30  | rock  | samples   | for Au   | Ag As  | 6 @ \$12 | .65       | 380.   |
|     |       |           |          |        |          |           |        |

\$2493.00

TRANSPORTATION Keystone Helicopters

| Ticket No. |       | <u>Hours</u>       |           |
|------------|-------|--------------------|-----------|
| 3679       |       | 0.9                |           |
| 3688       |       | 0.9                |           |
| 3697       |       | 0.5                |           |
|            | Total | 2.3 hours @ \$500. | \$1150.00 |
|            |       | TOTAL EXPENDITURE  | \$6677.00 |

# APPENDIX I

ŗ

1

# SAMPLE DATA SHEETS

# J.C. ST PHEN EXPLORATIONS LTD.

GEOCHEMICAL DATA .... ET - STREAM SILTS

SOIL SAMPLES

SYNDICATE

CREEK- SY-indich of G' Grid

104 K /10E

AIR PHOTO NO. BC 5614 075

NTS

SAMPLER Norman Silins, Elson CandyROJECT Newer - GRIZI

DATE

| SAMPLE    |       | EMAE  | SLOPE                |            | VEG    | COLOUR        | grain<br>Size | %        | PETROLOGY       |                                    |    | AS  | SAYS |     |
|-----------|-------|-------|----------------------|------------|--------|---------------|---------------|----------|-----------------|------------------------------------|----|-----|------|-----|
| 82- NXG-B | Width | Depth | VELOCITY             | Ph         | SAMPLE | COLOON        | TEXTORE       | MATERIAL | AND/OR FLOAT    | ADDITIONAL OBSERVATIONS OR REMARKS | Pb | Zn  | Ag   | Au  |
| 25/1+20W  | B     | IC    | sterp                | -          | grass  | lt br.        | silty         | mod      | feldopar        | just east of Trench 2.             | 10 | 182 | 01   | 210 |
| 25/1+40W  | в     | 14    | steep                | -          | grass  | dkbr          | loamy         | high     | "               | 0                                  | 11 | 133 | 01   | <10 |
| 25/1+60W  | в     | 10    | 6                    | -          | n      | br.           | fine          | mod      | ų               |                                    | 16 | 126 | 01   | <10 |
| 25/1+80W  | -     | -     | -                    | -          | -      | " <u>-</u>    | -             | -        | ъ. <sup>1</sup> | no sample taken                    |    |     |      |     |
| 25/2+00W  | В     | 4     | steep                | -          | grass  | dkbr          | loamy         | high     | 17              | taken 20m 5 of line                | 13 | 165 | 01   | <10 |
| -         | -     | -     | -                    | -          | -      | -             | -             | -        | 2               |                                    |    |     |      |     |
| 25/2+20E  | A,B   | 5     | mod                  | -          | mosses | med           | silty         | high     | в               |                                    | 19 | 135 | 0.2  | <10 |
| 25/2+40E  | A,B   | 8     | flat                 | 1          | moss   | dkpr.         | п             | "        | $H_{\pm}$       |                                    | 12 | 100 | 0.2  | <10 |
| 25/2+60E  | A,B   | 5     | flat                 | -          | IJ     | ы             | i1            | med      | "               |                                    | 17 | 115 | 0.1  | <10 |
| 25/2+80E  | в     | 2     | flat                 | -          | υ      | br            | pebb          | med      | l,              |                                    | 13 | 100 | 0.1  | <10 |
| 25/3+00E  | A     | 2     | gentle               | -          | moss   | med<br>br.    | day<br>silt   | med      |                 |                                    | 13 | 113 | 01   | <10 |
| 25/3+20E  | A     | 8     | gentle               | . <b>.</b> | moss   | br.           | silty         | med      |                 |                                    | 16 | 62  | 0.2  | <10 |
| 25/3+40E  | A,B   | 12    | gentle               | -          | moss   | br.           | 1             | high     |                 |                                    | 9  | 87  | 0.3  | <10 |
| 25/3+60E  | в     | 8     | h                    | -          | balsam | med<br>br.    | <i>י</i> י    | med      |                 |                                    | 10 | 108 | 0.2  | <10 |
| 25/3+80E  | в     | 6     | -   <sub>1</sub> , - |            | grass  | grey<br>brown | silty         | med      | en jula j       | 그는 바람이 아이는 것은 것이라.                 | 7  | 88  | 02   | <10 |
|           |       |       |                      | -          | 0      |               |               |          |                 |                                    |    |     |      |     |
|           |       |       |                      | -          |        |               |               |          |                 |                                    |    |     |      |     |
|           |       |       |                      | -          |        |               | 14            |          |                 |                                    |    |     |      |     |
|           |       |       |                      | -          |        |               |               | 2        |                 |                                    |    |     |      |     |
|           |       |       |                      | ~          |        |               |               |          |                 |                                    |    |     |      |     |

# J.C. SIEPHEN EXPLORATIONS LTD.

GEOCHEMICAL DATA STEET - STREAM SHETS

SYNDICATE

NTS 104K/IDE

CREEK

SAMPLER Norman Silins, Alison CandyROJECT NEWEX- GRIZ 1

DATE

AIR PHOTO NO. BC 5614 075

VEG. Grain Size TEXTURE ASSAYS VOLUME % PETROLOGY SAMPLE SLOPE COLOUR ORGANIC OF BEDROCK HCRIZ Depth ADDITIONAL OBSERVATIONS OR REMARKS VELOCITY Ph SAMPLE MATERIAL AND/OR FLOAT 82-NXG-B Pb Zn Ag Au fine gray 35/0+20W BC 3 steep none low talus slope 170 0.1 <10 -11 dk br 5 35/0+40W grass steep sandy med 64 335 03 40 fine fir br. 10 steep 35/0+60W low <10 43 160 0.1 gray 35/2+20E 8 steep low 193 488 0.2 grass <10 coarse pebbly . . 35/2+40E 8 br. <10 47 225 0.2 11 grass sandy brown 35/2+60E grass 10 low 98 253 04 <10 11 gray fine Sandy fine silly 35/2+80E 3 low 12 450 0.3 tan gass <10 11 et 35/3+00E med 5 61 200 0.7 <10 11 11 pr. 9.Fp low 35/3+20E fine balson tan 25 133 0.2 410 3 mod med med-Righ grass br 119 263 03 35/3+40E 5 steep <10 et. 35/3+60E sandy low 20 150 0.2 5 410 " .. grass low 36 170 01 35/3+80E tan fine 2 <10 1, --•

## **GEOCHEMICAL DATA SHEET - STREAM SILTS**

SYNDICATE

J.C. STEPHEN EXPLORATIONS LTD.

DATE

104 K / 10E NTS

SAMPLER Norman Silins, Alison Candy ROJECT NEWEX-GRIZI

CREEK

AIR PHOTO NO. BC 5614 075

| SAMPLE    | VOT   | OWE-         | SUDPE    |                | VEG               | COLOUR     | 9 BIZE        | %            | PETROLOGY    |                                    |     | AS     | ASSAYS |      |  |
|-----------|-------|--------------|----------|----------------|-------------------|------------|---------------|--------------|--------------|------------------------------------|-----|--------|--------|------|--|
| 82- NXG-B | HORIZ | Depth<br>(m) | VELOCITY | Ph             | SAMPLE            | 0020011    |               | MATERIAL     | AND/OR FLOAT | ADDITIONAL OBSERVATIONS OF REMARKS | Pb  | Zn     | Ag     | Au   |  |
| 45/0+40W  |       | 6            | gentl    | r -            | fir               | br         | fine          | med          |              |                                    | 16  | 185    | 0.1    | 410  |  |
| 45/0+60W  | -     | -            | -        | -              | -                 | -          | -             | -            | -            | no sample taken                    | -   |        |        |      |  |
| 45/0+80W  | -     | -            | _        | -              | -                 | -          |               |              | -            | no sample taken                    | -   |        |        |      |  |
| 45/1+00W  |       | 6            | mod.     | -              | fir               | br.        | fine          | med          |              |                                    | 11  | 102    | 01     | <10  |  |
| 45/1+20W  |       | 10           | gentle   |                | U.                | br.        | pebb.         | high         |              |                                    | 20  | 95     | 0.1    | <10  |  |
| 45/1+40W  |       | 5            |          | -              |                   | Itpr.      | sandy         | med-<br>high |              |                                    | 37  | 93     | 01     | <10  |  |
| 45/1+60W  | -     | -            | -        | -              | _                 | -          | -             | -            | -            | no sample taken                    | -   |        |        |      |  |
| 45/1+80W  |       | 6            | mod      | da ni<br>Le da | fir               | br         | piety         | high         |              |                                    | 11  | 93     | 0.1    | 410  |  |
| 45/2+00W  | 1     | 10           | mod      | •              | fir               | black      | silty         | high         |              |                                    | 10  | 88     | 01     | 210. |  |
| -         | _     | -            | -        | _              | -                 | -          | -             | -            | -            |                                    |     |        |        |      |  |
| 45/0+20E  | -     | 8-           | gende    |                | moss              | et         | fine          | high         |              | taken 20m 5 of line; talus         |     | <br> - |        |      |  |
| 45/0+40E  | -     | -            | -        | -              |                   | -          |               | -            |              | no sample taken                    | -   | -      | -      | 6    |  |
| 45/0+60E  | в     | 7            | mod      | -              | fir               | med<br>br. | fine<br>sandy | med          |              |                                    | 11  | 123    | 01     | <10  |  |
| 45/0+80E  | в     | 8            | gente    | , .            | giass             | med<br>br. | sandy         | low          |              |                                    | 10  | 102    | 01     | <10  |  |
| 45/1+00E  |       | 5            | steep    | -              | gidos<br>deadfall | gray       | fine          | low          |              |                                    | 9   | 108    | 0.1    | <10  |  |
| 45/1+20E  |       | 8            | steep    |                | grass             | lt.        | fine          | med.         |              |                                    | 15  | 145    | 02     | <10  |  |
| 45/1+40E  |       | 4            | 41       |                | "                 | tan        | fine          | low          |              |                                    | 161 | 215    | 03.    | <10  |  |
| 45/1+60E  |       | 3            | steep    | -              | 12                | tan        | fine          | low          |              |                                    | 116 | 383    | 04     | <10  |  |
| 45/1+ 8CE | •     | 1            | 11       |                | SI .              | tan        | fine          | "            |              |                                    | 72  | 290    | 01     | <10  |  |
| 45/12+00E |       | 2            | н        | -              | b                 | ii.        | fine          | 11           |              |                                    | 73  | 320    | 02     | <10  |  |

# J.C. STEPHEN EXPLORATIONS LTD.

GEOCHEMICAL DATA SHEET - STREAM SHETS

SOIL SAMPLES

SYNDICATE

NTS IO4K/IDE

CREEK

SAMPLER Norman Silins, Alison Candyproject NEWEX- GRIZI

DATE

COLOUR TEXTURE ORGANIC VEG . VOLUME ASSAYS PETROLOGY SAMPLE SUDPE OF BEDROCK Ph ADDITIONAL OBSERVATIONS OR REMARKS VELOCITY SAMPLE 82-NXG-B HORZ (10) MATERIAL AND/OR FLOAT Pb Zn Ag Au fine steep 45/2+20E 3 tan low 10 310 960 1.6 grass med 6 moss fine 48 263 05 45/2+40E <10 11 br. grass fine 45/2+60E 6 11 198 570 05 med <10 grass .. grass 45/2+80E low 4 tan 10 11 107 400 0.5 20 fine low 45/3+00E 5 fire br 38 188 0.2 <10 11 It/med fine br. sandy fir the shall be 45/3+20E 5 low mod <10 13 115 01 med for 45/3+40E 5 fine mod -11 br.

AIR PHOTO NO. BC 5614 075

# **J.C.** STEPHEN EXPLORATIONS LTD.

DATE

## GEOCHEMICAL DATA SHEET - SOIL SAMPLING

SYNDICATE

LINE 15+00N and 12+00E

SAMPLER D. Cundy N. Silins

| PROJECT | Nexeur - Krig 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|         | A second se | _ |

AIR PHOTO NO.

NTS

DESCRIPTION ASSAYS SAMPLE LOCATION Depth Hori ADDITIONAL OBSERVATIONS OR REMARKS SLOPE VEG. NO. ED Zo Ag As AL Part Size % ORG. Colour Ph 15.00N TE SEL NXG 6" med br. 5 210 08 25 20 gr. by edge of lake fine 100 no d. 4" mod 51 148 03 79 20 OE br. fine med 87 01 12 20 7 g" red/br Sl. 9E gr/Rize low silog. mmd 6 163 01 9 KIL A1/52. 6" dk.br med 10E 10" Pine rocko/roots v high mod. br. gr/fl. 53 410 01 32 <10 IIE fine mord dead a red/br. 7 90 01 10 KIC 7' high IDE 200 12+00E 14:+8N fine SA NXH 刑分. a steep tan sandy low sleep\_ 14+60N od bo fine med mad br. fine med 14+40N steep ge-14 + DUN pri tappi 14-100N 13 180N

# J.C. SIEPHEN EXPLORATIONS LTD.

#### GEOCHEMICAL DATA SheET - SOIL SAMPLING

SYNDICATE

SAMPLER D. Silins / A. Candy

PROJECT Newex Sup. Griz claim I

7F LINE AIR PHOTO NO.

NTS

DATE

DESCRIPTION ASSAYS SAMPLE LOCATION Depth Horiz ADDITIONAL OBSERVATIONS OR REMARKS SLOPE VEG. NO. Pb, Zn Ag As A Part Size % ORG. Ph Colour K2-DinG-B 7E 17+001 8" mad mousers l'une br 17 82 0219 P-bbley dark BING TE ILLASON 10" Hoard 21 68 05 15 20 high black mad Sruza Fubbley dork dight FE IL+LON 8" high 17 75 01 16 410 black sand dark pine Q bioles Poor profile Gentle B high 58 118 01 14 KIL TE ILHON 6 mass stones prown 7E 16+2010 101 med - 11 () fine 15810417KIL br gentle ves poor development TE IGtoon 6 B ÷ 22 85 05 15 10 high prown TE ISTON 5 med 17 87 0.3 16 20 in. 1. 1: Light frost boil 7E 15+60N 2"-3" 18 120 01 19 10 Low mod none brown pebleby mosac TE ISTYON 5' mod. br. 100 21 123 07 19 10 frees 507 pine nod 11 100 0.2 16 10 mod TE ISTRON 10 benesin moss 5 210 0 2 25 20 IF. 15+00 Ping 11 sportle mosses 12 70 02 14 20 Nebr line 7E 14450E 6 100 pino B brown 9 80 05 11 <1L confle mosx. TE 14HLOE 6 mod pine line. 10 90 01 11 <10 7E 14440E 5" 11 1000 br. MOON med. pine+ Good Drofile B brown 7E 14+20E 5 hiel 11.15502 14 10 MOSSER hick TE 14HOUE 3" L. br 40 23 203 05 11 10 \_ 11 mod red. mosses -46 130 01 20 410 TE BISON 6-10 B Brown hist mod 1010 7E 13+60N 8 3 Ak br. b med 3721702 16 KIL red. seass TE 13+40N 8"+0" B boown 15 102 01 12 10 good development mod SIGWER Low

high

ti

1.

7'3

7E 131200

met br.

7E 13+00N

no sample at

21 105 61 24 24

#### GEOCHEMICAL DATA S. . eT - SOIL SAMPLING

NTS

SAMPLER N. C. JIRS/A. Condig

J.C. S'A PHEN EXPLORATIONS LTD.

DATE

PROJECT MOLEX SUR GRIZ CLAIMINIL

AIR PHOTO NO

SF

DESCRIPTION ASSAYS SAMPLE ADDITIONAL OBSERVATIONS OR REMARKS LOCATION SLOPE VEG. Depth Horiz NO. Pb Zn Ag Part Size % ORG. Ph Colour As AL CL. UND.B 13.00 N 211 h. brown V.Steep PE HER ----no protile 72 med 200 0 3 81 KIC tine L grosser 10" gr/br J.ne 1. elegy mich 8 172 04 <10 10 EE 1342UN no profile 2"-3 fing RE 13HUN Libr 220 310 04 22 10 V.steep low 4 ملعه 11 33 138 02 1 E 13+14 low 10 11 n red. Brasses BE 13+80 2"-3" steep mod 22 410 148 01 14 proup pell V.II gresses 4" 8E 19400 n low villy nosses mod benering poor development 8E 14720 15 102 01 12 10 sand Low proven 6" fine ned 34 br Ø mosses 5E 19440 113 05 15 20 red. 3" B 8 83 0.1 14 20 SE 14460 sondy mod mod becun mosses red/or fine 3 med 8" ; 18 92 8E 14450 02 16 10 51 148 0.3 79 20 . SE 15400 GTUN B L.Becur 8 88 0 2 16 contle masser 0,E 15+26 6 10 port mond 1.80 4 10 110 0 2 14 100 10 KE 15thu Fuch cample #28367R OFASSEL 8" 25 92 05 14 410 steep RE ISHO parmu now mosi DOOR DEAL Hag of pravious year found have \$283688 yood, a 137601 med 11 9 mil 12 10 JE 15490 silty PINE 107 Gentle 8E 16400 12" <11 29 125 04 11 B Low brown and 312212 10" slight 3690 03 9 20 en. & 11 62 lev? 25 11 +7.13 . gilty 8" pine B Gentle 16 68 04 12 20 SE ILIUIS mod brown sand mass Josep br pebbly 13 slight 8 97 02 16 20 SE ILLO 100 11 1) PINE 10" medium good profile B Gentle mossie SE !! or YI)

18

J.C. S PHEN EXPLORATIONS LTD.

GEOCHEMICAL DATA S. T - SOIL SAMPLING

NTS

SAMPLER A. Candy N. Silins

DATE

PROJECT NEWEX SYA GRIZI claim

LINE 8E

AIR PHOTO NO.

| SAMPLE  |            |       |       | DESCRIPTION |                         |        |        | ADDITIONAL OPSERVATIONS OF REMARKS |                |                                    | 1       |     |     |    |      |
|---------|------------|-------|-------|-------------|-------------------------|--------|--------|------------------------------------|----------------|------------------------------------|---------|-----|-----|----|------|
| NO.     | LOCATION   | Depth | Horiz | Colour      | Part Size               | % ORG. | Ph     | SLOPE                              | VEG.           | ADDITIONAL OBJERVATIONS ON REMARKS | P       | zr  | Ag  | As | A    |
| 85N×Q-K | 000+F1 33  | 13    | 10    | Ne br       | line                    | low    |        | st.ght                             |                |                                    | 13      | 75  | 02  | 12 | <10  |
| T.      | DE 17120W  | 3"    | ß     | brown       | <ilty<br>=and</ilty<br> | high   | 1      | coentle                            | pine           | a cod profile Dead full            | 82      | 207 | 01  | 32 | <10  |
|         | SE 17440N  | 4"    | •     | Libr        | Pine                    | 0/     |        | mod-st.                            | 1-200          |                                    | 30      | 93  | 01  | 15 | KIL  |
| - The   | BE HILLON  | 3"    | B     | Light       | sandy                   | hub    | 1. 2.1 | steen                              |                | mage peofile at autoria            | 115     | 184 | 01  | 33 | KIC. |
|         | RE IZTRONO | 4"    | 1     | fan         | gine                    | inus   |        | steep                              |                |                                    | 213     | 190 | 06  | 19 | < R  |
|         | BE 184000  | 8"    | R     | dack        | Pelder                  | mad    |        | mad                                | mosses         |                                    | 11      | 61  | 01  | 11 | KIL  |
|         | 8F 181200  | 1011  | ·     | 60          | Jine.                   | high   |        | et.ght                             | 2.~ 1<br>2.~ 1 |                                    | 13      | 66  | 03  | 12 | KIL  |
|         | PE 101400  | 16"   | B     | De 41       | sondy                   | 1-110  |        | dee                                | hone           | and anatile                        | 9       | 64  | 01  | 11 | KIC  |
|         | RF 1944    | 3     |       | Sk.br.      | coaraa blad             | high   |        | steep                              | noscer         |                                    | 72      | 152 | 03  | 12 | <10  |
|         | RE IDIAN   | 511   | R     | \           | Sand                    | h. 1   |        | stare                              | Srassen        | Facts Datiful in willow            | 20      | 100 | 01  | iO | KIG  |
|         | DE IQUOR   | 5     |       | Jan         | survey                  | Ach    | 1      | alight                             | . H            | 100'S PERMITCH, IN CAMPY           | 10      | .75 | 0.1 | 9  | 20   |
| ••••••  | DE MILON   | QII   | A     |             | (k)<br>1                | h. 1   | lur -  | - 0                                | \$1 ouvers     | Dave Sanda DE                      |         |     |     |    |      |
|         | DE DUU     | 13"   |       | ned/br      | pine                    | high   |        | no                                 | 562762         | poor sample 12.1.                  | 6       | 73  | 0.1 | 14 | 10   |
|         | CE 101440  | ru    | R     | Light       |                         | 1      |        | -                                  | Plower         | NE                                 | a       | 70  | 0.1 | 14 | <1C  |
|         | SE INTERN  | 6     | 4     | brown       | pebbly                  | mod    |        | mod.                               | Graues         | 0.1.                               | 7       | 7/2 |     | 17 | <1C  |
|         | DE 19+800  | 2     |       | red         |                         | 1      |        |                                    | Q.             |                                    | -       | 90  |     | 12 | <1   |
|         | BE COTOG N |       |       | prown       | sandy                   | Low    |        | Gentle                             | TIOWER         | -good protile                      | <u></u> |     | -   | 16 |      |
|         |            |       |       |             |                         |        |        |                                    |                |                                    |         |     |     |    |      |
|         |            |       |       |             |                         |        |        |                                    |                |                                    |         |     |     |    |      |
|         |            |       |       |             |                         |        |        |                                    |                |                                    |         |     |     |    |      |
|         |            |       |       |             | -                       |        |        |                                    |                |                                    |         |     |     | 15 |      |

## GEOCHEMICAL DATA S. . ET - SOIL SAMPLING

| TC    | S. PHEN      |      |
|-------|--------------|------|
| J. U. | EXPLORATIONS | LTD. |

DATE

104K/10E NTS

LINE

SAMPLER Jean Pautler, Susan Kay PROJECT Newex-Griz I

AIR PHOTO NO. BC 5614 025

| SAMPLE          |          | Death   | Hari |                | DESCRIPTION   |        | CL 085 | VEC        | ADDITIONAL ORSERVATIONS OF REMARKS |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|-----------------|----------|---------|------|----------------|---------------|--------|--------|------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| NO.<br>82-NXG-B | LUCATION | (cm)    |      | Colour         | Part Size     | % ORG. | Ph     | 32072      | VEG.                               | Pb. Zn. Ag As                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A    |
| 9E, 17+00r      |          | 10      | В    | on.<br>br.     | fine          | few    | ·      | flat       | pine<br>meso                       | 9 84 01 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10   |
| 16+80n          |          | 7       | "    | med.           | fine          | mod    |        | "          |                                    | 7 147 01 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <1   |
| 16+60N          |          | 10      | >,   | dk<br>br.      | silty<br>sand | loto   |        | "          | grass                              | 7 74 01 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 210  |
| 16+40N          |          | 7       |      | med<br>br.     | fine          | mod    |        | υ          | pine mos                           | e 93 02 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IC   |
| 16+20N          |          | 10      | "    |                | 11            | "      | 1      | 11         | meadow                             | 8 86 01 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | zi   |
| 16+00N          |          | 15      | 1/   | 11             | 11            | 'n     |        | n          | ч                                  | 7 85 02 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < 10 |
| 15+80n          |          | 7       | 4    | 11             | н             | 4      |        | gentle     | 71                                 | 7 90 0 2 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10   |
| 15+60N          | 2        |         |      |                |               |        |        |            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| 15+40n          | 7        | n       |      | amp            | le            |        |        |            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| 15+20N          | )        | ul<br>r |      |                |               |        |        |            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                 |          |         |      |                |               | •      |        |            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                 |          | - 1     |      | i.<br>E set si |               | 1      | 1      |            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                 |          |         |      |                |               |        |        |            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                 |          |         |      |                |               |        |        |            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                 | T        |         |      | 1              |               |        |        |            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                 | 1        |         |      |                |               |        |        | 2 - S<br>2 |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                 |          |         |      |                |               | 1 - 11 |        |            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                 |          |         |      |                |               |        | Ľ.     |            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| 14 - 14         |          |         |      | -<br>1.0.191   | Post of the   |        |        |            |                                    | G - G - G - Lo - Restricter and a tor to all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
|                 |          |         |      |                |               |        |        |            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                 |          |         |      |                | e differenti  |        |        |            | n le s                             | 이 것은 것은 것은 것은 것을 다 가지 않는 것을 하는 것을 수 있는 것을 수 있다. 것을 것 같이 같이 것을 것 같이 않는 것을 수 있는 것을 수 있는 것을 수 있는 것 같이 않았다. 것 같이 것 같이 않았다. 것 같이 않았다. 것 않았다. 않았다. 것 않았다. 것 않았다. 않았다. 않았다. 않았다. 않았다. 않았다. 않았다. 않았다. | 1    |

# GEOCHEMICAL DATA SI. 2T - SOIL SAMPLING

104 K / 10E NTS

LINE

SAMPLER Jean Pautler, Susan Kay " Newex - Griz I

J.C. ST. PHEN EXPLORATIONS LTD.

DATE

BC 5614 025 AIR PHOTO NO.

| SAMPLE          |          |      |       |            | DESCRIP                | TION   |      |        |                   |                                    |    | AS  | SAYS |    | 1    |
|-----------------|----------|------|-------|------------|------------------------|--------|------|--------|-------------------|------------------------------------|----|-----|------|----|------|
| NO.<br>82-NXG-B | LOCATION | (cm) | Horiz | Colour     | Part Size              | % ORG. | Ph   | SLOPE  | VEG.              | ADDITIONAL OBJERVATIONS ON NEWARKS | Pb | Zn  | Aa   | AS | Au   |
| 10E, 19+30A     |          | 15   | в     | orange     | fine                   | moo    | 4    | (main) | meado             |                                    | 5  | 80  | 01   | 12 | KIC  |
| 19+40N          |          | 20   |       | brown      | fine Silty sa          | deto   |      | ,,     | "                 |                                    | 5  | 90  | 03   | 9  | 40   |
| 19+60N          |          | 7    | u     | lt or.     | fine<br>sandy          | mod    |      |        | "                 |                                    | 6  | 84  | 0.1  | 12 | 10   |
| 19+80N          |          | 10   |       | bioun      | fine                   | a "    |      | ь      | ,,                |                                    | 6  | 83  | 0.1  | 10 | 10   |
| 20+00N          |          | 15   | μ     | ttpr.      | med<br>silty<br>sand   | loto   | -    | ,,     |                   | south edge of 3rd valley           | 7  | 55  | 0.1  | 6  | <10  |
| 9E, 20100N      |          | 7    | 11    | br.        | fine<br>silty          | mod    |      | 11     | "                 |                                    | 21 | 103 | 6.1  | 85 | 10   |
| A+BON           |          | 20   | "     | med<br>br. | fine                   | mod    |      |        | "                 |                                    | 8  | 71  | 01   | 12 | < K  |
| 19+60N          |          | 15   | 11    | 4          | 4                      | и      |      | 11     |                   |                                    | 8  | 70  | 0.1  | 10 | 10   |
| 19+40N          |          | 20   | L     | "          | fine<br>sulty san      | d "    |      | gentle | , ,,              |                                    | 10 | 89  | 0.1  | 15 | <10  |
| 19+20N          |          | 10   | ,,    | "          | 1,                     | lots   | - E. | flat   | 11                |                                    | 10 | 71  | 0.1  | 12 | 10   |
| 19+00N          |          | 10   | "     | u          | pebbly                 | mod    |      | 1,     |                   | qfp, py otc                        | 10 | 75  | 01   | 11 | 20   |
| 18+80N          |          | 7    | ч     | or.<br>br  | fine<br>silt sand      |        | - 1  | "      | "                 | top of ridge before first valley   | 11 | 87  | 01   | 16 | <10  |
| 18+60N          |          | 15   | ,,    | med        | n                      | lots   |      | gentle | Piness            | in first valley                    | 6  | 83  | 01   | 12 | 10   |
| 18+40N          |          | NO   |       | SAMPL      | E -                    |        |      |        |                   |                                    |    |     |      |    |      |
| 18+20N          |          | 15   | B     | med        | fine                   | lots   |      | mod    | spruce<br>pine, n | 675                                | 8  | 51  | 01   | 10 | < IL |
| 18+00N          |          | 20   | н     | dk<br>br.  | n                      | mod    | j.   | flat   |                   | edge of forest/burnout to E        | 6  | 60  | 01   | 10 | <10  |
| 17+80N          |          | 10   | "     | med<br>br. | med<br>sandy<br>silt   | loto   |      | gentle |                   | bottom of slope of rusty ridge     | 23 | 75  | 0.2  | 11 | <10  |
| 17+60N          |          |      |       | NO         | SAM                    | PLE    |      |        |                   |                                    |    |     |      | _  | -    |
| 17+40N          |          | 15   | B     | med<br>br. | tine<br>Elayey<br>sudd | lots   |      | mod    | piness            |                                    | 22 | 60  | 01   | 12 | <10  |
| 17+20N          |          | 5    |       | 10         | fine                   | mod    |      | mod    | sprice,           | sine bare patch, above trees       | 17 | 78  | ΟZ   | 14 | <10  |

# J.C. STEPHEN EXPLORATIONS LTD.

## GEOCHEMICAL DATA SHEET - SOIL SAMPLING

SYNDICATE

| SAMPLER | a. | Ceril | 41 | N. | 51.05 |
|---------|----|-------|----|----|-------|
|         |    |       | 01 |    | 5     |

Т

DATE

1.1

PROJECT

NTS

LINE 9E and IDE

| Ners | Neweri | / Bris |
|------|--------|--------|
|      | , ,    | 0      |

| AIR | PHO | TO | NO. |  |
|-----|-----|----|-----|--|

| SAMPLE | LOCATION            |           | I        |          | DESCRIPTION |        |      | SLOPE V  | VEG.              | ADDITIONAL OBSERVATIONS OF REMARKS |    | ASS | ASSAYS |      |    |
|--------|---------------------|-----------|----------|----------|-------------|--------|------|----------|-------------------|------------------------------------|----|-----|--------|------|----|
| NO.    | LOCATION            | Depth     | Horiz    | Colour   | Part Size   | % ORG. | Ph   | SLOPE    | VEG.              | ADDITIONAL OBSERVATIONS ON REMARKS | Pb | Zn  | Ag     | As   | A  |
| SA NXE | 13+0.0N             | h         | 6        | +0       | o org       | mic    | ÷    | tak      | e sa              | mple                               | -  | -   | -      | -    | 7  |
|        | 13+20N              | 4"        |          | nod/b-   |             | Imas   |      | queto    | none              | doudfall                           | 3  | 81  | 01     | 7    | <  |
|        | 13+40N              | 3"        | ١.       | dt.br    | fine        | med.   |      | resta 1  | 66/21             |                                    | 19 | 142 | 01     | 11   | 2  |
|        | 13+60N              | 6"        | ах<br>   | rog/pr.  | S.H. vy     | med    |      | atel     | or/fl.            |                                    | 16 | 120 | 01     | 7    | <  |
|        | 13490N              | 1"        | ß        | lgt br   | fine        | iow    |      | V. sterp | roctor:<br>grades |                                    | 32 | 162 | 01     | 17   | 20 |
|        | 14 +00N             |           | •        | 100      | organ       | t si   | o to | ke       | com               | 2la_                               | 9  | HO  | 04     | 12   | IC |
|        | 14+80N              |           | <u>.</u> |          |             | 11     |      |          |                   |                                    | -  | -   | -      | -    |    |
| 5 B.   | 14+402              |           | 、        |          |             | 11     |      |          |                   |                                    | -  | -   | -      | -    |    |
|        | A+60N               |           |          |          |             | 11     |      |          |                   |                                    | -  | -   | -      | -    |    |
|        | 14+80N              | 5'        | B        | black    | me          | high   |      | mo       | fico              |                                    | 7  | 88  | 02     | 10   | 1  |
|        | 10 E<br>14 + 8 Or J | 5         |          | ы.       | Pine        | 100    |      | geeto    |                   |                                    | 5  | 98  | 0.1    | 10   | kı |
|        | 14+60N              | 10"       | 9        | Not      | fine        | med    |      | mont     | 8/21.             |                                    | 6  | 116 | 01     | 11   | 1  |
|        | 14-140N             | 4.        | ÷        | br       | gine        | me     | -    | mod      | none              |                                    | 5  | 97  | 01     | 11   | <  |
|        | 14-120N             | 10"       | **       | red.     | ومسزا       | mod    |      | slight   | 8791.             | 1                                  | 6  | 116 | 0.1    | 11   | 20 |
|        | 14+00rJ             | 10.       | - 2      | dlk br   | .pine       | nach   |      | . جعفت   | 8/21              | deadfall                           | 6  | 34  | 01     | 11   | <1 |
|        | 13+800              | <i>oj</i> | ø        | dkin     |             | Ngh    |      | gester   | gr/ft             |                                    | 31 | 113 | 01     | 10   | <1 |
|        | 13+60N              | .3'       | y.       | drb.     | J.re        | 1000   | ų.   | 1. cteep | rocky gr.         |                                    | 28 | i18 | 02     | 16   | K1 |
|        | 13140N              | 65        | Ϋ́.      | Akion.   |             | tell   |      | geets    | gr 171            |                                    | 17 | 132 | 01     | 9    | <1 |
|        | 13+200              | 4         | 1        | med lon. |             | med    |      | mord.    | gr/.21            |                                    | 20 | 209 | 0.2    | 9    | <1 |
|        | 13400N              |           | 1        | bons:    | 1. The      |        |      |          |                   |                                    |    |     |        | 1.11 |    |

J.C. S. PHEN EXPLORATIONS LTD. GEOCHEMICAL DATA S. \_cT - SOIL SAMPLING NTS 104K/10E SAMPLER Jean Rautler, Susan Kay PROJECT Newex - Griz I LINE AIR PHOTO NO. BC5614/025 DATE DESCRIPTION ASSAYS SAMPLE ADDITIONAL OBSERVATIONS OR REMARKS LOCATION Depth Horiz SLOPE VEG. NO. PE In Ag. As AL Part Size % ORG. Colour Ph (cm) 82-NXG-B fine sarlyself meadow dk br 10E, 15+20A lots 7 A.B med 9 97 01 11 11: A.B debr 15+40N 15 " " 6 <10 111 0.1 10 b fine selly meadaw edge of trees 12 B 1 11 85 01 N 15+60N 11 spruce 10 mod 6 sand med. flat B 92 6 15+80N 10 1, IU <10 moss 01 mod sand moss 15 B 16+00N 5 88 11 11 ,, 0.1 KK 4 11 sprice med h 60 9 15 7 16+20N 11 11 01 KIC 11 11 br ..... gentle spruce 2 75 01 <1C 10 10 16+40N 11 11 11 11 pine fine -10 13 83 01 12 11 11 ZC 16+60N 11 11 Sandy U spruce B 11 11 11 9 11 290 01 ÍÙ 16+80N 16 mas flat med 20 6 94 01 9 IC 23 11 17+00N 11 11 sand ltbr med 11 10 76 01 11 KIC 17+20N IJ daysand 7 11 11 fine day sand med med 15 11 10/69 7 KIU 17+40N 11 01 h 11 br mon edge of trees / burnout; 2nd ridge 5 17+60N 11 6 102 01 10 20 11 11 sandy 11 fine sulty sand moss orange 7 11 102 01 11 15 17+80N KIC 11 11 grass gentle 5 93 0212 15 <1C 18+00N ų 11 11 11 fine mod 92 0.1 9 1/ 6 20 18+20N 15 11 11 11 sand brown moss bushes in first valley 14301 9 KIU 11 flat 37 18+40N 20 mod N 11 orange moss 1<1C 18+60N 7 7 10501 10 11 11 # 11 brown grass itter. 61 10 95 01 10 20 18+80N gentle 15 11 11 h maidon orange 5 8501 19+00N flat 1<10 11 15 11 11 brown

# J.C. ST PHEN EXPLORATIONS LTD.

DATE

## GEOCHEMICAL DATA SI ET - SOIL SAMPLING

| N | TS |       |
|---|----|-------|
| _ | _  | <br>_ |

SAMPLER F Condy/10.51 ns

PROJECT LOOWER SUP (STIZ CLAITING ]

NE LINE

AIR PHOTO NO.

| SAMPLE            |             |        | Horiz |           | DESCRIPTION       |        |                              | SLOPE  |                       | ADDITIONAL OBSERVATIONS OF REMARKS     |    |     |     |    |     |
|-------------------|-------------|--------|-------|-----------|-------------------|--------|------------------------------|--------|-----------------------|----------------------------------------|----|-----|-----|----|-----|
| NO.               | LOCATION    | Depth  | Horiz | Colour    | Part Size         | % ORG. | Ph                           | SLOPE  | VEG.                  | ADDITIONAL OBSERVATIONS OF HEMAHKS     |    | 20  | Ag  | As | An  |
| 52 Nab.6          | RE 1340CN   | 15     | B     | L'ar      | line              | low    |                              | ateep  | 8-121                 | Dead Jali                              | 8  | 115 | 01  | 15 | <1. |
| r                 | 11E 13+208  | 11"    | B     | L. Brawn  | finesand          | mod    |                              | steed  | 1                     | D.F.                                   | 10 | 140 | 01  | 12 | <1  |
| n.                | ITE 13thon  | 4      | B     | ыл.       | Jine              | mod    |                              | 1 a Je |                       | deadfall D.F.                          | 11 | 164 | 02  | 9  | 10  |
| 1.                | ILE ISHON   | 9"-10" | B     | L. Browin | sands silt        | mad    |                              | steep  |                       | F.J. slipping 2000                     | 4  | 113 | 01  | 10 | kin |
| (1                | ILE 134900  | 5"     | i     | ned bi    | 1 1y              | low    | pi pi                        | 15     | masses                | D.F.                                   | 23 | 490 | 0.1 | 23 | 20  |
| () <sub>1</sub>   | HE HALDON   | 2"-3"  | A     | LBrown    | some              | mid    |                              | teen   | none                  | expased sail D.F.                      | 18 | 172 | 02  | 19 | <"  |
| 11                | ILE IN+2CN  | 5      | B     | gribr.    | احمر (<br>معلادات | 11     |                              | 11     | -                     | D.F.                                   | 22 | 134 | 0.1 | 35 | 10  |
|                   | IF ILLIGIN  | 8"     | R     | red       |                   | med    |                              | mad    | Stass                 | DF                                     | 24 | 228 | 01  | 14 | kic |
| 10                | NE IMHIN    | 3      |       | L. br     | sandy             | med    |                              | 11     | 1                     |                                        | 6  | 104 | 01  | 10 | 210 |
| 1.7. 11           | 1 E 14+ 4W  |        |       |           |                   |        |                              |        |                       |                                        |    |     |     |    | 1   |
| 14 <sup>1</sup>   | IF MACON    |        | , Ц   | 1 (19)    |                   | 1      | 1                            |        |                       | set of the state of the set of the set | 53 | 410 | 01  | 32 | <10 |
| <u>transferra</u> | 112 147 (A) |        | - 6   |           | 414.1             | g b    |                              | 1      | angen<br>1997 - Salar |                                        | 21 | 115 | 0.1 | 50 | <11 |
| ie d              | 11= 15+HOD  | A"     | B     | br        | fine              | red    |                              | geela  | -                     |                                        | 15 | 107 | 01  | 14 | <1  |
| 1.                | NE ISTIAN   | 4"-1"  | B     | bennia    | Frand             | Low    | 1                            | aphtle |                       |                                        | 13 | 90  | 01  | 16 | <10 |
| 1                 | ILE ISAGON  | 14     | B     | L.br      | 50mbury 1         | tow    |                              | slight | RIDE                  |                                        | 7  | 78  | 01  | 12 | <10 |
|                   | HE LLADON   | 811    | R     | -         | course<br>band    | mad    |                              | Lonte  |                       | sliford book                           | 4  | 75  | 0.1 | 9  | KIC |
|                   | HE ILDON    | 1      | 1     | tan       | 2ms               | 1000   |                              | "      | gi. etc.              | sample taken from roods of upturned    | 8  | 90  | 0.1 | 9  | 210 |
| . ( <i>r</i>      | IE ILHHON   | 1X"    | B     | benun     | sandy             | med    | 1                            | neitle | PINE                  | maint                                  | 6  | 72  | 01  | 9  | <10 |
|                   |             |        |       |           |                   |        | $+\frac{1}{2} [\frac{2}{2}]$ |        | 128.27                |                                        |    |     |     |    | 0   |
|                   |             |        |       |           |                   |        |                              |        |                       | 2012年1月1日中国的中国中国的中国                    |    |     |     |    |     |

| TC    | SIEPHEN      |      |
|-------|--------------|------|
| J. U. | EXPLORATIONS | LTD. |

## GEOCHEMICAL DATA SHLET - SOIL SAMPLING

SYNDICATE

SAMPLER D. Silins A. Candy

PROJECT Newex Syn. Griziclaims

NTS

LINE 12E

DATE

AIR PHOTO NO.

| SAMPLE   |            |       |       |                | DESCRIP   | TION   | ł.       |        |          | ADDITIONAL OBSERVATIONS OF REMARKS |    | ASS | AYS |    |     |
|----------|------------|-------|-------|----------------|-----------|--------|----------|--------|----------|------------------------------------|----|-----|-----|----|-----|
| NO.      | LOCATION   | Depth | Horiz | Colour         | Part Size | % ORG. | Ph       | SLOPE  | VEG.     |                                    | Pb | 2n  | Ag  | As | An  |
| 92 WXG-0 | 12E THEOR  | 6"    | B     | L. beaun       | f. sond   | mod    |          | Steep  |          | D.F.                               |    |     |     |    |     |
|          | IZE 14450N | 2"    | B     | ton            | Frond     | Low    |          | sterp. | Alchiers | D'E                                | 6  | 85  | 01  | 14 | KIU |
|          | 12E 14+401 | 3"    | B     | brown          | Sand      | Low.   |          | steep  | Les      | D.F.                               | 28 | 138 | 0.1 | 39 | <10 |
|          | 12E 14+200 | 8"    | B     | d.<br>brown    | Frand     | high   |          | steep  | - 1      | D.F.                               | 20 | 193 | 01  | 17 | <16 |
|          | IZE 144001 | 5"    | B     | promu          | fine      | med    |          | steep  | SLUTTES  | D.F.                               | 10 | 248 | 01  | 15 | KIU |
|          | 12E 13+101 | si0"  | B     | hired<br>brown | F. cond   | mod.   | <u> </u> | mod.   | -        | D.F.                               | 12 | 180 | 01  | 19 | CIU |
|          | DE 15460   | N3"   | B     | brown          | sand      | med    |          | steep  | JOOLSES  | D.F.                               | 7  | 98  | 01  | 10 | <1  |
|          | 12E 13440  | N4"   | B     | prown          | sand      | mod    | 11-      | med.   | flowers  | D,F.                               | 5  | 106 | 01  | IU | <11 |
|          | 12E 13+20  | 05"   | B     | brown          | sand      | mad    |          | mod    | grasses  | ? D.F                              | 45 | 300 | 02  | 41 | KIG |
|          | 12E 13+00  | oll"  | B     | brown          | silty     | med.   |          | mod    | Grasses  | P.F.                               | 8  | 195 | 01  | 9  | 10  |
|          |            |       |       |                |           |        |          |        |          |                                    |    |     |     | 1  |     |
|          |            | 1     |       |                |           |        |          |        |          |                                    |    |     |     |    |     |
|          |            |       |       |                | 1         |        |          |        |          |                                    |    |     |     |    |     |
|          |            | 1     |       |                |           |        |          |        |          |                                    |    |     |     |    |     |
|          |            | 1     |       |                | £         |        |          |        |          |                                    |    |     |     |    |     |
|          |            |       |       |                |           |        |          |        |          |                                    |    |     |     |    |     |
|          |            |       |       |                |           |        |          |        |          |                                    |    | •   |     |    | -   |
|          |            |       |       |                | I.        |        |          |        |          |                                    |    |     |     |    |     |
|          |            |       |       |                |           |        |          |        |          |                                    |    |     |     |    |     |
|          |            |       |       |                |           |        |          |        |          |                                    |    |     | ·   |    |     |
|          |            | Ť     |       |                | 1. J      |        |          | 2      | 1        | 이 사람이 이 집에서 이 집에서 나는 것이 없다.        | 4  | 119 |     | 9  | *   |
|                          |          |         |         |          |           | PROJECT       |                          | Vewex | - Griz  | I AIR PHOTO NO. BC 50                                                                                            | 014                  | 025 |          |    |
|--------------------------|----------|---------|---------|----------|-----------|---------------|--------------------------|-------|---------|------------------------------------------------------------------------------------------------------------------|----------------------|-----|----------|----|
| SAMPLE                   | LOCATION | Depth   | Horiz   |          | DESCRIPT  | NON           | 1.1                      | SLOPE | VEG.    | ADDITIONAL OBSERVATIONS OR REMARKS                                                                               |                      | ASS | AYS      |    |
|                          | ridge NE | (cm)    |         | Colour   | Part Size | % ORG.        | Ph                       |       | spruce  |                                                                                                                  | Ph                   | Ln  | Ag.      | As |
| ×G-BT-512                | of camp. | 5       | C       | br.      | med       | moa           | <u>- 14</u>              | moa   | pine    | overlying rusty porph. OTC                                                                                       | - 62                 | 103 | 01       | 14 |
|                          |          |         |         | nietzi   | Mud TY    |               | . <b>.</b>               |       | ( ] .   |                                                                                                                  |                      |     |          |    |
| ST 104                   |          | =       |         |          | pard. d   | med           |                          | moq   | Cushes  |                                                                                                                  | 34                   | 123 | 6-1      | 4  |
| T 105                    |          | 3       | C_      | 1)       | 11        | lifs          |                          | 11    | 12705.5 | pyritic tp otc.                                                                                                  | 38                   | 126 | 0.1      | 41 |
| 35 100                   |          |         |         |          |           |               | 24                       |       |         |                                                                                                                  | 116                  | 140 | 0.1      | 17 |
|                          |          |         |         |          |           |               | 1                        |       |         |                                                                                                                  | T                    |     |          | -  |
|                          | 655 E    |         |         | sil-, hi |           |               |                          | 1     |         |                                                                                                                  |                      |     |          |    |
|                          |          | 9       |         | 4 Alera  |           |               | a.<br>H                  | 1.1   |         |                                                                                                                  |                      |     |          |    |
| ti di di                 |          |         |         | 1111     |           |               |                          |       |         |                                                                                                                  |                      |     |          |    |
|                          |          |         |         |          |           |               |                          |       |         |                                                                                                                  | -                    |     |          |    |
|                          | 1        | J. P. L | - 14    | E L E H  |           | 19            | , d -                    |       |         |                                                                                                                  |                      |     |          |    |
|                          |          | 1.      |         | 同性的      | 1         |               | 1                        |       |         | and the second |                      |     |          |    |
|                          |          |         |         | A la     |           |               |                          |       |         |                                                                                                                  |                      |     |          |    |
|                          |          |         | 1:      |          |           | <u>. i si</u> | r.                       |       | 1       |                                                                                                                  |                      |     |          |    |
|                          |          |         |         |          |           |               |                          |       |         |                                                                                                                  | $\left\  - \right\ $ |     |          |    |
| 12 - 12<br>- 12 - 13 - 1 |          |         |         |          | 19        |               | - 1<br>- 1<br>- 1<br>- 1 |       |         |                                                                                                                  |                      |     |          |    |
|                          |          |         | - 1.1   |          |           |               |                          |       |         |                                                                                                                  |                      |     | -+       |    |
|                          |          |         | <u></u> |          |           |               | 1                        |       |         |                                                                                                                  |                      |     | <u> </u> |    |
|                          |          | 10      |         |          |           |               | <u></u>                  |       |         |                                                                                                                  |                      |     |          |    |
|                          |          |         |         | 1.10     | 110.00    | 1., .<br>     | 1.5                      |       |         |                                                                                                                  |                      |     |          |    |
|                          |          |         |         | 막다.      |           | 1.1           |                          | 1.12  |         | 그는 것은 것이 같은 물을 맞는 것이 같이 많이 많이 했다.                                                                                |                      | 1   |          |    |

# J.C. STL. HEN EXPLORATIONS LTD.

DATE

GEOCHEMICAL DATA SHL\_T - ROCK GEOCHEM SAMPLING

SYNDICATE

IC E

|         | · · · · ·    |
|---------|--------------|
| SAMPLER | <br>1201+1-1 |

5 Kay

PROJECT A LAY - CRIZI, SE

LINE

1.3.4

AIR PHOTO No.

NTS

BC 5614 25

|      | SAMPLE  | LOCATION             | ROCK                           | ALTERATION                            | N MINERALIZATION STRIKE ADDITIONAL APPARENT |          | WIDTH TRUE                             |                                               | ASSAYS         |      |     |            |      |
|------|---------|----------------------|--------------------------------|---------------------------------------|---------------------------------------------|----------|----------------------------------------|-----------------------------------------------|----------------|------|-----|------------|------|
|      | NUMBER  |                      | TYPE                           | · · · · · · · · · · · · · · · · · · · |                                             | DIP      | REMARKS                                |                                               | WIDTH          | Ag   | As  | Au         | Pb   |
| (1)  | 28440B  | in quely we          | Keidsper                       | the site                              | 24                                          |          |                                        |                                               |                | e.z  | 210 | 210        | æ    |
| (2)  | 38441 B | SKIZ 1               | 9,7 z hreccia                  | Mosting                               |                                             |          | rusty Relappa.                         |                                               |                | 0.1  | 15  | c10        |      |
| 3)   | 28442B  | GRIZI                | silicit.<br>Z.f. p.            | Silicified.                           | RY .                                        |          |                                        |                                               |                | 0.2  | 12  | 210        | ·    |
| (4)  | 28443B  | E Z camp             | 2+2 by                         |                                       |                                             | *        | angular plags of                       |                                               | la mi          | 0.1  | 9   | 210        |      |
| (5)  | 28444 B | W07, 43.             | f p.                           | silicified                            | FY                                          |          |                                        | 4154                                          |                | 0.1  | 9   | 410        |      |
| (6.) | 28445B  | W0644                |                                | V. silicified                         | lots py                                     |          |                                        |                                               |                | 0.1  | 4   | 410        |      |
| (7)  | 28446B  | in gully             | 1.                             | silcified                             | . <u>((</u> ()                              | Į.       | 用的原始的目的原则。                             |                                               |                | 0-1  | 35  | 20         |      |
| (,   | 384473  | top of sully         | esil Br.                       | silicified, l<br>bleached             | PY                                          |          | te warry git inters.                   |                                               |                | 0.9  | 355 | 10         |      |
| (9)  | 28448B  | NW OU<br>camp        | 217-raib                       | rusty.                                |                                             |          | talus below frote                      | Zan                                           |                | 0.1  | 11  | 410        |      |
| (10) | 284498  | in bottom            | silicified<br>fp               | rusty<br>silicified                   | Py lots                                     |          | small zone 2 im<br>Ione frenchine 2 N. |                                               | 1.<br>1914     | 0.8  | 41  | 20         |      |
| (11) | 28450B  | 8=/17+60N            | • •                            | 11                                    | PY                                          |          | J                                      | P.G.S.                                        | Alla           | 0.3  | 9   | -10        |      |
| (12) |         |                      |                                |                                       |                                             |          |                                        |                                               |                |      |     |            |      |
| (13) |         |                      |                                |                                       |                                             |          |                                        |                                               |                | 1 di |     |            |      |
| (14) | 28367B  | ridge behind<br>camp | lt blue-gray<br>feldspar porph | silicified                            | seams of f.g<br>gal., py                    |          |                                        |                                               |                | 1.1  | 5   | 10         | 40 1 |
| (15) | 28368B  | NE of 28367          |                                |                                       | dissem f.gr.                                |          |                                        |                                               |                | 0.6  | 6   | 10         |      |
| (16) | 28369B  | ridge NE of<br>Ramp  | gtz-vein                       | rusty weath.                          | -                                           | 100%/90: | sugary + drusy gtz.                    |                                               | 2.00           | D.1  | 7   | 210        |      |
| (17) | 28370B  | beside B-517         | gtz bx.                        | rusty weath                           | f.gr. dissem<br>Sulphides                   |          |                                        |                                               | (1)<br>(2) (2) | 0.2  | 65  | <i>210</i> |      |
| (18) | 28371B  | gully behind         | altered f.                     | rusty weath silicified                | f.gr. blebo +<br>dissem sulph               |          |                                        |                                               |                | 0.1  | 94  | 210        |      |
| (19) | 28372B  | beside<br>B-518      | lt. blue gray<br>feldspar porp | silicified                            | f.gr. dissem i<br>veinlets of py            |          |                                        | $\left  b \right _{1} = \left  b \right _{1}$ |                | 0.3  | 5   | L]C        |      |
| (20) | 28373B  | east of 72B          | "                              | IJ                                    | ,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,     |          | pink weathing and                      |                                               |                | 0.1  | 5   | <10        |      |

## J.C. STL. HEN EXPLORATIONS LTD.

## GEOCHEMICAL DATA SHL\_ - ROCK GEOCHEM SAMPLING

SYNDICATE

SAMPLER J Pautler

DATE

PROJECT NQUEX - GRIZI, 2, 3

AIR PHOTO NO. BC 5614 075

104KLIDE

NTS

LINE

|      | SAMPLE      | LOCATION                        | ROCK                       | ALTERATION                    | MINERALIZATION              | STRIKE | ADDITIONAL                 | WIDTH | INT   | AS    | SAYS | ^    |       | 1    |
|------|-------------|---------------------------------|----------------------------|-------------------------------|-----------------------------|--------|----------------------------|-------|-------|-------|------|------|-------|------|
|      | NUMBER      |                                 | TYPE                       |                               |                             | DIP    | REMARKS                    | 1.0   | WIDTH | Au.   | As.  | Hg   | 16    | Z    |
| 1)   | 2-8451B     | Trench 3<br>GRIZI               | silica rich                |                               | fy cte, sp,<br>minor og     |        | 2x4nsion of Trench3        |       |       | 100   | Tarc | 6.2  | 5000  | 4i2  |
| 2)   | 28452       | EOTT. 2                         | silica rich                | very affered                  | prown altoled               |        | heavy                      |       |       | -10   | 65   | 1.2  |       |      |
| 3)   | 28453       | E of 28452                      | Silicious -<br>Churty Ivin | rusty weath                   | Py, U. Min or ga            | 100°   | bucciaked in spots         | 1     |       | -10   | 150  | 0.1  | 248   | 22   |
| 4)   | 28454       | NE 7, 19e<br>quely (G-1)        | silicibus vern,            | Mr staining<br>V. rusty weath | Minor Py                    | 4      | same as rock around        | 11    |       | <1c   | 5.3  | 0.1  |       |      |
| (5)  | 28455       | Eside Big RK                    | V. silicified<br>f.p.      |                               | ГY                          |        | above 28375B               |       |       | -10   | 11   | 0.1  | 1     |      |
| 6.)  | 2.8456      | GRIZ-1                          | gtz-carb<br>vein           | vory rusty                    | cte veins.                  |        | heavy breccipted in places |       | -     | -10   | 11   | 0.1  |       |      |
| 7)   | 2.8457 B    | EMU                             | cherty-sil-                | Mn staining                   |                             |        | partly bucciated.          |       |       | <10   | 5    | c.i  |       |      |
| 8)   | 2-8458      | Not rider with<br>showing (G-3) | silicifisid rk.            | rusty weath                   | cte creins.                 |        | some buckiehen             |       | 1     | -10   | 3    | 0.2  |       |      |
| 9)   | 2-8459      | with showing(G-3)               | gtz-cte<br>precia          | the rusty weath               |                             |        | V. rusty f.p.? frags       |       |       | -10   | 3    | 0.1  |       |      |
| :10) | 28460       | GRIZ 3                          | g+z-cte<br>preccia         |                               |                             |        | rusty fo frags             |       |       | -16   | 2    | 0.1  |       |      |
| 90   | 2.8461      | 10                              | Cherty vein                | Mn stained                    |                             |        | 0.0                        |       |       | -10   | 30   | c.i  |       |      |
| 12)  | 2.8462B     | 12.8461                         | Siliciousuein              |                               | minorche                    |        | Leavy                      |       |       | -10   | 14   | 0.1  | -     |      |
| 13)  | 2 8 4 6 3 B | GRIZ 3                          | silica replaced            | Mn staining                   | РЧ                          |        |                            |       |       | ×10   | 30   | 0.2  |       |      |
| (14) | 284648      | ACT28463B                       | 11                         | rusty Mrst                    | Рч, д9, sp.                 |        |                            | 1     |       | 0:005 |      | 7.01 | 1.03% | 1.82 |
| (15) | 28465B      | Woy 464                         | silicified zone            |                               |                             | 284°   |                            |       |       | -10   | 65   | c.2  |       |      |
| (16) | 28466       | 2 9, 465                        | 1<br>1(                    | mn staining                   |                             | '240°  |                            |       |       | \$10  | 19   | 0.1  |       |      |
| (17) | 28467B      | further W.                      | chert- by<br>Silica vun    | Mn staining                   |                             | -      |                            |       |       | 40    | 19   | 0.7  |       |      |
| (18) |             |                                 |                            | l                             | ×                           |        |                            |       |       | 1     |      |      |       |      |
| (19) |             |                                 |                            |                               | 1                           |        |                            | 1     |       |       |      | ÷    |       |      |
| (20) | 327520      | Extended trench &<br>West       | Silicified<br>Qte vien     | rusty weather.                | EY, sphalerite,<br>Salenals |        | V. rusty (no bread)        |       | ,     | -10   | 145  | 10.7 | 2-130 | Sea  |

# J.C. STL. HEN EXPLORATIONS LTD.

## GEOCHEMICAL DATA SHLLI - ROCK GEOCHEM SAMPLING

SYNDICATE

Susan Kay

PROJECT NEWER - GRIZ 1,2,3

ð

BUDTO No BC 5614 075

104 K/10E

NTS

LINE

| B-525<br>B-525<br>C2 Lk.<br>O51C<br>D52C<br>NN<br>A<br>Fe          | rype<br>feidspar<br>scrphyry<br>buartz<br>breccia<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>" | silicified<br>silicified<br>nisty weath.<br>rusty weath.<br>rusty weath.<br>fristy weath.<br>silicified; nisty<br>weathering<br>silicified; nisty<br>weath; Ho-strd.  | f gr dissem.<br>f gr dissem.<br>pyilifsinfaces<br>ind f. gr dissen<br>f.g. bubs ga.,<br>py.<br>py., ga, f.g.<br>b gr ga, py, spl<br>seams of ga.                   | · 76°/40°/            | REMARKS<br>pink weath. rind<br>rusty weath.<br>rusty weath frags<br>V cherty appearance.<br>dk. rusty br. weath<br>ctr velow.<br>float; south of 41053C<br>extended NEV end of<br>Trench 2<br>extended W end of<br>Therch 3<br>extended E end of<br>Therch 3. |             |       | Au.<br>                                                        | A.<br>5<br>48<br>30<br>225<br>15 | A9<br>0.1<br>1.5<br>2.5<br>C.1<br>C.3<br>1.0<br>3.6<br>0.12<br>9<br>0.12<br>9<br>0.12<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Рь<br>42<br>51<br>3.0%<br>2.136    |
|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------|----------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| B-525<br>P<br>B-525<br>V2 Lk.<br>O51C<br>D52C<br>WH<br>Fe<br>NN OS | keldspar<br>porphyry<br>wartz<br>breccia<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"          | silicified<br>silicified<br>rusty weath n<br>rusty weath.<br>rusty weath.<br>fristy weath.<br>silicified; nusty<br>weathering<br>silicified; nusty<br>weath; HA-strd. | f gr. dissem.<br>gr. beebs py.<br>pyritifsinfaces<br>ind f. gr. dissen<br>f.gr. beebs ga.,<br>py.<br>py. ga, f.gr.<br>f.gr. ga, py, spl.<br>seams of ga.<br>"<br>" | *76°/40°1<br>&,<br>Y  | pink weath. rind<br>rusty weath<br>rusty weath frags<br>V cherty appearance<br>dk. rusty br. weath<br>ctz velos<br>float; South of 41053C<br>extended Nev end of<br>Thench 2<br>extended W end of<br>Thench 3<br>extended E end of<br>Thench 3                |             |       | ×10<br>×10<br>×10<br>×10<br>×10<br>×10<br>×10<br>×10           | 48<br>30<br>225<br>15            | 0.1<br>16.5<br>2.5<br>C.1<br>C.3<br>1.0<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06<br>3.06 | 42<br>51<br>3.0%<br>2.136<br>2.136 |
| B-525<br>22 Lk.<br>051C<br>052C<br>White<br>052C                   | "<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"                                                           | silicified<br>rusty weath. ru<br>rusty weath.<br>rusty weath.<br>fusty weath.<br>selicified; rusty<br>weathering<br>selicified; rusty<br>weath; Hn-strd.              | pynitifsinfaces<br>ind f. gr. dusen<br>f.gr. beebs ga.,<br>py.<br>py. ga, f.gr.<br>f.gr. ga, py, spli<br>seams of ga.<br>"<br>"                                    | ·76°/40°9<br>&,<br>Y  | rusty weath<br>rusty weath frags<br>N cherty appearance<br>dk. rusty br. weath<br>ctz veins<br>float; South of 41053C<br>extended Nev end of<br>Trench 2<br>extended W end of<br>Therch 3<br>extended E end of<br>Thench 3.                                   | •           |       | < 10<br><10<br><10<br><10<br><10<br><0.003<br><0.003<br><0.003 | 5<br>48<br>30<br>225<br>15       | 16.5<br>2.5<br>C.1<br>C.3<br>J.C<br>3.CE<br>3.CE<br>3.CE<br>3.CE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.0%                               |
| DSIC<br>DSIC<br>NN as                                              | vell selicifier<br>elds. porph<br>eldspar poph<br>eldspar poph<br>"                                                                              | rusty weath.<br>rusty weath<br>frusty weath.<br>selicified; nusty<br>weathering<br>selicified; nusty<br>weath; Hn-strd.                                               | f.g. bub ga.,<br>py.<br>py.,ga, f.g.<br>f.g. ga,py,spl<br>seams of ga.<br>neams of ga.p<br>"                                                                       | 76°/40°)<br>Q.,<br>Y  | Misty weath frags<br>N cherty appearance<br>dk. Misty br. weath<br>cte veils<br>float; South of 41053C<br>extended Nev end of<br>Trench 2<br>extended W end of<br>Therch 3<br>extended E end of<br>Thench 3.                                                  | •           |       | <10<br><10<br><10<br><10<br><0.003<br><0.003<br>0.003          | 48<br>30<br>225<br>15            | 2.5<br>C.1<br>C.3<br>J.C<br>3.C<br>3.C<br>3.C<br>3.C<br>3.C<br>3.C<br>3.C<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.01<br>2.13<br>2.44               |
| 051C<br>D52C<br>WN ak                                              | "<br>vell suliafies<br>elits. porph<br>eltered<br>eldspar poph<br>"                                                                              | rusty weath<br>rusty weath.<br>silicified; rusty<br>weathering<br>silicified; rusty<br>weath; Hn-strd.                                                                | py,ga, f.g.<br>B gr ga,py,spl<br>seams of ga.<br>"<br>"<br>"                                                                                                       | *76°/40°)<br>Q2,<br>Y | N cherty appearance.<br>dk. rusty br. weath<br>ctr veitrs<br>float; south of 41053C<br>extended Nev end of<br>Trench 2<br>extended W end of<br>Therch 3<br>extended E end of<br>Therch 3.                                                                     | •           |       | <10<br><10<br><10<br><0.003<br><0.003<br>0.003                 | 30<br>225<br>/5                  | C.1<br>C.3<br>J.C<br>3.CE<br>0.120<br>0.120<br>0.120<br>0.120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.21                               |
| DS2C<br>un<br>fe<br>NN<br>al<br>fe                                 | "<br>rell sulicifies<br>elds. porph<br>eldspar porph<br>"<br>"                                                                                   | rusty weath<br>rusty weath.<br>silicified; rusty<br>weathering<br>silicified; rusty<br>weath; Hn-strd.                                                                | ß gr ga, py, sph<br>seams of ga.<br>Aeams of ga.p<br>"                                                                                                             | بو,<br>۲              | dk. Musty br. weath<br>cta velts<br>float; south of 41053C<br>extended Nev end of<br>Trench 2<br>extended W end of<br>Therch 3<br>extended E end of<br>Thench 3                                                                                               | •           |       | < 10<br><10<br><0.003<br><0.003<br>0.003                       | 225                              | C.3<br>j.C<br>3.CE<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120                                                                                                    | 3.c.<br>2.13<br>2.44               |
| NN al                                                              | vell schafter<br>elds.porph<br>eldspar poph<br>"                                                                                                 | fusty weath.<br>selicified; rusty<br>weathering<br>selicified; rusty<br>weath; Hn-strd.                                                                               | seams of ga.<br>Seams of ga.p<br>"<br>"                                                                                                                            | ¥                     | float; south of 41053C<br>extended Nev end of<br>Trench 2<br>extended W end of<br>Therch 3<br>extended E end of<br>Therch 3                                                                                                                                   |             |       | <10<br><0.003<br><0.003<br>0.003                               | /5                               | 1.0<br>3.05<br>0.120<br>0.120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.0<br>0.13<br>0.44                |
| NN aft                                                             | eltered<br>eldspar poph<br>"                                                                                                                     | selicified; nusty<br>weathering<br>selicified; nisty<br>weath; Hn-strd.                                                                                               | ) seams of ga.p<br>"<br>"                                                                                                                                          | <b>y</b>              | extended Nev end of<br>Trench 2<br>extended W end of<br>Therch 3<br>extended E end of<br>Thench 3                                                                                                                                                             | •           |       | <0.003<br><0.003<br>0.003                                      |                                  | 3.08<br>0.120<br>0.120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.2<br>2.13<br>2.44                |
|                                                                    | u<br>1                                                                                                                                           | selectfied; risty<br>weath; Hn-strid.                                                                                                                                 | 11<br>17                                                                                                                                                           | 9                     | extended W end of<br>Therch 3<br>extended E end of<br>Thench 3                                                                                                                                                                                                |             |       | <u>*0.003</u><br>0.003                                         |                                  | 0.120<br>0.6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.13<br>1.44                       |
|                                                                    | <b>u</b>                                                                                                                                         | 11                                                                                                                                                                    | <i></i>                                                                                                                                                            |                       | extended E end of<br>Trench 3                                                                                                                                                                                                                                 |             | 24    | 0.05.3                                                         |                                  | C. beg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | r.44                               |
|                                                                    |                                                                                                                                                  |                                                                                                                                                                       |                                                                                                                                                                    |                       |                                                                                                                                                                                                                                                               | 1           |       |                                                                |                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    |
|                                                                    |                                                                                                                                                  |                                                                                                                                                                       |                                                                                                                                                                    |                       |                                                                                                                                                                                                                                                               |             |       |                                                                |                                  | 4 I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                                  |
|                                                                    | Competitive set and feature first a strength of the set of                                                                                       |                                                                                                                                                                       | 1                                                                                                                                                                  |                       |                                                                                                                                                                                                                                                               | 1           | 1     |                                                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |
|                                                                    |                                                                                                                                                  |                                                                                                                                                                       | *                                                                                                                                                                  |                       |                                                                                                                                                                                                                                                               | 1<br>14-1 h |       | 1.<br>1.                                                       |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |
|                                                                    |                                                                                                                                                  | 1                                                                                                                                                                     | • B                                                                                                                                                                |                       |                                                                                                                                                                                                                                                               |             | •     | р.<br>1                                                        |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |
|                                                                    | day 110                                                                                                                                          |                                                                                                                                                                       |                                                                                                                                                                    |                       | the second s                                                                                                                                                | 162         | , d   | al. s                                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |
|                                                                    | n a gr                                                                                                                                           |                                                                                                                                                                       |                                                                                                                                                                    |                       | isten Maritik                                                                                                                                                                                                                                                 |             | 日本    |                                                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |
|                                                                    | 1                                                                                                                                                |                                                                                                                                                                       |                                                                                                                                                                    |                       |                                                                                                                                                                                                                                                               | 4.1         |       | <u>.</u>                                                       | 3 3                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |
|                                                                    |                                                                                                                                                  |                                                                                                                                                                       |                                                                                                                                                                    |                       |                                                                                                                                                                                                                                                               |             |       |                                                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |
|                                                                    |                                                                                                                                                  | 1                                                                                                                                                                     |                                                                                                                                                                    |                       |                                                                                                                                                                                                                                                               |             |       | 1                                                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |
|                                                                    |                                                                                                                                                  | Gen March.                                                                                                                                                            |                                                                                                                                                                    |                       |                                                                                                                                                                                                                                                               | 1           | 1     | 3                                                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |
|                                                                    | 14、14、41、41                                                                                                                                      |                                                                                                                                                                       | The second second                                                                                                                                                  |                       | instruction della della second                                                                                                                                                                                                                                | 612         | 1,211 | $\varphi = \{\cdot\}$                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |
|                                                                    |                                                                                                                                                  |                                                                                                                                                                       |                                                                                                                                                                    |                       |                                                                                                                                                                                                                                                               |             |       |                                                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |

# J.C. S'. PHEN EXPLORATIONS LTD.

DATE

GEOCHEMICAL DATA SI ... T - SOIL SAMPLING

104K /10E NTS

LINE

SAMPLER Jean Pautler, Susan Kay PROJECT Newex- GRIZ I, SE

BC 5614 025 AIR PHOTO NO.

| SAMPLE     |                         |      |          |                 | DESCRIPT        | TION           |         |         |                  | ADDITIONAL ORSERVATIONS OF REMARKS              |     |
|------------|-------------------------|------|----------|-----------------|-----------------|----------------|---------|---------|------------------|-------------------------------------------------|-----|
| NO.        | LOCATION                | (Cm) | Horiz    | Colour          | Part Size       | % ORG.         | Ph      | SLOPE   | VEG.             | ADDITIONAL OBSERVATIONS OF HEMATIKS PE IN AG AS | 14  |
| xG-B-516   | beside<br>28,443        | 5    | в        | dkbr.           | med             | few            |         | mod     | grass<br>bushes  | rusty paph. OTC 7710.19                         | - 1 |
| B.517      | -                       | 5    | B        | or.br.          | clayey          | loto           |         | mod     | meadou           | 15 132 0.1 16                                   | 1.  |
| B-518      | in valley<br>NW of camp | 7    | в        | dk br.          | clayey<br>sill  | mod            |         | mod     | sprice           | 15 100 0.1 15                                   | 4   |
|            | ht i s                  |      |          |                 |                 |                |         |         |                  |                                                 |     |
| B-48       |                         | 3    | в        | rusty           | fine            | mad            |         | flat    | grass<br>moss    | noverlying unaltered f. p. ote. 6 ez o.1 12     | 6   |
| B-49       |                         | 5    | B        | rusty           | fine            | few            |         | gentle  | grass, m<br>burn | os<br>out · · · · · · · · · · · · · · · · · · · | ۱.  |
| B-50       |                         | 2    | B        | Slisty<br>Bisty | fine<br>si sand | nod.           |         | mod.    | 11               | (1) 11 4 100 0.1 10                             | Z.  |
| B-51       |                         | 5    | ß        | ii              | med<br>s. Ity   | 1              |         | 11      | /1               | altered, 511. I. p. 04. 6630.17                 | 12  |
| B-52       |                         | 4    | B        | Or-Br           | fine            | few            |         | gintle. | halan<br>hughe   | 21 128 0.1 10                                   | 10  |
| 6-53       |                         | 10   | B        | med<br>br.      | tingy<br>sit    | lots           | i.      | 17      | Calsa mas        | Saub 30 143 01 25                               | 1.  |
| B-54       |                         | 7    | ß        | 1+. br.         | fine<br>silty   | mad            |         | mod     | и<br>К           | 10 95 0.1 24                                    | Z   |
| B-55       |                         | 7    | B        | 11              | 11              | 11             | a.      | , p     | 1/               | bisde gully 15/20 0.1 22                        | 10  |
| B-56       |                         | Ю    | ß        | ned             | 11              | 11             | -       | gentle  | balsam<br>scurb  | above sil 2p ote. 15 106 01 19                  | ~1  |
| 8.57       |                         | 2    | ß        | histy           | 11              | 11             | 5.<br>1 | mad.    | 1                | 65 270 0.1 94                                   | 41. |
|            |                         | 111  | 1        |                 |                 |                |         |         |                  |                                                 |     |
| t sta<br>h | à                       |      | 1        |                 |                 |                |         |         |                  |                                                 |     |
|            |                         |      | i .<br>L | senil.          |                 |                |         |         |                  |                                                 |     |
|            |                         |      |          |                 |                 | $= t_{\alpha}$ | ĵ       |         | -                |                                                 |     |
|            |                         |      | il.      |                 | ll paine 1      | 11.1           |         |         |                  |                                                 | -   |
|            |                         |      |          | H 15            | LE EL T         | ų.             |         |         |                  |                                                 |     |



GEOCHEMICAL DATA SHEET - STREAM SILTS

NTS 104 K/10E

CREEK

SAMPLER \_ tean - Pountier, Susan Kay

PROJECT Newer - GRIZ 1, 2, 3

DATE

AIR PHOTO NO. BC 5614 HE 075

| SAMPLE  | VOL     | WME-          | stope    |     | TYPEOF        | COLOUR           | TEXTURE        | %        | PETROLOGY             |                                    |     | AS  | SSAYS |     |
|---------|---------|---------------|----------|-----|---------------|------------------|----------------|----------|-----------------------|------------------------------------|-----|-----|-------|-----|
| NO.     | HOT IZG | Depth<br>(cm) | VELOCITY | Ph  | SAMPLE        |                  |                | MATERIAL | AND/OR FLOAT          | ADDITIONAL OBSERVATIONS OR REMARKS | Pb  | Zn  | Ag    | Aυ  |
| G-B-519 | в       | 2             | gentle   | 12  | spruce        | brown            | surg           | abund    | feidspar              |                                    | 7   | 80  | 01    | <10 |
| B-520   | в       | 10            | flat     | '   | moss<br>grass | dk<br>br.        | 1,             | mod      |                       |                                    | 14  | 85  | 0.1   | <10 |
| B-521   | B       | 15            | flat     | -   | 11            | dt red<br>brown  | τυ i           | mod.     | "                     | west of B-520                      | 7   | 93  | 01    | <10 |
| B-522   | в       | 5             | "        | -   | moss          | med<br>br.       | , <b>п</b>     | mod      |                       | west of B-521                      | 13  | 92  | 0.1   | <10 |
| B-523   | в       | 7             | gentle   | -   | none          |                  | pebb<br>sand   | few      | 17                    | west of B.523                      | 11  | 88  | 0.1   | <10 |
| B-524   | B       | 7             | u .      | -   | 11            | lt. rusty        | 11             | abund.   | 1,                    |                                    | 10  | 98  | 0.1   | 10  |
| B-525   | в       | 5             | IJ       | -   | n -           | med<br>br.       | warse          | feur     | "                     |                                    | 181 | 210 | 01    | 10  |
| B-526   | B       | 7             | mod      | -   | grass         | et or<br>br.     | sand           | mod      |                       |                                    | 124 | 155 | 0.1   | 40  |
| B-527   | B       | 10            | gentle   | -   | spruce        | or.<br>bioun     | silly          | mod      | "                     |                                    | 27  | 123 | 0.1   | 20  |
| B-528   | в       | 10            | mod      | -   | giass<br>moss | or-yell<br>brown | pebb           | mod      | · 11                  |                                    | 29  | 63  | 01    | <10 |
| B-529   | в       | 7             | (flat)   | -   | mass          | med or.          | clayey<br>sand | (        | "                     |                                    | 6   | 87  | 01    | 10  |
| B-530   | в       | 5             | flat     | -   | 4             | 11               | sandy          | abund    | "                     |                                    | 34  | 96  | 0.6   | 10  |
| B-531   | в       | 5             | flat     |     | none          | lt or<br>proun   | pebb           | none     | 17                    |                                    | 19  | 103 | 0.4   | 10  |
| B-532   | в       | 5             | gently   | -   | none          | med<br>br.       | clayey<br>sand | none.    | mineralized<br>gtz bx | beside 41051C                      | 21  | 135 | 0.2   | 10  |
|         |         |               |          |     |               |                  |                |          |                       |                                    |     |     |       |     |
|         |         |               |          |     |               |                  |                |          |                       |                                    |     |     |       |     |
|         |         |               |          |     |               |                  |                |          |                       |                                    |     |     |       |     |
|         |         |               |          |     |               |                  |                |          |                       |                                    |     |     |       |     |
|         |         |               |          |     |               |                  |                |          |                       |                                    |     |     |       |     |
|         |         |               |          | 1.5 |               |                  |                |          |                       |                                    |     |     |       |     |

SYNDICATE

## J.C. STEPHEN EXPLORATIONS LTD.

GEOCHEMICAL DATA STEET - STREAM-SILTS

SYNDICATE

L DATA SITELT - OTHERMOLETS

NTS INAK/ICL

AIR PHOTO NO. BC 5614 075

SAMPLER Jean Pautles

PROJECT NEWEX- GRIZ 1,2 3

CREEK

DATE \_\_\_\_\_

| SAMPLE   | vet            | UME   | SUPE        |                 | VEG              | COLOUR             | Grain<br>Size   | %        | PETROLOGY       |                                    |       | A   | SSAYS |     |
|----------|----------------|-------|-------------|-----------------|------------------|--------------------|-----------------|----------|-----------------|------------------------------------|-------|-----|-------|-----|
| NO.      | HUEIZ<br>Width | Depti | VELACITA    | Ph              | SAMPLE           | COLOUR             | TEXTORE         | MATERIAL | AND/OR FLOAT    | ADDITIONAL OBSERVATIONS OR REMARKS | Pb    | IZn | Ag    | Au  |
| ×G- B-58 | в              | ю     | flat        | -               | moss<br>balsam   | pr.                | fine<br>sandy   | feu-     |                 |                                    | 10    | 90  | 0.1   | 10  |
| 8-59     | в              | io    | flat        | -               | moss             | rusty              | fine            | lots     | feldspar        |                                    | 4     | 80  | 01    | <10 |
| B-60     | в              | 5     | flat        | -               | moss             | dk<br>br           | fine            | few      |                 |                                    | 5     | 93  | 0.1   | <10 |
| B-61     | B              | 5     | 11          |                 | moss             | Fusty              | fine            | mod      |                 |                                    | 8     | 87  | 04    | <10 |
| B-62     | в              | 2     |             | -               | moss             | v. rusty           | fine            | few      |                 | near B-115 from 1981               | 15    | 50  | 0.1   | <10 |
| B-63     | в              | 3     | gente       | -               | u (              | rusty<br>or by     | med             | mod      | Fip. ii py      | near B-62                          | 31    | 55  | 0.1   | 10  |
| B-64     | в              | 10    | "           | -               | bailsim<br>scrup | med<br>dk br       | fine<br>sandy   | mod      | 1 13.           |                                    | 9     | 95  | 0.1   | <10 |
| B-65     | B              | 2     | feat        |                 | moss             | med bi             | cearse<br>sardy | med      | rusty fp.       |                                    | 5     | 42  | oz    | <10 |
| B-64     | GB             | 3     | gentle      |                 | moss             | rusty              | coarse          | 11       | f.p.ote         | ₽.                                 | 21    | 108 | 0.1   | <10 |
| B-67     | B              | 7     | 1           | 世内              | 11               | medbe              | fine            |          | 11 12           |                                    | 8     | 85  | 0.1   | <10 |
| B-68     | B              | 5     | <i>Clat</i> | -               | hess<br>balsom   | rusty              | <i>C</i>        | 4        | real fip<br>ctc | Asa                                | 12    | 77  | 0.1   | 10  |
| B-69     | в              | 10    | flat        | 1               | mass             | rusty              |                 | 11       | fp ote.         |                                    | 10    | 112 | 0.1   | <10 |
|          |                | 2.2   |             | नेव हो          | 5                |                    |                 |          |                 |                                    |       |     |       |     |
|          |                |       |             | 6 <sup>84</sup> |                  | - 1 - <sup>1</sup> |                 | 같은       |                 |                                    |       |     |       |     |
|          |                |       | - 41        |                 |                  |                    |                 |          |                 |                                    |       |     |       |     |
|          |                |       |             |                 | 1                |                    |                 |          |                 |                                    |       |     |       |     |
|          |                |       |             |                 |                  |                    |                 |          |                 |                                    |       |     |       |     |
|          |                |       |             |                 |                  | - 10               |                 |          |                 |                                    |       |     |       |     |
|          |                |       |             |                 |                  |                    |                 |          |                 |                                    | · · · | i   |       |     |
|          |                |       |             |                 |                  |                    |                 |          |                 | •                                  |       |     |       |     |

## A P P E N D I X II

----≹\_: .

## STATEMENT OF QUALIFICATIONS

#### STATEMENT OF QUALIFICATIONS

I, Jean Pautler, am a graduate of the Honours Bachelor of Science program at Laurentian University, Sudbury, Ontario, 1980.

I have the following employment experience:-

April 1981 to present Geologist with J.C. Stephen Explorations Ltd. North Vancouver, B.C.
May to October 1980 Geologist with J.C. Stephen Explorations Ltd.
May to August 1979 Assistant geologist with Kelvin Energy Ltd. Calgary Alberta.

May to September 1978 Assistant geologist with the Ontario Geological Survey, Toronto, Ontario

NOVEMBER 1981

Į

 $\mathfrak{l}_{\mathbb{Z}_{2^{-}}}$ 

JEAN PAUTLER

GEOLOGICAL AND GEOCHEMICAL REPORT on the GRIZ 1 and 2 MINERAL CLAIMS Record Nos.1411 and 1412 Map Sheet 104K/10E

Latitude: 58<sup>0</sup>37'N

Longitude: 132<sup>0</sup>35!W

المالكي مر

ATLIN MINING DIVISION

B.C.

bу

J.M. Pautler

October, 1981

Work done: August 5-15, 1981 By: J.C. STEPHEN EXPLORATIONS LTD. Funded by: Newex Syndicate

1

## TABLE OF CONTENTS

,

. . •

| and the second | PAGE                        |
|------------------------------------------------------------------------------------------------------------------|-----------------------------|
| SUMMARY AND CONCLUSIONS                                                                                          | 1                           |
| INTRODUCTION                                                                                                     | 2                           |
| CLAIMS REGISTER                                                                                                  | 4                           |
| LOCATION AND ACCESS                                                                                              | 5                           |
| REGIONAL GEOLOGY                                                                                                 | 8                           |
| PROPERTY GEOLOGY<br>ROCK TYPES<br>STRUCTURE<br>MINERALIZATION<br>PROPERTY GEOCHEMISTRY<br>SOLL AND TALUS         | 10<br>10<br>11<br>11<br>17  |
|                                                                                                                  | NG 22                       |
| STATEMENT OF EXPENDITURES                                                                                        | 23                          |
| APPENDIX I                                                                                                       | SAMPLE DATA SHEETS          |
| APPENDIX II                                                                                                      | PETROGRAPHIC DESCRIPTIONS   |
| APPENDIX III                                                                                                     | STATEMENT OF QUALIFICATIONS |

· · · ·

**X**. .

(

(

-

# LIST OF ILLUSTRATIONS

Ţ

| FIGURE | TITLE               | -                 | PAGE |
|--------|---------------------|-------------------|------|
| 1      | LOCATION MAP        | 1:1,000,000       | 6    |
| 2      | CLAIM MAP           | 1:50,000          | 7    |
| 3      | DISTRIBUTION OF SLO | KO VOLCANIC ROCKS | 9    |
| 4      | TRENCH 1            | 1:50              | 13   |
| 5      | TRENCH 2            | 1:50              | 14   |
| 6      | TRENCH 3            | 1:50              | 15   |
| 7      | TRENCH 4            | 1:50              | 16   |
| 8      | ARSENIC HISTOGRAM   |                   | 19   |
| 9      | ZINC HISTOGRAM      |                   | 20   |
| 10     | LEAD HISTOGRAM      |                   | 21   |

# MAP

.

Ç

1

Χ.

| Ι  | GRIZ | 1 & 2 | GEOLOGY AND GEOCHEMISTRY<br>Scale 1:2500 | IN POCKET |
|----|------|-------|------------------------------------------|-----------|
| II | GRIZ | 1     | GEOLOGY AND GEOCHEMISTRY<br>Scale 1:2500 | IN POCKET |

· · ·

. .

.

#### SUMMARY

1

1

r

1 -

GRIZ Group One consists of 24 units and is
 located 120 kms. southeast of Atlin, B.C.

(2) The claim group was staked to cover an anomalous gold value and several occurrences of galena-sphalerite mineraliz - ation with associated silver values.

(3) A crew of 2 to 4 people spent 15 mandays on the property beween August 5 and 15, 1981.

(4) The claims are occupied by a large Tertiary feldspar porphyry body which intrudes Jurassic and possibly Triassic sediments.

(5) Property mapping was at a scale of 1:31,680 using air photos. Four trenches containing mineralization were mapped at a scale of 1:50.

(6) Nine selected chip samples were taken from the trenches. Gold values of 0.138 and 0.038 oz/ton were obtained. Silver values were up to 2.23 and 3.38 oz/ton; zinc values were up to 0.77 and 3.05%; lead values were 0.48 and 1.78%.

(7) A soil/talus grid providing 62 samples was established on GRIZ 1. A strongly anomalous area is indicated. A few of the reconnaissance soil and rock samples are also anomalous.

(8) Geological mapping at 1:2,500, extension of the soil sample grid and additional trenching are recommended for the 1982 program.

#### INTRODUCTION

(

( .

ſ

Griz Group One constitutes the 20 unit Griz l claim and the 4-unit Griz 2 claim, which were staked in early August, 1981. Griz l was staked to cover a number of small occurrences of gold, silver, lead and zinc lithogeochemical results. The Griz 2 claim was staked to cover a fault contact that extends through Griz 2 and 3 which may be important in the mineralizing process.

Field work carried out in August, 1981, involved detailed geological mapping at a scale of 1:50 of four trenches which were dug. Limited geological mapping of the property at a scale of 1:31,680 was also conducted and further prospecting on the northwest side of the property was carried out. A total of 21 rock, and 102 soil and talus samples were collected for analysis.

The claim group is immediately south of the Taku Plateaù within the Coast Mountains.

The topography of the claims consists of a plateau area at 4,500 - 5000' in the northwest section and a large ridge at 4,000' with several smaller ridges, in the southeast part. A large valley separates the northwest and southeast sections. A smaller northeast trending valley cuts through the Griz 2 claim.

Vegetation on the plateau area and on the highest part of the large ridge is sparse. It consists of grass, moss and some patches of thick talsam trees and shrubs. Most of the southeastern part of the large ridge and the smaller ridges have been burnt about 10 years ago and are covered by second growth. The sides of the main valley and the southern part of the ridge are covered by a thick balsam and spruce forest.

Drainage on the claim group is provided by numerous creeks which drain into the main valley and also the smaller valley. Both valleys contain swampy southwesterly flowing creeks. The drainage of the plateau area is generally poor with many swampy areas.

ť

ĺ

Ł

## CLAIMS REGISTER

<u>الم</u>

| Claim          | Record Number | Record Date  |
|----------------|---------------|--------------|
| GRIZ Group One |               |              |
| Griz l         | 1411          | Aug 14, 1981 |
| Griz 2         | 1412          | Aug 14, 1981 |

Griz 1, consisting of 20 units, has been grouped with the 4-unit Griz 2 claim for assessment purposes.

. **. .** 

#### LOCATION AND ACCESS

1 .

U

The Griz 1 and 2 claims, (map sheet 104K/10E), are located approximately 15 kms north of Trapper Lake, which is 132 kms southeast of Atlin, B.C. (Refer to Figure 1), Latitude and longitude are 58°37'N and 132°35'W.

Adjoining the claims on the north side is Chevron's 20 unit EMU claim. Much of the Griz 2 claim overlaps Chevron's 20 unit Way 5 claim. (Figure 2).

Access to the property is by helicopter from Atlin or Dease Lake.



6

Ć

 $\bigcirc$ 

-



 $\mathcal{C}$ 

FIGURE 2

#### REGIONAL GEOLOGY

The regional geology has been mapped by the G.S.C. at a scale of 1:250,000 and is published as Tulsequah - Juneau map sheet 104K.

Griz Group One is situated in the area of a Late Cretaceous to Early Tertiary quartz feldspar porphyry intrusion which is one of many that form a west northwesterly trending belt from Trapper Lake to Yonakina Mountain. These intrusive bodies are in close spatial association with the Sloko volcanic rocks of the same age which are limited to a larger northwesterly trending belt along the eastern edge of the Coast Mountains. Figure 3 shows the distribution of the Sloko volcanic rocks and related intrusions within the Tulsequah map area. The Sloko volcanic rocks are of interest due to the number of gold occurrences found associated with them.



· .... • · · · .

#### PROPERTY GEOLOGY

### MAPS I , II

#### Rock Types

(.

The limited geological mapping conducted on Griz Group One indicated the existence of various phases of the quartz feldspar porphyry. The southwestern fault contact with the Takwahoni sedimentary rocks present on GRIZ 3 was not observed on GRIZ 1 and 2. This is due to the presence of thick bush in the area of occurrence of the sedimentary rocks. Outcrop of Takwahoni Formation bedded shales and siltstones is present: in the creek southwest of the claim group. Mapping was conducted in conjunction with that on GRIZ 3 thus the quartz feldspar porphyry is Unit 3.

#### Unit 3 - Quartz Feldspar Porphyry

Both effusive and hypabyssal varieties of what the G.S.C. refer to as a quartz feldspar porphyry, are present on the property. The porphyry would more properly be termed a feldspar porphyry in this area since quartz phenocrysts are not common. The rock varies from aphanitic to fine and rarely medium grained, contains feldspar phenocrysts of varying sizes, occurs with or without biotite and hornblende phenocrysts. Colour ranges from pinkish through to pinkish grey and commonly green. Minor pyrite is common. Small quartz veins, commonly drusy and up to 1 cm wide cut the porphyry. Larger quartz veins are also present.

A thin section of a phase of the feldspar porphyry was prepared by Vancouver Petrographics Ltd., Fort Langley, B.C. The specimen, (J.P.-1), was classified as a hypabyssal trachyandesite. The petrographic description is available in Appendix II. A thin section of the same porphyry body was prepared for a specimen from the GRIZ 3 claim, northwest of GRIZ Group One. This sample was also trachyandesitic in composition suggesting a uniform composition for the feldspar porphyry body although various phases are evident.

#### Structure

The G.S.C. shows a fault contact between the feldspar porphyry and the Takwahoni sedimentary unit. Although a contact must exist in this area, it has not as yet been observed.

The feldspar porphyry is cut by several small vertical joint sets. The most common of these trend  $80-90^{\circ}$  and  $5-20^{\circ}$ . Others trend  $160^{\circ}$  and  $40^{\circ}$ .

#### Mineralization

ė.

Several occurrences of galena and sphalerite were found throughout the GRIZ 1 property. On the south-east side of the main valley that cuts the claim, there are two outcrops in which galena mineralization occurs as small blebs, (from 1-5 mm in size), in a highly silicified feldspar porphyry host rock. The silica is almost black in the best mineralized areas. Rusty, calcite-sphalerite veins, quartz veinlets and Mn staining appear to be associated with the mineralization.

The southernmost of the 2 occurrences mentioned

above also contain a pyritic quartz breocia and abundant pyritic seams.

Veinlets of galena and sphalerite up to 8 mm in width were found on the northwest bank of the main valley. Abundant pyritic and silicified zones and calcite veins were associated with the mineralization. Mn staining was also evident. Along this same ridge, several zones of silica replacement with disseminated pyrite were observed. Several small calcite-sphalerite veins a few centimetres wide were also noted.

A trench was established where the galena veinlets were found and two more similar zones were discovered in the process. Trenching was also undertaken in these areas. Small silicified veins containing galena, sphalerite and calcite lenses and with Mn staining were exposed within a silicified feldspar porphyry host rock. Two of the veins had a trend of about  $60^{\circ}$  while the strike of the third was  $83^{\circ}$ . All the dips were almost vertical. The geology and geochemistry of the trenches are illustrated in Figures 5 to 7.

A silicified zone that ran 1700 ppb gold was also trenched. The zone consists of silicified, Mn stained material with rusty feldspar porphyry fragments within a silicified, altered porphyry host. This trench is shown in Figure 4.



-13 -

677168 (- 0.003, 0.34, 0.3, 0.63) 677188 (0.003, 2.23, 1.78, 5.05) 410550 (40.003, 3.08, 3.0, 2 67717 (-0.003, 0.24, 0.19, 0.50) 32752 10.7 14 (~10, #, 2430, 5000) PPB PPM PPM LEGEND: SILICIFIED QUARTZ FELDSPAR PORPHYRY VEIN with SILICIFICATION, GALENA, SPHAL., CALCITE LENSES, Mn STAINING J.C. STEPHEN EXPLORATION LTD. RUBBLE NEWEX SYNDICATE GRIZ | CLAIM ROCK SAMPLE (Au, Ag, Pb, Zn) NTS IO4K/IOE GTTIT GEOLOGY & GEOCHEMISTRY **TRENCH 2** DATE : AUG, 1981 SCALE :1:50 METRES

\_ 15 \_ 6 (100,0,2,5000,4800) (100,0,2,5000,4800) \* 41057 - (0.003,0.60,0.44,0.59) 67720 (0.004, 0.18, 0.16, 0.25) 67719 8 ( = 0.003, 0.16, 0.15, 0.15) · · · 41056 c (60.003, 0.0, 0.136 0.14) STEPHEN EXPLORATION LTD. J.C. LEGEND: NEWEX SYNDICATE SEE FIG. 5 Galana, sphalerite, calcite vein. GRIZ I CLAIM NTS 104K/IOE GEOLOGY & GEOCHEMISTRY TRENCH 3 DATE: AUG, 1981 SCALE: 1:50 METRES FIG.<sup>6</sup>



#### GEOCHEMISTRY

#### Soil and Talus

{

A topochain and compass soil and talus grid was established on GRIZ 1 on the top of the ridge forming the northwest bank of the **main valley**. The purpose of this grid was to determine the extent of the mineralization found in the area. Samples were taken at 20 metre intervals along cross lines 100 metres apart. A total of 62 samples were collected and analyzed for Au, Ag, As, Pb and Zn.

A soil-grid-consisting of 16 samples was established along the claim line between GRIZ 1 and 2 and continued along the northern boundary of GRIZ 2. The samples were analyzed for the same five elements.

Reconnaissance soil and talus samples were collected throughout the claims.

#### Method

The soil samples were collected mainly from the 'B' horizon and occasionally from the 'A' horizon, at depths of 5 to 40 cm. using a grubhoe. Samples were placed in waterproof kraft paper bags and sent to base camp where they were dried and sifted to -35 mesh. The samples were then sent to Chemex Labs, North Vancouver for analysis.

In the lab the soils were first pulverized to -100 mesh. The gold content in ppb was determined by aqua-regia digestion and chemical extraction followed by atomic absorption. Silver and arsenic in ppm, were determined by perchloric-nitric acid digestion and atomic absorption analysis.

#### Results

ſ

Several anomalous soil results were returned from the sampling on GRIZ 1 and 2. Arsenic, zinc and lead histograms were prepared and are shown in Figures 8 to 10. Arsenic and zinc show similar patterns for the 99 samples taken. There are five anomalous arsenic values and another nine possibly anomalous values from 50 to 90 ppm. The threshold from the zinc histogram appears to be 135 ppm. Ther are 35 values out of 99 samples that are above this level. The lead histogram shows 18 anomalous values.

Tha anomalous arsenic, zinc and lead results were almost entirely confined to the soil/talus grid on GRIZ 1. The samples taken around the four trenches were anomalous as well as the samples along the entire 3+00S line. Nine anomalous silver results from 0.5 to 3.8 ppm were also returned.

One slightly anomalous soil value came from the claim line between GRIZ 1 and 2 which ran 20 ppb Au, 0.1 ppm Ag, 20 ppm As, 190 ppm Zn and 144 ppm Pb at 800 metres south.

In the reconnaissance soil program one sample was anomalous and ran 20 ppb Au, 0.3 ppm Ag, 9 ppm As, 750 ppm Pb and 245 ppm Zn.

All results are plotted on Maps I and II in the pocket of this report.







#### Rock Sampling

r

A total of nine selected chip samples were collected from four hand dug trenches. Sample locations and assay results are shown on Figures 4 to 7.

Two of the three samples. from Trench 1 were anomalous in gold. The values were 0.038 and 0.138 oz/ton.

Trenches 2 and 4 returned anomalous silver, lead and zinc values of 2.23 oz; 1.78%; 3.05% and 3.38 oz; 0.48%; 0.77% respectively. Gold values do not appear to be associated with the galena-sphalerite mineralization.

In the reconnaissance program two samples of quartz veins (one with drusy quartz and pyrite) ran 50 ppb gold. The latter was associated with 0.5 ppm silver. Both samples were from a large outcrop of feldspar porphyry in the northwest corner of GRIZ 1. Another sample near 1S on GRIZ 1 ran 110 ppb gold. This sample consisted of a quartz carbonate vein with rusty breccia fragments of feldspar porphyry.

All results are plotted on Maps I and II in the back of this report.

و وه مو م

**-** 22

#### CONCLUSIONS AND RECOMMENDATIONS

Property and detailed geological mapping of the trenches, chip sampling of the trenches and general prospecting were carried out in 1981. A total of \$ 3530 was spent on this program.

۲. ...<sup>1</sup>

Significant gold results were returned from the silicified zone in Trench 1 and interesting silver, zinc and lead mineralization was exposed in Trenches 2, 3 and 4. The soil/talus grid on GRIZ 1 showed significantly anomalous silver, lead and zinc results and a few reconnaissance samples were also anomalous.

Future work should include detailed mapping of the property at a scale of 1:2,500. Since the soil/talus grid on GRIZ 1 has not defined the limits of the anomaly this grid should be extended. Trenching should be conducted on this anomaly and Trenches 2, 3 and 4 might be extended to explore the area further. Additional prospecting and sampling on the property would be of value especially as little work has been done in the southeast section of the claims.

:

Respectfully submitted, J.C. Stephen Explorations Ltd.

j.m. pantler. J.M. PAUTLER, GEOLOGIST.

# STATEMENT OF EXPENDITURES

WAGES AND BENEFITS

ſ

( \_\_\_\_\_)

1

| J.M. PAUTLER                                                        | AUG 5,13,14 @ \$1950/m + 15%                                                                                                                                                                           | \$224.25                               |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| M: HUGHES                                                           | AUG 5,7,13-15 @ \$1750/m + 15%                                                                                                                                                                         | 335.42                                 |
| E. SIDEY                                                            | AUG 13-15 @ \$1750/m + 15%                                                                                                                                                                             | 201.25                                 |
| D. KAPICKI                                                          | AUG 13-15 @ \$1400/m + 15%                                                                                                                                                                             | 161.00                                 |
| D. GUGLIELMIN                                                       | AUG 5 @ \$1750/m + 15%                                                                                                                                                                                 | 67.08                                  |
| R. CAMPBELL                                                         | AUG 5 @ \$1400/m + 15%                                                                                                                                                                                 | 53.67                                  |
|                                                                     | TOTAL 15 MANDAYS                                                                                                                                                                                       | \$1042.67                              |
| FOOD AND CAMP                                                       | SUPPLIES                                                                                                                                                                                               |                                        |
|                                                                     | 15 MANDAYS @ \$14                                                                                                                                                                                      | 210.00                                 |
| GEOCHEMISTRY                                                        | · · ·                                                                                                                                                                                                  |                                        |
| INVOICE 18299                                                       | 3 soils for Au,Ag,As,Zn @ \$10.25                                                                                                                                                                      | 30.75                                  |
| 13581                                                               | 78 soils for Au,Ag,As,Pb,Zn, @ \$11.00                                                                                                                                                                 | 858.00                                 |
| 13350                                                               | 12 rocks for Au,Ag,As, @ \$9.50                                                                                                                                                                        | 114.00                                 |
| 13351                                                               | 9 rocks for Au,Ag,Pb,Zn, @ \$24.50 (ass                                                                                                                                                                | ay) <u>220.50</u>                      |
| •                                                                   | TOTAL                                                                                                                                                                                                  | \$1223.25                              |
| PETROGRAPHIC ANALYSIS                                               |                                                                                                                                                                                                        |                                        |
| INVOICE 2857                                                        | l thin section @ \$6                                                                                                                                                                                   |                                        |
|                                                                     | l reject slice @ \$0.75                                                                                                                                                                                |                                        |
|                                                                     | l k-spar stain @ \$1                                                                                                                                                                                   |                                        |
|                                                                     | Petrographic report @ \$44 TOTAL                                                                                                                                                                       | \$ 51.75                               |
|                                                                     | i corogi apirio i cipor o e tri i conta                                                                                                                                                                | + • • • • • •                          |
| TRANSPORTATION                                                      |                                                                                                                                                                                                        |                                        |
| TRANSPORTATION<br>KEYSTONE HELIC                                    | OPTERS ATLIN B.C.                                                                                                                                                                                      |                                        |
| TRANSPORTATION<br>KEYSTONE HELIC<br>FLIGHT REPORT                   | OPTERS ATLIN B.C.<br>3528 0.7 hours August 7                                                                                                                                                           |                                        |
| TRANSPORTATION<br>KEYSTONE HELIC<br>FLIGHT REPORT                   | OPTERS ATLIN B.C.<br>3528 0.7 hours August 7<br>3540 0.8 10                                                                                                                                            |                                        |
| TRANSPORTATION<br>KEYSTONE HELIC<br>FLIGHT REPORT                   | OPTERS ATLIN B.C.         3528       0.7 hours         August 7         3540       0.8         10         3561       0.7                                                                               |                                        |
| TRANSPORTATION<br>KEYSTONE HELIC<br>FLIGHT REPORT                   | OPTERS ATLIN B.C.         3528       0.7 hours         August 7         3540       0.8         10         3561       0.7         2.2 hours @ \$400/hour                                                | \$880.00                               |
| TRANSPORTATION<br>KEYSTONE HELIC<br>FLIGHT REPORT<br>FLYING<br>FUEL | OPTERS ATLIN B.C.         3528       0.7 hours       August 7         3540       0.8       10         3561       0.7       16         2.2 hours @ \$400/hour       2.2 hours @ \$56/hour               | \$880.00                               |
| TRANSPORTATION<br>KEYSTONE HELIC<br>FLIGHT REPORT<br>FLYING<br>FUEL | OPTERS ATLIN B.C.         3528       0.7 hours       August 7         3540       0.8       10         3561       0.7       16         2.2 hours @ \$400/hour       2.2 hours @ \$56/hour         TOTAL | \$880.00<br><u>123.20</u><br>\$1003.20 |

TOTAL EXPENDITURE

-

\$3530.87

1

ŧ
APPENDIX I

.

(

(

I.

¢

# SAMPLE DATA SHEETS

#### GEOCHEMICAL DATA SHEET - ROCK GEOCHEM SAMPLING

B.C. GOLD SYNDICATE

NTS 104K/10.E

SAMPLEN NMULS Grit 1 LINE NEWEN SYNDICATE PROJECT DATE AND. 15/81 HUMADE S.C. RC 5614 AIR PHOTO No. 025 APPARENT HOST SAMPLE STRIKE ADDITIONAL ASSAYS MINERALIZATION WIDTH ALTERATION LOCATION ROCK TRUE NUMBER DIP REMARKS Ps TYPE Au. Aq Z. WIDTH - sugary, shice replacement - altered GRIZI 67713 QFP (1) TRENCH#1 rusty breeces frage-colloform quarty ough 6.003 0.30 GRIZ1 11 - similar to sample 67713 (2) 67714 TRENCH#1 0.038 0.03 11 11 67715 - similar to sample 67714 (3) 0.138 0.03 - calcit verning, menor pyrit GRIZI + fine grainest aparty - carbonate - celete " 11 (4) 0.003 0.34 0.30 0.6 67716 TRENCH#2 - manganese sta cacement with clear quarty blebba GRIZ 1 - fine It grey sugar silica rep 11 (5) 67717 bleblastankediologyst - minor aplal. 6.003 6.24 0.19 0.5 TRENCH #2 lenses of greys brown at replacement - 1 an velis of cular GRIZI - It grey fine sugar quarty-carbo 14 or calcut - Mrstaming - collotorm qtz 67718 (6.) lina, 0.003 2.23 1.78 3.0 TRENCH #2 de pron ite and ate to - Cartonate represent between veine (1cm) with black - fine ongoing quar GRIZ 1 IL 67719 (7) 0.003 0.16 0.15 12.1 TRENCH#3 en blebboard 0.5 - rusty whit fine sugary silica conversed blk calena and GRIZ 1 11 67720 (8) lena and brown 0.004 0.18 0.16 0.2 TRENCH#3 invite a menute (?) - hu stammere - whit to visit y sugar at the presence of sofiel - - at any very of pik galina and bro sometime due to the presence of sofiel - - at any very of pik galina and bro sophat - lenses of calcut - colloptim at 2 vight - Ha staming GRIZI 11 (9) 67721 10.003 3.38 0.43 TRENCH #4 (10) (11) As SW, 3N, GRIZ 3. gtz by with 83 (12) 67710 8 61 410 PY. sil. narc. py NWgGnit3 • (13) 67711 0.1 7500 410 sil. marc. (?) py NW 7 Griz3 (14) 245 67712 0.1 410 (15) (16) (17) (18) (19) 2. (20)

0

GEOCHEMICAL DATA SHEET - ROCK GEOCHEM SAMPLING

6

B.C. GOLD SYNDICATE

2120 73 75 25

+15

53

V

7

\$500

30

11

1

ف

7

22

7

15

7

|       |                      |                                  |                             |                              |                                   | <i>e</i> : | NTS                                          | _104   | K/10                 | E          |            |  |
|-------|----------------------|----------------------------------|-----------------------------|------------------------------|-----------------------------------|------------|----------------------------------------------|--------|----------------------|------------|------------|--|
|       | SAMPLER              | 1. raytler                       | . 14                        | PROJECT                      | Newey                             |            |                                              | Gria   | 2 cêa                | claims and |            |  |
|       | SAMPLE LOCATION ROCK |                                  |                             | ALTERATION                   | MINERALIZATION                    | STRIKE     | ADDITIONAL<br>REMARKS                        | APPARI | ENT<br>TRUE<br>WIDTH | As         | SAYS<br>PA |  |
| (1)   | 77 <del>4</del> 93B  | rusty cirque<br>GRIZ 3           | actered off?                | Silicification               | ×                                 |            | 1                                            |        |                      | 210        | 0.3        |  |
| (2)   | 77494                | NE side of<br>Frozen Lake        | silicified<br>zone in off   | minor cte,                   |                                   |            | GRIZ3                                        | i      |                      | 415        | 0.1        |  |
| (3)   | 77495                | NW of Grit3                      | abtered off.                | V. rusty  <br>Silicification | abundant py<br>especially on fact | ine        |                                              |        |                      | 410        | 0.1        |  |
| (4)   | 77496                | Near 15 on<br>GRIZ 1             | altered<br>8 fp.            | V. (Woty                     | dieben . py                       | 5          |                                              |        |                      | =10        | 0.1        |  |
| (5)   | 77497                | just cast of<br>15, GRIZI        | gte-carb                    | rusty                        |                                   |            |                                              |        |                      | 110        | 0.2        |  |
| (6.)  | 77498                | 900 m. Sog<br>LCP GRIZZ          | altered of p                | rbesty                       | PY                                |            |                                              |        |                      | =10        | 0.1        |  |
| (7)   | 77499                | SUM W CHOS                       | aphalitic V.                | silicious, lt.               | Mr staining                       | a.c.       |                                              |        |                      | <10        | 0.4        |  |
| (8)   | 77500 B              | GEIZ 1<br>4005/100E              | altered interac             | e-rusty<br>minor silicitic.  | minor py<br>Mn stouring           | 1          |                                              |        |                      | 20         | 0.6        |  |
| (9)   | 25720C               | GRIZI                            | V. Silica-rich              | , aphanitic,                 | PY                                |            |                                              |        |                      | = 10       | 0.7        |  |
| (10)  | 25721                | GRIEI                            | gtz vein                    | Fusty weath                  |                                   | 67%E       | 10m above B-127<br>10 cm 4, ide. In exposure |        |                      | 20         | 0.4        |  |
| (11)  | 25722                | GRIZI                            | milky gtz                   | few moty<br>spots            |                                   | 8          | ploat in falus angular                       |        |                      | =10        | 0.1        |  |
| (12)  | 25723                | GRIZI, W<br>Side O               | silica, cte<br>veins        | rusty valtered               |                                   |            |                                              |        |                      | 50         | 0.1        |  |
| (13)  | 25724                | GRIZI                            | ofp, dury                   | V. rusty altered             | abundant py,                      | hardness   | stived sh - specularite                      | us ou  | ۴.                   | 50         | 0.5        |  |
| (14)  | 25725                | GRIZI<br>Near topofise.<br>Sully | Sil. St.P.<br>gtz starts 5m | V. ruoty                     |                                   | 9 2°/80 N  |                                              | r      |                      | -10        | 0.1        |  |
| (15)  | 25726                | 4m. "<br>sbove 25725             | oftevens +                  | ". musty                     |                                   | 76/900     |                                              |        | •                    | 10         | 0.1        |  |
| (16)  | 25727                | GEIZI<br>Astriamin 192           | Blue-gling gte              | rusty-yellow<br>Surpace      | lots py                           |            | floot, angular in stream                     | 726.   |                      | =/0        | 0.1        |  |
| (17)  |                      | gully                            |                             | 6                            | - 11                              |            |                                              |        |                      |            |            |  |
| (18,) |                      |                                  |                             |                              |                                   |            |                                              |        |                      |            |            |  |
|       |                      |                                  |                             |                              |                                   |            |                                              | 1      | 1 1                  | 4          | 1          |  |

1

(20)

(19)

## **GEOCHEMICAL DATA SHEET - SOIL SAMPLING**

B.C. GOLD SYNDICATE

SAMPLER J. Pautler

Newey PROJECT

NTS 104 K/10E W. side Griz LINE

AIR PHOTO NO. BC 56 025

| DATE | Aug | 13 | 10, - | 14/81 |  |
|------|-----|----|-------|-------|--|
|      |     | ,  |       | - / · |  |

|     | SAMPLE       | MPLE LOCATION Depth Horis |      | 10N   |                     |                       |           | ADDITIONAL OBSERVATIONS OF REMARKS |         | ASSAYS |                                         |     |            |             |     |    |
|-----|--------------|---------------------------|------|-------|---------------------|-----------------------|-----------|------------------------------------|---------|--------|-----------------------------------------|-----|------------|-------------|-----|----|
| NO. |              | LOCATION                  | (cm) | Horiz | Colour              | Part Size             | % ORG.    | Ph                                 | SLOPE . | VEG.   | ADDITIONAL OBSERVATIONS OF REMARKS      | Au  | As         | Az          | F6  | Z, |
| 81- | NKG<br>B-117 | Grizl                     | 5    | B     | dk bi<br>st. custy  | tine<br>silty<br>sand | high      |                                    | mod.    | mass   | above intr. otc.                        | <10 | 10         | 0.1         | 18  | 85 |
|     | B -118       |                           | 16   | в     | rusty'              | sifty                 | few       |                                    | flat    | -      | intu ofe rear                           | 13  | 15         | 0.1         | 3   | 71 |
|     | B-119        |                           | 5    | в     | rusty.              | Sinedy                | mod.      |                                    | gentle  |        | en in te -                              | 20  | 9          | s./         | 5   | 7: |
|     | B-120        |                           | 7    | B-C   | V. Or -<br>rusty    | sandy,                | rone      |                                    |         | _      | rusty sil, cte, Mn, py intusive         | 20  | 15         | 0.1         | 15  | 6  |
|     | B-121        |                           | 3    | в     | at bl               | fine<br>sandy         | few       |                                    | gentle  |        |                                         | 10  | 9          | σ.;         | t,J | 7; |
|     | BT- 122      |                           | 10   | С     | v                   | fine -<br>coaise      | V.<br>Çew |                                    | flat    | _      | pyritic intr. flogt                     | 20  | 4          | 0.5         | 75, | 2. |
|     | BT-123       |                           | 15   | C     | rusty<br>Or-br.     | med -                 | few       |                                    | mod     | ness   |                                         | -10 | 1-1        | 0.1         | 72. | 12 |
|     | B-124        | .00 g                     | 7    | B     | med be              | fine                  | · P       | ,                                  | gentle  | ĸ      |                                         | 2/0 | 9          | 2.1         | 2   | Ŧ  |
|     | B-125        |                           | 3    | в     | bright<br>Or        | fine                  | V. few    |                                    | flat    | mass   | above inte. ote.                        | 210 | 16         | o . i       | 1   | 9. |
|     | BT-126       |                           | 8    | B     | ss. rusty<br>med be | pebbly<br>met-fine    | 11        |                                    | mad     | -      |                                         | -16 | 7          | 3.1         | 11  | 8  |
|     | 8-127        |                           | 15   | в     | lt or-<br>Br.       | sandy                 | few       |                                    | п       | shubs, | di                                      | -10 | 9          | 0.1         | 26  | 1ċ |
| 2   | B-128        |                           | 7    | B     | heddish<br>br.      | fine sebbing -sau     | mod.      |                                    | mad.    |        | -rusty ofp + ggp talus, one small piece | 410 | 20         | u. 1        | 34  | 14 |
|     | B-129        |                           | 10   | в     | rusty<br>dk-bi      | v. fine               | few       |                                    | flat    |        | rusty M.P. Heat.                        | 213 | 17         | 0.1         | 15  | 81 |
| 8   | BT - 130     |                           | 8    | B     | rusty               | fine                  | mod.      |                                    | gerthe  | moss   | silicious of p float                    | <10 | 57         | 0.1         | ÿ   | 9: |
|     | B -131       |                           | 7    | B     | med bi              | fine                  | med       |                                    | p       | 1      | 6tw LCP+ IE                             | 410 | 17         | <i>:</i> .1 | 10  | 92 |
|     | BT-132       |                           | _    | в     | ч.:                 | medy                  |           |                                    | mad.    | -      | diabase flost                           | 470 | 97         | 5 1         | 17  | 15 |
|     | BT-133       |                           | -    | ß     | rusty tr.           | fine                  | few       |                                    | gentle  |        | above gfp ste.                          |     | 17         | .1          | 7   | 3  |
| 8   | B-134        |                           | 3    | B     | deep be             | 11                    | ů.        |                                    | flat    |        |                                         | <1û | 28         | 0.1         | 6   | 80 |
| e.  | B-135        |                           | -    | в     | rusty<br>med bi     | 11                    | mod       |                                    | mod     | grass  | ·· · · · · · · · · · · · · · · · · · ·  | -15 | <u>7</u> ] | z.1         | 4   | 62 |
| •   | B-136        | 1 9                       | 5    | в     | deep.               | fine<br>silty sand    | few       |                                    | gentle  | noss   | at top of ge gully                      | ~10 | 19         | 0.1         | 5   | 7= |
|     | B-137        |                           | -    | в     | rusty<br>due br     | fine                  | med       |                                    | med     |        | niar zifp ote.                          | <10 | 29         | 0.1         | 9   | 'n |

B dupper



## GEOCHEMICAL DATA SHEET - SOIL SAMPLING

Newex

B.C. GOLD SYNDICATE

NTS 104 K /10E

SAMPLER D. KAPICKI F. SIDEY DATE AUG 14 / 1981

PROJECT GRIZ 1 SOIL GRID.

LINE

AIR PHOTO NO. BC 5614 625

| SAMPLE           | LOCATION            | Denth     | Lunia | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |         | SI ORE | VEC             | ADDITIONAL OBSERVATIONS OR REMARKS |                                                           |     | AYS |     | 1   |     |
|------------------|---------------------|-----------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------|--------|-----------------|------------------------------------|-----------------------------------------------------------|-----|-----|-----|-----|-----|
| NO.              | LUCATION            |           |       | Colour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Part Size         | % ORG.  | Ph     | , score         | VEG.                               |                                                           | Au  | Aq  | As  | Pb  | Zn  |
| BI-NXG'          | 0+005<br>0+20E      | 25        | A     | med.<br>brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | silty<br>Sand.    | mod.    |        | steep<br>down.  | -                                  | gfp. talus                                                | 20  | 0.1 | A   | 42  | 142 |
| B                | 0+405               | 10        | A     | brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | sand              | high    |        | •(              | grassy                             |                                                           |     |     | . : | •   | 1.5 |
| B B              | 0+005<br>0+60E      | 15        | A     | brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | mod.    |        | mod.            | moss                               | qfp. float around:                                        | 20  | 0.1 | 15  | 31  | 242 |
| B B              | 0180 E              | 15        | A     | brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | silly             | high    |        | level           | flower                             | ji 65                                                     | 10  | 0.1 | 14  | 22  | 365 |
| B                | 0 +00 5             | >         | 7     | ro _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sam               | per     | Ł      |                 |                                    | Los Organic.                                              | 50  |     |     |     |     |
| BI-NXG".<br>B    | 0+00 S<br>1+20E     | 15        | A     | brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | successions       | mod     |        | level           | pineo                              | plateau                                                   | <10 | 0.1 | "   | 22  | 76  |
| BI-NYC:          | 01005               | 18        | A     | hed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | granular<br>sarid | mod.    |        | level           | "                                  | off float in trale.                                       | 10  | 01  | 77  | 52  | 90  |
| B                | 01005<br>1160E      | 20        | A     | brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | silt              | high    |        | gunte<br>slipe. | 14                                 |                                                           | 10  | 0.1 | 19  | 20  | 15; |
| BI-NXG-<br>B     | 0 +00 5<br>1 + 80 E | 20        | B     | brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | granula           | high    |        |                 | <u> </u>                           |                                                           | 10  | 0.1 | 14  | 10  | 92  |
| B                | 0+005<br>2+00E      | 18        | B     | brown<br>black                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sandy             | mod.    |        | Ň               | <b>"</b> .                         |                                                           | <10 | 01  | 19  | 10  | 10: |
|                  |                     | 1         |       | in la constante de |                   |         |        |                 |                                    |                                                           |     |     |     |     |     |
| 81-NX62<br>B-1   | B-1<br>100 M INT.   | 25<br>cm. | A     | brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | silty<br>surid    | mod.    |        | mod.<br>slogae  | grussy                             | glos float in hale .<br>- at Corner Post 25 Griz 2 Claim. | 10  | 0.1 | 12  | r   | 12: |
| 81-10×C2-<br>B-2 | B-2 V               | 20        | A     | brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | silty<br>sand.    | mod     |        | gentle          | pine s                             | may be frost boil with gop float                          | 10  | 0.1 | 14  | 14  | 8   |
| 81-NKG=<br>B-3   | 1B-3                | 20        | A     | brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | silty :<br>sand   | high    |        | steps           | 4                                  |                                                           | 20  | 0.1 | 20  | 144 | 19  |
| 81-NXC2<br>R-1   | 13-4                | 15        | A     | brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | silty .<br>sand   | high    | -      | gentle<br>slope | u                                  | wlight ridge above gfp tulus slope.                       | 10  | 0.1 | 12  | 58  | 11% |
| 81-N'XG .<br>B-5 | B.5                 | 16        | A     | brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | granular<br>sand  | high    |        | gentle          | 4                                  |                                                           | 410 | 0.1 | 12  | 17  | 9.  |
| 81-10x62<br>B-6  | B-6                 | 20        | A     | prown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | sand              | uniozl. |        | gentli          |                                    | uncar post 15                                             | -10 | 0.1 | 14  | 14  | 7   |
| 81-NXC-2<br>B-7  | B-7.                | 30        | B     | brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | fine              | mort.   |        | slope           | "                                  | · · · · · · · · · · · · · · · · · · ·                     | 10  | 0.1 | 15  | 23  | 8   |
| 81-10×6=<br>B-8  | B-8.                | 25        | B     | brende-<br>shit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dandy<br>Silty.   | mod.    |        | gen Cl          | "                                  |                                                           | ·10 | 0.1 | 12  | 2   | 10. |
| 81-NIXC 2<br>B-9 | B-9                 | 25        | A     | brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | granular<br>Sand  | mod.    |        | "               |                                    |                                                           | 10  | 0.1 | 15  | 10  | 7:  |

## GEOCHEMICAL DATA SHEET - SOIL SAMPLING

Neiver

B.C. GOLD SYNDICATE

NTS 104 K /10E

SAMPLER ESIDEY D. KAPICKI DATE AUG 14 / 1981

PROJECT Griz 1 Soul Grid

LINE

AIR PHOTO NO. BC 5614 025

| SAMPLE LOCATION Depth Hor |                    |       | DESCRIPTION |                   |                  |        |    | -                | ADDITIONAL OBSERVATIONS OF REMARKS |                                                                        | ASS |     |    |     |     |
|---------------------------|--------------------|-------|-------------|-------------------|------------------|--------|----|------------------|------------------------------------|------------------------------------------------------------------------|-----|-----|----|-----|-----|
| NO.                       | LOCATION           | Depth | HOFIZ       | Colour            | Part Size        | % ORG. | Ph | SLOPE .          | VEG.                               | ADDITIONAL OBSERVATIONS OF REMARKS                                     | Au  | 14  | AS | Pb. | Zn  |
| BI-NXG-<br>B              | 1+00 S<br>0+20E    | 15    | B           | darte             | granular<br>sand | mod.   |    | gentle           | spruce                             | down hill towards M. Hughes Pb-2n showing                              | <10 | 0.1 | 17 | 12  | 10  |
| ei-nxc:<br>B              | Itoos<br>OttoE     | 16    | A           | prown             | sandy            | low    |    | "                | "                                  | "                                                                      | 20  | 0.1 | 25 | 2   | 8   |
| 81-NXG'-<br>B             | 1+00 5<br>Ot60E    | 12    | A           | dark<br>brown     | granular<br>sand | mod.   |    | slope<br>on side | "                                  | rusty float with pyrite.                                               | 10  | 0.1 | 16 | 23  | 11. |
| B.                        | 1+005<br>0+80E     | 20    | A           | brown             | sandy<br>clay    | low    |    | top of<br>gully  | . //                               |                                                                        | <10 | 0.1 | 41 | 9   | 41  |
| BI-NYG'-                  | 1005<br>100E       | 10    | R           | brown             | sand             | low    |    | gentle<br>slope. | buck<br>brosh                      | side of slope to gully, app float.<br>pelow is M. Hughes Cold Showing. | 10  | 3.8 | 79 | 230 | 17. |
| B-NXC'                    | 11005<br>1120E     | 15    | A           | bioun             | sand<br>fine     | high   |    | 11               | moss<br>pines                      | unay be fost boil.                                                     | -10 | 0.1 | 15 | 13  | 10  |
| 81-NXG'-<br>B             | 1+00 S<br>1+40 E   | 15    | B           | brown             | granular         | must.  |    | level            | ĸ                                  | affs float in chole.                                                   | 410 | 0.1 | 12 | 5   | 7   |
| BI-NKG:                   | 10005<br>1+605     | 25    | ß           | brown             | sand             | high   |    | guntle           | 41                                 | 4 "                                                                    | 10  | 0.1 | 14 | A   | 71  |
| el-NXG'.<br>B             | Itoos<br>Itboe     | 10    | R           | med.<br>brown     | sand             | mod.   |    | mod:             | "                                  | directly above galera showing                                          | -10 | 0.1 | 15 | 7   | 10: |
| 81-NXG:<br>B              | 11005<br>2.100E    | 10    | A           | brown,            | silly            | low    |    | guentle          | moss                               | v. , "                                                                 | =10 | 0.1 | 27 | 14  | 102 |
| BI-NXC:<br>B              | 1+00 5<br>2+20 F   | 20    | A           | med.<br>brown     | u                | mod.   |    | "                | 11                                 | imosay plateau (extension from<br>galena' showing)                     | -10 | 0.1 | 23 | 8   | 8   |
| BI-WYG'<br>B              | 11005<br>2140E     | 40.   | ß           | darb<br>brown     | "                | low    |    | 11               | 10                                 | й и .                                                                  | -10 | 0.1 | 23 | 8   | 10: |
| 81-NXG:<br>13             | 11005<br>2+60E     | 20    | A           | brown             | #<br>·•          | 11     | •  | n                | "                                  | и <b>н</b>                                                             | 10  | 0-1 | 22 | 10  | 8;  |
| 81-NXG'-<br>B             | 1+005<br>2+80 E    | 20    | ß           | golden<br>bacours | fine.<br>sand    | Low    |    | 11               | "                                  | " .                                                                    | 10  | 0.1 | 22 | 16  | 98  |
|                           |                    |       |             |                   |                  |        |    |                  |                                    |                                                                        |     |     |    |     |     |
| 81-N'XG'.<br>B            | 0 +00 F<br>0 +00 S | 10    | A           | golden<br>brown   | bine<br>sand     | high   |    | eliff            | unoss<br>balsamo                   | - by takes at edge of offs outerop                                     | -10 | 0.1 | 20 | 19  | 11. |
| 8-NXG'.<br>B              | 0+20W              | 5-    | R           | brown             | granular         | Low    |    | mod. slope       | /                                  | upward on suge offs outoop                                             | 10  | 0.1 | 12 | 54  | 12  |
| B                         | 0+005<br>0140W     | 8     | A           | brown             | н                | mud.   |    | stup             |                                    | 11 91                                                                  | 410 | 0.1 | 10 | 21  | 24  |
| BI-NXG'<br>B              | OFGOW              | 10    | A           | med.<br>brown     | "                | stop.  |    | steep            | grassy                             | 11 le                                                                  | 10  | 01  | 36 | 11  | 8   |
|                           |                    |       |             |                   |                  |        |    |                  |                                    |                                                                        |     |     |    |     | 1   |



## **GEOCHEMICAL DATA SHEET - SOIL SAMPLING** Newer ..

B.C. GOLD SYNDICATE

NTS 104K/10E

SAMPLER DKAPICKI /E. SIDEY

PROJECT GRIZ I - Soil Grid

UNE

BC 5614 025 AIR PHOTO NO.

DATE AUG. 13 /14

| SAMPLE     | LOCATION |       |          | DESCRIPTION  |                                    |        | SLOPE VEG. | -                                     | G. ADDITIONAL OBSERVATIONS OR REMARKS |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |     |     |      |     |
|------------|----------|-------|----------|--------------|------------------------------------|--------|------------|---------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|------|-----|
| NO.        | LOCATION | Depth | Horiz    | Colour       | Part Size                          | % ORG. | Ph         | SLOPE ,                               | VEG.                                  | ADDITIONAL OBSERVATIONS OF REMARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Au  | MAG | As  | DB   | Zn  |
| El- N'XC - | 51005    | 10    | 0        | dank         | frank with                         | and    |            | 290                                   | Carl Carl                             | quart fields, par - porphory boulders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | 0   | 1   |      |     |
| BT         | Ztco+    | .cit. |          | Dreat        | pr DDMs                            | 11.000 | <u> </u>   |                                       | 91005515                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <10 | 0.2 | 63  | 202  | 45  |
| B          | 5+005    | 15    | 14       | bro s        | 11                                 | heary  | 1          | 1 N                                   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.  | 2   | 140 | 110  | 19  |
| RI- MY.C   | 54004    |       | ·        | uned.        |                                    |        |            |                                       |                                       | t in the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -10 | 0.5 | 140 | Ked_ | 62  |
| BT         | 1-605    | 15    | 17       | browse       |                                    |        |            |                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110 | 1.6 | 500 | 810  | 110 |
| 31-1286    | 31065    | 10    | <u> </u> | rusty        | ч                                  | r'     |            | 1 1 L                                 | 26                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1   |     | =   |      | -   |
| ET         | 1-405    | 10    | R        | prouse       |                                    | Aucel. | 1          |                                       |                                       | 이 것은 것 같은 것 같은 것 같은 것 같이 있는 것 같이 없다. 같이 있는 것 같이 없는 것 같이 않는 것 않는 것 같이 않는 것 않는 것 않는 것 않는 것 않는 것 않는 것 않는 않는 것 않는 않는 것 않는 | 110 | 0.1 | 140 | 350  | Ti  |
| 9-10x2 :   | 500 5    | 5     | 12       | brown        | 10                                 | 15     |            | 11                                    |                                       | h. Il-notored timelders increation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |     |     |      |     |
| 1.7        | 1+202    | -     | <u> </u> |              |                                    |        |            |                                       |                                       | Day - Cheard - Leanen , cherry surys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | =10 | 0.1 | 57  | 225  | 44  |
| BI-NYG-    | 51005    | 10    | 19       | history      | silly.                             | 11     |            |                                       | 1                                     | al boulders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |     |     |      | ~   |
| 1-         | 1=000    |       | <u> </u> | 1.1.1        | sand                               | L      |            | · · · · · · · · · · · · · · · · · · · |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10  | 0.1 | 77  | 142  | to: |
| 12         | 37005    | 20    | А        | nent         | periodesi                          | 1 "    |            |                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 144 |     | 17  | 27   | 12  |
| ·/· //×.4  | 15+CC-5  |       |          | in the       | $\frac{\alpha_n \sigma_n}{\alpha}$ |        |            |                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | 0.1 | 11  | ~~~  | ~   |
| 12         | ALCOF    | 20    | 1        | brourn       |                                    |        |            | 1                                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10  | 0.1 | 17  | 41   | 18  |
| BI- NXG'-  | 51005    | 70    | -        | med.         | 11                                 | 11     |            | "                                     |                                       | w u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |      |     |
| B          | Ot40E    | 50    | A        | brown        |                                    |        |            | -                                     | · ·                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20  | 0.1 | IZ  | 80   | 21  |
| EI-NXG -   | 3+005    | 20    | Δ        | 1.           | Nebble                             | *1     |            | ''                                    | NONE                                  | × · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |     |     |      |     |
| ß          | 0+208    | 20    |          | DIOUN        | Fringt                             |        |            |                                       |                                       | A second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <10 | 0.7 | 15  | 150  | 22  |
| 81-NXG.    | 34006    | 10    | 12       | ciar 6-      | bine                               | "      |            |                                       | Thrace of                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |     | 1-  | 120  | 24. |
| 131        | 0+005    |       | <u> </u> | bioun        | 100 0019                           |        |            |                                       | 1. 1.55                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20  | 0.1 | 13  | 138  | 241 |
| R          | 2 top 5  | 20    | R        | Silles K     | 1 and 1                            | ligh.  |            |                                       | halsam                                | 9 hp boulders.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1   | 25  | 30  | 450  | 87  |
| 81- NXG'.  | 2+005    |       |          | dark         | Debbiy                             |        | <u> </u>   | $r_l$                                 |                                       | 11 II I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10  | 10  |     | 150  | -   |
| Ê.         | DANOF    | 15    | H        | in marin     | sand                               | high   |            |                                       | 910.555                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110 | 0.1 | 43  | 62   | 23  |
| SI-NXC'    | 2+005    | 1     | .0       |              | 11                                 | **     |            |                                       | 11                                    | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1   |     |     |      |     |
| BT         | 1180E    | 15    | 17       |              | 1                                  |        |            |                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 410 | 0.1 | 24  | 43   | IE  |
| EI-NXG:    | 2+005    | 10    | 10       | 00155        | silay:                             | mad.   |            | 11                                    | Second :                              | V tv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |     |     |      |     |
| B          | 1+605-   | 10    | 1+       | sard         | same.                              | ( .cor |            |                                       | balson                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10  | 0.1 | 22  | 12   | 10  |
| 81- WXG -  | 27005    | 15    | 10       | miled.       | N.E                                | Link.  |            | 1                                     | 1-1167                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L'n |     | 20  | A    | 15  |
| F.T.       | 14408    | 10    |          | riteent      |                                    |        |            |                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10  | 0,1 | 20  |      | 12  |
| 10-        | 1+205    | 10    | 12       |              | Ň                                  |        |            |                                       | - Mi                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110 | 0.1 | 9   | 188  | 33  |
| BI-NXG'    | 2+006    |       |          |              |                                    |        |            |                                       |                                       | i i i i i i i i i i i i i i i i i i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -   |     |     |      |     |
|            | 1100E    |       | -        | 1999 and 199 | 1                                  | 10     | 1 70 0     | 1142                                  | ľc –                                  | Highly agamic truck with pinco.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |     |     | 1    |     |
| 81-WXG-    | 2100 5   | -     |          | dent         | Send .                             |        |            | 7.00                                  | 10.1255                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |     |     |      |     |
| BT         | OtECE    | 15    | A        | Acres        | Sanel                              | 111.0C |            | ~~ 7<br>                              | Freihern                              | Top Douldless, places.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4/0 | 0.1 | 81  | 35   | K   |
| BI-NXG'.   | 34005    | 15    | ,7       | bull.        | sandy                              | mind   |            | н                                     | 11                                    | N. K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |     | 10  | 277  | 1-  |
| 1: 7       | 1+605    | 15    | M        | - 60         | newolg                             | 11400  | L          |                                       | 1                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F10 | 0.8 | 100 | 221  | pe  |

## GEOCHEMICAL DATA SHEET - SOIL SAMPLING

5

B.C.-GOLD-SYNDICATE

J.C. STEPHEN EXPLORATIONS LTD.

Newer

NTS 104 KIVE

SAMPLER D KAPICEL / E. SIDEN

PROJECT GRIZI - SOIL GRID

AIR PHOTO NO.

LINE

TONO. BC 5614 025

DATE AUG 13. /1961

and a second second

| SAMPLE<br>NO. LOCATION Depth Hor |                   |           | DESCRIPTION |                |                | SLOPE  | ۔<br>VEG. | ADDITIONAL OBSERVATIONS OF REMARKS |                          | ASSAYS                                 |     |     | · . |     |     |
|----------------------------------|-------------------|-----------|-------------|----------------|----------------|--------|-----------|------------------------------------|--------------------------|----------------------------------------|-----|-----|-----|-----|-----|
| NO.                              | LOCATION          | Depth     | Horiz       | Colour         | Part Size      | % ORG. | Ph        | SLOPE .                            | VEG.                     |                                        |     | 19  | Aş  | P6  | ZN  |
| BI- NXG-<br>BT                   | 2+005<br>0+40E    | 15<br>cm. | A           | grey,<br>brown | Sandy          | high   |           | Hat of                             | grassy                   | glp float flows around.                | 10  | 1.3 | 100 | 325 | 50  |
| ei-NIC'-<br>B                    | 2+005<br>0+20E    | 10        | A           | black          | rebbles        | 4<br>5 |           | stup                               | <i>n</i>                 | ground baleon, patches of frost boils. | 10  | 0.9 | 39  | 135 | 65. |
| BI-NXG-<br>BT                    | 2+00 S<br>D+20 W  | ว้        | A           | light<br>brown | peubly         | n      |           | " <i>39</i> "                      |                          | glp talus.                             | 20  | 0.4 | 85  | 205 | 49: |
| BI-WAGE                          | 2+005<br>0+40W    | 10        | A           | prown-         | sandy<br>silt  | mod.   |           | 11                                 | "                        | ··· · · ·                              | 10  | 0.5 | 35  | 54  | 23: |
| BI-NXC'-<br>BT                   | 2+005<br>0760W    | 5         | A           | light<br>brown | pebblo<br>Sand | low    |           |                                    | .,                       | r. 17                                  | 20  | 0-1 | 12  | 33  | 17. |
| BI-NXG<br>BT                     | 2+00 S<br>0+80 W  | 10        | A           | dart<br>brown  | fine :<br>sand | Ngh    |           |                                    | is .                     | taken from ole of QFP.                 | =10 | 0.1 | 14  | 14  | 12: |
| BI-NIG'.<br>B                    | 2 too 5<br>Itoo W | 5         | A           | brey           | silty<br>soud  | mod.   |           | "·· ··                             | pine<br>balsom.          | top of glp outerop.                    | 10  | 0.1 | 15  | 14  | 14  |
|                                  |                   |           |             |                |                |        |           |                                    | \$                       | 12<br>                                 |     |     |     |     |     |
| BI-NIG -<br>B                    | 1+00 S<br>0720 W  | 20        | A           | brown          | sand           | mod.   |           | plateau flat                       | moss<br>grusses<br>fines | 960 flaat abundent and foost boils.    | 10  | 0.1 | 12  | 1   | 8   |
| B                                | Ircos<br>Ortew    | 15        | в           | light<br>brown | **             | - "    |           |                                    |                          | good profile.                          | <10 | 0.1 | 22  | 4   | a   |
| B B                              | ITODS<br>DTGOGD   | 15        | ß           | dark<br>brown  | 11             | 11     |           | 11                                 |                          | good soils.                            | 40  | 0.1 | 12  | 4   | 8:  |
| 81.NIG'<br>E                     | 1+005<br>0180 W   | 20        | ß           | 4              | ·. ·           | , ,    |           |                                    | ."                       | 11                                     | 10  | 0.1 | 30  | 17  | 103 |
| BI-NGC                           | 1+005<br>1100W    | 16        | A           | "              | 11 1           |        |           | 11                                 | <i>u</i> .               | near Mikes gold showing.               | 10  | 1.6 | 63  | 162 | 24. |
| B-NXO'-<br>B                     | 112063            | 12        | A           | "              | grunita        | · "    |           | gully                              | grany                    |                                        | 10  | 0.4 | 38  | 80  | 27. |
| BI-NURG".<br>B                   | 11005<br>1140W    | 25        | A           | brown          | silty          | high   |           | other<br>side it                   | grassy                   | -taken from top of outing              | 10  | 0.1 | 12  | 10  | 92  |
| B                                | 1160 W            | 20        | £           | darê<br>broum  | silly          | mool.  |           | uphil                              | grany                    | taken from poor of gfp outerop.        | 10  | 0.1 | 12  | 5   | 10  |
| B                                | Ireow             | n         | 0           | San            | ple            |        |           |                                    |                          | large takes and abandon ty             |     |     |     |     |     |
| B                                | 2+0003            | 20        | B           | brown          | silty          | anod   |           | ofc.                               | grassy                   | 30 M. from NXC B 118 sample.           | 20  | 0.1 | 9   | 5   | 90  |
|                                  |                   |           |             |                |                |        |           |                                    |                          |                                        |     |     |     |     | ]   |

| IC      | STEPHEN           |
|---------|-------------------|
|         | EXPLORATIONS LTD. |
|         | D. KAPICKI        |
| SAMPLER | E. SIDEY          |
|         | /                 |

## **GEOCHEMICAL DATA SHEET - SOIL SAMPLING**

B.C. GOLD SYNDICATE

NTS

PROJECT SOIL LINE / GRIZZ

LINE

DATE AUG. 14/1981

AIR PHOTO NO.

| SAMPLE           | LOCATION                              | Denth |           | DESCRIPTION          |               | SLOPE VEG                       |    | ADDITIONAL OBSERVATIONS OF REMARKS |       |                                                   |     |       |    |    |     |
|------------------|---------------------------------------|-------|-----------|----------------------|---------------|---------------------------------|----|------------------------------------|-------|---------------------------------------------------|-----|-------|----|----|-----|
| NO.              | LUCATION                              | Depth | 10/12     | Colour               | Part Size     | % ORG.                          | Ph | SLOPE .                            | VEG.  |                                                   |     | 1.49. | As | Pb | Z,  |
| 81-NKG2-<br>B-10 | B-10<br>100 M.Int.                    | 20    | till<br>A | med.<br>brown        | sandy         | mod.                            |    | gentle                             | moss  |                                                   | 4/0 | 0-1   | 17 | 11 | 10  |
| 81-WXGE<br>B-11  | B-11                                  | 25    | B         | brown                | sandy         | mod.                            |    | guenthe                            |       |                                                   | <10 | 0.1   | 14 | 4  | 9   |
| 81-NXC2<br>B-12  | B-12                                  | 20    | A         | brown:               | sand          | mod.                            |    | gentie                             |       | start of line going Non Griz 2 and<br>(Emu Posts) | 410 | 0.1   | 24 | 13 | 108 |
| 81-NXG*<br>B-13  | 13-13                                 | 20    | A         | brown                | silty<br>Sand | high                            |    | level                              | grass | south side of lake by comp.                       | 4/0 | 0.1   | 20 | 5  | 12. |
| B-14             | B-14                                  | 25    | A         | brown                | к             | "                               |    | scope                              | 4     | swampy surrounds.                                 | 40  | 0.1   | 14 | Z  | 71  |
| 81-00×62<br>B-15 | B-15                                  | 30    | A         | brown                |               |                                 |    |                                    | "     |                                                   | 410 | 0.1   | 11 |    | 6   |
| 81-NXG2<br>B-14  | B-16                                  | 25    | A         | brown                | granular      | tow                             |    | "                                  |       |                                                   | KAD | 0.1   | 19 | 10 | 9   |
|                  |                                       |       |           |                      |               |                                 |    |                                    |       |                                                   |     |       |    |    |     |
|                  |                                       |       |           |                      |               | • · · · · · · · · · · · · · · · |    |                                    |       | •                                                 |     |       |    |    |     |
|                  |                                       |       |           |                      |               |                                 |    |                                    |       | F.                                                |     |       |    |    |     |
|                  |                                       |       |           |                      |               |                                 |    |                                    |       |                                                   |     |       |    |    |     |
|                  | <u> </u>                              |       |           |                      |               |                                 |    |                                    |       |                                                   |     |       |    |    |     |
|                  |                                       |       |           |                      | ·.            |                                 |    |                                    |       |                                                   |     |       |    |    |     |
|                  |                                       |       |           |                      | •             |                                 |    |                                    |       |                                                   |     |       |    |    |     |
|                  |                                       |       |           |                      | :             |                                 |    |                                    |       | *<br>                                             |     |       |    |    |     |
|                  |                                       |       |           |                      |               |                                 |    |                                    |       |                                                   |     |       |    |    |     |
|                  |                                       |       |           |                      |               | -                               |    |                                    |       |                                                   |     |       |    |    |     |
|                  | · · · · · · · · · · · · · · · · · · · |       |           |                      |               |                                 |    |                                    | 1     |                                                   |     |       |    |    |     |
|                  |                                       | 1     |           | - 1 - s <sub>1</sub> |               |                                 |    |                                    |       |                                                   |     |       |    |    |     |
|                  |                                       |       |           |                      | 4             |                                 |    |                                    |       |                                                   |     |       |    |    | J   |

# APPENDIX II

. .

(

ť

4

# PETROGRAPHIC DESCRIPTIONS

Specimen : JP-1 FELDSPAR PORPHYRY - GRIZ ,

Classification : Trachyandesite (hypabyssal)

Mode :

Ĩ

| Plagioclase          | 65-70% |
|----------------------|--------|
| K-spar               | 10-15% |
| Quartz               | 5-10%  |
| Biotite              | 2%     |
| Chlorite & carbonate | 5%     |
| Zircon and apatite   | tr     |
| Opaques              | 5%     |

Handspecimen : Massive, holocrystalline, grey, medium to fine grained volcanic or hypabyssal rock. The stained block indicates a trachyandesitic to dacitic composition. Small flakes of biotite are macroscopically visible. Small blebs of disseminated pyrite are locally present.

Thin section : Texture : intergranular, medium grained.

Plagioclase occurs as abundant, subhedral to euhedral, randomly oriented laths and a few phenocrysts up to 2.5 mms. long. Carlsbad, albite and periclin twinning are all present. Many crystals are zoned, with compositions ranging from albite (rims) to andesine (cores). The plagioclase is locally a bit altered to saussurite.

K-spar is rather hard to distinguish from quartz in thin section. Both occur as anhedral grains occupying the interstices between plagioclase laths. Quartz locally contains euhedral apatite inclusions.

Biotite forms subhedral to anhedral flakes up to .8 mms. in size. It is brown pleochroic, locally a bit chloritized and sometimes associated with granular opaques.

Carbonate and chlorite occur together in fine grained, irregular patches of up to 1.5 mms. in size, scattered throughout the rock. These are most likely altered amphiboles. Locally the patches are pseudomorphs after amphibole.

Apatite is present in small amounts, as accessory microlites. Zircon occurs in trace amounts as small, euhedral microlites (.1 mm. size). Opaques are present as euhedral granules and aggregates up to .5 mms. Much of this is probably pyrite, which can locally be seen in handspecimen.

# APPENDIX III

{

٢.,

,

# STATEMENT OF QUALIFICATIONS

.

•

••

.. .

#### STATEMENT OF QUALIFICATIONS

- ----

I, Jean Pautler, am a graduate of the Honours Bachelor of Science program at Laurentian University, Sudbury, Ontario, 1980.

I have the following employment experience:-

April 1981 to present Geologist with J.C. Stephen Explorations Ltd. North Vancouver, B.C.

May to October 1980 Geologist with J.C. Stephen Explorations Ltd.

May to August 1979 Assistant geologist with Kelvin Energy Ltd. Calgary Alberta.

May to September 1978 Assistant geologist with the Ontario Geological Survey, Toronto, Ontario

•

. .

بالمتحاف المتحا

NOVEMBER 1981

•

ť

{

JEAN PAUTLER

ŧ

## GEOLOGICAL AND GEOCHEMICAL REPORT on the

GRIZ 3 MINERAL CLAIM

Map Sheet 104K/10E

, Record No. 1413

Latitude: 58<sup>0</sup>37'N Longitude: 132<sup>0</sup>38'W

1

## ATLIN MINING DIVISION ·B.C.

By

J.M. Pautler October, 1981

Work done: August 1-15, 1981 By: J.C. STEPHEN EXPLORATIONS LTD. Funded by: Newex Syndicate

|                                     | PAGE            |
|-------------------------------------|-----------------|
| SUMMARY AND CONCLUSIONS             | 1               |
| INTRODUCTION                        | 3               |
| CLAIM REGISTER                      | 4               |
| LOCATION AND ACCESS                 | 5               |
| REGIONAL GEOLOGY                    | 8               |
| PROPERTY GEOLOGY                    | <sup>.</sup> 10 |
| ROCK TYPES                          | 10              |
| STRUCTURE                           | 11              |
| MINERALIZATION                      | 11              |
| ALTERATION                          | 13              |
| DESCRIPTION OF VEINS GRIZ 3 SHOWING | 16              |
| LEGEND FOR FIGURES 5 - 10           | 18              |
| GEOCHEMISTRY                        | 25              |
| SOIL AND TALUS                      | 25              |
| ROCK                                | 29              |
| CONCLUSIONS AND RECOMMENDATIONS     | 3]              |
| STATEMENT OF EXPENDITURES           | 32              |
| APPENDIX I SAMPLE DATA SHEETS       | 5               |
| APPENDIX II PETROGRAPHIC DESC       | RIPTIONS        |
| APPENDIX III STATEMENT OF QUAL      | IFICATIONS      |

.

TABLE OF CONTENTS

(

(

· \_

•

-

•

•

,

\$

# LIST OF ILLUSTRATIONS

| FIGURE  | TITLE                                           | PAGE      |
|---------|-------------------------------------------------|-----------|
| 1       | LOCATION MAP 1:1,000,000                        | 6         |
| 2       | CLAIM MAP 1:50,000                              | 7         |
| 3       | DISTRIBUTION OF SLOKO VOLCANIC ROCKS            | 9         |
| 4       | DETAIL OF GRIZ 3 SHOWING 1:300                  | 15        |
| 5       | DETAIL OF ZONE 1 1:50                           | 19        |
| 6       | DETAIL OF ZONE 2 1:50                           | 20        |
| 7       | DETAIL OF ZONE 3 1:50                           | 21        |
| 8       | DETAIL OF ZONE 4 1:50                           | 22        |
| 9       | DETAIL OF ZONE 5 1:50                           | 23        |
| 10      | DETAIL OF ZONE 6 1:50                           | 24        |
| 11      | ARSENIC HISTOGRAM                               | 27        |
| 12      | ZINC HISTOGRAM                                  | 28        |
| РНОТО 1 | GRIZ 3 CLAIM - ZONE 5                           | 12        |
| MAP I   | GRIZ 3 CLAIM<br>GEOLOGY AND GEOCHEMISTRY 1:2500 | In Pocket |

€....

•

.

.

.

.....

- 🖍

.

#### SUMMARY AND CONCLUSIONS

- The GRIZ 3 claim consists of 12 units and is located 120 kms southeast of Atlin, B.C.
- (2) The claim was staked this year to cover galena-sphalerite mineralization found in silicious veins. Gold and silver values were associated with the Pb-Zn veins.
- (3) A crew of two to four people spent 25 man days on the property between July 30 and August 15, 1981.
- (4) The claim consists of a large Tertiary quartz feldspar porphyry body which intrudes sediments of Jurassic age. The property has been mapped at a scale of 1:31,680 on an air photo.
- (5) Detailed mapping of the mineralized outcrop was conducted at a scale of 1:300 and individual vein zones were mapped at 1:50.

(

- (6) A total of 69 chip samples were taken across the zones and all were analyzed for Au and Ag and also for Pb and Zn where galena and sphalerite were visible. Anomalous results ranging up to 0.194 oz/ton Au, 16.97 oz/ton Ag, 8.29% Pb and 6.72% Zn were obtained.
- (7) A soil/talus grid consisting of 41 samples was established to trace the extent of the veins. Two anomalous samples were returned. A talus line at the base of the showing and adjacent outcrop area returned no significant values.

• ] =

- (8) The prospecting and reconnaissance sampling program was limited this year and was so far unsuccessful. The only even slightly anomalous sample was from the far west part of the same northwest striking ridge which contains the mineralization. A total of 6 soils and 3 rocks were collected in this program.
- (9) Enlargement of the present soil/talus grid and an E.M.-16 survey on this grid is proposed for the 1982 program in an attempt to determine the actual extent of the veins. Additional talus lines at the base of the ridge are also recommended. Detailed mapping of the property at 1:2500 and additional prospecting and sampling should be conducted. Trenching of the highly anomalous soil sample at 2+00E,0+20S. is warranted.

( )

#### INTRODUCTION

(

£.

The GRIZ 3 claim consists of 12 units. It was staked in July, 1981 on the basis of anomalous silver, lead and zinc lithogeochemical results in samples taken earlier in the season. The silver results were obtained from galena-sphalerite veins in a large outcrop in the southeast section of the property. Thus, subsequent field work, carried out in August, 1981, involved detailed geological mapping of the outcrop and veins, at a scale of 1:300 and 1:50 respectively. Geological mapping of the property at a scale of 1:31,680 was also conducted and further prospecting was carried out on the entire property. A total of 42 soil, 23 talus, and 72 rock samples were collected for geochemical analysis.

The claim is immediately south of the Taku Plateau within the Coast Mountains.

The topography of the claims themselves consists of a large plateau area with scattered outcrop at an elevation of approximately 5,000 feet. Three steep ridges and a large cirque, on the property, provide good rock exposure. A northwest trending valley cuts the southwest portion of the claim.

Vegetation is sparse on the plateau region and consists entirely of grass and moss. The southwest corner is covered by patches of thick balsam trees and shrubs.

Drainage on the claim is generally poor. The northwest trending valley is extremely swampy and is fed by a few small creeks. Small snow-fed creeks and ponds on the plateau dry up in mid-summer. There are two well developed easterly draining creeks that drain this area.

3

# CLAIMS REGISTER

| Claim  | Record Number | Record Date   |
|--------|---------------|---------------|
| GRIZ 3 | 1413          | Aug. 14, 1981 |

12

Ł,

. . . .

## LOCATION AND ACCESS

The GRIZ 3 claim, (Tulsequah-Juneau map sheet 104K/10E), is located approximately 15 kms north of Trapper Lake, which is 132 kms southeast of Atlin, B.C. (Refer to Figure 1). Latitude and longitude are  $58^{O}37'N$  and  $132^{O}38'W$ .

Adjoining the GRIZ 3 claim on the east side is Chevron's 20 unit EMU claim which was staked two weeks prior to GRIZ 3. (Figure 2 ).

Access to the property is by helicopter from Atlin or Dease Lake.



(

No to

FIGURE 1



 $\widehat{\mathbb{C}}$ 

0

C.s

#### REGIONAL GEOLOGY

:

(-

(\_;

X.

The Geological Survey of Canada has mapped the geology of the Tulsequah area at a scale of 1:250,000. This mapping is published as Map 1262 A, Tulsequah and Juneau map sheet 104K.

The GRIZ 3 claim is situated in an area of a late Cretaceous to early Tertiary quartz feldspar porphyry intrusion which is one of many that form a west-northwesterly trending belt extending from Trapper Lake to Yonakina Mountain. These intrusive bodies are in close spatial association with the Sloko volcanic rocks of the same age, which are limited to a larger northwesterly trending belt along the eastern edge of the Coast Mountains. Figure 3 shows the distribution of the Sloko volcanic rocks and related intrusions within the Tulsequah map area. The Sloko Group volcanic rocks are of interest due to the number of Au occurrences found associated with them. Of additional interest is the major fault which truncates the southwestern part of the GRIZ 3 intrusion.

- 8 -



#### PROPERTY GEOLOGY

10 -

Geological mapping of the GRIZ 3 property, shown in the back pocket on Map I, revealed three rock units.

#### Rock Types

#### Unit 3 - Quartz Feldspar Porphyry

Almost the entire property consists of the late Cretaceous to early Tertiary quartz feldspar porphyry body which is extremely variable in compostion. It is finegrained to aphanitic, porphyritic with mainly plagioclase phenocrysts and less commonly quartz phenocrysts and occurs with or without biotite and hornblende. On the GRIZ 3 property, the quartz feldspar porphyry would be more properly designated a feldspar porphyry. The colour varies from light grey to mauve and pink, but is most commonly green, Minor pyrite is common.

A thin section of the quartz feldspar porphyry was prepared and petrographically analyzed by Vancouver Petrographics Ltd., Fort Langley, B.C. The specimen, (JP-2), was found to be of trachyandesitic composition and of effusive nature, although field relationships suggest a hypabyssal origin. The petrographic description is provided in Appendix II.

#### Unit 2 - Diabase Dykes

Diabase dykes up to a few metres across cut the feldspar porphyry. The diabase is fine grained and green in colour. Minor pyrite is sometimes present.

#### Unit 1 - Sedimentary Rocks

The southwestern part of the intrusion appears to be in fault contact with a chert pebble conglomerate of the lower and/or middle Jurassic Takwahoni Formation. The conglomerate is green, chloritic and has chert pebbles from a few millimetres to 10 millimetres in size. A small outcrop of Takwahoni Formation black, rusty shale is also present in the centre of the claim.

#### Structure

( ···.

Ł

As already mentioned, a major northwest trending fault truncates the southwestern edge of the quartz feldspar porphyry. Three sets of air photo linears, which trend northerly, northwesterly and easterly, are also evident throughout the intrusion and may represent minor fault and fracture systems. A fault, represented by a northerly striking gully, appears to offset the mineralized veins which trend easterly to northeasterly.

### Mineralization

As illustrated in Figure 4, six vein zones have been outlined that contain veins of galena-sphalerite mineralization. The zones are defined by an altered recessive area, containing mineralized veins, between relatively unaltered walls of the feldspar porphyry host rock. This is illustrated in Photo 1 which shows part of Zone 5.



\_12

3

)

PHOTO 1: GRIZ 3 CLAIM ZONE 5

The zones appear to be offset by a left-lateral fault. However, since it is difficult to directly correlate them, each will be referred to as a distinct zone.

The outcrop in which the veins occur is strongly fractured with many faults and joints. (Photo 1) The feldspar porphyry is rusty in the general area of mineralization but is altered almost beyong recognition within the vein zones themselves. Sphalerite-calcite veins are abundant throughout the outcrop, especially in the vicinity of the mineralized zones. Generally, the zones trend  $75 - 90^{\circ}$  and dip  $85^{\circ}S$  to  $85^{\circ}N$ . On the west side of the gully, they extend for approximately 5-8 m before being covered by overburden after which the veins could not be traced despite good rock exposure less than 20 m away. On the east side of the fault gully, the veins continue for about 20 m before they disappear beneath overburden. Although the zones do not entirely match, minor vertical displacement along the fault would account for any discrepancies. The left-lateral movement appears to be approximately 12 m.

Each zone contains at least one larger vein, usually on the hanging wall side, and often another vein along the footwall side. Smaller veins and veinlets, from a few millimetres to 10 cms cut the very altered quartz feldspar porphyry that lies in the centre of the zone. The galena-sphalerite mineralization occurs as bands and disseminations and is generally restricted to that part of the vein immediately adjacent to the wall of the zone. Minor pyrite and arsenopyrite are also present and are spatially associated with the galena and sphalerite.

## Alteration

Most of the rock within the zones is Mn stained. The veins themselves exhibit more intense Mn staining and the smaller veins and veinlets in the central region of the zones are so extensively altered and Mn stained that only a black, extremely soft 'clayey' material remains. Rusty remnant fragments of quartz feldspar porphyry are contained within this black material.

The altered feldspar porphyry exhibits limonitic and calcarious alteration. Plagioclase biotite and amphibole

phenocrysts have been altered to clay minerals, white mica, limonitic calcite and opaque minerals. A petrographic description of this rock (JP-3) is provided in Appendix II.

The veins themselves also show limonitic and calcareous alteration and silicification. Remnants of an original porphyritic texture are evident in thin section. Several stages of deformation have occurred which include an early stage of brecciation and mylonitization followed by several periods of fracturing. The petrographic analysis outlined the following events:

- early quartz veining and probably silicification as well as introduction of ore minerals
- 2. calcite veinlets which remobilized some of ore minerals
- 3. late chalcedony veinlets and some brecciation and fracturing resulting in an almost cataclastic fabric
- 4. late fracturing offsetting stage 3 structures.

From field observation as well as petrographic analysis, it appears that the sphalerite was commonly remobilized in stage 2 resulting in the abundant calcitesphalerite veins proximal to the vein zones and mineralization.

The petrographic descriptions of the vern material is outlined in Appendix II. Specimen numbers are JP-5, JP-6, G-1, G-2. Both G-1 and G-2 are highly mineralized samples.

5

6.

# Please inserf Embedded Map(s) Here.

## Description of Veins - GRIZ 3 Showing

The following is a description of individual veins as numbered in Figure 4:

- 1. barren coarse-grained calcite vein 1 cm wide
- 2. barren coarse-grained calcite vein 2 cm wide
- 3. barren coarse-grained calcite vein 3 cm wide
- 4. barren coarse-grained calcite vein 3.5 cm wide
- 5. calcite vein 1/4 cm wide
- 6. calcite vein 2 cm wide, 3-4' long
- 7. Calcite vein, exact orientation unknown
- 8. rusty calcite vein 1 cm wide
- 9. vein Zone 1; 75-90 cm wide; 20 cm of abundant galena on footwall side with minor sphalerite, silicification, followed by 50 cm of highly altered 'gungy' black Mn stained and rusty orange vein material towards hanging wall side; last rock adjacent to footwall of vein is slightly Mn stained and rusty guartz feldspar porphyry fragments
- 10. quartz-calcite vein 1 cm wide
- 11. silicious vein material, some calcite, Mn stained, rusty quartz-feldspar porphyry fragments, 30 cm wide
- 12. Mn-quartz feldspar porphyry breccia vein 15 to 18 cm wide with small calcite vein in centre; maximum width of vein 40 cm with less Mn breccia and more calcite
- 13. same as 12. only 15 cm wide
- 14. vein material with heavy Mn staining, rusty quartz feldspar porphyry fragments, associated with silicification, some irregular calcite veins
- 15. same as 14., 50 cm wide
- 16. 3 cm wide calcite vein surrounded by silicified, Mn stained, rusty vein material
- 17. footwall vein in vein Zone 4; 30 cm wide, very silicious, Mn stained, rusty quartz feldspar porphyry fragments
- 18. rusty sphalerite vein 2 cm wide
- 19. sphal-calcite vein 3 cm wide
- 20. vein zone about 3 m wide (refer to sketch of Zone 5)

- hanging wall vein of Zone 5; 40-45 cm wide at base, heavily Mn stained, rusty quartz feldspar porphyry fragments, 2.5 cm of quartz rich vein material towards centre; minor quartz-carbonate veining, calcite veins
- 22. vein from footwall to hanging wall; 15 cm of black Mn stained breccia, rusty quartz feldspar porphyry fragments, very altered followed by 30 cm quartz-calcite vein, heavily Mn stained, buff weathering, resistant, with 5 cm quartz feldspar porphyry in centre of vein, followed by 5 cm of black Mn stained breccia
- 23. rusty calcite vein 15 cm wide with Mn-silica vein material
- 24. two veins; north vein 4 cm wide surrounded by Mn staining; south vein 15 cm wide Mn-silica, minor calcite in centre
- 25. rusty, Mn-breccia veins.

(

Ċ.

L

Legend for Figures 5 to 10



Quartz Feldspar Porphyry

~

Mn staining

Silicification



vein with rusty quartz feldspar porphyry fragments



. .

1.

galena, sphalerite mineralization

S calcite stingers

Symbols

| 27760, 761 | - chip sample locations                     |
|------------|---------------------------------------------|
| (~10,8.1)  | - Au ppb, Ag ppm, rock geochemistry results |

(0.010, 1.46, 0.54, 1.22) (Au, Ag oz/ton; Pb,Zn%) assay results



.

FIGURE 5 ....




7 FIGURE

15

- ' 41 "

(

(•



FIGURE 8



- LU -



FIGURE 10

- 24 -

#### GEOCHEMISTRY

#### Soil and Talus:

( .

Ł

A topochain and compass grid was established on the east side of the showing in an attempt to determine the extent of the mineralized veins. The baseline was run parallel to the majority of the veins. Samples were taken at 20 m intervals along crosslines 100 m apart. A total of 36 soil samples and 5 talus samples were collected on the grid. All samples were analyzed for Au, Ag, As and Zn and some were also analyzed for Pb.

A talus line was run at the base of the outcrop in which the showing is located. Eighteen samples were taken at intervals of 25 m, where possible, and analyzed for Au, Ag, As, Pb and Zn.

Reconnaissance soil and talus samples were collected throughout the claims.

#### Method

The soil samples were collected from the 'B' horizon at depths of 3 to 32 cm, using a grubhoe or rock hammer. Samples were placed in waterproof Kraft bags and sent to base camp where they were dried and sifted to 35 mesh. The samples were then sent to Chemex Labs, 212 Brooksbank Avenue, North Vancouver, B.C. for analysis. In the lab, the soils were first pulverized to 100 mesh. The gold content in ppb was determined by aquaregia digestion and chemical extraction followed by atomic absorption. Ppm, Ag and As were determined by perchloricnitric acid digestion and atomic absorption analyses.

#### Results

í

One highly anomalous soil result was obtained from the soil/talus grid east of the showing. The results were 80 ppb Au, 42.0 ppm Ag, >1000 ppm As, 3000 ppm Pb and 1900 ppm Zn. The sample is 200 m east of the showing along the trend of the exposed veins. No other Au results greater than 20 ppb were returned from the grid. A 250 ppm Zn value was associated with a high As value of 405 ppm. This sample was taken at 0+00E/0+20N on the soil/talus grid and is directly above the galena-sphalerite veins in the showing.

A histogram of As results is illustrated in Figure 11 The distribution does not indicate any further anomalous values.

The distribution of Zn results in the histogram shown in Figure 12, indicates another anomalous Zn value. The sample ran 198 ppm Zn, 21 ppm Pb and 25 ppm As and was taken below the rock exposure on the far west part of the northwest striking ridge which contains the mineral showing.

No anomalous results were obtained from the talus line. All sample results are plotted on Map I in the back pocket of this report.

and the second second





#### Rock

A total of 69 chip samples were taken across the galena-sphalerite veins in the showing. The samples included the relatively fresh wallrock, the altered host rock and the vein material. The sample locations and geochemistry and assay results are shown in Figures 5 to 10. Chip samples, showing no mineralization, were geochemically analyzed for Au and Ag: Those which showed galena-sphalerite mineralization were assayed for Au, Ag, Pb and Zn.

#### Results

There were six samples that ran 0.010 oz/ton Au or greater. These values were 0.194, 0.118, 0.044, 0.016 and two 0.010 oz/ton Au, and were restricted to the vein material with visible galena-sphalerite mineralization.

The highest Au values correspond to high Ag results, but a direct correlation does not seem to exist. The 0.016 oz/ton Au assay was associated with 16.97 oz/ton Ag, 8.29% Pb and 6.72% Zn, whereas the sample that ran 0.194 oz/ton Au ran 1.46 oz/ton Ag, 0.54% Pb and 1.22% An. Some of the high Ag values did not have anomalous Au values associated with them at all.

The assay results from the veins are tabulated below:

|         | Au       | Ag       | РЬ   | Zn         |
|---------|----------|----------|------|------------|
| Sample  | (oz/ton) | (oz/ton) | (%)  | <u>(%)</u> |
| 27767 C | 0.010    | 5.98     | 3.46 | 4.19       |
| 27771 C | 0.194    | 1.46     | 0.54 | 1.22       |
| 27774 C | 0.010    | 0.10     | 0.07 | 0.05       |
| 27776 C | 0.003    | 1.15     | 1.14 | 1.43       |
| 27778 C | 0.004    | 1.93     | 0.87 | 4.43       |
| 27781 C | 0.003    | 0.22     | 0.21 | 0.54       |
| 27789 C | 0.118    | 0.18     | 0.91 | 0.26       |
| 25715 C | 0.044    | 1.72     | 0.31 | 1.00       |
| 25717 C | 0.016    | 16.97    | 8.29 | 6.72       |

Initial grab samples from the showing returned the following results:

| Sample  | Ag           | РЬ          | Zn          |
|---------|--------------|-------------|-------------|
| 73845 B | 14.62 oz/ton | 5.64%       | 6.72%       |
| 78848 B | 100 ppm      | ≻10,000 ppm | ≻10,000 ppm |
| 78847 B | 8 ppm        | 1,800 ppm   | 3,800 ppm   |

The Au and Ag values are closely related to the Pb-Zn mineralization. The chip samples which were geochemically analyzed, (ie. had no evident galena-sphalerite mineralization), did not return any highly anomalous results. There were three anomalous gold results which were 800, 120, and 100 ppb. Ag values of 38.0, 9.8, 9.2, 9.0, 7.4, 4.5, 2.7 and 2.6 ppm include all those above 2.5 ppm. All the above samples except the 9.0 ppm Ag, were from the highly altered, Mn stained vein material with rusty quartz feldspar porphyry fragments.

No anomalous rock geochemical results were obtained from the reconnaissance sampling program.

t

#### CONCLUSIONS AND RECOMMENDATIONS

C.

Property and detailed geological mapping of the showing, chip sampling of the veins and general prospecting and sampling were carried out in 1981. A total of \$5,266 was spent on this program, \$2,400 of which has been applied for 2 years assessment work on the GRIZ 3 claim. The remainder has been credited to a portable assessment credit account./ Significant results were returned from chip samples of the galena-sphalerite bearing veins. A few soil samples along the covered possible extent of the veins were also anomalous. Future work should involve further tracing of the veins to determine extent. This can be done by increasing the size of the present soil/talus grid and by running additional talus lines below the northwest striking ridge which contains the showing. An E.M. 16 survey on the soil grid is also recommended. Detailed mapping of the property should be conducted at a scale of 1:2500. Additional prospecting and sampling both on the property and around the property to investigate air photo linears would be beneficial.

Trenching of the high geochemical value at 2+00E, 0+20S. is warranted.

- 31 -

# STATEMENT OF EXPENDITURES

Wages and Benefits

 $\left( \cdot \right)$ 

( ·

٢

| Name          | Date                               | Rate                   | Amount    | Total      |
|---------------|------------------------------------|------------------------|-----------|------------|
| J.M. Pautler  | Jul <u>y 30</u> ,31<br>Aug 6-12,15 | \$1, <u>950/</u> m+15% | \$ 747.50 |            |
| M. Hughes     | July 30,31<br>Aug 6,8-12           | \$1,750/m+15%          | 536.67    |            |
| D. Guglielmin | Aug 6,7                            | \$1,750/m+15%          | 134.17    |            |
| E. Sidey      | Aug 11,12                          | \$1,750/m+15%          | 134.17    |            |
| D. Kapicki    | Aug 11,12                          | \$1,400/m+15%          | 107.33    |            |
| R. Campbell   | Aug 6                              | \$1,400/m+15%          | 53.67     |            |
| TOTAL         | .: 25 man days                     |                        |           | \$1,713.51 |

ŧ

. ۲

350.00

Food and Camp Supplies

| 25 | man | days | 0 | \$14.00 | per | man |  |  |  |  |  |
|----|-----|------|---|---------|-----|-----|--|--|--|--|--|
|----|-----|------|---|---------|-----|-----|--|--|--|--|--|

Geochemistry

Invoice

| <pre>18113299-27 soil/talus samples analyzed for \$  Au, Ag, As, Zn @ \$10.25/sample</pre> | 276.75 |          |
|--------------------------------------------------------------------------------------------|--------|----------|
| 2 soil samples analyzed for Au, Ag,<br>Zn, @ \$7.00/ sample                                | 14.00  |          |
| 18113581-36 soil/talus amples analyzed for<br>Au, Ag, As, Pb, Zn @ \$11.00/sample          | 396.00 |          |
| 18113051-4 rock samples analyzed for Au, Ag,<br>18113350 As @ \$9.50/sample                | 38.00  |          |
| 18113350-59 rock samples analyzed for Au, Ag,<br>@ \$6.25/sample                           | 368.75 |          |
| 1811351 -9 rock samples assayed for Au, Ag,<br>Pb, Zn @ \$24.50/sample TOTAL               | 220.50 | 1,314.00 |

## Petrographic Analysis

Invoice

ъ. **Ъ** 

| 2857 - | 3 polished sections @ \$16.00 ea. | \$ 48.00 |  |
|--------|-----------------------------------|----------|--|
|        | 3 thin sections @ \$6.00 ea.      | 18.00    |  |
|        | 6 reject slices @ \$.75 ea.       | 3.00     |  |
|        | 6 K-spar stains @ \$1.00 ea.      | 6.00     |  |
|        | Petrographic report (6/10X440.00) | 264.00   |  |
|        |                                   | •        |  |

339.00

3

Transportation

Keystone Helicopters, Atlin B.C.

Flight Ticket

.

..

•

| 003540 | 0.5 hrs | Aug 10 |
|--------|---------|--------|
| 003528 | 1.0 hrs | Aug 7  |
| 003513 | 1.2 hrs | Aug 3  |
| 003561 | 0.7 hrs | Aug 16 |

| Flying: | 3.4 hrs @ \$400/hr   | \$1,360.00 |          |
|---------|----------------------|------------|----------|
| Fuel:   | 3.4 hrs @ \$56.00/hr | 190.40     |          |
|         |                      | TOTAL      | 1,550.40 |

TOTAL EXPENDITURE

 \$5,266.91

Respectfully submitted, J.C. Stephen Explorations Ltd.

÷

for pautler.

J.M. PAUTLER, GEOLOGIST.

# APPENDIX I

.

.

**.** .

.

•

# SAMPLE DATA SHEETS

.

s'

.

 $\left( \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right)$ 

GEOCHEMICAL DATA SHEET - ROCK GEOCHEM SAMPLING

B.C. GOLD SYNDICATE

| 20    | EXPLO   | DRATIONS I              | _1 <i>D</i> .                |                                   |                      | -      |                                            | NTS        | 10-4    | K/           | IDE   |      |         |    |
|-------|---------|-------------------------|------------------------------|-----------------------------------|----------------------|--------|--------------------------------------------|------------|---------|--------------|-------|------|---------|----|
|       | SAMPLER | i lautier +             | Eleanor S                    | in PROJECT                        | Newer                | ·      | 6.                                         | LINE       | Ga      | 23           | SI    | our  | ng_     |    |
|       | DATE AU | e 11/19.81              |                              |                                   |                      |        | 4                                          | AIR PH     | OTO No. | BC           | 5614  | 0    | 75      |    |
| 1     | SAMPLE  | LOCATION                | BOCK                         | ALTERATION                        | MINERALIZATION       | STRIKE | ADDITIONAL                                 |            | WIDTH   |              | AS    | SAYS |         |    |
|       | NUMBER  |                         | TYPE                         |                                   | <i></i>              | DIP    | REMARKS                                    |            | 1.1     | WIDTH        | Au.   | Ag   | \$6     | Z  |
| (1)   | 27751 C | Zone 1 linel<br>0-45 cm | 2 fp<br>Uwallrk              |                                   |                      |        |                                            |            |         |              | 210   | 0.8  |         |    |
| (2)   | 27752   | 45-87 cm                | 8fp                          | Mr altered.                       |                      |        |                                            | 2          |         |              | 210   | 0.2  |         |    |
| (3)   | 27753   | 87-114 cm               | black with<br>rusty gfphags. | Mn staining                       | V. minor sphal.      |        |                                            | )          |         |              | . 10  | 2.5  |         |    |
| (4)   | 27754   | 114 - 147cm             | ofp. btw<br>veins            | ).                                |                      | (m     |                                            |            |         |              | 210   | 0.6  |         |    |
| (5)   | 27755   | 147-180an               | attend ven<br>naterial       | leavily mn stunds,<br>che coating |                      |        |                                            |            |         |              | 210   | 1.1  |         |    |
| (6.)  | 27756   | 180 - 208 cm            | 8fp                          | thin the coating                  | (                    |        |                                            |            |         |              | د/    | 0.4  |         |    |
| (7)   | 27757   | 208-241                 | of p with s<br>wide bl. m    | small 1-2 cm<br>n stand veinte    | ts with che XLS in C | ntre   |                                            |            |         |              | 210   | 1    |         |    |
| (8)   | 27758   | 241 cm - 29500          | vein                         | mn stained<br>silicified          |                      |        | entrite blebs up to pusty putches of alter | Scon<br>cp |         |              | 210   | 2.4  |         |    |
| (9)   | 27759   | 295cm - 333cm           | 2.5p wellrock                |                                   | A                    |        |                                            |            |         | 1            | 215   | 0.4  |         |    |
| (10)  | 27760   | linez Zonal<br>0-66 cm  | 2 Cp wallrock                |                                   |                      |        |                                            |            |         |              | 410   | 0.2  |         |    |
| (4)   | 27761   | 66cm - Skem             | vein                         | ma stained                        |                      |        | milite renotiths                           | n s<br>feb | 11      |              | 210   | 4.5  |         |    |
| (12)  | 27762   | 96cm = 243cm            | gfp host .                   | 1                                 | •                    |        |                                            |            | 4       |              | 210   | 0.3  |         |    |
| (13)  | 27763   | 293 cm - 269cm          | vein                         | black Mn<br>Stained               |                      | 1 (y)  |                                            | 1          |         | - 1<br>1 - 1 | <10   | 2.1  |         |    |
| (14)  | 27764   | 268cm-303cm             | afp host<br>rock             |                                   |                      |        |                                            |            |         | 1 9.55<br>1. | 210   | 0.4  |         |    |
| (15)  | 27765   | 303 m- 328 m            | vein asin<br>27763           |                                   |                      |        |                                            | . 1        |         | •            | 20    | 2.7  | - 1 - E |    |
| (16)  | 27766   | 328cm-409cm             | afp host                     | *                                 |                      |        | 1                                          |            |         |              | 210   | 0.7  |         |    |
| (17)  | 27767   | 409cm- 500cm            | ovin                         | Min stained<br>silicified         | gaiena               |        | assay                                      |            |         |              | 0.010 | 5.98 | 3.46    | 4. |
| (18,) | 07768   | 500cm · 533cm           | gfp host<br>rock             |                                   |                      |        |                                            |            |         |              | 210   | 0.2  |         |    |
| (19)  | 27769   | 20ne 2<br>0-20 cm       | vein                         | mn stained<br>silicified          |                      |        | rusty gsp fragments                        | 2          |         |              | 20    | 1.9  |         |    |
| (20)  | 27770   | 20cm - 10pcm            | 25p with                     |                                   |                      | °,2,°  |                                            |            |         |              | 210   | 0.9  |         |    |

GEOCHEMICAL DATA SHEET - ROCK GEOCHEM SAMPLING

B.C. GOLD SYNDICATE

| TS | 104 | К | 110 | F |  |
|----|-----|---|-----|---|--|
|    |     |   | 1   |   |  |

SAMELER (P+ES

27785

27786

27781

27738

27789

27790

0.38cm

38cm - 880.

88 .: 220cm

gaven- 256im

a 5 bem - 30bem

g & p wallrock

wanrock

wallrock

altered

altered

Vein

9.50

wallrock

(16)

(17)

(18)

(19)

(20)

Never

PROJECT

LINE Griz 3 showing

DATE Aug 11, 12/81 BC 5614 AIR PHOTO No. 075 APPARENT SAMPLE STRIKE ADDITIONAL ASSAYS WIDTH TRUE LOCATION ROCK ALTERATION **MINERALIZATION** NUMBER DIP REMARKS Pb TYPE Au. Ag Z WIDTH Zon 2 conto galana Siliceous assey (1)ma stained 0.194 1.46 0.54 spharente 27771 C 100 cm - 160 cm URIA 2 fp with veing from hew cms to my stand 1.7 (2) <10 10 cm wide 27772 160cm-233cm vein material gCp wallook 0.2 (3) 410 27773 233cm - 279cm vein above zone z some galana mm stamed assay vein (4) 27774 0.010 0.10 0.07 02 cuicite rusty zones Zone (3fine) afp wallrock (5) 210 0.2 27775 0 - brem galanc assay vein Mr stained (6.) 40.003 1.15 1.14 1. spherite 27776 66cm-116cm 962 (7) 0.5 610 27778 116cm - 196cm galena assay (8) vein Mr Stained Spheler-te 27778 1.93 0.87 4.4 0.004 146 cm - 259 cm gfp wellrock 0.2 (9) 210 27779 209 cm - 249 cm Zone3 Flinez 25p wellrock very erumbly (10) 410 0.1 27780 0. ADam garena assay Mr Stained vein (11) 10.003 0.22 0.21 0.5 3 phalante 27781 40cm-140cm 940 (12)410 0.5 27782 140cm - ZUSico vein with 1.2 (13) 410 27783 950 209-309 cm eclicite veines Biller fied vein (14) 410 0.7 27784 man Staned 309 cm - 379 cm (15) 2 fp wellovek 379-430cm Zone & line 1

0.2 410 10 0.1 410 0.1 rusty 2F13 Fragments Mr Stained 0.4 410 in poorly defined deins sphelerite assay mu staned 0.18 0.91 0.2 0.118 0.3 410 12:

# GEOCHEMICAL DATA SHEET - ROCK GEOCHEM SAMPLING

.

B.C. GOLD SYNDICATE

| T    | ~ | STLICHEN            |      |
|------|---|---------------------|------|
| .J.V | - | <b>EXPLORATIONS</b> | LTD. |

-----

NTS 104 K / 10E

|      | SAMPLER J   | Fautler + ES.              | dey                                       | PROJECT                           | Newex           |              | G LINE                 |                 | Gu              | 33   | St   | lour | 4 |
|------|-------------|----------------------------|-------------------------------------------|-----------------------------------|-----------------|--------------|------------------------|-----------------|-----------------|------|------|------|---|
|      | DATE        | Aug 12/8                   | ι                                         |                                   |                 |              | AIR PI                 | HOTO No.        | BC              | 561  | t_o_ | 75   |   |
| ſ    | SAMPLE      | LOCATION                   | ROCK                                      | ALTERATION                        | MINERALIZ ATION | STRIKE       | ADDITIONAL             | APPARI<br>WIDTH |                 | AS   | SAYS |      |   |
|      | NUMBER      |                            | түре                                      |                                   |                 | DIP          | REMARKS                |                 | WIDTH           | Au,  | Ag   | Sb.  |   |
| (1)  | 377916      | 2012 \$ 11122<br>0-45 m    | Jtp we lirock                             |                                   |                 |              |                        |                 |                 | ~ 10 | 0.1  |      |   |
| (2)  | 27792       | 45cm - 144cm               | g fp from<br>vein zone                    |                                   | -               | ÷            |                        | i               |                 | ~ 10 | 0.1  |      |   |
| (3)  | 27793       | 199cm- 2200m               | minor veining<br>eltered gep              |                                   |                 |              |                        |                 |                 | 410  | 0.1  |      |   |
| (4)  | 27794       | 220 cm - 255 cm            | vein                                      | Mn stained<br>Silicified          | pyrote          |              |                        |                 |                 | 20   | 0.3  |      |   |
| (5)  | 27795       | 255 cm - 355 cm            | altered gip<br>between veing              |                                   |                 |              |                        |                 |                 | 210  | 9.0  |      |   |
| (6.) | 27796       | 355 cm - 454 cm            | vein zune                                 | heavy Mustainin<br>silicified     | 5               |              | rusty 240 fragments    |                 |                 | 210  | 2.0  |      | - |
| (7)  | 27797       | A59cm-492cm                | gfp we lirock                             |                                   |                 |              |                        |                 |                 | 10   | 0.2  |      |   |
| (8)  | 89178       | 1                          | vein                                      | tion staining                     | spharente       |              |                        |                 |                 | 10   | 1.4  |      |   |
| (9)  | 27799       |                            | yein of cale.t                            | mn stained                        | sphe lerite     |              |                        |                 |                 | ~ 10 | 9.8  |      |   |
| (10) | 27800       | 2 one 5 linel<br>0 - 30 cm | 2 5 p wallrock                            |                                   |                 |              |                        |                 |                 | ~10  | 1.0  |      |   |
| αņ   | 35701C      | Zone 633cm -<br>line1 49cm | Silicitical zone<br>with gfp<br>Grainents | rusty & FD<br>Some mon staining   |                 |              |                        |                 |                 | 20   | 0.6  |      |   |
| (12) | 25702       | 99cm - 219cm               | gip between<br>usins                      |                                   |                 |              |                        |                 |                 | 100  | 0.2  |      |   |
| (13) | 29503       | 219 cm = 289 cm            | silicitied<br>vein                        | Mn staining                       |                 |              |                        |                 |                 | <10  | 7.4  |      |   |
| (14) | 37304       | 289cm - 325cm              | 2 FP wallrock                             | •                                 |                 |              |                        |                 |                 | 10   | 0.4  |      |   |
| (15) | 57 27505    | 20ne 5 line Z              | 2 fp wailrock                             | •                                 |                 |              |                        |                 | - <sup>20</sup> | 410  | 0.2  | £    |   |
| (16) | 57 22506    | 43 cm = 143 cm             | vein materiel                             | Mn stanied<br>rusta glp           |                 |              |                        |                 |                 | 20   | 1.2  |      |   |
| (17) | 57 27507    | 143 cm - 34 1 cm           | lurge off<br>zone                         |                                   |                 |              |                        |                 |                 | -10  | 0.4  |      |   |
| (18) | 57 27508    | 3664 - 401                 | vein zone                                 | ma stained<br>moto q.fp fragments |                 |              | some a sp interstitual |                 |                 | 20   | 2.6  |      |   |
| (19) | 2709        | 401cm - 465                | gfp well rock                             | · · · · · ·                       |                 |              |                        |                 |                 | 30   | 0.2  |      |   |
| (20) | 57<br>27510 |                            | vein                                      | Mn stained<br>rusty gsp           |                 | 7 <b>2</b> 7 | 7 cm wide vein         |                 |                 | 800  | 0.7  |      |   |

# J.C. ST. ... HEN EXPLORATIONS LTD.

# GEOCHEMICAL DATA S... CET - ROCK GEOCHEM SAMPLING

B.C. GOLD SYNDICALE

| CALIDI | <br>T | 2 | 11+5 | < |  |
|--------|-------|---|------|---|--|
|        | <br>- |   |      | - |  |

Newex

PROJECT\_

Griz 3 Abouring LINE

104K/10E

NTS

DATE August 12

(20)

AIR PHOTO NO. BC 5614 075

|        | SAMPLE  | LOCATION                         |                              | ALTERATION                              | MINERALIZATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | STRIKE         | ADDITIONAL                         | WIDTH | INT   | AS                                       | SAYS        |      |    |
|--------|---------|----------------------------------|------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------|-------|-------|------------------------------------------|-------------|------|----|
|        | NUMBER  | 2004/10/1                        | TYPE                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DIP            | RÉMARKS                            |       | WIDTH | Au                                       | Aly         | Pb   | Z. |
| (1)    | 25711C  | 20ne Blinel<br>0-55cm            | gfp we wrock                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                    |       |       | <10                                      | 0.1         |      |    |
| (2)    | 25712   | 55cm-100cm                       | vein material                | Min Staining<br>Silicification          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | rusty gtp fragments                | İ     |       | 120                                      | 9.2         |      |    |
| (3)    | 25713   | 1001m - 155cm                    | altered gfp<br>between veins |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                    |       |       | <10                                      | 0.2         |      |    |
| (4)    | 25714   | 155cm . 220cm                    | 5 4 5 4 4 4 4 Pin<br>Ve in   | wery altered<br>Weethered<br>Mn Stained |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | need demugh                        |       |       | <10                                      | 0.7         |      |    |
| (5)    | 25715   | 770cm-268cm                      | Veinwith<br>Some g.fp.       | silicified<br>Mn stained                | galena, sphelerike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | assay                              |       |       | 0.044                                    | 1.72        | 0.31 | 1. |
| (6.)   | 35716   | Dugen - 307cm                    | vein material                | Win stained<br>weathered                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1              | grungy material                    |       | 4     | <10                                      | 0.6         |      |    |
| (7)    | 25717   | 30 7cm - 3 40cm                  | Vein<br>"Hisyracke"          | Mn staining<br>silicified               | galena sphalenite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | <u>assey</u>                       |       |       | 0.016                                    | 16.97       | 8,29 | 6: |
| (8)    | 25718   | 340cm - 388cm                    | altered well<br>rock offp    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r.             | 1                                  |       |       | <10                                      | 0.4         |      |    |
| (9)    | 25719   | Zone & 12m<br>above line 1       | vein                         | Silicified<br>rust of gop fragment      | minor galena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                                    |       |       | -10                                      | 33.0        |      |    |
| · (10) | 257207  | Griz 17                          | ,                            | rusty surfaces                          | Parite 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1              | adaniticy /                        |       |       | $r < s_{\Phi} \circ s_{-} g \circ s_{-}$ |             |      |    |
| aŋ.    | 35721   | 10 maboue<br>B-127               | quertz yein                  | 1 1                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | IDEM wide<br>line expressed 670/E  |       | I     |                                          |             |      |    |
| (12)   | 85722 / |                                  | quert vein<br>fxoat          | few rusty spots                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | talus slope with q. FP             |       | 1.1   |                                          |             |      |    |
| (13)   | 25773   | west side of<br>Ggiz 1           |                              | striceous fusty                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /              | vech a ferra                       |       |       |                                          |             |      |    |
| (14)   | 25/734  |                                  | gipwith drugg quertz         | : /                                     | sperite speriterite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ·              | anguter fight from                 | 1     | 1     |                                          | 1<br>1<br>2 |      |    |
| (15)   | 25735   | large gung                       | q fp with<br>q tzyeins       | silvertied                              | / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | trend<br>92° N | veins Sma wide crossenttin         |       |       |                                          |             |      |    |
| (16)   | 257/26  | Amebole<br>257256                | gtz veins<br>within gip      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 109/50         | 45 p breferiaved                   |       |       |                                          |             |      |    |
| (17)   | 25727   | in Stream in<br>large guily near | atz vein                     | /                                       | pyrite /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1             | rusty apellow beathered<br>surface |       |       |                                          |             |      |    |
| (18)   |         |                                  |                              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | [                                  |       |       |                                          |             |      |    |
| (19)   |         |                                  |                              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | *                                  |       |       |                                          |             |      | 1  |
|        |         |                                  | 1                            |                                         | The second secon |                |                                    | 1     |       |                                          |             |      |    |

12.7

J.C. STLEHEN

GRIZI, W

GRIZI Near topofise

above 25725

Astreamin 1ge

guille

GRIZI

Side @

GRIZI

gully

4m. 11

25723

25724

25725

25726

25727

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19) (20) silicor, cte

2 FP, drugy

Sil. She Sur

gtz vers + is. 1. zono in

thue-grey gthe

Jein

veins

### GEOCHEMICAL DATA SIJEET - ROCK GEOCHEM SAMPLING

hardness

92 /80 A

76/90

2

B.C. GOLD SYNDICATE

104K/10E NTS

APPARENT

stived sh - specularite

float, angular in stream 1 ge gully, downstream from 5726.

WIDTH TRUE

WIDTH

|             | EAFLU                | MATIONS 1                 | LID.                      |                                 |                                    |          |                                         | NTS                         |
|-------------|----------------------|---------------------------|---------------------------|---------------------------------|------------------------------------|----------|-----------------------------------------|-----------------------------|
|             | sampler<br>date      | 1. Pautler<br>19 5- Au    | g14                       | PROJECT                         | Newey                              | <u>n</u> | <u> </u>                                | <u>LINE</u><br><u>AIR P</u> |
|             | SAMPLE<br>NUMBER     | LOCATION                  | ROCK<br>TYPE              | ALTERATION                      | MINERALIZATION                     | STRIKE   | ADDITIONAL<br>REMARKS                   |                             |
| (1)         | 77 <del>4</del> 93 B | rusty cirque<br>GRIZ3     | altered off?              | Silicification                  |                                    |          |                                         |                             |
| (2)         | 77494                | NE side of<br>FiczenLgke  | silicifiel<br>zone in gff | minor cte,                      | · · ·                              |          | GRIZ3                                   | 3                           |
| (3)         | 77495                | NW of Grizs               | actued gfp.               | v. rusty  <br>silicification    | abundant py<br>especially on forct | ine      |                                         |                             |
| (4)         | 77496                | Real 15 on<br>GRIZ 1      | altered<br>9. fp.         | v. rusty                        | dueben . py                        |          |                                         |                             |
| (5)         | 77497                | just east of<br>15, GRIZI | gtz-carb<br>Vein bx - fra | ruoty<br>ST ofp                 |                                    |          |                                         |                             |
| (6.)        | 77498                | 900 m. Sof<br>LCP GRIZZ   | altered °                 | rbesty                          | PY                                 |          |                                         | - 1                         |
| (7 <b>)</b> | 77499                | SUM W OT DOS              | aphabitic v.              | silicious, lt.                  | Mr starring                        |          |                                         |                             |
| (8)         | 77500 B              | GEIZ 1<br>4005/100E       | altered interac           | e-rusty .<br>- minor silicitic. | minor py<br>Mn sterning            |          |                                         | 1                           |
| (9)         | 25720C               | GRIZI                     | V. Silica-rich<br>(usty e | , aphanitic,                    | PY                                 |          |                                         | 1 <sup>7</sup>              |
| (10)        | 25721                | GRIEI                     | gtz vein                  | fusty weath                     |                                    | 67%E     | 10m above B-127<br>10 cm under In expos | sure                        |
| (11)        | 25722                | GRIZI                     | milky StE<br>vein StE     | few monty<br>spots              |                                    |          | ploat in falus angus                    | las                         |

i altered

V. susty

V. noty

rusty - yellow

Surgace

V. rusty altered abundant py silver-grey mineral,

lots py

rusty

LINE GITE QUITAS and una 5614 073 RC AIR PHOTO No.

Au.

V

210

410

410

<10

110

<10

<10

20

20

-10

50

50

410

10

</0

<10

L

15

A

-64,

6

V

7

0.1 \$500

2

ASSAYS

0

As

0.3

-

0.1

10.1

0.2

0.1

0.4

0.6

0.7

0.4

0.1

0.1

0.5

0.1

0.1

0.1

30

11

5

6

7

22

7

15

B.C. GOLD SYNDICATE J.C. STEPHEN EXPLORATIONS LTD. **GEOCHEMICAL DATA SHEET - SOIL SAMPLING** NTS 104 K/10E SAMPLER \_ 1. Payther + Don G. LINE GAZ PROJECT Heuren AIR PHOTO NO. RC 5614 Aug 6 - 7/81 DATE 075 DESCRIPTION ASSAYS SAMPLE ADDITIONAL OBSERVATIONS OR REMARKS LOCATION Depth Horiz SLOPE VEG. NO. % ORG. Colour Part Size Ph Pb Zn cm Au Ag 45 - above galena vein trending 2000 81-NKG-D Clayey sitt dark 11 Sentle grass med B 6 QTOON / OTOE 46 pr. 40 0-1 perper med 11 5 clayey Sil4 B mod 0+00 N/1-00E 82 =10 25 pr. 0.1 on top of gpp ofe. fire K 4' 11 0+00N/2+00E mod. 19 10 0.1 SAP ote dk. med Reptly 32 30cm above gertle 11 0+00E/1+ 20N silt cm 210 0.1 11 pr. cm 10 clay grass dk bi 0+00E/1+40N flat A+C () angular float of gop moss 10 410 0.1 reptly rear ate of gop, some of p float. 0+00E/1+60N 8 B 1000 11 1 9 silt 410 0.1 10" med-dk 0+00E/1+80N septily gfp angular plant B mod 11 11 bi silf. 10 -10 0.1 0+00E/0+DON above gle ote , near + above galena veins med fine SOM mod -B 7 low 40 0.1 25 405 steep grass 0+00=/0+40N Clayery Clayery Sand man gop ote gentle 8 mess 11 B mad 14 20 0-1 grass Near gfp ote + felus dk pr. O+ODE/OT WON mod-6 ictory 12 11 17 210 01 hi 51/1 above off ote. O tOOE/ TOON light Or-bi rephe mod SOME 5 B mod dayer grass 10 01 v. pebbly silf light mod grass 1+00E 0 +20 N lots angular gfp B 25 few 6à or - Br 5 steep <10 0.1 gentle nass slide +14 Sandy 1. septly few some My float. HOOE OHAON B 66 10 us fy mass 6 <10.0.1 ang. gop float, above gop of 2ebbly 1+00 E/0+ 60 N med mod B mod 72 15 Silt 10 210 0.1 121 dk M Ner off ote Alat 11 15 ,1 62 I+COE/O+BON 11 10 0.1 directly on top of the ote Bi ned be few 11 11 85 1+00E/ 1+ 00 N 7 i۱ 15 <10 0.1 in crevices of p/p ofe few Ø gentle B? 11 15 moss 1 tOOE/ + DON 11 16 40 0.1 selster 912 ofe in area

BT - 1 + 00E/1+80N

1+00E/1 40N

+00E/1+60N

56 et. br. fine

11

11

20

24

B

B

med

11

seppy

mass mod. more

11

11

No float in hole i near of p ote below gop ofe

13

Ŧ

74

7:

2

7

8

12

9

7

76

5

20 0.1

<10 0.1

0.1

4/0

12

11

3

#### **GEOCHEMICAL DATA SHEET - SOIL SAMPLING**

B.C. GOLD SYNDICATE

SAMPLER J Pautler & Don G.

PROJECT Newex

104K/10E 500.3 LINE

NTS

AIRPHOTONO. BC 5614 075

DESCRIPTION ASSAYS SAMPLE ADDITIONAL OBSERVATIONS OR REMARKS LOCATION SLOPE VEG. Depth Horiz NO. Part Size % ORG. Ph Colour Pb AN As Z Au Cm STODE P-bbles grass near gfp outerop, many peobles of Nach 404 SINKBOR Re every Sulty mod. m055 0.1 14 82 10 O+20N brown 5-66. 2-00E pebbley dark moss directly over ofp outerop B+C 4110 84 mod. flat 10 0.1 15 10 brown Ot40N no rock in hole , near off outerop -Devobley 2+00E medium grass clay flet 12 83 B 100 20 brown moss 20 0.1 O+60N 3400E no sample due to snow Check 9: 12 10 0.1 C + BON 19 Sample. 2+00E 1+000 no sample due to snow below snow. gsp outerop and float. Chick 3+002 300 gentle 1+20N very muddy usually eovered in snow "glacial, medium pobbhy 7+00E brown Sulty VIE gentle hone 10 0.1 14 3 1+40 N sand 2Fp outerop 2+005 paper grass meduum thin Anorizon 18 flat Silvy 11 100 muss <10 0.1 16 brown 1+ KON 440 float oround groos rootlets present, off float in region medium Pebbley J+0DE B mod. flat 11. clay 5. Ht 20 moss 0.1 14 20 1780N brown "Fine G+00E Acre intrusive flyat in hole grass nigh morhanate 8 35 ×10 0.4 20 22 650000 5.144 0+205 A few peobles O+ODE orange Fine Silt 91005 moderate 10 92 high 10 В Sand 12 bian 10 0.1 07405 near intruside caterop CACOE prover talus, below ofp outerop SI NABT Dinnye mod. NUDDERUKE Grass В 9 22 9 10 Silty 10 0.1 brown 01605 stange CHUDE ma monerate grass 3- 144 mod. 20 19 10 B <10 0.1 brown 0+805 Sund OTOCE orance 91059 above gep outerup Sine 1 3 Sew 2 B 12 14 40 0.1 moss 1+005 brown senary Sine : moss 14006 necuum BINXB gonthe 10 B 5-144 moch. grass 16 8 11 10 0.1 0+205 6000 Sena 95425 tains sample coarse to I+ODE SINXBT mechum Fine med FOME K ٤ mortant 5 10 10 B </0 0.1 0+405 newse telus binst Deboly gruss 24P floct 1+00E medicam SINXB Few 9 gentle 6 8 DEPLA 10 0.1 moss B 0+605 sand mechan fine 1 FOOE slightly rusty moss flat B few 5 22 8 brown 10 0.1 04805 SULT IT ODE shrubs fine meclessom slightly rusty 13 flat 5 3 few 14 B 0.1 Sunity gruss <10 1+005 prown Fine 2+000 prange buck somewhat rusty Ferei 10 R 5.144 gentle brush 80 42.0 1000 3000 19 0+205 brown taken Am east of station Sand grass

DATE August 7/81

### GEOCHEMICAL DATA SHEET - SOIL SAMPLING

B.C. GOLD SYNDICATE

SAMPLER ] Butler

PROJECT Nowex

104 K/10E Griz 3 LINE

DATE August 7/81

00

---- eu an

NTS

AIR PHOTO NO. BC 5614 075

| SAMPLE   |                         |    |       | = 0.              | DESCRIPT       | TION   |    |                                       | -     | ADDITIONAL OPERDIVATIONS OF BELIARYS             |     |
|----------|-------------------------|----|-------|-------------------|----------------|--------|----|---------------------------------------|-------|--------------------------------------------------|-----|
| NO.      | LOCATION                | Cm | Horiz | Colour            | Part Size      | % ORG. | Ph | SLOPE .                               | VEG.  | AUDITIONAL OBSERVATIONS OF REMARKS AU Aa As TB   | Z,  |
| EI NXB   | 2+00 E<br>0+405         | -  | A-B   | dark<br>brown     | peobley        | few    |    | moclerute                             | gruss | 410 0.7 39 20                                    | 15  |
|          | 8+00E<br>0+605<br>8+00E |    | No    | Sam               | ple.           |        |    |                                       |       | No sample                                        |     |
|          | 0+805                   | 10 | B     | brown             | Sand           | Few    |    | gentle                                | grass | <10 0.1 12 12                                    | 6.  |
|          | 2+00E<br>1+00S          | 7  | B     | med<br>br.        | silty.<br>sand | few    |    | genfle                                | grass | 40 0.1 9 4                                       | 4:  |
| GRIF     | 3                       |    |       | 15/81             |                |        |    | · · · · · · · · · · · · · · · · · · · |       |                                                  |     |
|          |                         |    | 7     | 10/01             | :              |        |    |                                       |       |                                                  |     |
| BT - 138 | showing                 |    | B     | It. b1.           | coarse         | mod    |    | gentle                                |       | 7 m w. of top of zone 1 at showing. 40 0.1 7 7 a | 85  |
| BT - 139 | Showing                 | -  | B     | lt bi             | peloby         | few    |    | mod                                   |       | im W. of top of vern in zone 1 410 0.1 22 33 1   | 118 |
| BT-140   | Showing                 | 3  | B     | dt or-<br>pr.     | med            | mod    |    | gentle                                | moss  | - above steep gully in Sprote 10 0.1 14 4        | 7.  |
|          |                         |    |       |                   |                |        |    |                                       |       |                                                  |     |
|          |                         | 4  |       | 1                 |                |        |    |                                       |       |                                                  |     |
|          |                         |    | 1     |                   |                | 2      |    |                                       |       |                                                  |     |
|          |                         |    | 1     | $[1]_{0} = S_{1}$ | 1              |        |    |                                       |       |                                                  |     |
|          |                         |    |       |                   |                |        |    |                                       |       |                                                  |     |
|          |                         |    |       |                   |                |        |    |                                       |       |                                                  |     |
|          |                         |    | -     |                   |                |        |    |                                       |       |                                                  |     |
|          |                         | -  |       |                   |                |        |    |                                       |       |                                                  |     |
|          |                         |    |       |                   |                |        |    |                                       |       |                                                  |     |

### **GEOCHEMICAL DATA SHEET - SOIL SAMPLING**

B.C. GOLD SYNDICATE

SAMPLER J. Pautler July30- Aug 8/81 DATE

Dewey PROJECT

LINE Griz claims + and AIRPHOTONO. BC 5614 075 025

NTS

104 K/10E

|      | SAMPLE    |                   |      |       |                 | DESCRIPT        | TION   |    | SLOPE                                 |       |                                         |            |     |                      |    |     |
|------|-----------|-------------------|------|-------|-----------------|-----------------|--------|----|---------------------------------------|-------|-----------------------------------------|------------|-----|----------------------|----|-----|
|      | NO.       | LOCATION          | (cm) | Horiz | Colour          | Part Size       | % ORG. | Ph | SLOPE .                               | VEG.  | ADDITIONAL OBSERVATIONS OF REMARKS      | Au         | Aq  | As                   | F6 | Z   |
| 81-1 | B-105     | Frozen<br>Lake    | 5    | B     | rusty<br>dk bi. | fire            | 13     | dy | flat                                  | moss  | gfp ok in ana, altered                  | <10        | 0.1 |                      |    | 92  |
|      | B-106     | GR123             | 5    | B     | ors bi          | ".              | 5      | ч  | 17                                    | 11    | Stp ote in area                         | <10        | 0.1 |                      |    | 70  |
|      | B-107     | GEIZ3             | 2    | B     |                 | med             | 42     | 4  | mod.                                  |       | 2fp ote.                                | 10         | 0.1 |                      |    | 96  |
|      | B-108     | Frozen L.         | -    | в     | V. rusty        | fine            | a      |    | flat                                  | moss  | Stip float.                             | <10        | 0.1 |                      |    | 10  |
| r (  | BT-109    | NW of Froze       | 5    | B     | lt. 61.         | med             | 2      |    | ιć                                    | grass | on top of glp ote. Eside of             | 10         | 0.1 | 12                   |    | 10  |
|      | BT - 110  | ų                 | 5    | B     | ц               |                 | 4      |    | 17                                    | 11    | above the ote in contact of seds.       | <10        | 0.1 | 73                   |    | 21  |
| 100  | B-111     | 1(                | ١    | B     | 11              | ;               | 2      |    | ĸ                                     | shubs | man + as ove of p/sel contact?          | <10        | 0.1 | 73                   |    | 18  |
| , (  | BT-112    | 11                |      | B     | rusty<br>or-bi  | med             | 22     |    | Steep                                 | -     | on v. pyritic ote of gfp.               | 10         | 0.1 | 225                  |    | 15  |
|      | BT-113    | GRIZ 3<br>1.8N/3W | 2    | в     | Or-Br<br>rust   | med -<br>coarse | R      |    | gentle                                | -     | below cliff of gor.                     | 10         | 0.1 | 6                    |    | 12  |
|      | B-114     | GRIZI<br>Near 15  | ~    | B     | n               | med             | 2      |    | 4                                     | grass | with gfp float, some v. moty<br>with by | 10         | 0.1 | 9                    |    | 8   |
|      | B-115     | - e(              | 2    | B     | ak or-<br>Br    | fine            | 4      |    | flat                                  | grass | rusty of float w/ py +                  | 4/0        | 0.1 | 22                   |    | 7:  |
|      | BT-116    | GR122             | 6    | в     | ak or-Bi        | Coarse          | 5      |    | gentle                                |       | rusty - non rusty gfp float             | 20         | 0.1 | 12                   |    | 10: |
|      |           |                   | 1    |       | l Miller        |                 |        |    |                                       | ×     |                                         |            | 1   |                      |    |     |
|      |           |                   |      | 1     |                 | 1               |        |    |                                       |       |                                         |            |     |                      |    |     |
|      |           |                   |      |       |                 |                 |        |    |                                       |       |                                         |            |     |                      |    |     |
|      |           |                   |      |       |                 |                 |        |    |                                       |       |                                         |            |     |                      |    |     |
|      | 543)<br>- |                   |      |       |                 |                 |        |    |                                       |       |                                         |            |     |                      |    |     |
| *    |           |                   |      |       |                 |                 |        |    |                                       |       |                                         |            |     |                      |    |     |
|      |           |                   |      |       |                 |                 |        |    |                                       |       |                                         |            |     |                      |    |     |
|      |           |                   |      |       |                 |                 |        |    | · · · · · · · · · · · · · · · · · · · |       |                                         | <u>   </u> |     | <b>├</b> ── <b>├</b> |    | ł   |



**GEOCHEMICAL DATA SHEET - SOIL SAMPLING** 

B.C. GOLD SYNDICATE

19

4

17

7

10 0.1

10 01

40 0.1

01 10

20 10

7

23

21

4

104 K 10F NTS LINE GRIZ

major talus flow from another quely

fuither up from last

SAMPLER D. KEpicki M. HUGHES AUGUST 12 /81 DATE

61

81 - NIXC

BT

81-NXC

BT

81-0.46

Bi

4+75E

4+90E

5+256

+)

11

11

locm

12 cm

Scm

11

11

11

11

it

11

11

..

11

..

11

14

11

11

.1

10

PROJECT TALUS SAMPES NX

AIR PHOTO NO. BC 5614 075

DESCRIPTION ASSAYS SAMPLE ADDITIONAL OBSERVATIONS OR REMARKS LOCATION SLOPE VEG Depth Horiz NO. AS Part Size % ORG Ph Colour Pb. ZI Au Aze furthest cliff outerop, directly bottom fuce cliff wall. From OFP pock EI-NXG-370+ oalsum tul. burn 1cm Otoor fine piush 4 <10 0.1 6 Surtu 6 rusty .. Si-NXG Eulus begins in sample location from QFP sliff. 11 " 11 grassy Sim OTZOE BT 410 6.1 5 15/10 10 down slope 15 m. 81-NKG 14 " 11 Sim 11 0+35E BT ii 11 just below Mr staining on cliff 81-NXG " DISOE 10 cm A 90 7 BT 5 40 0.1 N 81-NX6 4 QFP cliffs directly above grassy 0+756 Lem talus 78 5 4 BÍ 10 0.1 8 " 11 5 70 next major takes flow lastward B " 20 0.1 EI-NXG " slight 2cm 1tooE grassy 5 8 40 0.1 3 Br 2561. below QFP ole cliff. " : sprace 4ft.tree BI-NIXC 11 ft 11255 Zem Br 40 0.1 4 72 51 1 11 Major talus flow " " Flowery -SI-NXC It SOE Scin " 73 spince 4 5 BT 10 0.1 11 4 11 11 11 11 EI-WXG 15cm 11 spaise 2tcoF 83 24 10 0.1 15 Br 2+250 ---> 11 Ti 11 taken from small gully, itop of flow 000-1 5 85 12 mod. 81-NXC 11 2+75E 5cm trees BI 0.1 5 7: 20 8 11 11 neavily 81-NXG 11 11 5+005 following edge of diff bottom. inod 10cm Br treed 7 16 8= 10 0.1 SI-NXC 11 11 11 A between 2 QFP cliffs . 11 3+506 20 mod 9 7: BT 10 0.1 7 con well sorted smedium grade SI-WIL 11 11 12 15cm 4+005 talus slight 25 BÍ 33 10 0.1 81-NXC it major tulus flow from gally .. 4+500 15 cm 11 1

# APPENDIX II

(\*\*

(: :

# PETROGRAPHIC DESCRIPTIONS

Specimen : JP-2 FELDSPAR PORPHYRY - GRIZ 3 SHOWING

Classification : Trachyandesite (volcanic)

| 1 1 | Mode : | - Plagioclase             | 35-40%     |
|-----|--------|---------------------------|------------|
| (,  |        | K-spar                    | 40%        |
|     |        | Calcite & other secondary | minrls.10% |
|     |        | Biotite                   | 5%         |
|     |        | Quartz                    | < 5 %      |
|     |        | Accessories               | 1%         |
|     |        | Opaques                   | 18         |

Handspecimen : Grey, massive volcanic rock containing phenocrysts of plagioclase, altered (calcareous) amphibole and biotite. The matrix is very rich in K-spar, as indicated by the yellow colour in the stained block.

Thin section : Texture : porphyritic, holocrystalline; most likely a effusive rock.

Plagioclase occurs as euhedral and subhedral phenocrysts ranging up to 5 mms. in size. Although finely developped oscillatory zoning is present in many of the laths, the average composition appears to be An-40, andesine. (Determined by combined carlsbad/albite method). Carlsbad, albite and periodine twinning are all present. All grains contain small patches and thin veinlets of secondary carbonate.

Biotite forms brown pleochroic phenocrysts up to 2 mms. in size. These are frequently somewhat corroded and locally intergrown with plagioclase phenocrysts. Most grains are surrounded by thin rims of granular opaques. Calcite occurs in granular aggregates up to 2 mms. in size, which are clearly pseudomorphous sfter a ferro-magnesian phenocrystic phase. Frequently the carbonate surrounds cores composed of fine grained, aggregate clayminerals, white mica and feldspar. In turn, they are rimmed by fine granular opaques. Calcite occurs furthermore as irregular secondary patches throughout the remainder of the rock.

K-spar forms the bulk of the fine grained groundmass. together with lesser plagioclase and probably some quartz, secondary minerals, apatite, opaques etc.

Apatite occurs as euhedral and subhedral accessory crystals up to .25 mms. in size, scattered throughout the groundmass. A few grains of subhedral zircon are present as well.

Opaques occur as fine disseminated granular material. The coarser grains (up to .5 mm.) are subidiomorphic and tend to form aggregates.

Note : possibly this specimen is a effusive variety of spec. JP-1.

1

Specimen : JP-3 ALTERED FELDSPAR PORAYRY - GRIZ 3 SHOWING

Classification : Altered feldspar porphyry

| Mode | : | Quartz            | 40-50% |
|------|---|-------------------|--------|
|      |   | Clayminerals      | 30-40% |
|      |   | Limonitic calcite | 10%    |
|      |   | White mica        | 5%     |
|      |   | Accessories       | 1%     |
|      |   | Opaques           | 1%     |

(.

1

Handspecimen : Strongly altered (limonitic & calcareous), porphyritic volcanic rock. Altered feldspar (plagioclase) and amphibole(?) phenocrysts are nacroscopically visible. The vague primary texture somewhat resembles that of specimen JP-2.

Thin section : The groundmass of this specimen appears to be composed predeminantly of fine grained, granular quartz (av. size .18 mm.), clouded by dusty secondary minerals, probably mostly clayminerals. Scattered through this matrix are abundant, irregular secondary patches of limonitic calcite, clayminerlas and a bit of white mica. Probably the quartz itself is of secondary origin, having replaced a primary volcanic groundmass. This throws considerable doubt on a rhyolitic classification for this specimen. It may be a silicified and altered version of JP-2, but is here classified as a altered feldspar porphyry.

Scattered throughout the groundmass are accessory amounts of euhedral apatite (up to .25 mm.) and subhedral zircon.

Original phenocrysts of plagioclase, amphibole and biotite are represented by pseudomorphs composed of clayminerals, white mica, limonitic calcite and opaques. These range up to 4 mms. in size and resemble those of spec. JP-2 in being frequently surrounded by rims of fine granular opaques, which are mostly altered to limonite.

Small grains of subidiomorphic opaques are scattered throughout.

Specimen : JP-5 GRIZ 3 SHOWING

(

Classification : Galena & sphalerite bearing cataclastic rock

| Mode | : | Quartz                    | 60-70% |
|------|---|---------------------------|--------|
|      |   | Clayminerals & white mica | 10%    |
|      |   | Calcite & limonite        | 10%    |
|      |   | Galena & sphalerite       | 10%    |
| -    |   | Apatite & zircon          | tr     |

Handspecimen : Limonitic and calcareous banded breccia/protomylonite containig lenticular domains rich in galena and sphalerite. The rock is crosscut by post mylonitic fractures, some of which have been healed by carbonate.

Thin section : Irregular to lenticular, nebulous domains of very fine grained to aphanitic material (rich in clayminerals but otherwise silicified) are the only indicators of a primary lithology. Locally a faint suggestion of a original porphyritic texture is present as well, with claymineral aggregates resembling altered phenocrysts set in a fine grained, siliceous matrix. These are visible in the lower part of the section. The remainder of the specimen is composed of secondary minerals, mainly quartz carbonate, limonite, galena and sphalerite, with lesser clayminerals and whith mica. Some of the quartz forms granular textures masses rather similar to the groundmass quartz in spec. JP-3. Small, irregular patches and veinlets of lamonitic calcite and clayminerals are everywhere present. Relict zircon, apathe and altered biotite are present within these domains. The mest of the quartz is clearly of hydrothermal origin, replacing the earlier lithologys along veinlets and lenticular domains generally parallel to the cataclastic fabric. Grainsize ranges from extremely fine grained to approx. .5 mms.

Calcite forms lenticular bodies up to 3 mms. thick, parallel to the cataclastic fabric. It is also present in irregular secondary patches and in veinlets along late fractures. Cross cutting relations suggest several episedes of remobilization.

Sphalerite occurs as subhedral crystals, often faintly zoned, up to 1 mm. in size, It is clearly associated with galena within the relatively coarser graited quartz domains. Minor amounts of pyrite are present as well.

Specimen : JP-6 GRIZ 3 SHOWING

Classification : Silicified, veined and altered trachyandesite

| Mode | : | Quartz 30        | )-45% |
|------|---|------------------|-------|
|      |   | Clayminerals     | 25%   |
|      |   | Calcite 30       | )-40% |
|      |   | Zircon & apatite | tr    |
|      |   | Sphalerite       | <5%   |
|      |   | Other opaques    | 1%    |

(

Handspecimen : Light grey, siliceous and calcareous vein breccia. Angular fragments with a original porphyritic texture, very similar to spec. JP-2, are clearly visible in cut surface. This spec. is most likely a altered, silicified and veined version of JP-5. Rare, small specks of galena are visible in handspecimen.

Thin section : The above view is conclusvely verified by thin section examination. The pre vein texture is identical to thatin spec. JP-3. Abundant carbonate occurs in small secondary patches, as larger granular masses and in veinlets. As tiny euhedral crystals it is associated with chalcedony veins, which run along the length of the section and crosscut all other fabrics. Locally these veins are a bit vuggy.

Clayminerals occur as very fine grained aggregates associated with granular quartz (as in JP-3). A few relict zircon and apatite,crystals remind one of the original nature of this rock. Relict phenocrysts are not very well visible in thin section but are clearly present in handspecimen. Opaques occur as scattered, small grains and aggregates. A few small grains of sphalerite (av. size .25 mms.) are clearly associated with galena and secondary granular quartz. Specimen : G-1 GRIZ 3 SHOW NG

ĺ

Classification : Siliceous and calcareous vein-breccia + ore minerals

| Mode | : | Quartz       | 40-50% |
|------|---|--------------|--------|
|      |   | Calcite      | 40%    |
|      |   | Clayminerals | 10%    |
|      |   | Opaques      | 5-10%  |

Handspecimen : Siliceous and calcareous vein-breccia containing galena and sphalerite. Light coloured siliceous fragments are set in a dark, aphanitic siliceous vein network. Some of the veins are a bit hematitic. A few dark areas (fragments?) contain fine, yellow metallic needles.

Thin section : Texturally and mineralogically this specimen is somewhat similar to the previous two samples, combining elements of both. However, original (porphyritic?) textures are only very poorly preserved among some of the finer grained siliceous, claymineral rich domains. These are here interpreted as remnants of the primary, albeit altered, lithology. Only a few cf these are present, the remainder of the sample being composed of a complex multistage vein network. The pattern of veining is as follows:

- during which the ore minerals were introduced.
  - stage 2 : Crosscutting calcite veinlets. These are locally a bit
    hematitic and appear to have remobilized some of the ore
    minerals.
  - stage 3 : Late, very fine grained silica (chalcedony) veinlets, crosscutting the previous two stages. This stage includes some brecciation and fracturing. The resulting fabric is in part cataclastic. At least some late stage movement along fractures has occured after injection of these fine grained silica veins, juxtaposing them against earlier stage domains.

The fine grained euhedral, yellow sulfide needles are composed of pyrite. They are up to 1 mm. long and have a rhombic cross-section. Locally it is intergrown with galena. Galena locally forms feathery, anisotropic aggregates, probably due to cataclastic deformation. Sphalerite is associated with the galena and pyrite, and forms zoned, subhedral crystals up to 1 mm. in size. Specimen : G-2 GRIZ 3 SHOWING

Ł

Classification : Siliceous and calcareous vein-breccia.

| Mode : | Quartz 30%              |     |
|--------|-------------------------|-----|
|        | Calcite 40%             |     |
|        | Clayminerals/white mica | 10% |
|        | Opaques                 | 20% |

Handspecimen : Galena and sphalerite bearing vein-breccia. A distinct anisotrop:c fabric is probably the main difference with spec. G-1. Both calcite and silica veinlets are present, and any remaining original lithology is likely highly silicified and altered. Late fractures have slightly offset some of the catclastic fabric, and hence are younger in age.

٢

. . . .

Thin section : In thin section this specimen is not significantly different from spec. G-1, at least mineralogically. Fine grained, silicified domains rich in clayminerals and a bit of white mica, probably represent the oldest phase in this rock. A crosscutting sequence of veins appears to be similar to that in spec. G-1. Spalerite occurs mainly in calcite veinlets and may have been remobilized from a original association with early quartzveins. It forms grains up to 5 mms. in size. Very fine grained siliceous veins (stage 3) which locally crosscut calcite veins, contain abundant euhedral calcite crystals, probably due to remobilization from the earlier calcite veinlets. The coarser grained calcite crystals (up to 3.5 mm.) are a bit bent, lending support to the notion of late stage cataclastic deformation as advertized under G-1. Subsequent fractures have offset the stage 3 structures somewhat. Galena, associated with spalerite, ranges up to 1 mm. in size. APPENDIX III

C

€

**N** 

ŧ

. . .

# STATEMENT OF QUALIFICATIONS

#### STATEMENT OF QUALIFICATIONS

I, Jean Pautler, am a graduate of the Honours Bachelor of Science program at Laurentian University, Sudbury, Ontario, 1980.

I have the following employment experience:-

April 1981 to present Geologist with J.C. Stephen Explorations Ltd. North Vancouver, B.C.

May to October 1980 Geologist with J.C. Stephen Explorations Ltd.

May to August 1979 Assistant geologist with Kelvin Energy Ltd. Calgary Alberta.

May to September 1978 Assistant geologist with the Ontario Geological Survey, Toronto, Ontario

NOVEMBER 1981

**.** .

ſ.

6

JEAN PAUTLER

5