Ida Claims
Report on

Exploration and Diamond Drilling for 1972
For
Garnet Exploration Corporation Ltd.

M.R. Swanson, M.Sc. Oct. 1972 J.G. Simpson, Ph.D., P.Eng.

Ida Claims

Report on

Exploration and Diamond Drilling for 1972

For

Garnet Exploration Corporation Ltd.

Ву

M. R. Swanson, M.Sc. and J. G. Simpson, Ph.D., P.Eng.

October 1972

TABLE OF CONTENTS

SUMMARY INTRODUCTION LOCATION AND ACCESS PREVIOUS WORK WORK PROGRAM GEOLOGY MAGNETOMETER SURVEY DIAMOND DRILLING ROCK GEOCHEMISTRY OF CORE SAMPLES CONCLUSIONS AND RECOMMENDATIONS	1 2 2 2 2 3 3 3 4 6 6
APPENDICES	
(i) Diamond Drill Logs(ii) Summary of Costs	
MAPS AND FIGURES	
(In Text)	
Location Map	between 2 & 3
(In Rear Pocket)	Scale
Map 1 Ida Claims and Grid Location Map 2 Ida Claims, Geology Map 3 Ida Claims, Magnetometer Survey Fig. 1-5 Graphic Logs, DDH 445-72-1 to 5 Fig. 6-8 Drill Core Rock Geochemistry, DDH 445-72-1 to 5	1" = 100

Samples

SUMMARY

Four helicopter/drill sites were cut out on the southern portion of the Ida claims. A BBS-1 drill using AQ tools was flown in by helicopter and five holes totalling 2,699 feet were drilled to test targets established during the detailed surface exploration program done by Garnet Exploration Corporation Ltd. during 1971. Geological mapping and a magnetometer survey were run on an additional 20 claims staked during March and February, 1972, adjoining the original claims on the east.

The drilling of the altered and pyritized zones showed that pyrite is widespread throughout the volcanic rocks and increases 3 to 5 times in fault and shear zones. Although no significant copper mineralization was intersected DDH 445-72-1 was anomalous in respect to the other holes drilled in that the overall pyrite content and degree of alteration and quartz/calcite veining was much greater. In addition results of core samples submitted for spectrographic analysis also show a higher background in copper and two distinctive peaks, at 1200 and 650 ppm Cu, over ten foot lengths. Tests for fluorine and mercury are inconclusive although the last ten feet of DDH 72-1 carries a five times background mercury content at almost 1000 ppb.

INTRODUCTION

Between April 12 and May 22, 1972, drill sites were located, and fallers were contracted to cut helicopter sites on the heavily timbered property. A camp was set up at one of the drill sites and drilling commenced on April 29, 1972. The planned project was completed by May 21, 1972.

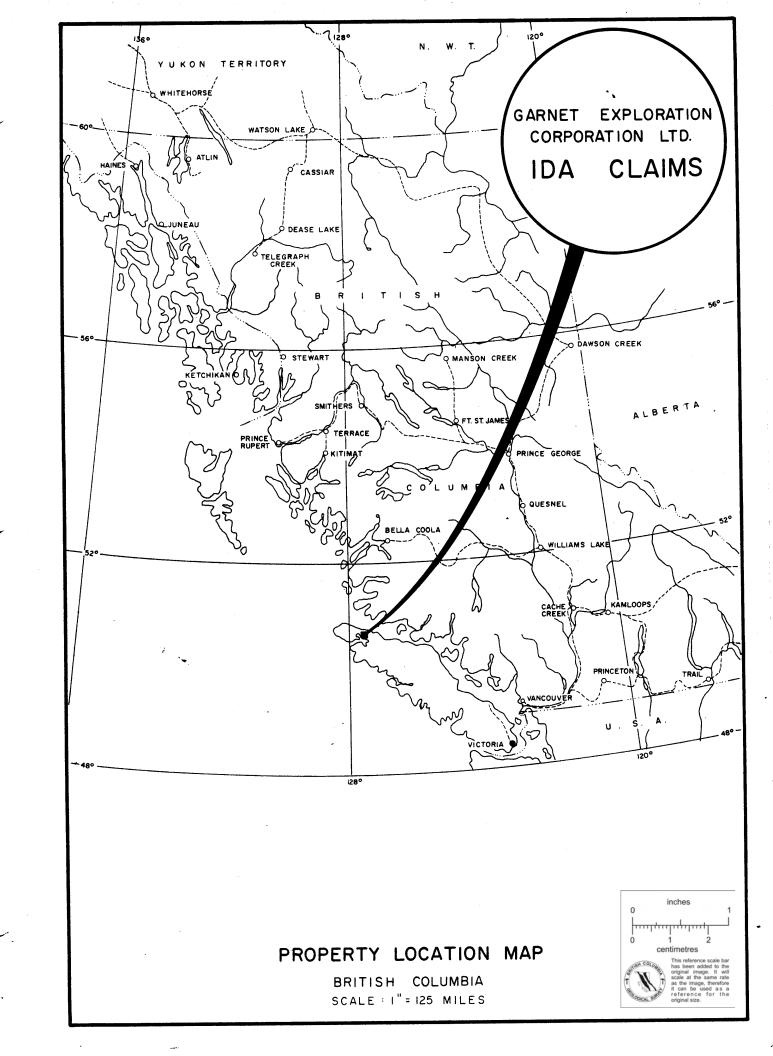
Geological mapping and a magnetometer survey were run over the additional Ida claims staked.

Four drillers, a cook, a magnetometer operator and general fieldhand worked under the supervision of M. R. Swanson and the camp was serviced by Vancouver Island Helicopters Ltd.

LOCATION AND ACCESS

The Ida property totalling 78 full and 2 fractional claims lies just north of Apple Bay on the east end of Holberg Inlet, northern Vancouver Island, at latitude 50°-38'N and longitude 127°-42'W within the Nanaimo Mining Division.

Access to the property is by foot along the beach or by power boat from Coal Harbour, four miles east of Apple Bay. Helicopter service from Port Hardy airport is available, the distance being 15 miles southwest to the property.


The terrain slopes south into Holberg Inlet with an east-west striking ridge forming the high ground at 850 feet elevation and running across the central part of the claims. The property is covered by dense underbrush and a large commercial stand of red and white cedar, hemlock, spruce and balsam.

PREVIOUS WORK

During October 1971 Garnet Exploration Corporation Ltd. under an option agreement from the vendors, Messrs. Storey, Leighton and Stokes, carried out surface exploration of the Ida claims. A north-south grid was cut along an east-west baseline. Lines were spaced 400 feet apart with chained stations every 100 feet to facilitate geochemical sampling, magnetometer surveys and geological mapping.

The magnetometer survey revealed a double lobed high in the southwest corner of the property. This anomaly straddles an altered zone, which is coincident with a prominent east-west fault zone.

A weak, narrow, geochemical copper anomaly strikes east-west and lies across the southern portion of the property. It is straddled by the above noted magnetic anomaly and coincident with the major east-west fault zone. Sporadic molybdenum values were considered insignificant.

The geological mapping outlined an alterated and pyritized zone adjacent to a postulated east-west to west-northwest striking fault, roughly paralleled by a high frequency I.P. effect.

The above noted geochemical copper anomaly and coincident pyritized fault zone and I.P. anomaly were considered a significant target area in the context of Island Copper type orebodies.

WORK PROGRAM

During February 1972 the block of WIZ claims adjoining the Ida claims on the east expired. Twenty of these were restaked as Ida 23 to 44 and Ida 51 to 54 by L. L. Storey, one of the original vendors of the Ida property, and under the terms of the agreement thus become part of the option.

The 1972 program included the drilling of five AQ holes for a total of 2,699 feet and the geological mapping and magnetometer survey of the newly staked ground.

GEOLOGY

As stated in the 1971 assessment report for the Ida claims (Simpson, J.G. and Swanson, M.R.) the northern half of the property is underlain by a granitic to granodioritic intrusive of Jurassic age, while the southern half of the property is covered by Triassic to lower Jurassic Bonanza volcanics. From examination of the drill core and additional mapping it was found that the volcanic sequence on the Ida claims consists of andesitic flows, one of which contains magnetite and breccias, tuffs and tuffaceous agglomerates, all of which are easily weathered and change rapidly in texture and composition both laterally and vertically.

A predominant west-northwest striking fault system with apparent vertical movement is offset by a northeast strike slip system. The earlier west-northwest system is well pyritized along a parallel zone of argillic and less intense alteration often extending some hundreds of feet outwards from the fault.

A zone of siliceous breccia which appears to strike roughly eastwest in the southern part of the property was drilled and found to be associated with a steeply dipping, barren quartz vein some twenty to forty feet in width and of no economic significance.

MAGNETOMETER SURVEY

A Sharpe Fluxgate Model MF-1 magnetometer was used on the existing grid over the old WIZ claims. The lines are 400 feet apart and readings were taken every 100 feet along the lines. The survey outlined the continuation

of the small magnetic high that was building up just south of the Ida baseline on the eastern portion of the original Ida claims. This anomaly as well as the double lobed anomaly on the southwest portion of the property appears to be caused by a relatively unaltered magnetite-rich andesitic flow. No other anomalies were indicated on the new claims.

DIAMOND DRILLING

The diamond drill holes were located as indicated below and drilled using a BBS-1 and AQ wireline tools. Full geological and graphic drill logs are included at the back of this report. Representative chip samples were taken for each 10 feet of core for analytical checks on mineralization trends. The holes drilled are summarized as follows:

DDH No.	Location	Azimuth	Dip	Started	<u>Finished</u>	<u>Depth</u>
445-72-1	30 + 00S 45 + 00E	180°	-60°	Apr. 29/72	May 3/72	596'
445-72-2	43 + 00S 47 + 50E	025 ⁰	-60°	May 5/72	May 7/72	474
445-72-3	43 + 00S 47 + 50E	180°	-45° .	May 7/72	May 9/72	600
445-72-4	20 + 50S 15 + 75E	180°	-450	May 12/72	May 17/72	586
445-72-5	41 + 00S 31 + 75E	180°	-60°	May 18/72	May 21/72	443
	** .				TOTAL	2699'
	•					

DDH 445-72-1

The first hole was sited just north of a well altered and heavily pyritized surface exposure of andesitic material which was partially coincident with a small geochemical copper anomaly. The soil copper anomaly (145 ppm Cu) has a high magnitude for the property (threshold 70 ppm). The hole penetrated a pile of variable volcanic flows and tuffs some of which were in fault contact. Numerous small faults and wider shear zones with attendant alteration and slight increase in pyritization were also noted. A major fault zone at 580 feet stopped the hole after about 15 feet of clay gouge containing a high proportion of pyrite. This fault projects from the surface mapping and correlates well to the postulated near vertical dip. Two small specks of chalcopyrite were seen in massive pyrite veins along shears at 175' and 223'. Calcite veining and minor silicification were noted at intervals along the core.

DDH 445-72-2

DDH 445-72-2 was drilled in a northerly direction within the general zone of high pyrite content and rich alteration to the south of the terminal fault located in hole 445-72-1. The hole collared off in a siliceous breccia zone similar to that mapped along strike to the west. After about 75 feet and to the end of the hole a somewhat different volcanic sequence from that in the first hole was encountered and consisted mostly of pale green agglomerate with 2-3% pyrite. A direct correlation between fault and shear zones and increased pyrite content was established in this hole and persisted through the remaining holes 72-2 to 5. No chalcopyrite was observed, and the hole was stopped at 474 feet due to the lack of alteration or mineralization.

DDH 445-72-3

In order to cross section the broad alteration zone mapped, DDH 72-3 was drilled from the same location as DDH 72-2 but directed to the south at a flatter angle. Also the presence of the high silica content in the first 70 feet of DDH 72-2 was of interest. But like DDH 72-2 the only silica encountered in DDH 72-3 was in the first few feet of the hole. The same volcanic sequence held, with increase in pyrite content as faults were approached, as was noted in DDH 72-2.

DDH 445-72-4

The most northerly feature of the double lobed magnetic high lying in the southwest portion of the property was selected as a drill target from comparison with the magnetic configuration in the vicinity of Utah International's Island Copper deposit and the association of an east-west trending weakly developed copper soil geochemical anomaly. The hole was drilled entirely in a massive green andesite with disseminated magnetite (2-5%). The pyrite content was very low, usually less than 1%, except in a sheared zone and an adjacent and deeper biotite zone, which contained 2-5% pyrite in veins and disseminations. No chalcopyrite or pervasive alteration were observed and the hole was stopped at 586' due to poor progress and discouraging geology. The magnetic anomaly appears to result from the visible magnetite and the geochemical copper anomaly could well be associated with a small fault zone encountered near the top of the hole, which probably carries very minor chalcopyrite. The other magnetic anomalies are in all likelihood faulted blocks of this same massive magnetic andesite.

DDH 445-72-5

This hole was collared just north of the previously noted siliceous breccia zone. This was intersected between 150' and 250' down the hole, in the form of barren, massive, quartz veining. The hole bottomed in agglomerate similar to that in holes DDH 72-2&3 and was probably collared higher in the

same sequence, being preceded by a hematitic agglomerate and coarse crystal tuff horizon. Pyrite content was low except in and adjacent to faults. The agglomerate at the bottom of the hole carried 1-2% pyrite as did the same agglomerate in DDH 72-2&3. With such consistency in pyrite content in a given volcanic bed over the area drilled it might be assumed that the pyrite was originally syngenetic and has been mobilized and concentrated along the large fault zones. No chalcopyrite or pervasive alteration were intersected in this hole.

ROCK GEOCHEMISTRY OF CORE SAMPLES

Three types of samples were taken from the core; these were core splits of ten foot sections in heavily pyritized zones, representative chip samples along ten foot sections of all the core recovered and selected samples of pyrite veins and accumulations.

All chip and selected samples were analysed spectrographically and results quoted in parts per million, while half core splits were run by normal laboratory methods for total metal content. Selected samples were assayed for copper, molybdenum and fluorine; the latter being considered a possible indicator for copper mineralization in this environment. Continuous chip samples were tested for copper in all the holes drilled and in addition fluorine and mercury were run on core from DDH 72-1. The half core splits were assayed for copper, and in some cases gold and silver. All results obtained are included in the detailed logs at the rear of this report together with graphic plots of the ppm copper content.

Basically the results obtained for copper indicate normal background and distribution for this element in andesitic rocks. However, hole DDH 72-1 is anomalous by comparison with the other four. The presence of excess and increasing amounts of pyrite, quartz and calcite veining and the high mercury value obtained from the last few feet of this hole add to the interest of this location. Fluorine appears to be relatively undiagnostic from the results obtained except to show a general antipathetic relationship with above average copper values. Further testing of samples from the vicinity of the known orebodies in the area will be required for both fluorine and mercury before any serious use of these elements can be attempted.

CONCLUSIONS AND RECOMMENDATIONS

Results of the drilling to date have proved disappointing in that no significant copper mineralization has been intersected. There is a strong indication that the bleaching and argillic alteration of the andesites noted in previous reports, and also to some extent the pyrite content of the andesites, is closely linked to the presence of major or at least significant faults and

fault zones. It is equally likely that much of the pyrite is syngenetic in origin and has reacted to subsequent metamorphism and deformation by migration and concentration along selected horizons within the volcanic pile and fault zones. However, in this environment the question remains as to what caused the necessary remobilization, as the amounts noted would certainly be very abnormal for syngenetic pyrite in andesites. The positive mineralizing effect of porphyritic intrusives at Island Copper and, although not published, almost certainly also on the Expo ground to the west of Ida, would provide an ideal situation for the location of a sheared and faulted highly pyritized zone in which argillic alteration would be readily achieved. The general lack of outcrop throughout the Port Hardy belt and relatively subtle indicators existing over known mineralized zones in the area, suggests that careful evaluation of data is imperative for success in the area.

意思公

Further investigation of the possibilities of fluorine and mercury as mineral indicators in this environment is recommended, with follow up in the vicinity and to the east of DDH 72-1 if promising results on test samples from known deposits in the area are obtained.

Appendix (i)

Diamond Drill Logs

COLLAR:	ног	E SURVE	Y
NORTH 30+005	FOOTAGE	AZIMUTH	DIP
EAST 45+00E	0	180	-60°
ELEVATION600 '			
LOGGED BY M.R. Swanson			
DATE LOGGED Apr 29-May 3		L	
MAP REFERENCE NO. 92 L/12	METHOD:	None	

COMPANY NAMEGa	net Exploration Corp. Ltd.
PROPERTY NAME	IDA CLAIMS
DRILLING CONTRACTOR	D.W. Coates Enterprises Ltd.
ASSAYER Bondar-C	legg - Rock Geochem/10 ft.
	st P.P.K. I.P.; Garnet Geol &
10111 002 01 11022	Geochem

45-72-1		AQ
IDA	93	
April	29/72	p.m.
	IDA April May 3	45-72-1 IDA 93 April 29/72 May 3/72

WAT		TOE ITO:	92 L/12 METHOD. NOILE	Geochem					π ====================================				
DESCRIPTION		BECOVY	DECCRIPTION	CHI	P SAM					AYS PPM	OBSER	YATI	ONS
ROM	то	RECOVY	DESCRIPTION	FROM	то	WIDTH	NO.	CU	Mo	F	FFE 9	Py	
0	25	0	Overburden	25	35			84					
				3 5	45			32					
25	47	100%	Gray-Green Andesite Porphyry:	45	55			32			4/ft	3-5%	
			Feldspar (Plagioclase) phenocrysts. Well	55	65			27					
			fractured with quartz veinlets. Pyrites	65	75			58					
			occur along hairline fractures with quartz	75	85			91					
			veinlets and as disseminations 3-5 mm in	85	95			105					
			size. Epidote is present occasionally as	95	105			19					
			replacement pseudomorphic phenocrysts.	105	115			19					_
			Alteration is low propyllitic. Late shears	115	125			24					_
			cut quartz-pyrite veins with argillic	125	135			15					
			alteration one foot either side of shear	135	145	-		15					_
			zone. Minor hornblende occurs as occasional	145	155			11					_
_			phenocrysts.	155	165			62					_
47	57	100%		49'			Chip	160	8	112			L
		200%											<u> </u>
57	97	100%	Same rock as 25'-47'	165	175			175					F
				175	185			145					-
				185	195			215					-
				195	205		1	200					ĺ

COLLAR:	HOLE SURVEY					
NORTH	FOOTAGE	AZIMUTH	DIP			
EAST						
ELEVATION						
LOGGED BY						
DATE LOGGED		<u> </u>	L			
MAP REFERENCE NO.	METHOD:					

COMPANY NAME Garnet Exploration Corp. Ltd.
PROPERTY NAME
DRILLING CONTRACTOR
ASSAYER
PURPOSE OF HOLE

	PAGE	OF	
HOLE NO. 445	5-72-1	AQ	_
CLAIM NAME			-
COMMENCED			_
FINISHED			-
PROJECT NO.			_

	DESCRIPTION DESCRIPTION		CHI	P SAM	PLE	G	EOCH	M ASS	SAYS PPM	OBSERVATIONS			
FROM	то	RECOVY	DESCRIPTION	FROM	ТО	WIDTH	NO.	Cu	Мо	F	FRAC /F+	70 PyR	Alt'n
97	117	100%	Gray-Green Andesite Porphyry:	205	215			56			4/ft	3-5%	2
			Silica-Argillic alteration zone. Late shearing	215	225			11					
			appears to have remobilized quartz & pyrites, or	225	23 5			28	,				
			pyrites, is post-shear as pyrites occur along	235	245			33			#		
			joints, disseminated as well as being concentrated	245	255			81					
			along shear planes.	255	265			105					
117	133	100%	Gray Hornblende Andesite Porphyry:	125'			Chip	5 3	4	384	1-2 /ft	2%	2
		Moderate fracturing (more competent rock),											
-			less Pyrites and quartz veining	265	275			210					<u> </u>
				275	285			305					ļ
133	141	100%	Same rock as above:	285	295			680			6/ft	1%	4
			More intensely fractured; propyllitic alteration	295	305			62					
			with veinlets & disseminations of pyrites - minor	305	315			13 5					ļ
			quartz veining	315	325			64					-
				325	335			56			2-3		
141	148 ⁵	100%	Same rock as above:	335	345			62			/ft	1-2%	2
			Less intensely (moderate) fractured	345	355			69			#		
				3 55	365	-		48					
148	149	100%	Fault Zone:	3 65	375	-		21					7
			Minor Argillic Alteration	375	385			22					<u> </u>

COLLAR:	HOLE SURVEY					
NORTH	FOOTAGE	AZIMUTH	1 DIP			
EAST			L			
ELEVATION						
LOGGED BY						
DATE LOGGED			<u> </u>			
MAP REFERENCE NO.	METHOD:					

COMPANY NAME	Garnet	Exploration	Corp.	Ltd.	
PROPERTY NAME					
ASSAYER					
PURPOSE OF HOL	E				

TAGE	<u> </u>
HOLE NO. 445-72-1	AQ
CLAIM NAME	
COMMENCED	
FINISHED	
PROJECT NO	i

				CHI	P SAM	PLE	d	ЕОСНЕ	M ASS	AYS PPM		RVATIO	
ROM	ТО	RECOVY	DESCRIPTION	FROM	TO	WIDTH	NO.	Cu	Мо	F	FRACET	% Pyr F	71t'x
149	155	100%	Gray Hornblende-Plagioclase Andesite Porphyry:	3 85	395			42			1/ft	0-1%	
			Moderate fracturing with minor quartz veins	395	405			27					
			and little to no pyrites	405	415			145					
				415	425			71					
155	185	100%	Green Andesite - Flow Breccia:	425	435			61			3/ft	3-5%	
			Mottled looking as breccia fragments are 5-25 mm	43 5	445			140					
			in size. Well fractured with criss-cross pattern	445	455			74			_		
			of quartz veining & pyrites earlier on hairline	455	465			84			4		
			fractures and disseminated as replacements around	465	475			64			<u> </u>		
			darker fragments. Some rounded quartz eyes are	475	485			92					
			present. Could be later. Propyllitic alteration.	485	495			140				-	
				495	505			69			-		
185	190		Same rock as above:	505	515			105					
			Incipient argillic alteration adjacent to fault zone	515	525			51					
										·			
190	249	100%	White Quartz-Chlorite Porphyry: with Andesite Xenoliths	223'			Chip	5200	10	80	4/ft	3%	<u>3/9</u>
			Moderately fractured with quartz veins and										
			pyrite veins as pyrites as replacement of mafic	525	535			145			#		
			mineral with chlorite & minor epidote	5 3 5	545			84			-		
				545	555			51					
-				555	565			15					

COLLAR:	HOLE SURVEY							
NORTH	FOOTAGE AZIMUT							
EAST		ļ	L					
ELEVATION								
LOGGED BY			ļ					
DATE LOGGED		<u></u>	Ĺ					
MAP REFERENCE NO.	METHOD:							

COMPANY N	IAME Garnet	Exploration	Corp.	Ltd.
PROPERTY 1	NAME			
DRILLING C	ONTRACTOR			
ASSAYER				
PURPOSE OF	F HOLE			

HOLE NO. 445-72-1	AQ_
CLAIM NAME	
COMMENCED	
FINISHED	
PROJECT NO.	

5004	T0	RECOVY	DESCRIPTION		SAM		•			AYS		OBSE	RYATI	ONS
FROM	ТО	RECOVI	DESCRIPTION	FROM	то	WIDTH	NO.	Мо	Cu	Au	Ag	Frac/ft	9	1
249	269	100%	Green Adesite Flow Breccia:	220	230	10	3101	<u> </u>	0.04			3/ft	2%	1
			Moderately fractured with less disseminated	230	235	5	3102		0.01					-
			pyrites - mostly in joints. Calcite occurring	no c	ore 2	35-24	5							
			with quartz as late veining cutting earlier	245	255	10	3103		0.01				ļ	
			quartz and pyrite veinlets. Propyllitic alteration.	255	265	10	3104		0.01	0.005	0.02			
				265	275	10	3105	0.00	0.02	Tŗ	Tr			ļ
269	282	100%	Green Massive Andesite:	275	285	10	3106		0.02			4/ft	5-7%	2
			Anhedral Chlorite & pyrite in zones forming	285	295	10	3107	1	0.01				ļ	ļ
			blebs along hairline fractures. Moderately	295	305	10	3108		0.01					ļ
			fractured with quartz and later calcite veins	305	315	10	3109		0.01					
			forming along same joint. At 275' speck	315	325	10	3110	<u> </u>	0.01					ļ
			of chalcopyrite propyllitic alteration											
	- 1.				-			<u> </u>						
282	284	100%	Same Rock as above:					<u> </u>			-			
			Fault breccia cemented with pale green silica										<u> </u>	
												4-5		
284	296	100%	Green Andesite Flow Breccia: Frags 5-25 mm:										5-10%	
			Moderately fractured with pyrites as veinlets										<u> </u>	
			& disseminations; with quartz & calcite										ļ	ļ
			veins as above.			-								ļ

COLLAR:	HOLE SURVEY							
NORTH	FOOTAGE AZIMUT	H DIP						
EAST								
ELEVATION								
LOGGED BY								
DATE LOGGED		_i						
MAP REFERENCE NO.	METHOD:	METHOD:						

COMPANY NAME	Sarnet Exploration	on Corp. Ltd.
PROPERTY NAME		
DRILLING CONTRACT	OR	
ASSAYER		
PURPOSE OF HOLE		

	PAGE	 0	<u>o</u>
HOLE NO. 445	5-72-1	 AQ	
CLAIM NAME		 	.
COMMENCED		 	
FINISHED		 	.
PROJECT NO			.

MAP	REFERE	NCE NO.	METHOD:				L						
,				CHI	P SAM	PLE	G	EOCHE	M ASS	AYS PP		SERVAT	IONS
FROM	то	RECOVY	DESCRIPTION	FROM	то	WIDTH	NO.	Cu	Мо	F	FRAG	FT 90 Pur	AH'N
296	296	100%	Fault Zone - resilicified	565	575			41					9
				575	585			100					
296 ⁵	324 ⁵	100%	Green Massive Andesite:	585	595			120			2/	ft 3-5%	6 2
			Propyllitic alteration; with pyrites occurring										_
			as disseminated blebs, sub to euhedral and as									_	-
			veinlets on hairline fractures cut by and along										
			the same joint by quartz and calcite. Mildly										
			fractured.										
324 ⁵	325 ⁵	100%	Fault Zone							-			
									ļ				
325 ⁵	341	100%	Green Massive Andesite:								2/	ft 3-5	% 2
			Propyllitic alteration & fracturing as above										
			(296 ⁵ - 324 ⁵)										
						-							
341	346	100%	Same Rock as above:									5-7	4/9
			Fault zone with increase in silica & pyrites						ļ				
										-			
346	375	100%	Green Massive Andesite:	360	ļ		Chip	230	5.	180			-
			Propyllitic alteration & fracturing as above							-			

COLLAR:	ног	HOLE SURVEY							
NORTH	FOOTAGE	AZIMUTH	DIP						
EAST									
ELEVATION			ļ						
LOGGED BY									
DATE LOGGED									
MAP REFERENCE NO.	METHOD:								

Diamond Drill Record	PAGE60F8_
COMPANY NAMEGarnet Exploration Corp. Ltd.	HOLE NO. 445-72-1 AQ
PROPERTY NAME	CLAIM NAME
DRILLING CONTRACTOR	COMMENCED
ASSAYER	FINISHED
PURPOSE OF HOLE	PROJECT NO.

7204	1 70	DECOVY	DESCRIPTION	•	SAN	MPLE		Αç	SSAYS	11	ERVAT	
ROM	то	RECOVY	DESCRIPTION	FROM	то	WIDTH	NO.				t % Pyr	
375	380	100%	Green Massive Andesite:				1			4/ft	5-7%	3/9
	 		Alteration increases to advanced propyllitic		-						 '	+
	1	1	with epidote on fractures, pyrites on fractures								 '	+
	 '		and as disseminations with Quartz. General		+						 	+
!	<u> </u>		silicification of rock has taken place. Minor								<u> </u>	+-
	 	1	shears are present with 1" offsets of quartz,								1 '	+
			pyrite veinlets. Quartz occurs along shear planes.									-
380	385	100%	Chloritized - Green - Hornblende - Plagioclase Andesite									
			Porphyry:							4/ft	2-3%	4_
· .	<u> </u>		with epidote, pyrites and quartz along fractures							'	 '	+
	 		with minor pyrite disseminations								+'	+
385	412	100%	Same as above but grey in colour from intense							4/ft	3-5%	42,
			silicification. Rock appears to be crackled								1	Ĺ
			or shattered but forms no open network.								 	+
412	430	100%	Green Massive Andesite:							5/ft	3-5%	4
	<u> </u>		Propyllitic alteration, moderate fracturing with							'	<u> </u>	1
	ļ		pyrites as blebs and quartz, pyrites & epidote							· · · · · · · · · · · · · · · · · · ·	 '	+
	1	1	on joints.							'		\perp

COLLAR:	HOLE SURVEY						
NORTH	FOOTAGE AZIMUTH DI						
EAST							
ELEVATION							
LOGGED BY	·						
DATE LOGGED							
MAP REFERENCE NO.	METHOD:						

COMPANY NAME Garnet Exploration Corp. Ltd.
PROPERTY NAME
DRILLING CONTRACTOR
ASSAYER
PURPOSE OF HOLE

	.,,,,,,	•
HOLE NO.	145-72-1	AQ
CLAIM NAME		
COMMENCED		
FINISHED		
DDO IF OT NO		I

		2500141	DECORPTION	CHIP	SAM	PLE	G	CHE	M ASS	AYS PP	4.1	ERYAT	
ROM	то	RECOVY	DESCRIPTION	FROM	то	WIDTH	NO.	Cu	Мо	F	FRAC	1 75 Pyr	Alt'
430	435	100%	Green Massive Andesite:								6/f	t 5- 79	2
			Propyllitic alteration, moderate to intense		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							_	
			fractures to breccia, with open vuggy quartz										ļ
			veins; pyrites on earlier hairline fractures										
			and as disseminations; epidote minor along										ļ
			veins with pyrites. Late offsets of 3-10 mm									-	ļ
			cut all of above.										
435	443	100%	Tuffaceous - Pebbly looking Green Andesite:								5-6 /ft	5-7%	2
			With brecciation and vuggy quartz and										
-			alteration as above.										
443	465	100%	Green Massive Andesite:	449			Chip	105	15	216	5/f	t5-7%	2
			Propyllitic alteration with less open										
			network of fractures; pyrites on hairline									+	ļ
			fractures, cut by quartz and cut by calcite										
			and quartz-calcite veinlets.										
465	471	100%	Same Rock:									3%	4/9
			Argillic alteration with boxwork of after			-							ļ
			pyrites and silicification of zone.										

COLLAR:	HOLE SURVEY					
NORTH	FOOTAGE	AZIMUTH	DIP			
EAST		ļ				
ELEVATION						
LOGGED BY			ļ			
DATE LOGGED		l				
MAP REFERENCE NO.	METHOD:					

OMPANY NAME Garnet Exploration Corp. Ltd.	HOLE NO
OPERTY NAME	CLAIM NAME
RILLING CONTRACTOR	COMMENCED
SSAYER	FINISHED
JRPOSE OF HOLE	PROJECT NO.

HOLE NO. 445-72-1	AQ.
CLAIM NAME	
COMMENCED	
FINISHED	
PROJECT NO.	

FROM	70	RECOVY	DESCRIPTION		SAM	PLE		ASS	AYS	0	BSER	VATIO	ONS
FROM	то	RECOVY	DESCRIPTION	FROM	то	WIDTH	NO.			FRE	c/f1 9	6 Pyr	ATT
471	510	100%	Green Massive Andesite:							1	2/ft 3	3-5%	3
			Propyllitic alteration; shear brecciation										
			with epidote-calcite-pyrite forming wide veins										
			(1-6 ins.) in late shears along with pre-shear										
			smaller pyrite, calcite veins. Minor to no										
			quartz veins.										
510	517	100%	Same Rock as above:							5,	/ft	3%	2
			Minor propyllitic alteration with moderate criss-										
			cross fracture pattern filled with calcite and										
			pyrites.										
	·												
517	520	100%	Same Rock: Silicified										9
			,								4		
520	543	100%	Green Andesite Flow Breccia:							6	/ft 2	2-3%	
<u> </u>			Late calcite cutting pyrite veins in moderately		<u></u>								
			fractured and mild propyllitic alteration.					· · · ·					
543	596	50%	Same Rock 7:										
			Fault breccia & clay gouge. Stopped hole -										
			stuck rods. END OF HOLE										

COLLAR:	HOL	E SURVE	Υ
NORTH 43+00S	FOOTAGE	AZIMUTH	DIP
EAST 47+00E	o°	025 ⁰	-60 ⁶
ELEVATION525!			
LOGGED BY M. R. Swanson	ļ		
DATE LOGGED May 6-7/72			
MAP REFERENCE NO. 92 L/12E	METHOD:	Non	e

OMPANY NAME	Garnet Exploration Corp. Ltd.
ROPERTY NAME	IDA CLAIMS
RILLING CONTR	ACTOR <u>D.W. Coates Enterprises Ltd.</u>
ASSAYER	
URPOSE OF HOL	E Test Geology - Siliceous Breccia

HOLE NO. 445-72-2	AQ
CLAIM NAME IDA - 402	
COMMENCED May 5/72 a.m.	
FINISHED May 7/72 p.m.	
PROJECT NOIDA	

МАР	REFERE	NCE NO.	92 L/12E METHOD: None		one						·
ROM	то	RECOVY	DESCRIPTION	CHIP	SAM	PLE	l i	ASSAYS PPM	OBSE	RYAT	ION
NUM	10	RECOVI	DESCRIPTION	FROM	то	WIDTH NO.	Cu		Free St	7. Pyr	Alt
0	10	-	Overburden	10	20		37				<u> </u>
				20	30		19				
10	45	100%	White Quartz Zone:	30	40		100			10-20	16
			Silica Alteration with pyrites disseminated and	40	50		67				ļ
			along micro or healed fractures. Late barren	50	60		52				
			calcite veins form along late fractures.	60	70		15		_		<u> </u>
				70	80		32				<u> </u>
45	48	100%	Same Rock as above:	80	90		61				_
			Shear zone near parallel to hole axis.	90	100		75		#		<u> </u>
				100	110		41				_
48	75	100%	White Quartz Breccia:	110	120		44			7-10%	<u> </u>
			Same as 10' to 45' but breccia texture is dis-	120	130		52				<u> </u>
			cernable, i.e., less intense alteration. Pyrites	130	140		440				ļ
			are disseminated and along older joints, and	140	150		84				_
			barren calcite veins form later.	150	160		36			·	<u> </u>
				160	170		77		2-3		_
75	86	100%	Gray-Green Andesite Flow Breccia:	170	180		80			3-5%	2
		·	Quite hard - partially silicified with late	180	190		110				-
	·		calcite; minor disseminated pyrites. Pyrites	190	200		91				1
			mostly in fractures. Mild fracturing.	200	210		120		_		\perp
			-	210	220		64				

COLLAR:	HOLE SURVEY						
NORTH	FOOTAGE	AZIMUTH	DIP				
EAST			ļ				
ELEVATION							
LOGGED BY							
DATE LOGGED		<u> </u>	L				
MAP REFERENCE NO.	METHOD:						

Diamond Drill Record	PAGE _
COMPANY NAME Garnet Exploration Corp Ltd.	HOLE NO. 445-72-2
PROPERTY NAME	CLAIM NAME
ORILLING CONTRACTOR	COMMENCED

AQ

FINISHED _____

PROJECT NO.

					SAMP	LE			ASS	AYS		OBŞE	RVATI	ONS
FROM	то	RECOVY	DESCRIPTION	FROM	то	WIDTH	NO.	Мо	Cu	Au	Ag	OBSE FRACET	Z Pya	Alt's
86	88	100%	Gray-Green Andesite Flow Breccia:					 					15%	2/9
			Fault Zone with calcite & quartz matrix.					-						
			Increase in pyrites in fragments & in matrix.											
88	111	100%	Gray-Green Andesite Flow Breccia:	100	110	10	3113					1-2 /ft	3%	3
			Fragments 5-50 mm in size, andesitic matrix;						ļ					
			argillic to porpyllitic alteration with pyrites					<u> </u>						
			along hairline fractures and minor disseminations.					#				 		
			Epidote forms alteration product in the fragments.		-			#						
			Mild late fracturing.											
111	115	100%	White Quartz Breccia:										10= 15%	3/9
	113	100%	High pyrites content along shear planes and											
			joints. Epidote & pyrites replaces mafics.						-			4	ļ	<u> </u>
			ý	110	120	10	3114		0.01			-	10-	-
115	130	100%	Same as above:	120	130	10	3115	<u> </u>	0.01				15%	!
			More argillic to phyllitic alteration				-	 	-		ļ	-		
····		·									-	#		_
											1			
								-	-			-		-
			•											Ĺ

DRILLING CONTRACTOR _____

ASSAYER _____

PURPOSE OF HOLE _____

COLLAR:	HOLE SURVEY							
NORTH	FOOTAGE	AZIMUTH	DIP					
EAST								
ELEVATION								
LOGGED BY								
DATE LOGGED								
MAP REFERENCE NO.	METHOD:							

T .		in i	
Diamond)r1	i Kecord	

COMPANY NAME Garnet Exploration Corp. Ltd.	Н
PROPERTY NAME	С
DRILLING CONTRACTOR	C
ASSAYER	F
PURPOSE OF HOLE	Ρ

	PAGE	3	of	4
HOLE NO. 445-	-72-2			10
CLAIM NAME				_
COMMENCED				_
FINISHED				
PROJECT NO.				

			DESCRIPTION	CHIP	SAME	PLE	G	осн	EM ASS	AYS F		OBSE	RVAT:	CONS
ROM	то	RECOVY	DESCRIPTION	FROM	то	WIDTH	NO.	Мо	Cu	Au	Ag	Franc/St	101R	RIT
130	150	100%	Gray Fault Gouge:	130	140	10	3116		0.01				15%	5-0
			Intense clay alteration with very fine pyrites	140	150	10	3117		L0.01					-
			forming part of matrix. Pyrites also form clots		·								· · · · · ·	
			in breccia fragments. Epidote & calcite form								ļ			ļ
			veins along what appears to be later shear planes.											-
150	195	100%	Gray Fault Zone: same as above	150	160	10	3118						20%	5/
			Calcite & silica form matrix along with	160	170	10	3119							ļ
			pyrites which equal 20%	170	180	10	3120				ļ			
•				180	190	10	3121						2-	
195	312	100%	Agglomerate - Andesitic - Dacitic:	190	200	10	3122					1/ft		
			Looks like a flow breccia but matrix is soft	200	210	10	3123				ļ	4		<u> </u>
			and has shards. Argillic alteration has taken	210	220	10	3124				ļ			<u> </u>
			place with epidote forming clots after replacing					Cu						<u> </u>
			fragments (or fragments could have been altered	220	230		-	15					-	<u> </u>
			prior to deposition in the tuff bed). Sub to	230	240			210						<u> </u>
			euhedral pyrites form in matrix & fragments and	240	250			160						_
			along joints. Minor late fracturing containing	250	260			46			ļ			<u> </u>
			calcite-pyrite veins. Dark friable mineral forms	260	270			26						
			with calcite-pyrite unidentifiable.	270	280			62			ļ	#		
			•	280	290			66						

COLLAR:	HOLE SURVEY						
NORTH	FOOTAGE	AZIMUTH	DIP				
EAST			ļ				
ELEVATION							
LOGGED BY			-				
DATE LOGGED			L				
MAP REFERENCE NO.	METHOD:						

COMPANY NAME	Garnet	Exploration	Corp.	Ltd.	
PROPERTY NAME	-				
ORILLING CONTRA	ACTOR				
ASSAYER			<u>-</u>		
PURPOSE OF HOL	E				

HOLE NO	445-72-2	AQ
CLAIM NAME		
COMMENCED .		
FINISHED		
PROJECT NO.		

MAP	REFERE	NCE NO.	METHOD:											
		T		CHI	SAMI	PLE		д ЕОСНЕ	EM ASS	AYS F		OBS	ERVAT	'I ONS
FROM	то	RECOVY	DESCRIPTION	FROM	то	WIDTH	NO.	Мо	Cu	Au	Ag	FRACET	* Aye	8/1'#
312	319	100%	Agglomerate - Dacitic - Andesitic: same as above		Cu									
			Fault zone, could be later fault as no	290	300			14				 		
			change in pyrite content	300	310			61				 		
				310	320			87					2=	·
319	471	100%	Agglomerate - Dacitic - Andesitic:	325	335	10	3111					1/ft		2
			Alteration drops off to propyllitic type. Pyrites	335	TO WIDTH NO. Mo Cu Au Aq Kackt 5 Cu 300									
			disseminated and along hairline fractures. Possible	320	330			15						
			minor exsolution of chalcopyrite in pyrites at	i	1			69				 		
			3210. Barren late calcite veins with pyrites.	340	350			18				<u> </u>		<u> </u>
				350	360	·		48			ļ	 		
471	474	100%	Dark Gray-Green Hornblende Andesite Porphyry:	360	370			100				1/ft	2%	2
			Propyllitic alteration, minor disseminated	370	380			45	<u> </u>		Ag Fresh 2-1/ft 3%			
			pyrites, sub to euhedral as replacement of	Andesitic: 320 310 320 3111	18									
	,		hornblende. Minor barren calcite & epidote	390	400			165				-		-
			veins along hairline fractures.	400	410			31				-		
				410	420			110	_		-			
-				420	430	ļ		37			<u> </u>			_
			END OF HOLE	430	440	-	·	70			-	#		-
				440	450			31				1	<u> </u>	ļ
													<u> </u>	<u> </u>

COLLAR:	HOLE SURVEY					
NORTH 43+005	FOOTAGE	AZIMUTH	DIP			
EAST 47+00E	0	180°	-45 ^q			
ELEVATION						
LOGGED BY M. R. Swanson						
DATE LOGGED May 9, 1972	600'		-45°			
MAP REFERENCE NO. 92 L/12E	METHOD:	Acid Et	ch			

COMPANY NAME	Garnet Exploration Corp. Ltd.
	IDA CLAIMS
DRILLING CONTR	ACTOR D.W. Coates Enterprises Ltd.
ASSAYER	
PURPOSE OF HOL	E Test Geology & Structure

PAGEOF	4_	
HOLE NO. 445-72-3		
CLAIM NAME IDA 402	_	*
COMMENCED May 7/72 p.m.	_	
FINISHED May 9/72 a.m.	_	
PROJECT NO. 445	_	

			DECORPTION		SAMF	LE		Δ	SSAYS			
OM	то	RECOVY	DESCRIPTION	FROM	то	WIDTH	NO.			Func Pt	Za Pyr	A
0	21	-	Overburden	-								\mid
		3000										-
21	40	100%	Quartz Breccia: Intense silicification and alteration:	25	35	10	3125				مردد	٠
		·	pyrites are pervasive forming clots and	35		10	3126					•
			disseminations along hairline fractures.	45		10	3127					
			Later barren calcite veins in open joints.									_
40	.	100%	Pale Green Andesitic Flow Breccia:				-			1-2 /ft	103	_
ĮU_	52	100%	Silicified but texture is discernable.							10-11-2 /ft 10-11-		-
			Pyrites are present along hairline fractures.									-
			Late Barren calcite veins. Argillic alteration.		-							
52	54	100%	Fault Zone: same rock as above								/ft 109	_
	-		Pyrites form part of gouge matrix.									
40 52	100%	Pale Green Agglomerate:							1/ft	39	<u>.</u>	
			Large angular fragments of variable composition									_
			with a dacite-andesite matrix. Pyrites form clots									_
			around fragments and as matrix. Propyllitic									_
			alteration, minor late calcite (barren) veins.									ĺ

COLLAR:	HOLE SURVEY						
NORTH	FOOTAGE	AZIMUTH	DIP				
EAST			<u> </u>				
ELEVATION							
LOGGED BY							
DATE LOGGED		L	L				
MAP REFERENCE NO.	METHOD:						

COMPANY NAME Garnet Exploration Corp. Ltd.
PROPERTY NAME
DRILLING CONTRACTOR
ASSAYER
PURPOSE OF HOLE

	PAGE	 OF
HOLE NO. 445	5-72-3	 AQ
CLAIM NAME		
COMMENCED	A	
FINISHED		
PROJECT NO		

		T		CHIP	SAMI	PLE		GEOCHEM	ASSAYS PPM	12	ERVAT	
ROM	то	RECOVY	DESCRIPTION	FROM	то	WIDTH	NO.	Cu		FRAC/Ft	To Pyr	Alt'
90	118	100%	Fault Breccia:	21	30	9		33				
			In the dacitic-andesitic agglomerate, fault	30	40	10		.51				
			appears to be post pyrites.	40	50	10		92				
				50	60	10		39		1-2		
97 11	118	100%	Dacite Feldspar Porphyry:	60	70	10		17		/ft	10%	
			Hard gray-violet colour rock with pale green,	70	80	10		48				
			lustrous alteration mineral. Pyrites form	80	90	10		41				in
			anhedral disseminations in groundmass around	90	100	10		67				
			the 3-5 mm phenocrysts, and form as clots along	100	110	10		260				
			hairline fractures. Late barren calcite veins	110	120	10		75				
			form in open joints. Propyllitic alteration.	120	130	10		55				
				130	140	10		33				ļ
118	155	100%	Fault Breccia & Gouge Zone:	140	150	10		49				
			Lost water circulation. Large clots of pyrites	150	160	10		105				<u> </u>
			in breccia matrix. Barren calcite veins form	160	170	10		26				-
			along shear planes.	170	180	10		22				-
				180	190	10		35	·			
155	191	100%	Pale Green Agglomerate:	190	200	10		61		l/ft	0-19	3/
			Dacite-andesite matrix with variable composition	200	210	10		150				ļ
			fragments. Very minor pyrites. Epidote form in	210	220	10		140				
			matrix. Minor late barren calcite veins.	220	230	10		62				

COLLAR:	HOLE SURVEY						
NORTH	FOOTAGE AZIMUTH DI	DIP					
EAST							
ELEVATION		-					
LOGGED BY							
DATE LOGGED							
MAP REFERENCE NO.	METHOD:						

OMPANY NAME <u>Garnet Exploration Corp. Ltd.</u>
ROPERTY NAME
PRILLING CONTRACTOR
ASSAYER
URPOSE OF HOLE

	PAGE _	 OF	4	
HOLE NO				
COMMENCED			_	
PROJECT NO		 	1	

				CHIP	SAM	PLE	G	COCHEM	ASSAYS	PPM	OBSE	OBSERVAT	
FROM	то	RECOVY	DESCRIPTION	FROM	ТО	WIDTH	NO.	Cu			FRAC/FT	& Bya	Alt'n
		^	Incipient argillic alteration.	230	240	10		25					
				240	250	10		12					
191	191 ⁵	100%	Fault: same rock as above	250	260	10		120					
				260	270	10		145					
191 ⁵	197	100%	Pale Green Agglomerates:	270	280	10		24				1%	3
			Same as 155-191 with less than 1% pyrites,	280	290	10		48					
	-		mostly in dark fragments. Minor epidote in	290	300	10		100					
			matrix adjacent to fragments.	300	310	10		33					
				310	320	10		27			#		
197	199	100%	Dark Green Hornblende Andesite Porphyry:	320	330	10		37				3%	3
			Propyllitic alteration with sub to euhedral	330	340	10		145					ļ
			pyrites disseminations.	340	350	10		87					
				350	360	10		83			3 (5		
199	300	100%	Pale Green Agglomerate:	360	370	10		56			1/5 ft.	2%	2
			Same as above agglomerate. Minor epidote and	370	380	10		59					
			pyrites in matrix adjacent to fragments. Very	380	390	10		20					
			rare barren calcite veins. 1 to 5 feet apart.	390	400	10		17					
				400	410	10		50			1/2-		
300	450	100%	Pale Green Agglomerate:	410	420	10		78			5 ft		4
			Same rock as 199-300', but with increase in	420	430	10		295					-
			pyrites & epidote near the calcite filled fractures.	430	440	10		3 5					

COLLAR:	HOLE SURVEY									
NORTH	FOOTAGE AZIMUTH DIP									
EAST										
ELEVATION										
LOGGED BY										
DATE LOGGED										
MAP REFERENCE NO.	METHOD:									

COMPANY NAME Garnet Exploration Corp. Ltd.
PROPERTY NAME
DRILLING CONTRACTOR
ASSAYER
PURPOSE OF HOLE

	PAGE	4	OF _	4	
HOLE NO. 44					`
CLAIM NAME COMMENCED				-	
FINISHED				_	
PROJECT NO				1	

ROM	то	RECOVY	DESCRIPTION	CHIP	SAME	PLE	GI	OCHEM	ASSAYS PPM	OBSI	RVAT	CONS
		III.COVI	DESCRIPTION	FROM	то	WIDTH	NO.	Cu		Fenc/f	7. Pur	<u>RIŁ!</u>
		 	No increase in disseminated pyrites. Incipient	440	450	10		65				
			argillic alteration.	450	460	10		60				
				460	470	10		58				
450	558	100%	Same Rock as above:	520	530	10	3128				3-5%	4
			But with increase in disseminated pyrites as grains	530	540	10	3129					
	V		and as clots in matrix & fragments. Calcite veins	540	550	10	3130					
			are rare but small veiplets of pyrites are present.	550	560	10	3131					
			Alteration remains the same	560	570	10	3132					
				470	4 80	10		60				
558	571	100%	Fault Zone:	480	490	10		52			5-10%	
			Increase in pyrites as sub to euhedral grains	490	500	10		<u>25</u>				
			in the gouge & breccia matrix and fragments.	500	510	10		74				<u> </u>
			Most pyrites are very finely disseminated.	510	520	10		83				
				520	530	10		83				
571	600	100%	Dark Green Hornblende Adesite Porphyry:	530	540	10		68			2-3%	2
			Mild propyllitic alteration with finely	5 4 0	550	10		18				
			disseminated sub to euhedral pyrites. Epidote	550	560	10		65				
		,	forms in small fractures. Barren calcite veins	560	570	10		65				
			are rare.	570	580	10		49				
				580	590	10		57	·			
			END OF HOLE	590	600	10		68				

COLLAR:	HOLE SURVEY							
NORTH 20+50S	FOOTAGE	AZIMUTH	DIP					
EAST 15+75E	0	180°	-45°					
ELEVATION								
LOGGED BY M. R. Swanson	ļ							
DATE LOGGED May 12-17/72	586		-45°					
MAP REFERENCE NO. 92 1./12E	METHOD:	Acid						

COMPANY	NAME _	Garnet E	xploratio	n Corp.	Ltd.	
PROPERTY	NAME	IDA	CLAIMS			
DRILLING	CONTR	ACTOR D.W.	Coates E	nterpri	ses Ltd.	
ASSAYER _						
PURPOSE (OF HOL	E Test E	-W Fault:	Mag &	Geochem	

PAGE 1 OF 5.

HOLE NO. 445-72-4

CLAIM NAME IDA 91

COMMENCED May 12, 1972 a.m.

FINISHED May 17, 1972 a.m.

PROJECT NO. 445

MAP	REFERE	NCE NO. 9	2 L/12E METHOD: Acid Anomaly				l]
EBOM	то	RECOVY	DESCRIPTION	CHIP	SAMF			GEOCHE	M ASSAYS	PPM			rions
FROM	10	RECOVY	DESCRIPTION	FROM	то	WIDTH	NO.	Cu			Frac/ft	% Rya	Alt'a
0	42	0%	Overburden /	42	50	8		32			 		
				50	60	10		71			12-14		
42	85	85%	Dioritic Equivalent:	60	70	10		100			/ft		3-4
			Medium-grained equigranular equivalent to andesite.	70	80	10		66					
			Epidote & magnetite are present as discreet grains.	80	90	10		51					-
			Minor disseminations of pyrites. Ground is very	90	100	10		85			-		
	broken & blocky w		broken & blocky with barren calcite veins, both	100	110	10		105			-		
			white & pink every few inches. Alteration is	110	120	10		83			1		
			slight argillic (epidote).	120	130	10		59			#		
				130	140	10		75					
85	110	60%	Shear & Fault Zone:	140	150	10		60			<u> </u>	3-5%	
			Calcite on shear planes. Chloritization has	150	160	10		54					
			destroyed the rock texture. Epidote & pyrites	160	170	10		58			-		
			on fractures & shear planes.	170	180	10	 	38					
				180	190	10		55			12		
110	120	80%	Massive Green Andesite:	190	200	10		43			/ft,	1%	2
			Blocky with finely disseminated pyrites &	200	210	10		100					<u> </u>
			magnetite. Closely spaced barren white calcite	210	220	10		64					
			veins. Some pyrites form on hairline fractures	220	230	10		150					
			& appears to be earlier than the calcite.	230	240	10		64					19.
				240	250	10		45					

COLLAR:	HOLE SURVEY						
NORTH	FOOTAGE AZIMUTH DIP						
EAST							
ELEVATION							
LOGGED BY							
DATE LOGGED							
MAP REFERENCE NO.	METHOD:						

COMPANY	NAME _	Garnet	Exploration	Corp.	Ltd.	
PROPERTY	NAME.					
DRILLING	CONTRA	ACTOR				
ASSAYER .						
PURPOSE	OF HOL	E				

	PAGE		0+		
HOLE NO. 44	5-72-4				
HOLE NO.	J 12-1			-	
CLAIM NAME		······		-	
COMMENCED				-	
FINISHED				-	
PROJECT NO				_ 1	

5.001	7.0	DE COVIV	DESCRIPTION	CHIP	SAM	PLE	(EOCHI	EM ASS	AYS PPM	OBSE	RYATI	CONS
FROM	TO	RECOVY	DESCRIPTION	FROM	ТО	WIDTH	NO.	Cu			FRACIET	To PyR	Alt'n
120	135	60%	Shear Breccia Zone:	250	260	10	ado das agresos abados e acessos consessos consessos o con-	57				3-5%	4
			Same massive andesite with increase in pyrites	260	270	10		48					<u></u>
			and calcite veining. Minor epidote on fractures	270	280	10		41					<u> </u>
			with pyrites. Magnetite still present as dis-	280	290	10		255					ļ
			seminated grains. Alteration is argillic.	290	300	10		11					
				300	310	10		57					
135	172	90%	Massive Green Andesite:	155	165	10	3133				12/ft	1%	1
			Very blocky & broken ground. Rock is quite										
			fresh with increase in pyrites & epidote veining.	310	320	10		35					
			White & pink barren calcite becoming quite		330	10		86					-
			numerous. Fine-grained magnetite = 2-5%	330 340	340 350	10 10		60 78					
			disseminated throughout rock.	350	360	10		74	·				
				360	370	10		76	,				-
172	180	100%	Same Rock as above:	370	380	10		47			12/ft	1%	1
			More coarse grained to medium grained texture,	380	390	10		62					
			same as 42-85'	390	400	10		45					ļ
				400	410	10		110					
180	197	100%	Massive Green Andesite: same as above	410	420	10		86			12/ft	1%	1
			Fine grain texture with small dark specks,	420	430	10		76					
			apparently mafic minerals, i.e., hornblende										
					1								

COLLAR:	HOLE SURVEY							
NORTH	FOOTAGE	AZIMUTH	DIP					
EAST								
ELEVATION			<u> </u>					
LOGGED BY	·							
DATE LOGGED		l ,	<u> </u>					
MAP REFERENCE NO.	METHOD:	<u> </u>						

OMPANY NAME Garnet Exploration Corp. Ltd.	HOLE NO
ROPERTY NAME	CLAIM NAME
RILLING CONTRACTOR	COMMENCED
SSAYER	FINISHED
URPOSE OF HOLE	PROJECT NO.

	FAGE OF 5	_
1	145 50	
	HOLE NO 445-72-4	
	CLAIM NAME	
	COMMENCED	
	FINISHED	
	PROJECT NO	

T	1				SAMF	LE	1	AS	SSAYS		ERVAT	
ROM	то	RECOVY	DESCRIPTION	FROM	то	WIDTH	NO.			FIRIFT	70 FIR	Alt
197	289	100%	Sheared Zone - Massive Green Andesite:	250	260	10	3134			12/ft	3-5%	
			Rock has randomly spaced shear planes filled									
		-	with barren calcite veinlets. Pyrite forms as									
			disseminations and fracture filling content is									
			around 3%. Magnetite forms disseminations &									
			rarely also calcite veins >> secondary magnetite									
			content is 2-5%. Rock is quite fresh.									
										1-2		
289	300	100%	Massive Green Andesite: Coarse-Grained Variety		-					/ft	1%	
			Pyrites (1%, calcite veins becoming less								1	
		·	frequent. Some pyrites form along fractures	295	305	10	3135					
			then cut by barren calcite. Magnetite still		ļ							
			present.									
300	381	90%	Same Rock:	350	360	10	3136			1/ft	2-3%	
			Biotite appearing along fractures and interstitial:	Ly						•	ļ	
			could be alteration. Rock is less fractured &		-							
			pyrites has increased to 2-3%, fewer calcite veins	<u>. </u>							ļ <u>.</u>	_
			rock still quite fresh.								-	-
												-

COLLAR:	HOLE SURVEY							
NORTH	FOOTAGE	AZIMUTH	DIP					
EAST		ļ						
ELEVATION								
LOGGED BY								
DATE LOGGED								
MAP REFERENCE NO.	METHOD:	METHOD:						

COMPANY	NAME _	Garnet	Exploration	Corp.	Ltd.
PROPERTY	NAME.				
DRILLING	CONTRA	ACTOR			
ASSAYER					±
PURPOSE	OF HOL	E			

<u> </u>
HOLE NO. 445-72-4
CLAIM NAME
COMMENCED
FINISHED
PROJECT NO.

50011	**	BEGOVY	DESCRIPTION	CHIP	SAMI	PLE	GE	ОСНЕМ	ASSAY	S PPM	11	RVAT	
FROM	то	RECOVY	DESCRIPTION	FROM	то	WIDTH	NO.	Cu			FRAC FT	90 Ba	Alt'n
381	382	100%	Gouge Zone - Small Fault:	430	440	10		120					<u> </u>
				440	450	10		110			12-14		ļ
382	430	100%	Massive Green Andesite:	450	460	10		430			()	1	1
			Barren Calcite veins form criss-cross pattern.										
			Magnetite = 2-5% as disseminations. Pyrites	470	480	10		57					-
			content has decreased to 1%. Rock is fresh.	480	490	10		120					
			Biotite has almost disappeared.	490	500	10		110					ļ
				500	510	10		100					
430	431	100%	Fault Breccia:	510	520	10		27					
				520	530	10		86					
431	439	100%	Massive Green Andesite: same as above	530	540	10		91			8/ft	< 1%	1
			Quite fresh, less fractured	540	550	10		55					
				550	560	10		46					ļ
439	440	100%	Fault Gouge:	560	570	10		140					<u> </u>
				570	580	10		68			1 2		ļ
440	510	100%	Massive Green Andesite:	580	590	10	,,	47					1
			Increase in pyrites in the hairline fractures.				·····						ļ
			Less calcite veins: magnetite remains the same									-	
			only with the grains becoming coarser.										
431 439 1												<u> </u>	
			•										

COLLAR:	HOLE SURVEY
NORTH	FOOTAGE AZIMUTH DIP
EAST	
ELEVATION	
LOGGED BY	
DATE LOGGED	
MAP REFERENCE NO.	METHOD:

COMPANY NAME Garnet Exploration Corp. Ltd.
PROPERTY NAME
DRILLING CONTRACTOR
ASSAYER
PURPOSE OF HOLE

	PAGE	 OF	5
HOLE NO445	-72-4		
CLAIM NAME			_
COMMENCED		 	_
FINISHED		 	_
PROJECT NO			

FROM	то	RECOVY	DESCRIPTION		SAM	PLE		AS	SAYS	OBE	ERVAT	ION
NOW	10	MECOVI	DESCRIPTION	FROM	TO	WIDTH	NO.			FRACE	+ 90 Pur	RIT
510	513	60%	Fault Gouge:									
			Same massive green andesite									
										1-2		
513	520	100%	Massive Green Andesite:	ļ						/ft	2-5%	
			Quite fresh looking with pyrite & calcite									
	,		veining & magnetite disseminations.								-	
												-
520	521	100%	Fault Gouge: Same Rock as Above									<u> </u>
521	586	100%	Massive Green Andesite: Same As Above	550	560	10	3137			1-2 /ft	1%	
	300	100%	Minor pyrites as disseminations & very few		300		3137					
			fracture fillings. Barren calcite veins becoming									
			less frequent. Magnetite forms interstitial									
			grains = $1-2\%$ of rock. Rock is hard & quite fresh.									
			END OF HOLE									
			Overall Recovery = 95%: Generally rock was hard &								-	
			fresh. Used 11 bits in 542 feet.									
_												
	I			3						11		

COLLAR:	НОГ	E SURVE	Υ
NORTH 41+00S	FOOTAGE	AZIMUTH	DIP
EAST _ 31+75E	0	180°	- 60
ELEVATION			
LOGGED BY M.R. Swanson	443		-70°
DATE LOGGED May 19-21/72			
MAP REFERENCE NO. 92 L/12E	METHOD:	Acid	

COMPANY NAME Garnet Exploration Corp. Ltd. PROPERTY NAME IDA CLAIMS
DRILLING CONTRACTOR D.W. Coates Enterprises Ltd.
ASSAYER
PURPOSE OF HOLE <u>Test Geology - i.e., Quartz Breccia</u>

	PAGE _	1	_ OF	6
HOLE NO	445-72-5			
CLAIM NAME	IDA 3	98		_ 11
COMMENCED.			a.m.	
	May 21,		a.m.	
PROJECT NO	445			

5004	TO	RECOVY	DE CODIDITION	CHIP	SAMI	PLES	GI	1	ASSAYS	PPM	OBSE		
FROM	ТО	RECOVY	DESCRIPTION	FROM	то	WIDTH	NO	Cu			FRAC/FY S	Pyr	Alf'A
0	13	_	Overburden	13	20			55					
			<i>A</i>	20	30			48					
13	61	100%	Dark Green Tuffaceous Agglomerate:	30	40			10			10/ft	2%	1-2
			Fragments are large & small with quite a variable	40	50			24					
	·		composition. Hairline fractures are filled with	50	60			25			,		
	-		pyrites & later barren calcite veinlets which are	60	70			44					-
	,		cut by larger barren quartz veins. Some late	70	80			37					
	·		calcite veinlets cut the quartz veins. The quartz	80	90			14			1		
***	P ANGE AND THE SERVICE AS \$1700.		veins are 1 to 2 inches wide. This quartz fills	90	100			33			1		
	,		narrow breccia-like zones and occurs once every	100	110	i		155					
			10 to 12 feet (2 or 3 per tray). The rock is	110	120			60)	,
			multicoloured and is quite fresh, but well	120	130			16					
			fractured. Also rock is slightly magnetic due to	130	140			21					
			small grains of magnetite in the matrix. The	140	150			36					
			fragments are pyritized.	150	160			51					
				160	170			150					
61	62 ⁵	100%	Small Fault Zone - Clay Gouge:	170	180			57				5%	
				180	190			76			10-12		
62 ⁵	8 5	100%	Hematitic Agglomerate:	60	70	10	3138				/ft	5%	1-2
			Rock has changed to a deep red in colour and is	70	80	10	3139						
	ı		made up of hematitic fragments. Red cherty	80	90	10	3140						

COLLAR:	HOLE SURVEY
NORTH	FOOTAGE AZIMUTH DIP
EAST	
ELEVATION	
LOGGED BY	
DATE LOGGED	
MAP REFERENCE NO.	METHOD

COMPANY NAME _ Garnet Exploration Corp. Ltd.
PROPERTY NAME
DRILLING CONTRACTOR
ASSAYER
PURPOSE OF HOLE

	_
HOLE NO. 445-72-5	1
CLAIM NAME	
COMMENCED	
FINISHED	
PROJECT NO.	ı

-				CHIP	SAME	LES	GE	OCHEM	ASSAYS	PPM	11	RVATI	
ROM	ТО	RECOVY	DESCRIPTION	FROM	то	WIDTH	NO	Cu			Frac/Fd	Je Pye	Alt'n
			fragments and an amorphous hematitic matrix.	190	200		norman graph procedure continue a contra della d	55					
			Very fine pyrite veins are abundant with pyrites =	200	210		and the second s	73			-		
			3-5%. Quartz veining is smaller, i.e., 1/2 inch	210	220			51					
			wide and more rare (1 or 2 per tray). Rock is	220	230			37					 -
			non-magnetic, and what non-hematitic fragments	230	240			52					
			there are (green andesite) appear to be fresh.	240	250			46					•
			Rock is still generally well fractured.	250	260			47					
				260	270			43			#		
85	99	100%	Same Rock As Above:	270	280			4 5			#		·
			Pyrites have dropped to 1-2%	280	290			59					
				290	300			39			2-4		
99	153	100%	Coarse Crystal Tuff - Dark Green:	300	310		-	210			/ft	≤ 1%	
			Feldspars have been altered to clays and epidote	310	320.			130			#		
			with very minor pyrites. Minor random criss-cross	320	330			30					
			series of quartz veins are barren and appear to be	330	340			26			-		
			dipping sub-parallel to the core axis. No	340	350			33			<u> </u>		
			magnetite. Rock isn't blocky and is moderately	350	360			61					
			fractured.	360	370			37					
				. 370	380			42					
153	180	100%	Quartz Filled Fault Breccia - Same Rock:	380	390		general and the second section of the second sections of the second section sections of the second section section sections of the second section section section sections of the second section section section sections of the section se	260				≤1%	
			Quartz is milky white with no sulphides.	390	400			335					

COLLAR:	HOL	HOLE SURVEY				
NORTH	FOOTAGE	FOOTAGE AZIMUTH DI				
EAST						
ELEVATION						
LOGGED BY	T THE IS MAKE THE WAY TO SET THE SET OF THE					
DATE LOGGED						
MAP REFERENCE NO.	METHOD.					

T 1	17 .11	D 1	
Diamond	l)rıll	Kecord	

COMPANY NAMEGarnet Exploration Corp. Ltd.	HOLE NO
ROPERTY NAME	CLAIM NAME
PRILLING CONTRACTOR	COMMENCED
ASSAYER	FINISHED
URPOSE OF HOLE	PROJECT NO.

PAGE OF6_	
HOLE NO	
CLAIM NAME	
COMMENCED	
FINISHED	
PROJECT NO.	

FROM	то	RECOVY	DESCRIPTION	ROCK SAMPLE CHIPS				SEOCHEM ASSAYS PPM				OBSERVATIONS		
				FROM TO		WIDTH	NO.	Cu				FROG PY	90 Pys.	RILA
			Occasional epidote veinlets in association with	400	410			26						
			the quartz.	410	420			91						
180	205	100%	Late Fault Zone - Post Quartz Veining: Dark Grey-Green											
			Tuff:			<u> </u>							≤ _{1%}	5
			This is primarily a shear zone with broken $\&$											
			smeared quartz and calcite veins. Rock has						·					
			changed to a dark gray-green fine grained tuff.											
			Fine calcite & larger (1 to 2 inch) quartz veins											
			occur with epidote. Pyrite occurs along pre-calcite	\										
			fractures 1%							<u> </u>				,
205	239	100%	Hematitic Tuff - Same Post Quartz - Late Fault & Shear										-	
			Zone:											
			Fyrite is near NIL and the barren quartz-calcite											
			veins are still broken & smeared. Ground is very											
			blocky.							<u></u>				
												1	_	
239	336	100%	Dark Gray-Green Coarse Grained Tuff:									12-1 /ft		3-4
			Minor calcite (earlier) and quartz veining intact.			,								
			Feldspars have been altered to clays & epidote.				-							

COLLAR:	HOLE SURVEY								
NORTH	FOOTAGE	AZIMUTH	DIP						
EAST									
ELEVATION									
LOGGED BY									
DATE LOGGED		<u> </u>	<u></u>						
MAP REFERENCE NO.	METHOD:								

Diamond Drill Record

COMPANY	NAME _	Garnet	Exploration	Corp.	Ltd.
PROPERTY	NAME.				
DRILLING	CONTRA	ACTOR			
ASSAYER_					

	PAGE	OF6
HOLE NO.	445-72-5	
CLAIM NAME		
COMMENCED _		
FINISHED		
PROJECT NO.		

FROM TO RECOVY		DECOVY	DECODIBATION	SAMPLE					11	OBSERVAT		
FROM	10	RECOVY	DESCRIPTION	FROM	TO	WIDTH	NO			FRANFT	90 0 40	Alt'a
			Pyrites at near 0%. Ground is very shattered		ļ		dennis aland and black the transfer of the second					
			& blocky. Numerous calcite & epidote veinlets									
			form along hairline fractures. Quartz veining									
to accompany of the second			drops off to 0 at around 270'. Rock is			-						
			moderately fractured past 270'.									
336	336 ⁵	100%	Fault:									:
336 ⁵	350	100%	Dark Green Hornblende Andesite Porphyry:							15-1 /ft	6 0%	2-3
			Fairly massive rock with black hornblende phenocryst									
	oran or		laths. Rock is well fractured with abundant, very	<u> </u>								
			small barren calcite stringers, both pink & white									
			calcite. Epidote also forms in hairline fractures.									· .
			Pyrite content is almost nil & rock is slightly									-
			magnetic. •									
350	366	100%	Same Rock As Above: Late Barren Fault Zone								≤1%	
			Large Barren Calcite veins are pre-fault									
			with one small speck of galena at 364'. Pyrites									
			are generally 0% with minor amounts forming									
			euhedral crystals on hairline fractures.									

COLLAR:	HOLE SURVEY
NORTH	FOOTAGE AZIMUTH DIP
EAST	
ELEVATION	
LOGGED BY	
DATE LOGGED	
MAP REFERENCE NO	METHOD:

Diamond Drill Record

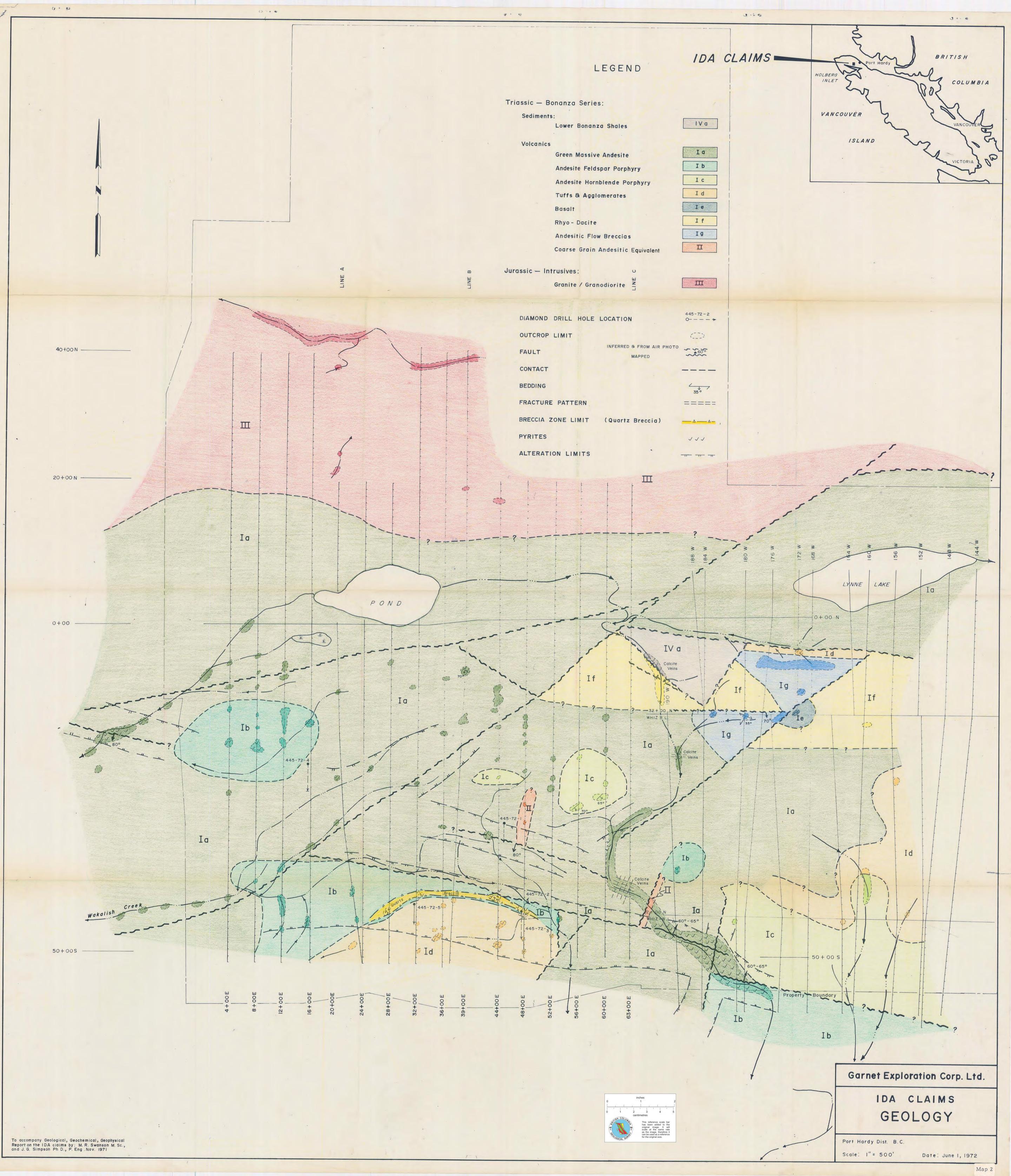
COMPANY NAME Garnet Explo	ration Corp. Ltd.
PROPERTY NAME	
DRILLING CONTRACTOR	
ASSAYER	
PURPOSE OF HOLE	

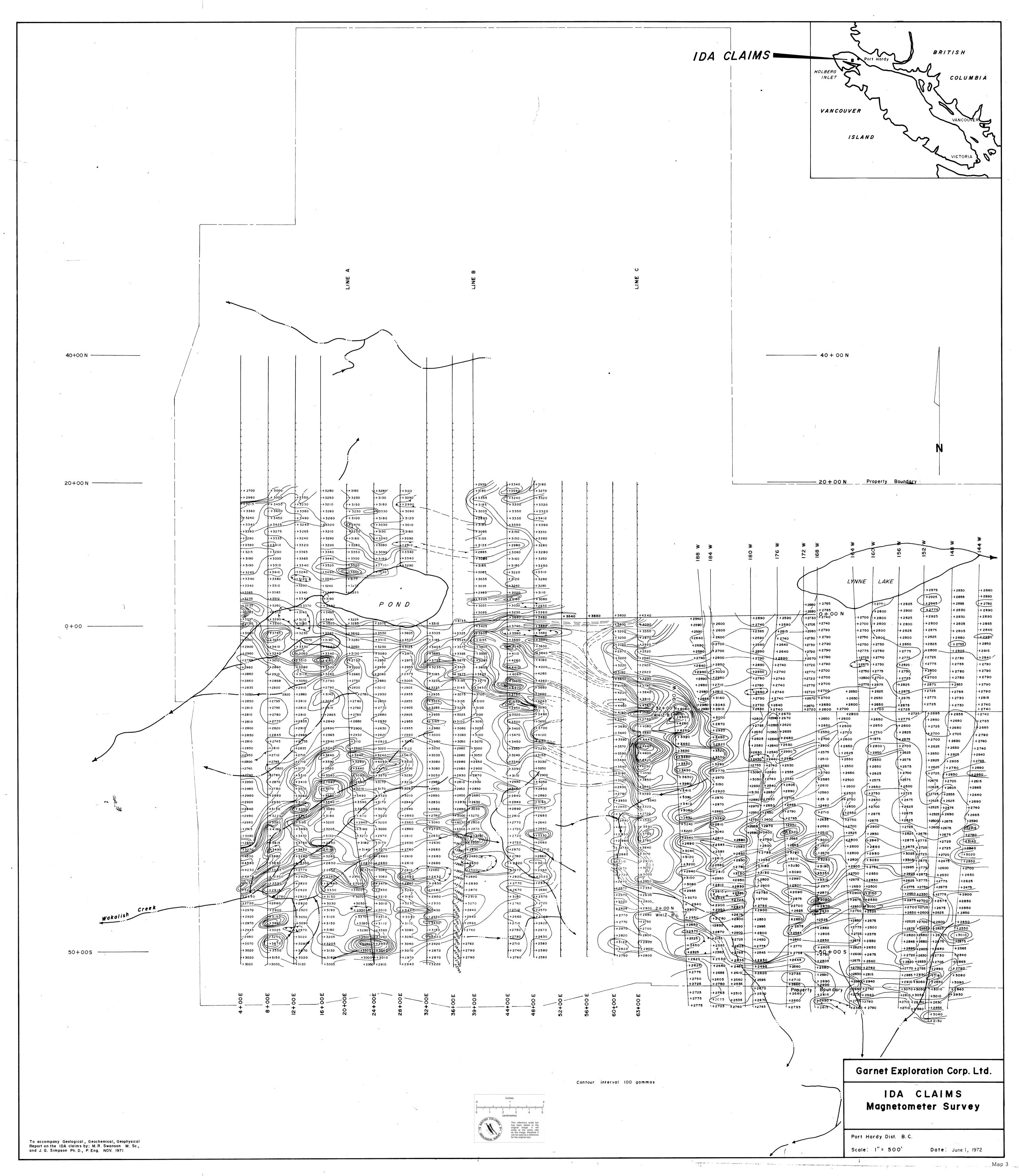
	PAGE	5	OF _	6
HOLE NO	445-72-5			
CLAIM NAME				_
COMMENCED.				_
FINISHED				
PROJECT NO.		· •		

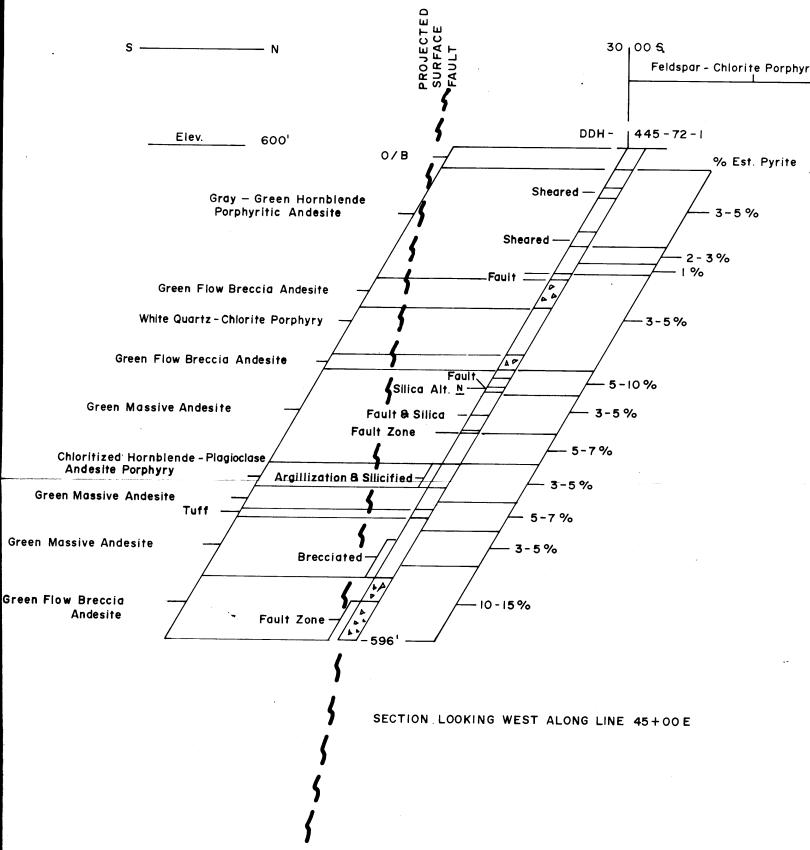
		2500104	DECORIDATION		SAM	PLE		ASSAYS			OBSE	RVAT]	ONS
FROM	ТО	RECOVY	DESCRIPTION	FROM	ТО	WIDTH	NO.				OBSE FRANCIFT	-9. Pys	Alt'
366	373	100%	Coarse Grained Crystal Tuff - Same Fault Zone as Above:				antina antina antina di Lata di Lata antina di Santina	4			/ft	≤1%	2-3
			Feldspars are greenish clay & epidote with										
			very minor pyrites forming in the altered										
			feldspar grains. Ground is very blocky and										
			non-magnetic.										
373	380	40%	Fault Gouge: Coarse Grained Crystal Tuff:										
			Very blocky & clay zone. Same rock as above.					-					
80	407	100%	Tuffaceous Agglomerate:								2-14 /ft	1-2%	2-3
	407	100%	Altered feldspars to clay and epidote with a										
			slight increase in pyrites to 1% to 2% mainly										
			as disseminated forming anhedral grains. Numerous										
			barren calcite veinlets. Ground very blocky.									·	
407	443	100%	Same Rock As Above:								1/ft	1-2%	3
			Agglomerate texture is more defined										
			with coarse to large angular fragments.										
			Ground is less broken and almost nil										-
			calcite veining.							-			

COLLAR: HOLE SURVEY FOOTAGE AZIMUTH DIP				Diamond Drill Record						Γ	PAGE 6 OF 6									
NORTH FOOTAGE AZIMUTH DIP EAST ELEVATION FOOTAGE AZIMUTH DIP					Dir	COMPANY NAME Garnet Exploration Corp. Ltd.							HOLE NO							
					PROPERTY NAME												1			
ì							DRILLING CONTR							COMMEN						
1							ASSAYER							FINISHE						
•		NCE NO.		METHOD:			PURPOSE OF HOL	_E					L	PROJECT	NO					
		1									SAM	DI C		7	224	۸۷۵				
FROM	то	RECOVY				E	ESCRIPTION			FROM TO		WIDTH	NO.	ASSAYS			+			
									· · · · · · · · · · · · · · · · · · ·	THOW	10	1410111	110.	#						
														#						
					END	OF	HOLE					 	-	#						
			Due to	bit bei	ing los	t in	hole for unkn	own reason				<u> </u>		1				ļI		
												 						 		
																	,			
							-									:				
<u> </u>		1	· · · · · · · · · · · · · · · · · · ·							· · · · · ·		1	-	#						
				·										<u> </u>						
		ļ				•						+		╫		<u> </u>				
								····						4					ļl	
														1						
 														1						
 		<u> </u>					. 44 999 400					-		#			-	 		
						-						<u> </u>		Ш						
																				1
		+	,								<u> </u>	1		#						
										ļ			<u> </u>	#				 	 _	
·																			ļ	L
														1						_
						·····			,	ļ .	ļ	 		#	_		 		 	
													; ; }				ļ	 		<u> </u>
	1									1	1		1 .	11			1	41 '		

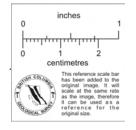
.

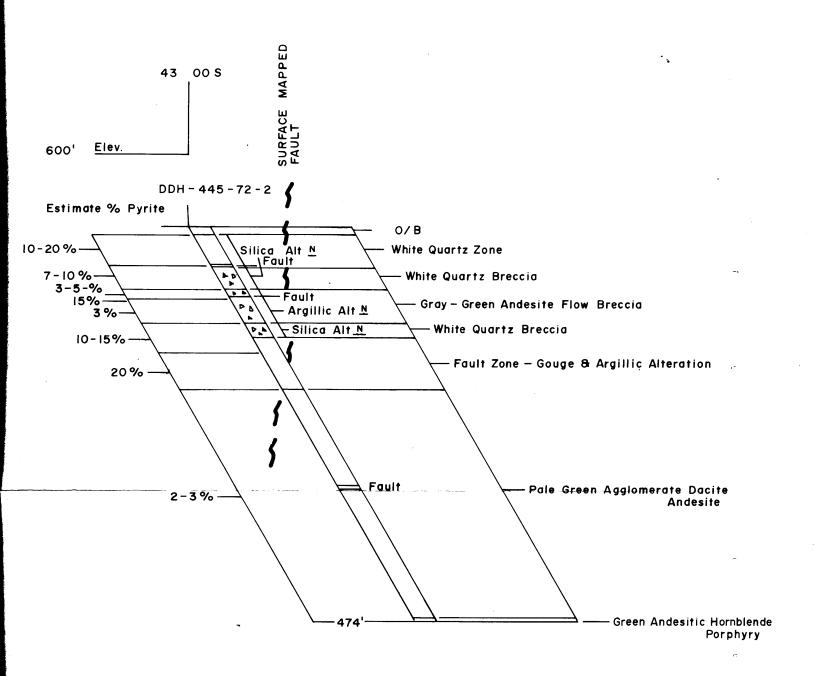

Appendix (ii)


Summary of Costs

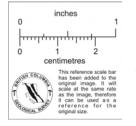

SUMMARY OF COSTS - 1972

Acquisition		\$ 5,673.00
Salaries and Wages		10,588.00
Surveying and Mapping		317.00
Geochemistry	,	642.00
Outside Contract Services		1,335.00
Drilling		21,908.00
Assaying		67.00
Travel		2,387.00
Air Charter		6,391.00
Equipment		1,093.00
Miscellaneous		204.00
	TOTAL	\$50,600.00



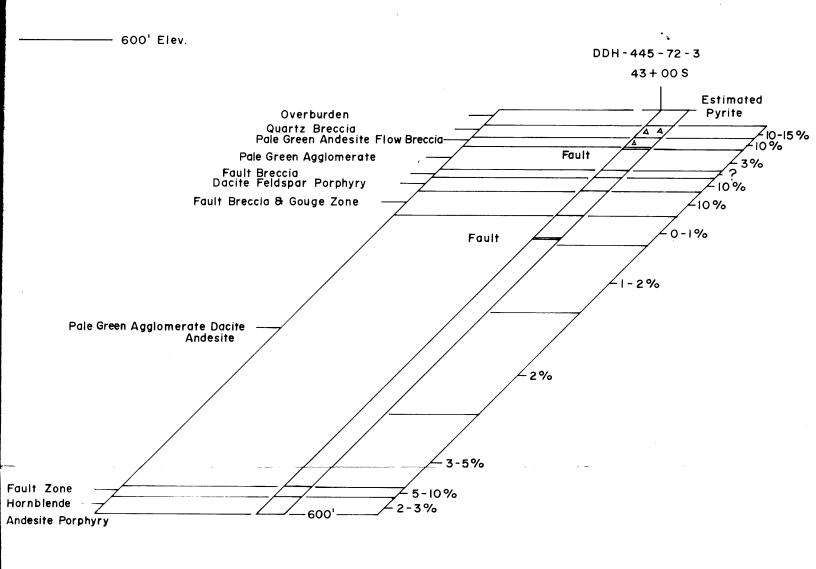


GARNET EXPLORATION CORP. LTD.

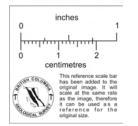

IDA CLAIMS DDH-445-72-1

Scale: I inch = 100 feet May, 1972 M.R.S.

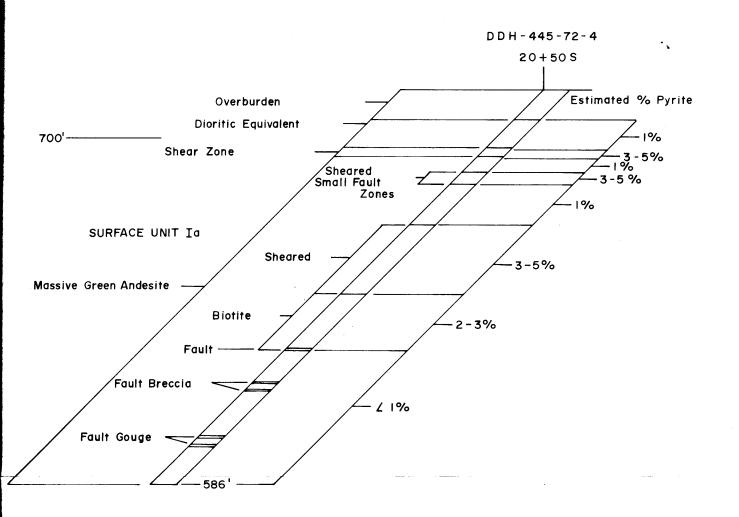
SECTION LOOKING NORTH 65° WEST


GARNET EXPLORATION CORP. LTD.

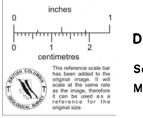
IDA CLAIMS


DDH-445-72-2

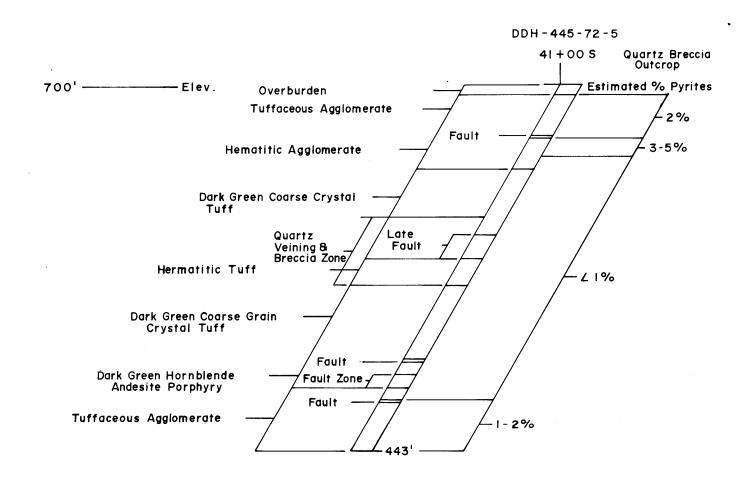
Scale: linch = 100 feet May, 1972 M. R. S.


SECTION 47 + 00 EAST LOOKING WEST

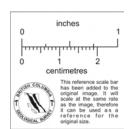
GARNET EXPLORATION CORP. LTD.


IDA CLAIMS DDH-445-72-3

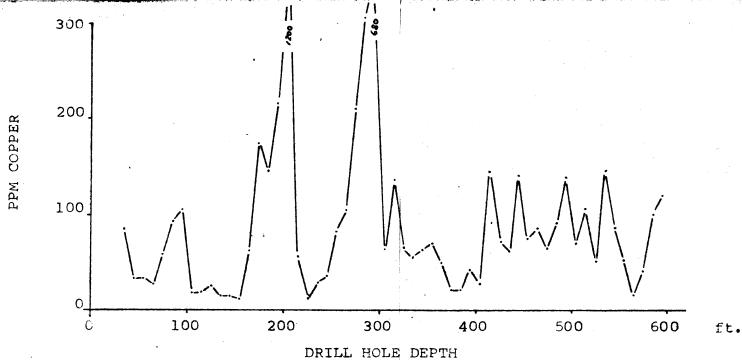
Scale: linch = 100 feet May 1972, M.R.S.

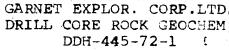

SECTION 15 + 75 EAST LOOKING WEST

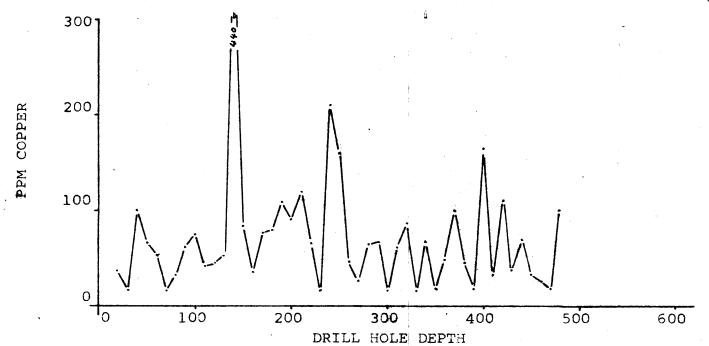
GARNET EXPLORATION CORP. LTD.


IDA CLAIMS DDH-445-72-4

Scale I inch = 100 feet May 1972, M. R.S.

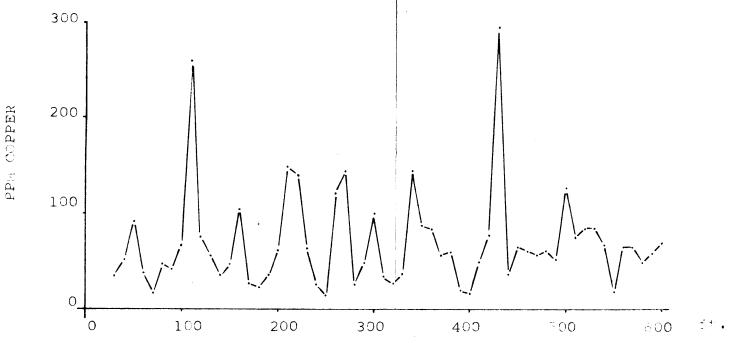

SECTION ALONG 31 + 75 EAST


GARNET EXPLORATION CORP. LTD.

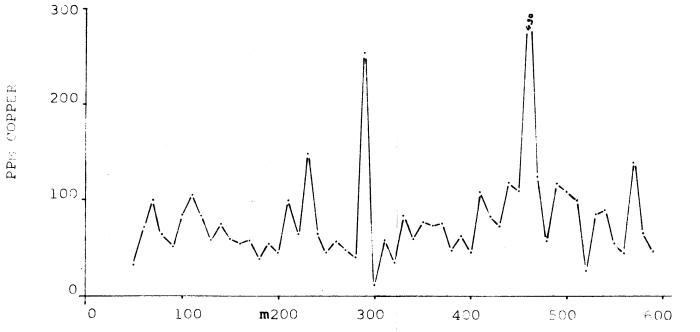


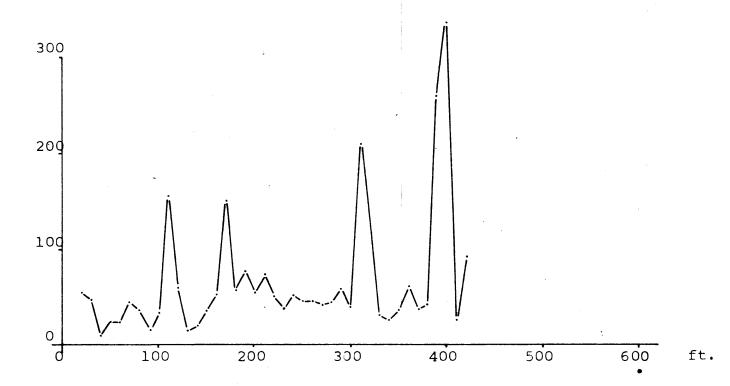
IDA CLAIMS DDH-445-72-5

Scale: linch = 100 feet May 1972, M.R.S.

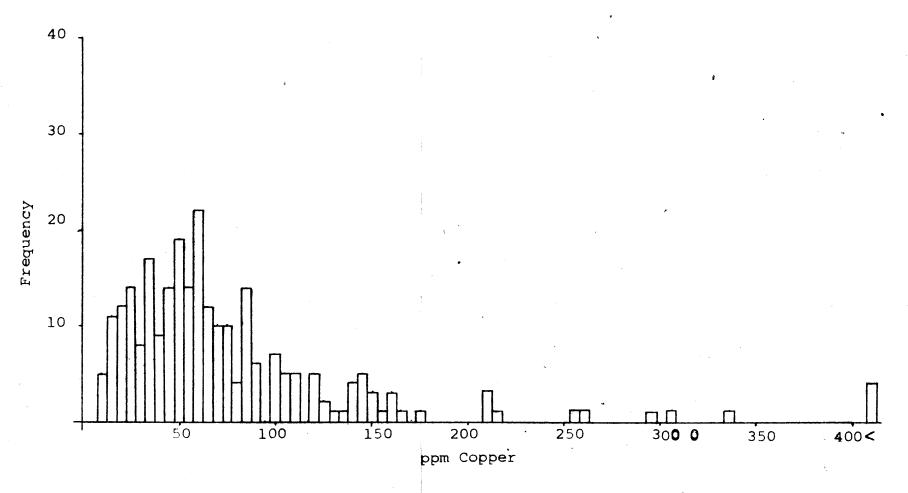


ft.


GARNET EXPLOR. CORP.LTD.
DRILL CORE ROCK GEOCHEM
DDH-445-72-2


DRILL HOLE DEPTH

GARDER EMPLOR. CORP.LTD.
DRIED CORE ROCK FEOCREM
DDE-445-72-3



DRILL FOLE DEPTH

DRILL CORE RCCK SECC EMDD: 445-72-4

GARNET EXPLOR. CORP. LTD. DRILL CORE ROCK GEOCHEM DDH-445-72-5

GARNET EXPLOR. CORP. LTD. DISTRIBUTION OF DRILL CORE GEOCHEM SAMPLES