827194

REPORT ON GEOLOGY AND DRILLING

AT THE

MOUNT SICKER PROPERTY, 1972

N.T.S. 92B/13

ВУ

J. W. SIMPSON

TABLE OF CONTENTS

		Page	
I	SUMMARY	1	
II	CONCLUSIONS	3	
III	RECOMMENDATIONS	Ą	
IV	INTRODUCTION		
	(A) Location & Access	5	
	(B) Claims	5	
	(C) History of Property		
	(1) General	7	
	(2) Ducanex Involv	rement 9	
V	GEOLOGY		
	(A) Regional	10	
	(B) Detailed	11	
VI	MINERALIZATION		
	(A) Old Mine	15	
	(B) 1972 Drilling Resul	ts 15	
VII	REFERENCES	17	
/III	PARTIAL BIBLIOGRAPHY	17	

LIST OF FIGURES

S-I	Location Map			
S-2	Claim Map			
S-3	Overlay - Mineralization &	Drill	Hole	Locations
S-4	Cross Section through Tyee	& DDH	S-72-	-5
S-5	Geology near DDH S-72-1 & S	-72-2		

APPENDIX

I Diamond Drill Logs for S-72-1 to S-72-5 incl.

REPORT ON GEOLOGY AND DRILLING

AT THE

MOUNT SICKER PROPERTY, 1972

N.T.S. 92 B/13

BY

J. W. SIMPSON

I) SUMMARY

Ducanex optioned the Mount Sicker property in the spring of 1972 for the purpose of testing the possible extension of known, but now mined out, mineralization at the old mine site and exploring for zones of similar volcanogenic Cu-Zn mineralization on other parts of the property. The theory that other zones existed at depth or along strike was based on analogy to Western Mines property at Buttle Lake where several discontinuous but related pods of massive sulphide are being mined. Other evidence to support this theory was found in reports of exploration in the early 1900's when zones of 2% Cu were considered non-economic. It was hoped that large zones of relatively low grade material, similar to the New Brunswick deposits, or smaller higher grade massive sulphides similar to Western could be located.

Other than V.L.F. and magnetometer surveys, neither of which is sufficiently discriminatory in this rugged area to be useful, no geophysics had been done. If massive sulphides with an appreciable strike length existed within two hundred feet of the surface a C.E.M. survey would locate them. Other systems of EM and gravity surveys have too many topographical problems to be useful and were thus rejected. It is considered

I) SUMMARY (cont'd)

that IP would not be sufficiently discriminatory, in view of the abundance of pyritic schists and graphitic sediments, to be of use. It was thus decided to geologically map the property in reasonable detail, paying particular attention to ore controls. With this information it would be possible to locate areas similar to the ore bearing zone. These "geologically favourable" environments could then be run with CEM to locate drill targets.

I. M. Watson, P.Eng., was retained to map an expanded grid on the scale l" = 200'. The CEM survey was done by Peter Walcott Associates. Based on results of this preliminary work three areas were selected and drilled in the fall.

II) CONCLUSIONS

Results of the drilling indicate that the sequence of schists North of the main E-W body of diorite contains disseminated, syngenetic copper. Low values were obtained from quartz-sericite schists (lightly sheared acid tuffs?), chlorite schists (sheared flows or pyroclastics of andesitic composition?) and from beds of pyritic, massive chert. Existence of the mineralized schist beds has never been reported but one suspects many of the old workings in the area started on outcrops of this material. It is interesting to note in passing that careful geological interpretation was solely responsible for prediction and discovery of this mineralized environment. The "NE copper zone" has been extended 1500' from the original area worked on by Mount Sicker Mines. Unfortunately neither grade nor width improved along strike.

Drilling under the Tyee workings was negative in the sense that no mineralization of note was intersected although the main fault structure and lithologies controlling the old ore zones were cut and identified.

III) RECOMMENDATIONS

Potential for improvement in thickness and grade of the mineralized schist "beds" exists between the two areas drilled north of the 26N tie line. Geological mapping is not complete in the area due to overburden cover and steep topography. Geochemistry has been shown to be a useful guide to mineralization but it probably would not define higher grade areas within the favourable horizon, (i.e. drill targets). However, a geochem survey might help to find the hanging wall of the mineralized schist horizon. Grid diamond drilling is the only reliable method of testing the remaining areas between Fortuna and Bluebell and the on strike extension from these workings.

Potential of the dip and strike extension of the old workings has not been completely tested. To do this would involve a very expensive program and this cannot be recommended at the present time in view of discouraging results from S-72-5. However, the strike extensions, particularly the possible fault displaced west end of the zone, deserve consideration as a drill target.

From a purely geological point of view, economic sulhides might still exist on the Mount Sicker property. A small geochem survey on the grid north of 26N and approximately 5000' of diamond drilling would be needed to completely test this possibility. It should be considered that drill road building in this part of the property will be expensive and thus an overall budget of the order of \$85,000 would be required for the program I have outlined.

If sufficient funds are available for work of this type in 1973 I recommend proceeding with this program.

IV) INTRODUCTION

A) Location & Access

The property is situated on the north and west flanks of Big Sicker Mountain, 35 air miles NW of Victoria, B.C. Access is by 8 miles of secondary road, called the Mount Sicker road, from its junction with Highway 1 (Victoria-Nanaimo).

Major power lines and a railway roughly parallel Highway 1. A deep-sea port is located at Crofton only 10 miles from the property.

Figure S-l shows the general location.

B) Claims

Title to the property is complicated by the overlap of Crown Grants, E & N Railway (now C.P. rail) land grant and normal mineral claims. There are 5 separate ways mineral rights are held by Mount Sicker Mines Limited and because of this complex situation, it was decided to leave the property in Mount Sicker's name. Our rights to the property are secured by agreement only at the present time.

Table 1 lists the main features of title to the Mount Sicker property.

(1) Crown Granted Mineral Claims (total 26)

Lot No.	Name of Claim	Lot No.	Name of Claim
^J 53-G	Estelle	108-G	Muriel Fraction
√54-G	Westholme	√87-G	Doubtful Fraction
√51-G	Blue Bell	∨ 85-G	Thelma Fraction
√50-G	Moline Fraction	∨86-G	Imperial Fraction
√4-G	Acme	/ 20-G	Herbert Fraction
√18-G	Tony	√110-G	Phil Fraction
47-G	Nellena	√ 43-G	NT Fraction
√59-G	Westholme Fraction	41-G	Magic Fraction
21-G	Dixie Fraction	√39-G	Richard III
√44-G	Golden Rod	√37-G	Key City
18-G	Donagan	√35 - G	Lenora
√19-G	KL	√36-G	Tyee
√ 63-G	Donald	√60-G	Internation Fraction

All of the above are known to be in good standing and free of liabilities and charges.

(2) Located Mineral Claims (total 47)

These claims cover land with alienated base metal rights and thus the value of the claims is to hold precious metal rights only.

Claim Name	Record Number	Present Expiry Date
C.F. Group 25-28		October 25, 1973 October 25, 1973 December 8, 1973 December 20, 1973 December 20, 1973 October 25, 1973
B 1-4 B 5 B 6-22	16372-16375 (D) 16446 (D) 16376-16392 (D)	April 13, 1973 April 21, 1973 April 13, 1973
Dawn 1 & 2	16448-9	April 30, 1974

(3) Mineral Leases (B.C.) (total 12 claims)

Lease		Crown Grants	Present Expiry Date
M-13		33G, 34G, 55G, 56G, 64G, 65G, 100G	December 9, 1973
M-17		5G, 6G, 7G & 89G	August 3, 1973
M-18		59G	August 3, 1973

(4) Mining Agreement

Mining Agreement #73 dated May 1, 1971 between Canadian Pacific Oil & Gas Limited and Mount Sicker gives Mount Sicker the right to explore a 1010 acre parcel of land and the option to lease said lands. The option has a term of two years expiring on May 1, 1973.

(5) Mining Lease

Mining Agreement #8 comprising 1800 acres (largely overlying crown granted claims) has been taken to lease. A new agreement between Mount Sicker and Canadian Pacific Oil & Gas has been drafted and the parcel of land is now referred to as Mining Lease #17. The date of this agreement is September 17, 1972.

A claim map showing all of the above groups is included with this report as Fig. S-2.

(C) History of Property

(1) General

The following is a summary of the detailed account provided by Sheppard, $1968^{(1)}$.

Oxidized outcrops of the south orebody were discovered by prospectors in 1897. Development of the then independent

Tyee and Lenora claims began almost immediately and in 1900 the

(1) General (cont'd)

two were amalgamated. Production ensued until 1907 and most of the south ore zone was removed at this time.

Ladysmith - Tidewater Smelters Limited carried out development on the Lenora-Tyee section of the ore zone between 1926 and 1929. No ore was mined.

Some of the best exploration was done during 1939 and 1940 by Sheep Creek Mines Limited. Their work included considerable diamond drilling from surface and underground. I understand the North ore zone was outlined at this time but it was not mined. Unfortunately none of the Sheep Creek drilling results are available.

Between 1943 and 1947 Twin J Mines operated the mine, first for Wartime Metals Corp. and later for the open market.

The most recent mining was done by Vancouver Island
Base Metals Limited between 1949 and 1952. This was apparently
a none to successful salvage job where many of the old pillars
were removed. A fatal accident in 1952 was a major cause of
the shut down.

Mount Sicker Mines Limited began work on the property in 1967 and they have spent approximately \$200,000 on exploration work. The major thrust of their work was to investigate the feasibility of heap leaching the low grade copper found in dumps and wall rocks of the old mine. This method of extraction was found to be not feasible.

(2) Ducanex Involvement

In December 1971 I wrote a report on the property after having received a letter from Mr. Field, president of Mount Sicker, inviting investigation of his property. It was agreed that an option should be entered into and a work program undertaken. On June 27, 1972 the option agreement was executed and work at the property began shortly thereafter.

The old grid was cleaned out and expanded to the North. Ivor Watson mapped the grid on a scale 1" = 200' in July 1972. During the latter part of that month a CEM Survey was run over the entire grid with a coil spacing of 200'. The horizontal shoot-back method was employed to eliminate topographic effects.

No EM conductors were located with the CEM unit, but based on encouraging conclusions of the Watson report a drilling program was mounted. Due to shortage in staff this drilling was postponed until the fall. In late October, November and early December five drill holes totalling about 3000' were completed. Mineralization was intersected in every hole but no single intersection was sufficiently interesting to justify "step-out" drilling.

V) GEOLOGY

A) Regional

The Sicker Group rocks (Fyles, 1955) (6) underlying Mount Sicker, Western Mines property at Buttle Lake and elsewhere are Permian or earlier (the oldest rocks known on Vancouver Island). The belt, hosting the Mount Sicker mineralization, extends from Saltspring Island to just west of the Chemainus River or a distance of 12 miles. The belt is approximately 2 miles wide, trends WNW, and dips steeply.

Rocks in the Group are intermediate to acid volcanic flows and tuffs with minor sediments and chert. Most of these are regionally metamorphosed and can best be described now as quartz-sericite, quartz-chlorite and chlorite schists. Series of quartz-feldspar porphyries referred to by early workers as Tyee porphyries are thought to be hypabysal, crystallizing at about the time of the major deformation. Intrusive into this sequence are large concordant bodies of gabbro or diorite. These are also referred to as Tyee Porphyries but they are more obviously intrusive than quartz-feldspar rocks and are presumed to be somewhat younger (because they are relatively undeformed and unaltered).

Mineralization, in the form of pyrite, is abundant in the more acid schists but is sparse in other members of the Sicker Group.

B) Detailed

The reader is referred to the Watson report and map (August, 1972). In addition, refer to maps contained herein. Included is an overlay (Fig. S-3) which matches the Watson map and shows mineralization examined in outcrop plus areas where diamond drilling was carried out. Also included are a cross section through the Tyee zone with drill hole S-72-5 (Fig. S-4) and a geology map on the scale 1" = 100' (Fig. S-5) in the area surrounding drill holes S-72-1 and S-72-2.

Road building to drill sites for the first two holes uncovered a fair amount of bedrock which was mapped and helped simplify the geological picture obtained by Watson with far less exposure.

Diamond drill logs are included with this report and should be referred to for a detailed description of the drill hole geology. Three main areas were tested by drilling and a short summary of the geology of each of these areas follows:

(i) Bluebell Workings (Area "B" - Watson, 1972)

Old shafts, adits and small pits are found in virtually every part of the property. In the 1000' x 1000' area centered at 4W - 29+50N several old workings have been located, the most impressive of which was apparently called the Bluebell. It involved a shaft of unknown depth and tunnel of over 100' both of which followed a stronger pyritic shear in "quartz-eye" sericite schist.

The workings are in an area of structural complexity near the favourable diorite-acid schist contact. These features combined with the near certainty that the old workings followed some kind of mineralization led to diamond drill testing of the structure. Hole S-72-1 cut the schistosity (and primary bedding in this case) at a good angle (average 70-80° to axis of core). The sequence of rock is possibly overturned but at present varies from andesite at the top of the hole, to "quartz-eye" sericite schist to graphitic sericite schist and finally acid tuffs.

These schists, underlying the Bluebell, are lightly sheared rhyolite porphyries or rhyolite crystal tuffs. The "quartz-eyes" are rounded and fairly abundant and could be either metacrysts, formed around a crystal fragment nucleus or quartz phenocrysts from an original porphyry. Feldspars and mafics which might have aided in solution of this question are now completely altered to sericite and talc.

The second drill hole was just north of the first but an interpreted fault cut between them. The existence of this fault was confirmed by intersections in the second hole and also by a completely different lithological sequence in what would otherwise have been the same horizon. No "quartz-eye" schist was found but a little quartz-sericite schist was cut. The sequence was predominantly made up of chlorite schist, quartz-chlorite schist and mudstone.

The schist-diorite contact was not penetrated by either drill hole but the main fault zones, which are associated with ore in the old mine, were tested.

(ii) Fortuna Adit (Area "A" - Watson, 1972)

At 61E-30N an area of extreme deformation and pyritization was tunnelled by "old timers". The exact date of development of the Fortuna Adit is unknown but it is presumed to be near the turn of the century. Mount Sicker Mines Limited did some bulldozer work in the area in 1968 but steep topography limited effectiveness of this program. Soil sampling of the area adjacent to a creek which drains the adit (i.e. on lines 60E & 68E) gave several values over 1000 ppm. Cu and low zinc values.

Geochemical response, proximity to a schist-diorite contact, heavy pyritization, known mineralization along strike (NE Cu Zone) and belief that the old timers followed mineralization with their adit led to diamond drill testing.

Quartz sericite schist, chlorite schist, minor andesite and interformation cherts were cut in holes S-72-3 and S-72-4. The sequence is basically similar to that encountered near Bluebell with exception of the presence of chert and absence of quartz-eye schists at Fortuna. Bedding and schistocity could not be differentiated with certainty in this area but it was assumed that bedding closely followed schistocity which dipped fairly steeply to the south.

(iii) Tyee Shaft Area

Development of the main ore zones at Mount Sicker stopped at the 400' level with only one exception, namely the Tyee shaft. In the B.C. Minister of Mines report, 1902⁽³⁾ a report on the Tyee states that closely below the 400' level of the shaft, green schists carrying about 2% Cu were encountered. This was apparently similar to material flanking the massive sulphide ore zones being mined at that time on higher levels. At the 1000' level (see B.C.M.M. 1905⁽⁴⁾) 3' of "barite-ore" was discovered. This zone was also cut on the 1150' and 1250' levels (B.C.M.M. 1906⁽⁵⁾). Grade of this deep material is unknown but at least some basis for the theory that ore exists beneath the old workings was given.

A deep drill hole, S-72-5, was put down under the old Tyee workings 400' east of the shaft to test for the possibility of a thick sequence of disseminated mineralization in chlorite schists and/or a zone of massive sulphides within the main fault, as suggested by the work referred to above. The hole was started at -60° but flattened considerably and ended up cross cutting the structure at a favourable angle (see Figure S-4). Rocks encountered were not unexpected. Thick sections of schists (quartz-sericite, chlorite) were separated by diorite. The contacts between the diorite and schists were examined carefully and found to be intrusive, i.e. top and bottom with definite hornfels development. In general the contacts were concordant and the intrusive bodies are definitely sill-like. The main fault, where intersected, is a zone of many faults with signs of substantial movement.

VI) MINERALIZATION

A) Old Mine

Published production statistics show that 305,787 tons grading 0.13 oz./ton Au, 2.75 oz./ton Ag, 3.3% Cu and 7.5% Zn were milled in the seven stages of mining. The mining history, previously outlined, indicates that hope for finding reserves within the area of old workings is not realistic. Samples of the ore can be found in hand sized specimens scattered around the Lenora workings and, in place, about 75' from the portal of the Lenora #2 adit. Entry into the old workings is not advisable due to their very poor conditions.

Other mineral showings were examined as shown on Figure S-3 .

B) 1972 Drilling Results

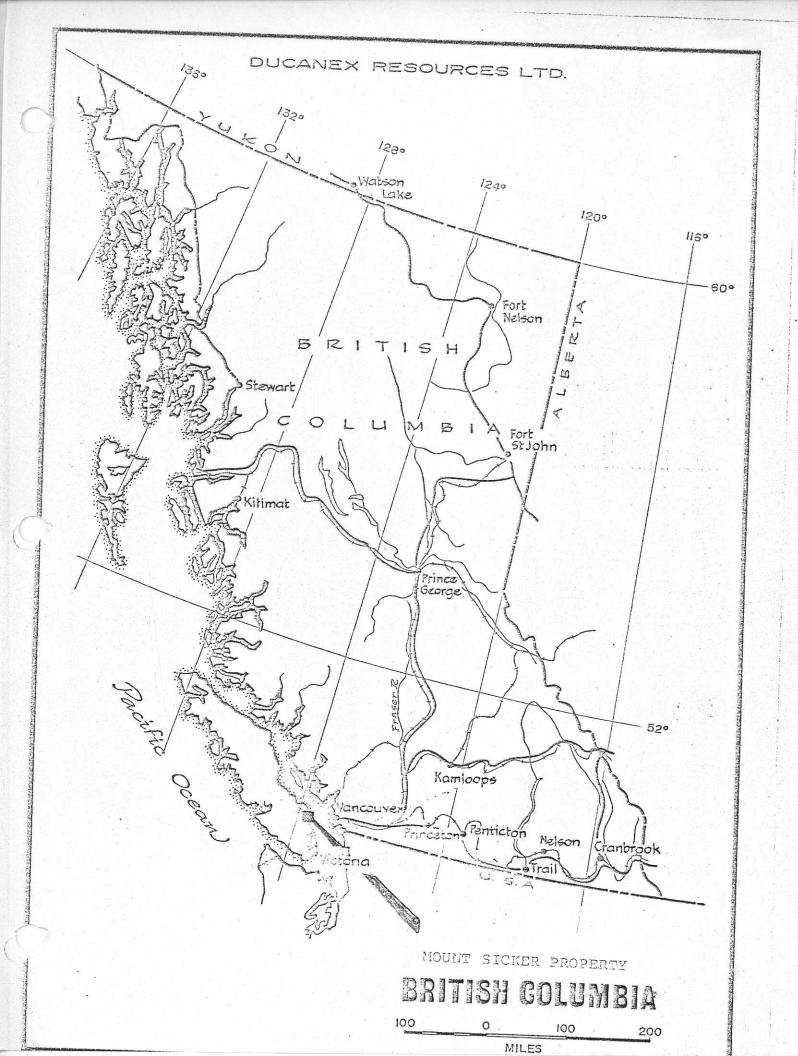
Table 1 summarizes the interesting intersections.

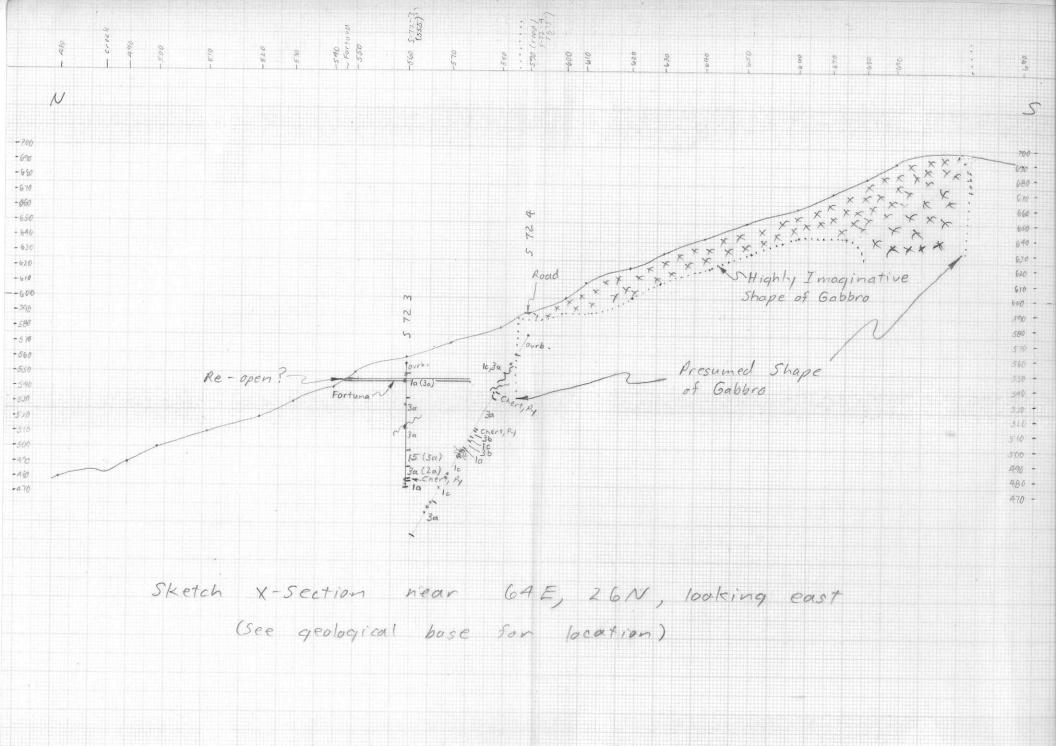
TABLE 1

	De	pth		Assay	7	
Drill Hole	From	To	%Cu	%Zn	– Au	Ag
		. •			oz./ton	oz./ton
S-72-1	312 322 333	322 (10') 333 (11') 343 (10')	.11 .41 .17	.02 .02 .02	.005 tr tr	.02 .03 tr
		(31' - 0.18%	Cu)			
S-72-3	22 32	32 (10') 42 (10')	.58 .36	.02	.005	.03
		(20' - 0.47%	Cu)			
	87 249	89 (2') 256 (7')	1.64 .75	.04	.005 .005	.12 .06

TABLE 1 (cont'd)

	Dep.	th		Ass	ay	
Drill Hole	From	To	%Cu	%Zn	Au	Ag
					oz./ton	oz./ton
S-72-4	50	60 (10')	.27	.03	.005	.04
	307	308 (1')	3.52	.05	.005	.26
	459	460 (1')	87	-	-	-
	470	475 (5')	.22	-	tr	.02
	496	501 (5')	.41	.02	tr	tr
S-72-5	452	462 (10')	.05	.46		


As can be seen from this table none of these sections are of economic importance either for low grade or insufficient thickness.


VII) REFERENCES

- (1) Sheppard, E. P., 1968, Geological Report, in files.
- (2) Watson, I. M., 1972, Geological Report, in files.
 - (3) B.C. Minister of Mines, Annual Report for 1902, page 242.
 - (4) B.C. Minister of Mines, Annual Report for 1905, page 216.
 - (5) B.C. Minister of Mines, Annual Report for 1906, page 207.
 - (6) Fyles, J. T., Geology of the Cowichan Lake Area, B.C. Dept. of Mines, Bull. 37, 1955, page 11-19.

VIII) PARTIAL BIBLIOGRAPHY

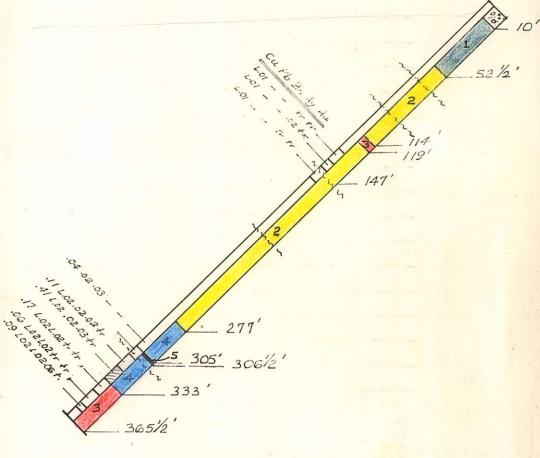
- Clapp, C.H., "Southern Vancouver Island", G.S.C. Memoir Memoir 13, 1912.
- Clapp, C.H., "Sooke & Duncan Map Areas", G.S.C. Memoir #96, 1917.
- Jeffrey, W.G., B.C. Minister of Mines Annual Report for 1964, pp. 157-164.
- Muller, J.E. and Carson, D.J., "Geology and Mineral Deposits of Alberni Map Area", G.S.C. Paper 68-50, 1968.
- Stevenson, J.S., Article on Geology at Mount Sicker, Western Miner, pp. 38-44, March 1945.

PROPERTY MOUNT SICKER

HOLE NO. S-72-1

DIP -45°

LOCATION 33 + 24 N. / 1 + 75 W.


SHEET NO. 1

	LOG				
FROM	то	DESCRIPTION			
0	10	Overburden.			
10	52½	10-14' broken rock probably due to surface			
		frost action. Rock is medium green-grey,			
		medium grained andesite; some minor zones			
		with epidote amygdules → 1/8"; mafics too			
		small to recognize; Tr. sulphide and 1 grain			
		of chalcopyrite at 34'.			
52 ¹ / ₂	114	Quartz-Sericite schist, pyritic, heavily			
		oxidized to 57'. Core angle 45° (to axis of			
		hole) but flattens after the first 10' to			
		about 70°. Throughout, the core angle varies			
		from 45° to 90° with the average being about			
		70°-80°.			
		The rock is probably a rhyolite porphyry or			
		crystal tuff (many "quartz eyes" of 2-4mm.			
		are apparent). Feldspars are now altered to			
		sericite and talc. Pyrite content varies			
		from $\frac{1}{2}\%$ to over 20% (in some 6" sections).			
		Moderate oxidation to about 100' then rock			
	-	becomes fairly fresh.			
		Fault Zones: $65 - 66\frac{1}{2}$			
		92 - 93			
114	119	Light green rhyolite amygdaloidal flow.			
		10% banded, fine grained pyrite.			
		6" conformable hornfelsed zone at upper			
		contact (possibly a chilled margin effect			
WESTERN	MINER FORM	from a sill?): lower contact is gradational			

		A	SSA	Y 5	5		
SAMPLE No.	FROM	то	WIDTH		VAL	UE	S
			-			-	+
						-	
			 		_		
		-					
			L				
					1		
		-					
							-
							ME
			+				1
I F C	ENE						L
Particular ma			ollar Lat. ollar Elevati				
Ar	desite		and the same of the same		^		
2 ser	icite s	schist	azimuth at S Azimuth at E	nd			
AC	in curi	fs c	IPS:				
	phitic		F1.			Ft.	
-	dstone	- 001.130					
Control	rtz ch]	Lorite					
[g] Gh?	schist orite s	- abia	Ft.			Ft.	
	rtz sei				ed By J.W		
8 800	schist	TOTAL			oling By Da		

SECTIONS

Started Oct . 27/72 Completed Oct . 30/72 Depth of Hole 3652 Proposed Depth --

LOCATION

DIP -450 PROPERTY HOLE NO. S-72-1 LOG ASSAYS V A L U E S
Cu | Pb | Zn |Ag/Au FROM DESCRIPTION TO SAMPLE No. FROM over about 1' *SECTION QUITE POSSIBLY OVERTURNED* and hornfels is chilled margin at base of flow. Quartz-sericite schist as before. Core angle 119 now 70-80° quartz eyes (both rounded and angular) form up to 20% of the rock locally. $139-140\frac{1}{2}$ about 30% pyrite in irregular bands up to 1 * probably old-timers lead* 147-149 - probable fault zone - some oxidation and weak silicification. $157\frac{1}{2}$ -159 - about 10% pyrite - fine bands 175-177 - possible minor fault.

205-209' - possible minor fault with some

219-222' fracturing and possible fault.

 $256\frac{1}{2}$ -277' - intense sericitization and minor

silicification (some quartz veins to 2").

Medium grey graphite-sericite schist. More

intensely pyritic probably derived from argillaceous tuff - very finely laminated. Pyrite probably averages 10% now with some zones as high as 50% sulphide; minor quartz

veining with irregular veins >1" wide. *Many sedimentary features such as cross

bedding and graded bedding.

oxidation and minor fracturing.

- about 2' lost core.

Some lost core.

228N	129	139		10'	L.Ol			tr/tr
227N	139	144		5'	L.01		C	.02/
229N	144	154		10'	L.01			tr/tr
			-					
226N	295	305		10'	.04	L.02	.03	
	G E N I	2	Az Az Dii	llar Elevan imuth at S imuth at PS:	Start S	40°	WFt.	
						By J.W.		
					Samplin	g By		

Assaying By

SCALE

SECTIONS

SHEET NO. 2

Completed Depth of Hole Proposed Depth Started

WESTERN MINER FORM NO. 506

PROPERTY...... HOLE NO...

DIP -45°

S-72-1

LOCATION.

SHEET	NO.	3

-		LOG
FROM	то	DESCRIPTION
		Core angle 70-90°.
305	306 1	Light green slightly sheared mudstone - some
		quartz veining and epidotization - could be
	-	an extremely fine pyroclastic - waterlain.
		Rare pyrite. chartie
306	333	Graphitic sericite schist: as before - poss-
		ible fault 311'. Traces of chalcopyrite.
		318-358 - minor chalcopyrite in disseminated
		fairly coarse grains.
	-	323-325½'-some very coarse chalcopyrite -
		often crosses bedding ν 1% Cu (for this $2\frac{1}{2}$)
		After 325 rock becomes slightly coarser
		grained (but it still is a fine-medium
		grained tuff).
	ļ	330-331'-some good, coarse, chalcopyrite in
		part associated with a quartz veinlet.
333	365½	Quartz-sericite schist as before except with
	END	fewer quartz eyes. Slightly less sulphide
		than preceeding unit but more than other
		sericite schists; traces of chalcopyrite to
		358' then sulphide content drops off
		quickly.

WESTERN MINER FORM NO. 506

		A	SSA			UES	
SAMPLE No.	FROM	то	WIDTH	Cu	Pb		Ag/Au
3							
							0.00
230 N	312	322	10"	.11	L.02	.02	.02/
231 N	322 98.2	333	11'	.41	L.02	.02	.03/
232 N	333	343	10"	.17	L.02	L.02	tr/tr
233 N	343	353/0-	10.	.06	L.02		tr/tr
234 N	353	358 09.	5"	.09	L.02	L.02	.05/
						1 80	
l F (GENI		6.11-1-1				
	J L 11 1	-	Collar Lat Collar Elevat				
			Azimuth at S				
			Azimuth at I	nd			
		- 1	DIPS:				
			Ft.				••••
			Ft.			Ft Ft	
		1				Ft	
			• • • • • • • • • • • • • • • • • • • •			,Simps	
				Samplin	ng By	·····	
SCALE	inch	- 1		Assayin	g By		

SECTIONS

Started Completed Oct. 30/72Depth of Hole Proposed Depth

SUMMARY

In S-72-l a $42\frac{1}{2}$ capping of intermediate volcanics overlies a sequence of acid tuffs with only one interflow of light green volcanics.

There are many sedimentary features indicating that the tuffs were water lain. Weak evidence suggests that the entire section may be overturned.

The main mass of rock (52-114' and 119-277') is a lightly sheared rhyolite porphyry or rhyolite crystal tuff. Quartz eyes are generally rounded and fairly abundant. Feldspars and mafics (if there were any) are altered to sericite and talc.

Pyrite is abundant throughout the schists and varies from $\frac{1}{2}\%$ to over 30%. Average pyrite content of the sericite schist would be about 4%. Argillic tuffs from 277-305' and $306\frac{1}{2}$ -333' are higher in pyrite (say 10-15%) and chalcopyrite is present as fairly coarse blebs and disseminations.

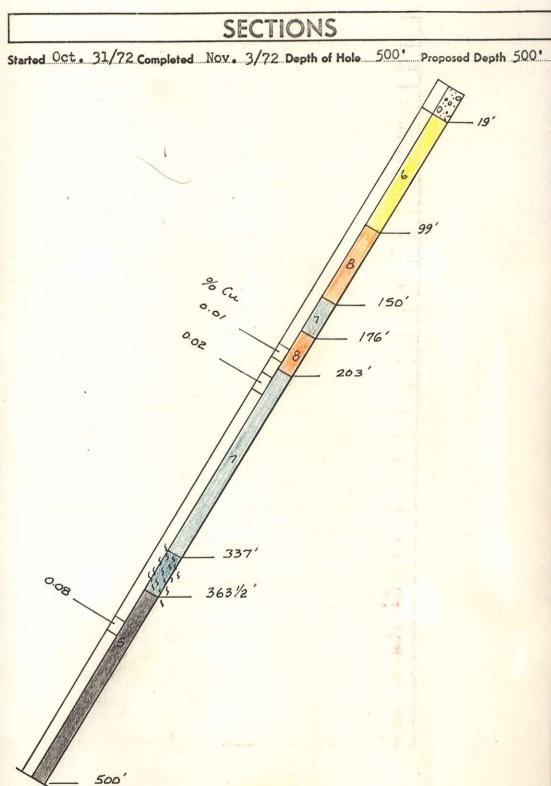
Economic potential in this sedimentary sequence is confined to the lower (in the hole) band of graphitic schists from $306\frac{1}{2}$ -333'. Oxidation and leaching would limit the effectiveness of surface exploration.

November 1, 1972

J.W. Simpson

PROPERTY MOUNT SICKER

HOLE NO. S-72-2


DIP -450

(180' E. of 4 W.)

SHEET NO. 1

LOG					
FROM	TO	DESCRIPTION			
0	19	Overburden.			
19	27=	Finely banded quartz-chlorite schist; some			
		carbonate bands, some quartz-graphite bands.			
		In general these bands vary from $1/16-\frac{1}{2}$ " and			
	ŭ.	are irregular. Core angle varies considerab			
		No sulphides.			
27½	55	Patchy & irregularly banded quartz chlorite			
		schist. Differs from bed, above, in high			
		degree of epidotization. Rock now about 30%			
		epidote (after feldspar?). Minor fine-grain			
		pyrite. No chalcopyrite noted. Some hema-			
		tite (after pyrite?).			
55	60	Fine-grained epidote-chlorite-quartz tuff.			
		Massive except for minor carbonate filled			
		fracture.			
60	99	Variously altered siliceous pyroclastics.			
		Alteration is mainly epidotization and car-			
		bonatization.			
		73-83' more chloritic section fine-grained			
	,	and less altered. Minor pyrite disseminated			
	*	in some sections.			
		73' - 2" band with about 15% pyrite.			
99	150	Fine-grained, light grey, lightly sheared			
		quartz-sericite schist, possibly a limy mud-			
		stone modified by shearing. Core angle fairly			
		uniform and almost at right angles to core			
		axis.			

		A	SSA	YS			
CAMPIEN			MIDTH	Cu	/ A L	U E Zn	S Ag/Au
SAMPLE No.	, FROM TO		WIDTH	Cu	10	211	ng/nu
239 N	190	200	10'	.01	-	L.02	tr/tr
240 N	212	222	10'	.02	-	L.02	tr/tr
241 N	387	397	10'	.08	-	.03	tr/tr
54							
14		·					
							/_
				-			
of ar							
LEC	GENI	2	Collar Lat.		(7)		
	As on 1	og	Collar Eleva				
	5-72-1		Azimuth at S				
			Azimuth at	End			
			DIPS:			Ft.	
			F1			Ft.	
			The state of the s			Ft.	
			F1	h		Ft.	
						.W.Sim	-
SCALE	7:	(0:	Sampling By D. Compton Assaying By Bondar Cleg				
SCALE	1 inch =	60'		Assayın	g by D	mudi	TEE

PROPERTY MOUNT SICKER

HOLE NO. S-72-2

DIP. -450

LOCATION

SHEET NO.__2_

		LOG
FROM	то	DESCRIPTION
99		111-116' - somewhat darker colour and minor
(contin	ued)	disseminated pyrite.
		116-118' Some irregular quartz patches.
		Other evidence of silicification at about 125
		138-150'. Gradually changes over a few feet
		to more chloritic & more silicified material.
150	176	Silicified andesite. (S) 153'. Rock is
		fine-grained with trace of epidotized feld-
		spar phenocrysts. Pervasive silicification
		is accompanied by limonite stained, quartz
		filled fractures. Intensity of silicification
		increases down hole.
		161-176'. Very intense silicification.
		165.5-176'. Brecciation - increasing in
		intensity with depth. Very low sulphide
		content. (S) 175'.
176	203	Fault contact (less competant rock below
		fault lost), e.g. 1' between 176-178', $1\frac{1}{2}$ '
		between 180.5-184. Rock is light grey quartz
		sericite schist similar to 99-150' intersec-
		tion. (S) 191'. Pyrite content about 5%
		between 190-200' in bands or disseminated.
203	247.5	Mottled grey & white argillaceous tuff; some
		fairly sandy in irregular bands, distinct
		from preceding intersection in colour(whiter)
		and coarse mottled texture. No sulphides
		for 5' then irregularly banded pyrite becomes

		A	SSA	-			
SAMPLE No.	FROM	то	WIDTH	Y	AL	UE	S
							-
							-
							-
							-
						-	
				,			
LEC	BEND	C	ollar Lat		Dep		
		Co	llar Elevati	ion			
		A	zimuth at S	tart			
		- 1	zimuth at E	nd			
		1 -	PS: Ft.			Ft	
		- 1	Ft.				
			Ft.			Ft.	
			Ft.				
5005							
SCALE	inch			Assaying	ву		

SECTIONS	9-
	The Paris of the P

arted Completed Depth of Hole Proposed Depth

PROPERTY MOUNT SICKER

HOLE NO. S-72-2

DIP

LOCATION

SHEET NO. 3

		LOG
FROM	70	DESCRIPTION
	247.5	fairly abundant. Silicification is moderate
(cont	inued)	& irregular. Many fine calcite stringers.
		Metamorphism has caused irregular aggregates
		of felsic minerals to form giving mottled
		appearance.
247.5	255	Light green fine-grained andesite probably
		tuffaceous. Feldspar altered to epidote, ma
		quartz & calcite filled fractures. Sulphide
		rare,
255	268	Mottled grey & white argillaceous tuff as
		203-247'. Progressive increase in silicific-
		ation to 268'.
		262-268' - almost pure quartz.
268	363.5	Gradation to more basic volcanics over 2'int
		andesitic, silicified tuffs, further grad-
		ation from 278-285 into even more basic
		volcanics (now probably basaltic composition
		Sulphides virtually absent except for narrow
		bands → ½". Some coarse fragments in this
		section. Minor hematite in fine stringers.
		298' on - bulk composition probably closer
		to andesite again. (S) 301'. Many fine irreg
		ular quartz & carbonate filled fractures.
		337-370' Major fault zone about 15' of core
		lost over this 33' interval.
363.5	500	In fault zone - change to pyritic quartz-
		chlorite schist. Probably a pyritic dacite

		Α	SSA	YS				
				VALUES				
SAMPLE No.	FROM	TO	WIDTH					
					 		 	
			ļ			ļ		
	1				1			
			 	 			1	
			ļ	<u> </u>		ļ. <u> </u>	 	
				l				
		-						
-			 		 		 	
			ļ		ļ <u> </u>	<u> </u>		
					1			
			 		+			
			ļ	ļ		<u> </u>	—	
ļ	-							
				 		 	 	
				<u> </u>	 	ļ		
				 -		 -	-	
			ļ <u>.</u>	ļ				
LEC	BEND		Collar Lat.		Dep.			
			ollar Elevat	ion				
			Azimuth at S	itart				
		1	Azimuth at					
		1	DIPS:					
				•		Ft.		
			Ft	•		Ft.		
				•		Ft.		
					d By			
					ing By			
SCALE	inch			-	ng By			

	S	ECTIONS	
Started	Completed	Depth of Hole	Proposed Depth

PROPERTY MOUNT SICKER

WESTERN MINER FORM NO. 506

HOLE NO. S-72-2

SHEET NO. 4

		LOG
FROM	то	DESCRIPTION
363.5 (c onti	500 nued)	tuff or mudstone (similar to mudstone sections in S-72-1).
-		367'. Some heavily pyritized material but lost core.
		375'. Some fairly coarse grains of chalcopyrite (over $\frac{1}{2}$ "). Average pyrite content varies
		between 2 and 10% for 5' sections. (S) 388'. 404-406' - Fault zone, 1' core lost, chlorite
		content varies giving darker colour where it is more abundant e.g. 389-390'. After 411' chlorite generally more abundant. Some small
		gashes filled with epidote-quartz. 420.5' - 2" with fairly coarse chalcopyrite(S) Pyrite content decreases to about 1-2% for 5'
		sections after 404(fault). 442-444' - shcerty ("silicification"). 437 & 445.5 - some coarse chalcopyrite over
		1" & ½" respectively. 447' - possible fault.
		452'-453' - cherty zone ~1% Cu over 1" 487' - minor fault zone.
		489-490' - chertz zone-traces of chalcopyrite 492, 497-498' - minor faults.
		500' - END OF HOLE.

		A	S 5 A	ΥS			
					AL	U E	S
SAMPLE No.	FROM	TO	WIDTH				
						<u> </u>	
						 	
						ļ	
	<u> </u>					 	
						 	-
			-				
						-	
					ļ		
						<u> </u>	
		_					
				<u> </u>			
						 	ļ
							<u> </u>
L E (GENI	2	Collar Lat		Dep		
			Coliar Elevat	ion			
			Azimuth at S	tart			
			Azimuth at I	ind			
		1	DIPS:				
			Ft.				
		ĺ					
			Ft			Ft.	
SCALE	inch	1		Assayin	g By		

SECTIONS

Started Completed Depth of Hole Proposed Depth

SUMMARY

LOCATION.

0 - 19' Overburden.

19 - 99' Variously silicified and epidotized. Chloritic pyroclastics. Usually very fine grained (i.e. tuffaceous).

99 - 150' Quartz sericite schist - probably a sheared mudstone - not pyritic.

150 - 176' Silicified, light green andesite.

176' Fault.

176 - 203' Quartz sericite schist similar to 99-150 intersection but now well pyritized (indigenous sulphides form bulk of this pyrite).

203 - 363.5 Variously altered pyroclastics and andesitic flows(?) often give mottled appearance.

337 - 370' Major fault.

363.5 - 500' Light grey quartz-chlorite-sericite schist (similar to 176-203 section but more chlorite and highly variable pyrite). Some silicified sections with minor chalcopyrite as coarse grains and irregular blebs.

Note: Rhyolite sequence of S-72-1 was not intersected.

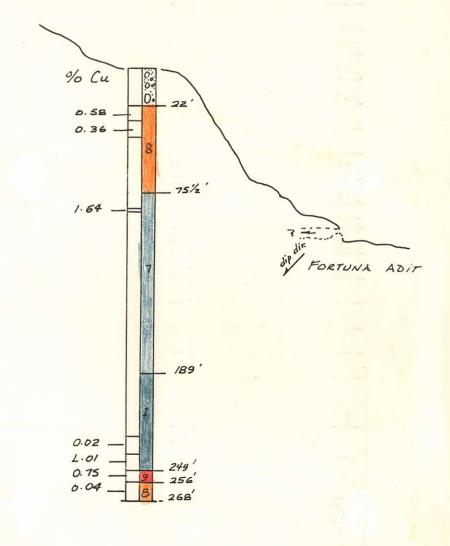
Mudstones have no substantial chalcopyrite bearing zones as in S-72-1.

PROPERTY MOUNT SICKER

HOLE NO. S-72-3

DIP -90°

LOCATION 60 E - 29 N


SHEET NO. 1

		LOG
FROM	то	DESCRIPTION
0	6.71	Overburden.
22	$75\frac{1}{2}$	Quartz sericite schist, variable amounts of
	23.0	chlorite & pyrite (some zones are almost
		chlorite schist). Colour is medium grey.
		Pyrite content varies (in 5' sections) from
		5 - 7%. Chalcopyrite in stringers up to 3mm.
		wide, scattered (e.g.) 23', 26', 37', 40'.
- III		30-36': 2½' core lost.
		Between 38 & 42: 1' of core lost. Probably a
	-	quartz stringer with chalcopyrite.
		42-46': 2' core lost - possible fault.
		54-61': 2' core lost.
		54-57: ½ core lost.
75=		Chlorite schist. Heavily pyritic. 7-15% for
	57.61	5' sections - colour almost black (looks a
		little like graphite in places but turns
	1	pale green when scratched).
		87-89' - ~1% Cu as chalcopyrite irregularly
		disseminated & banded.
	->	131-141' - 8' core lost in fault. Some
		pebbles from recovered material indicates
		some almost massive sulphide (90% pyrite)
		some pebbles with good chalcopyrite.
180	300	141-144' - 2½' lost core, angle about 45°.
189	193 58.8	Fault contacts with light green no chalco-
702		pyrite - minor extremely fine pyrite.
193	200	Chlorite schist as before.

***************************************				SSA	YS			
			_		V		U E	
SAMPLE No.	FROM	то		WIDTH	Cu	Pb	Zn	Ag/Aı
	6.7	9.8	_					.03/
242 N		12.8	2	* 10'	0.58	-	.02	.03/
243 N	32	1248		* 10'	0.36	-	.03	.04/
5/1/1 N	87	89)	2'	1.64	-	.04	·12/ ·005
	4.0.00	72.8	,					
236 N	229	239)	10'	.02		L.02	tr/
237 N	239	75.9 249)	10'	L.Ol	L.02	L.02	-
235 N	249	78.0		7'	0.75	.02	.02	.06/
238 N	256	81.7		12'	0.04	_	L.02	.06/ .005 tr/
9.51		5						
						-		
						18		
						7 3		
					1			
	some co							
A	SEN D			ollar Lat ollar Elevat				
S	-72- 1			zimuth at S				
g Ch	ert & h	eavv	A	zimuth at E	nd			
SCHOOL SECURITY	lphides	0 1	D	IPS:			E.	
							Ft	
			/===	Ft.			Ft	
				Ft.			Ft	
Washington.		21			Logged	By D.	. Simp	on
SCALE	l inch =	60"					ndar C	

SECTIONS

Started Nov.6/72 Completed Nov.10/72 Depth of Hole 296' Proposed Depth 500'

WESTERN MINER FORM NO. 50

PROPERTY MOUNT SICKER

HOLE NO. S-72-3

LOCATION.

SHEET NO. 2

		LOG
FROM	TO	DESCRIPTION
200	202	Light green andesite with abundant carbonate
	61.6	filled fractures & gashes.
202	217	Chlorite schist as before but less abundant
	66.1	sulphide.
217	224	Andesite - as 200-202 intersection, gradat-
	68.3	ional at bottom to chlorite schist.(S)-220'.
224	249	Chlorite schist as before but some sericitic
	75.9	sections (up to 6-8") then gradual gradation
		to more sericitic material.
249	256	Chert & massive pyrite, about 60% pyrite, fine
	78.0	chalcopyrite disseminated in many places.
		Some very coarse blebs of chalcopyrite. >1%
256	268	Quartz-sericite schist, about 7-8% fine
	81.7	pyrite. (S)-264', some good chalcopyrite at
		261'- (S) ¹ / ₄ split of core.
	268	END OF HOLE. Rods stuck - some
		abandoned.
	MINER FOR	

			SSA	-			-		_	c
SAMPLE No.	FROM	то	WIDTH		Y	A	L	U	E	<u> </u>
										-
			-	-	-					-
			3	-	-		-			-
			+	-	-		_		ji.	1
46										
				_				_		
150			1	_	-		_			-
				-	-					-
			-	_						
	,									
LEC	BENI		Collar Lat.							
		- 1	Collar Elevat Azimuth at S							
			Azimuth at							
			DIPS:							
			Ft	•					Ft.	
SCALE	inch	- 1		Asso	vina	Ву				

SECTIONS

Started Completed Depth of Hole Proposed Depth

SUMMARY

The rocks encountered in S-72-3 are predominantly chlorite schists with considerable pyrite and rarely chalcopyrite.

From $22-75\frac{1}{2}$ ' the rock is chloritic sericite schist. From $75\frac{1}{2}$ to 189' chlorite schist dominates. Between 189' and 249' the schists are faulted against andesite flows and tuffs. A massive pyrite-chert zone was intersected from 249-256', and this is assumed to be the stratigraphic equivalent of cherts in the northeast Cu zone. Copper, in the form of chalcopyrite is disseminated and forms about 1% of the zone. The hole ends in quartz-sericite schist with minor disseminated chalcopyrite and about 10% pyrite.

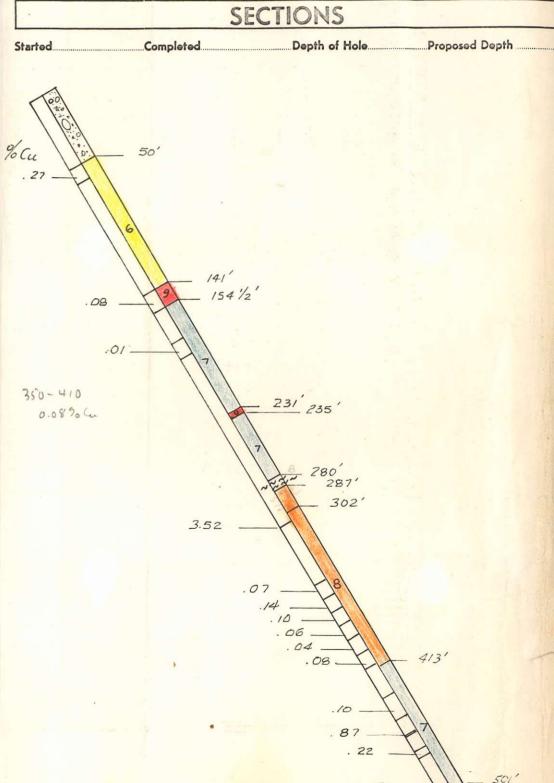
Much core was lost in the upper chlorite schist and some of these lost sections contained copper. It is not known if these zones are of economic interest or not.

The hole was abandoned at 268' when the rod string became stuck.

PROPERTY MOUNT SICKER

HOLE NO. S-72-4

DIP -60°


LOCATION

26 N - 65 + 15 E

SHEET NO. 1

		LOG
FROM	то	DESCRIPTION
0	50	Overburden.
50	141	Sericitic, quartz-chlorite schist very simil-
		ar to upper section in S-72-3. 5-15% pyrite
		(over 5' sections). Minor chalcopyrite. e.g.
		$\frac{1}{2}$ " stringer at $46\frac{1}{2}$ ' with some coarse blebs of
		chalcopyrite, 692' fine-medium grained chalco
		pyrite in quartz segregation,
		96' a few grains of chalcopyrite.
	,	Core angle about 45°.
		86-108' very steep fault - almost parallel
		to core axis, limonite abundant.
		87-95' - 1' core lost.
	*	95 - 108' - 10' core lost.
		Chlorite content varies, some of rock could
		be called chlorite schist.
		113' About 1" of pyrite mud, probably ground
		core.
		128-131'. Fault zone. 1' core lost.
		Much pyrite.
141	1542	Pyritic chert, some quartz veining, minor
		chalcopyrite - usually in fairly splashy
		blebs (~0.2% Cu for 13½').
154=	231	Muddy chlorite schist. Presumably similar
		to material above chert but more altered.
		Pyrite content fairly uniform at about 6-8%
1.		for 5' sections.
′		About 176' Kaolin alteration (muddy

		A	SSA	YS	ļ.		
SAMPLE No.	FROM	то	WIDTH	Cu	/ A L Pb	U E :	Ag/Au
							.04/
245 N	50	60	10'	.27		.03	.005
246 N	141	1542	13½'	.08	-	L.02	1.005
247 N	176	186	10'	.01	L.02	.03	tr/ tr
248 N	307	308	1'	3.52	L.02	.05	.26/
249 N	350	360	10'	0.07	L.02	.02	tr
250 N	360	370	10'	0.14		.02	-/
251 N	370	380	10'	0.10	L.02	.02	tr/ tr
252 N	380	390	10'	0.06			-/
253 N	390	400	10'	0.04	-	400	-/
254 N	400	410	10'	0.08	L.02	L.02	
255 N	432	448	16'	0.10	_		.04/
256 N	459	460	1'	0.87	-		-/
257 N	470	475	5.	0.22	-	-	.02/
258 N	496	501	5'	0.41	L.02	L.02	tr/ tr
	ENE	-	Collar Lat			<u> </u>	
	on Log 72-1		ollar Elevati				
	12 -		zimuth at E				
		0	DIPS:				
		-			and the same of th		
						Ft	
		1				Ft	
		1			By J. W	-	
SCALE	1- at -	601			g By Do		
SCALE	inch=			Assaying	by DO	ACHSONIU	- 555-

WESTERN MINER FORM NO. 506

MOUNT SICKER HOLE NO. 5-72-4 DIP LOCATION

SHEET NO. 2

		LOG
FROM	то	DESCRIPTION
1542	231	appearance) grades into dark chlorite schist.
(conti	nued)	Pyrite increases to 15% in some 5' sections.
		(S) 206'.
231	235	Pyrite bearing chert - no chalcopyrite. Some
		fine fracturing. Pyrite is mostly dissemin-
		ated & in irregular aggregated bands.
235	280	Sericitic-chlorite schist - heavily pyritized.
		Varying degree of chlorite (e.g. 2482-259 is
		chloritic, quartz sericite schist). Sulphides
· ·		in bands, some $\frac{1}{2}$ wide.
280	287	Quartz sericite schist - about 20% fine dis-
	ļ <u></u>	seminated pyrite. (S) 281'. Fault 285-287'.
287	302	Major fault zone. Only fragments of core
		recovered. Rock types include chert, quartz
		sericite schist & quartz veins. All contain
		considerable pyrite. Some pieces have coarse
		blebs of chalcopyrite - sample of sludge comes
		from 292-298 zone.
302	413	Quartz sericite schist - about 10% chlorite
		giving a light grey green colour. Pyrite
		content about 4-5% for 10' sections.
		307-308' - some very coarse blebs of chalco-
		pyrite controlled by fracturing & contortions
		in schist. (S)-307 $\frac{1}{2}$ '. Average 3% Cu over 1
- <u></u>		Traces of chalcopyrite 350-360 (section may
· · · · · · · · · · · · · · · · · · ·		average 0.1% Cu). Best material in this
		section is at 354-355' which runs about .3%.

		Α	S § A				
SAMPLE No.	FROM	то	WIDTH		/ A L	U E	<u>s</u>
			 			-	1
							+
							-
						-	ļ
						ļ	<u> </u>
		-,-					
							-
			 				
							-
		-					-
						-	
						<u> </u>	<u> </u>
LEC	BEND	<u>)</u> ,	Collar Lat		Dep		
		i i	Collar Eleva ti				
		- 1	Azimuth at Si				
		1	Azimuth at E DIPS:	ind			
一			J., U.		1	Ft.	•
					- 1	Ft.	
			Ft.	**			
			Ft.			Ft.	
					Ву		
SCALE	inch				g By g By		

		SECTIONS	
Started	Completed	Depth of Hole	Proposed Depth

PROPERTY MOUNT SICKER

HOLE NO. 5-72-4

DIP

LOCATION

SHEET NO. 3

		LOG
FROM	то	DESCRIPTION
302	413	383-384 - minor fault zone. Minor amounts of
(conti	nued)	chalcopyrite scattered throughout.
413	501	Gradation into true chlorite schist (i.e.
		contact is arbitrarily set at 413'). Sulphide
		content has dropped off to 1 or 2% for most
		5' sections.
		421' - quartz segregation >1" wide with mod-
		erate chalcopyrite (fine-grained).
		433' - 2" band with some coarse chalcopyrite.
	ļ	447-448' - fractures parallel to core with
		some coarse chalcopyrite. Some calcite filled
ļ		fractures & gashes, some remnant chystalline.
ļ		Sections indicating possible intertuff flows.
ļ		END OF HOLE.
		·
,		
		,
WESTERN	WW55 505	NA SOC

		Α	\$ \$ A	YS			
SAMPLE No.	FROM	то	WIDTH		/ A L	UE	\$
			<u> </u>				
LEC	SEND	'	ollar Lat				
		1	ollar Elevati				
			zimuth at S zimuth at E				
			iPS:				
		-					
						Ft.	
					Ву		
SCALE				Samplin	g By		-

SECTIONS

arted Completed Depth of Hole Proposed Dopth

PROPERTY MOUNT SICKER

HOLE NO S-72-5 DIP -61° (start) LOCATION 4 E. - 6 N.

SHEET NO. 1

		LOG
FROM	то	DESCRIPTION
0	7	Overburden.
7	12	Diorite - dark green medium-grained irreg-
		ular patches of epidote after feldspar.
		No sulphide.
12	15½	Surface - leached & oxidized quartz sericite
		schist - badly broken up.
15½	151	Diorite - sheared, some patches with recogniz-
		able mafics, other gone to epidote. Some
		sections highly silicified e.g. 20-201 (also
=		some brecciation here) 24-25' & 28-32'.
·		Note 33-36' - fractures filled with fine-
		grained copper coloured material; very soft
		but metallic sheen like native copper.
		Mostly in fractures, but some disseminated.
		More silicified sections - average compos-
		ition of rock probably closer to dacite -
· · · · · · · · · · · · · · · · · · ·		many irregular gashes filled with calcite.
		More Cu coloured material & Fe oxide (red).
		69-70' and then scattered rarely beyond there.
		83-84' - minor shearing, more Cu? mostly in
		fractures, also 89', 92', 93'.
		125-126' - minor shearing to give quartz
		chlorite schist.
		$131\frac{1}{2}$ -134' - quartz sericite schist.
	-	135-136' - quartz sericite schist & minor
1.		very fine pyrite in these more acid sections.
,		(S) $134\frac{1}{2}$ - "diorite".

		Α	\$ \$ A	YS			
SAMPLE No.	FROM	то	WDTH	Cu	Zn L	U E S	Ag
						oz/r	oz/T
259	24	34	10'	L.01	-		-
260	34	36	2'	L.01	- !	-	-
261	36	46	10'	.01	-	-	_
262	81	91	10'	L.01	-		<u>-</u> _
263	91	101	10'	L.01	-	-	-
264	266	276	10'	.04	-	-	_
265	452	462	10'	.05	.46		-
266	462	472	10'	.01	.14		<u> </u>
267	472	4:82	10'	1.01	.02		
268	482	495	13'	.02	.09	_	
269	642.5	647.5	5'	.01	-	.005	.02
270	830	840	10'	L.Ol	L.02	-	-
271	850	860	10'	L.01	L.02	_	_
272	870	880	10'	L.01	.02	-	-
273	890	900	10'	.02	L.02		
274	1157	1167	10'	.03	L.02	.01	.05
LEGEND Collar Lat. Dep. Collar Elevation Azimuth at Start 180° Azimuth at End 172° DIPS: collar Ft61° 754 Ft43° 200 Ft64° 1151 Ft26° 400 Ft57° 1300 Ft31° 600 Ft51° Ft. Logged By J.W. Simpson							
SCALE	linch =	(0)		Samplin	g ву D ву Вот	. Comp	ton

SECTIONS

Started Nov.19/72 Completed Nov. 27/72 Depth of Hole 1342' Proposed Depth 1500'

SECTION PLOTTED ON SEPARATE SHEET

HOLE NO. S-72-5

DIP

LOCATION...

SHEET NO. 2

LOG						
<i>3</i> 77	70	DESCRIPTION				
151	166	RHYOLITE CRYSTAL TUFF - sheared to give whit-				
		ish quartz-sericite schist. Traces of fine				
		disseminated pyrite. Angular quartz & felds- par fragment to 2mm. Core angle -45°.				
166	168 1	Andesitic flow - irregular fractures filled with calcite - minor disseminated pyrite.				
168½	190	QUARTZ SERICITE SCHIST as 151-166. (S) 173'.				
		From 174' on rock becomes coarser grained &				
		more basic, gradation into chloritic tuff				
	<u> </u>	188-190' & then fairly sharp contact.				
190	196½	Fairly coarse diorite. Mafics& feldspar				
		altered > epidote & chlorite.				
196 2	201	Quartz sericite schist.				
201	452	Hornfels 201-202' some chalcopyrite & about				
		15% pyrite then coarse diorite ~20% feldspar				
		in laths & irregular masses. Irregular vein				
		lets filled with epidote, some wide (3")				
	!	quartz-carbonate-epidote veins;fracturing				
		weak - very few sulphides. (3)-230'.				
		268-269' - some quartz veining in area of				
		more intense fracturing than before - traces				
		of chalcopyrite & minor pyrite in fractures				
		associated with quartz. Graphite develops				
		on some minor slips.				
		305' - another zone of fracturing quartz-				
		epidote veining & carbonate fracture filling				
		l large (3mm.) grain of chalcopyrite.				

		A	\$ 5 A				
SAMPLE No.	FROM	то	WIDTH		/ A L	UES	5
			1				
							
				<u> </u>			
							
							ļ
					ļ		
			_	ļ	<u> </u>		
							ļ
							_
						<u> </u>	
LEC	SEND	2	Collar Lat		Dep		
			Collar Elevat				
			Azimuth at S Azimuth at I				
			DIPS:	-// u			
			Ft.				
						Ft	
		İ				Ft Ft	
		}			Ву		
一					, ig By		
SCALE	inch	- 1		Assayin	g By		

	SE	CTIONS	
tarted	Completed	Depth of Hole	Proposed Depth

PROPERTY MOUNT SICKER HOLE NO. S-72-5 DIP

LOCATION

SHEET NO. 3

	. ○ G						
FROM	то	DESCRIPTION					
201	452	316-318, 326-327 - fine-grained grey dykes.					
(cont	irued)	385-390 - some wide carbonate veinlets					
		(fracture fillings).					
		392-393 - much quartz veining.					
		399' - minor fault.					
		441-452' - progressive silicification, minor					
		pyrite.					
452	495 1 /2	Quartz-sericite schist, minor amounts of					
		pyrite in bands. Core angle 70-80° to axis					
		of hole. Traces of chalcopyrite & sphalerite					
		associated with quartz rich sections.					
		478-484' - abundant quartz veining but very					
		little sulphide. Traces of chalcopyrite in					
		with fine pyritic bands.					
495 2	506	Medium-grained diorite - as 201-452'. Traces					
	<u></u>	of pyrite.					
506	611	Fine dark green sheared calcareous andesite					
		tuffs. Now chlorite schist in part. Some					
<u>.</u>		coarse sections like the diorite. Calcite					
		may be part indigenous, certainly most of it					
		has been introduced along fractures, rock has					
1		little or no pyrite. (S) 554'. More very fine					
ļ		red metallics (like red specularite), scatt-					
		ered 538-565.					
		565-567' - medium grained diorite again.					
		554' - minor chalcopyrite in fracture.					
		575-611' - considerable calcite in gashes					

		Α	SSA	YS			
SAMPLE No.	FROM	то	WIDTH		/ A L	UE	S
							
			-				
							
			 			<u> </u>	
							
							<u> </u>
							ļ
	į			<u> </u>			
			1		 -	 	
			-			<u> </u>	
			-		-		
L E C	END	, [Collar Lat	L	Den	<u> </u>	<u>i</u>
		-	Collar Elevat				
			Azimuth at S	tart			
			Azimuth at I	End			
			DIPS: Ft.			F.	
			Ft.			Ft.	
			Ft.			Ft.	
]	Ft.	•		Ft.	
					Ву		
SCALE	inch			Samplin Assayin	g By		

SECTIONS						
Started	Completed	Depth of Hole	Proposed Depth			

WESTERN MINER FORM NO. 506

PROPERTY MOUNT SIGK HOLE NO. S-72-5 DIP

LOCATION

SHEET NO. 4

FROM TO DESIRTION 506 611 and fractures. (Continued) 611 673 Quartz sericite schist - as before, light	
(Continued)	
	.1
611 673 Quartz sericite schist - as before, ligh	4
	T.
grey, minor disseminated pyrite.	
643-648' - ~ 10% fine banded pyrite.	
652-654' - andesitic tuff - dark green.	
656-660' - very siliceous.	
673 807 Acid crystal tuff. No sulphides. Cryst	als
average about 2-3mm. sometimes rounded.	Rock
is comprised of about 60-70% crystal fra	g -
ments & 30-40% clay-sericite-chlorite ma	trix.
(S)-713'.	
Minor faults 745', $746\frac{1}{2}$,	
757-764 - chloritic zone. Rock is progr	ess-
ively silicified towards bottom of inter	_
section.	
807 914 Quartz-sericite schist - pyritic sulphid	es
in irregular bands & patches - always fi	ne-
grained. Average pyrite content 27-8% for	or
5' sections.	
898-899' - graphitic zone.	
914 980 Sheared andesite tuff. Sometimes a chlor	rite
schist. Sometimes fairly coarse-grained	
(almost diorite). Occasional fractures	£
gashes filled with calcite.	
947-948' - FAULT GOUGE. Minor amounts of	?
fine disseminated pyrite.	

		A	S 5 A				
SAMPLE No.	FROM	10	HIDIM		/ A L	U E	\$
							-
				ļ			
					ļ 	ļ	-
							-
						<u> </u>	<u> </u>
							
				ļ	ļ		
					-	-	
				ļ <u>.</u>			
				ļ			
						ļ	
LEC	GENE	2	Collar Lat.		Dep.		
			Collar Elevation				
			Azimuth at S	Start			
			Azimuth at	End			
			DIPS:				
		1	Ft	•	·	Ft.	
		ļ	Ft	•		Ft.	
			F1	•	···	Ft.	
			Ft	•		Ft.	
				Logged	Ву		
				Samplin	g By		
SCALE	inch	1		Assayin	g By		

	<u></u>	<u>ECTIONS</u>	
Started	Completed	Depth of Hole	Proposed Depth

PROPERTY NOUNT SICKER

HOLE NO. S-72-5

IP.....

LOCATION

SHEET NO.5

	LOG						
FROM	ΤO	DESCRIPTION					
		Last 15' grade into more acidic rock.					
980	1044	Quartz-chlorite-sericite schist, medium grey colour. Minor disseminated pyrite.					
		997-1007' - Fault gouge. Much shearing beyond 1007' indicating major Fault Zone.					
		Only 2-3' of core lost. After 1007' - pyrite					
		rock - sulphide now averages 304%.					
1044	1076	Complex section of andesite tuffs, diorites					
		& chlorite schists, low sulphide.					
		1045-1046½ - Fault gouge. Much quartz vein-					
		ing & calcite fracture filling. 1063-1065' -					
		Fault gouge.					
 		1066-1072' - Quartz sericite schist interbed.					
1076	1153						
		$1080-1081\frac{1}{2}$ - fault gouge. Core angle 70° -					
	 	80° to axis of hole except for minor contor-					
		tions.					
!		1092-1093 & 1103' - minor faults. Pyrite					
		content of schists only 1% or so. Very fine					
	ļ	disseminated crystals. (S)-1105' - Quartz					
		chlorite-sericite schist.					
		1121-1125 - major fault. Filled with gouge,					
		no sulphides, probably fairly steep.					
		l½' core lost.					
1153	1169	Mottled grey green sheared coarse tuff or					
		pyroclastic, minor fine pyrite.					

		Α	SSA				
SAMPLE No.	FROM	то	WIDTH	Y	AL	U E S	<u> </u>
SAMPLE NO.	r.Om		Wibiii				
							
			 				
			 				ļ <u>.</u>
			 				
			<u> </u>				
			 				
			 				
				ļ		 	
			-			<u> </u>	
			 			<u> </u>	
			ļ				
			<u> </u>				
LE	GENE	2 7	Collar Lat		Dep.		
		c	Collar Elevat	ion			
		1	Azimuth at S	tart			******
		1	Azimuth at I	End			
			DIPS:			_	
		1	Ft.				
		-	Ft.			Ft Ft	
				•		Ft	
					-		
SCALE	inch						

·		SECTIONS	
Started	Completed	Depth of Hole	Proposed Dopth

. WESTERN MINER FORM NO. 506

PROPERTY MOUNT SICKER

HOLE NO. S-72-5

OIP.....

LOCATION

SHEET NO. 6

LOG					
FROM	то	DESCRIPTION			
1169	1188	Quartz-chlorite schist, medium grey fracture			
		fillings of calcite & quartz. Minor fine-			
		grained disseminated pyrite. 1178-1188' -			
		major fault zone, much gouge, about 2' core			
		lost. Chlorite content very high before fault			
		& then drops off afterwards.			
1188	1277	Quartz-chlorite-sericite schist as before -			
		considerable tectonic activity but good core			
	<u> </u>	recovery.			
		1213-1214' - fault, also 1221-1222'.			
		After 1222' grades in quartz-sericite schist			
		with minor chlorite. Fractured silicified			
		sections after 1230' have minor sulphides			
	ļ	(mostly pyrite on fractures).			
1277	1315	Gradual increase in chlorite from 1277' on.			
		Could be called quartz chlorite schist, minor			
		disseminated pyrite, core angle about 45°.			
·		Some coarse sections (on a scale of a few			
		inches) indicating waterlain environment.			
		Gradation into more basic material 1307-1315'			
1315	1343	Amygdaloidal andesite - like "diorite" before			
 		but "feldspar" grains (now epidote) look more			
		like amygdules. Very light shearing has			
		produced matrix of chlorite. Very rare			
		pyrite.			
		END OF HOLE.			

		Δ	S 5 A	YS			
					VALUES		
SAMPLE No.	FROM	TO	WPTH			ļ	
				 	ļ	 	+
	1		1			1	
				1		1	1
<u>.</u>					<u> </u>		<u> </u>
				ļ			
					 	 	
					ļ	ļ	
	-			l	1		
				 		 	
				1	ļ		
				 	 	- 	
					<u> </u>		
				 	 	 	
	1						
				 		 	
				ļ ——	 	 	
					1		
				ļ <u>. </u>	ļ	ļ	
	1						
				1	 		
				<u> </u>		<u> </u>	<u> </u>
LEC	SEND	2	Collar Lat.		Dep		
		- 1	Collar Elevat	ion		• -	
		- 1	Azimuth at S	itart			
			Azimuth at				
		- 1		LIIG			
		- 1	DIPS:			٠.	•
		1		•			
			Ft	•		Ft.	
		- 1	Ft	•		Ft.	
		ļ	Ft	•		Ft.	
				Logged	By		
			Logged By				
SCALE		i	Assaying By				

SECTIONS					
Started	Completed	Depth of Hole	Proposed Depth		

. WESTERN MINER FORM NO. 506