R.V. KIRKHAM

R. V. KIRKHAM V. KIRKHAM

vinal breectas:

lines of Bre additioned

BAM KIRKHAMOII

GEOLOGY OF THE "ISLAND COPPER" MINE, PORT HARDY, BRITISH COLUMBIA

Deressio, andesible rooks in the hanging wall and footwall of

a goarpa-feldepar perphyry dyke. Bydelas with volcanic and

D. George Cargill

B.A.Sc., University of Toronto, 1967. MSc., Queens University, 1970.

AJAM ISMYA

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

in the Department

Geological Sciences

We accept this thesis as conforming to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

fractures, outsing volcanic rocks and the porphyry dyne.

................

March, 1975.

ABSTRACT

The Island Copper deposit at Port Hardy, approximately 200 miles northwest of Vancouver, B. C., consists of two ore zones with total reserves of 280,000,⁴⁰ tons of 0.52 percent copper and 0.029 percent molybdenite. Ore zones occur in Jurassic andesitic rocks in the hanging wall and footwall of a quartz-feldspar porphyry dyke. Breccias with volcanic and intrusive fragments cap the dyke and occur along the margins. Chalcopyrite and molybdenite occur in all rocks, but ore grade concentrations are restricted to volcanic rocks and marginal breccias.

The rocks have been subjected to contact thermal metamorphism and to hydrothermal alteration. The metamorphic aureole can be subdivided into an inner zone, adjacent to the dyke, characterized by biotite and magnetite; an intermediate, transitional zone characterized by chlorite; and an outer zone characterized by epidote. The ore zone is associated with the inner (biotite) zone and the inner part of the intermediate (transitional) zone.

The hydrothermal alteration which occurs in volcanic rocks, breccias and the porphyry dyke is characterized by formation of sericite, pyrophyllite and a kaolin group mineral. Pyrophyllite is largely restricted to the breccia which caps the dyke. Sericite and the kaolin group mineral(s) occur in the marginal breccias and in sericite envelopes on quartz veins and open fractures cutting volcanic rocks and the porphyry dyke.

There are five stages of chalcopyrite deposition and three stages of molybdenite deposition. However, field evidence supported by statistical study indicates that the first stage of copper deposition accounts for the bulk of metal in the orebody. Most of the chalcopyrite was deposited before the bulk of the molybdenite.

GEOLOG format proved a quick and effective method of recording wall rock alteration observed in drill core. Statistical study of correlation, between abundance of alteration minerals and copper and molybdenite grades, yielded information on the importance of different stages of sulphide deposition to the ore zone. However a knowledge of age relations of alteration and ore minerals was essential to an interpretation of the statistical results.

ACKNOWLEDGEMENTS

The writer greatly appreciated the enthusiastic cooperation and assistance provided by the staff of Utah Mines Ltd., E. S. Rugg and M. J. Young of the Exploration Department and J. Lamb of the Island Copper Division were especially helpful. Utah Mines Ltd. provided financial support for both field and laboratory study.

Dr. K. E. Northcote of the B. C. Dept. of Mines and Dr. J. E. Muller of the Geological Survey of Canada took part in many helpful discussions of the geologic setting of the deposit.

The late Drs. J. A. Gower and W. H. White, the initial supervisors of the study, greatly stimulated the writer's interest in porphyry copper deposits.

Dr. A. J. Sinclair's advice on treatment and interpretation of statistical data is greatly appreciated.

Dr. A. Soregaroli assumed supervision of the completion of the study and his encouragement and advice contributed greatly to the study. Dr. K. C. McTaggart made suggestions for improvement of the original manuscript.

The writer gratefully acknowledges a National Research Council Scholarship for 1969-70 and 1970-71.

CONTENTS

CHAPTER 1. INTRODUCTION	Page
Location	1
Previous Geologic Work	1
Scope of the Present Investigation	3
CHAPTER 2. REGIONAL GEOLOGY	4
Introduction	4
Volcanic and Sedimentary Rocks	7
Karmutsen Formation	7
Quatsino Formation	8
Parsons Bay Formation	8
Harbledown Formation	9
Bonanza Volcanics	.10
Lower Cretaceous Rocks	11
Intrusive Rocks	12
Stocks	12
Quartz Feldspar Porphyry Dykes	12
Felsic Dykes and Sills	12
Andesite Dykes	13
Basalt-Dacite Dykes	13
Regional Structure	13
Bedding	14
Faults	14
Mineral Deposits and Regional Alteration	14
CHAPTER 3. MINE GEOLOGY	19

Introduction

「大川にないたいない

19

v.

	vi.
Stratigraphic Position	Page 19
Lithology	24
Volcanic Rocks	24
Ouartz-Feldspar Porphyry Dyke	27
Intrusive Breccias	29
Pyrophyllite Breccia	29
Marginal Breccia	30
"Yellow Dog" Breccia	31
Formation of the Intrusive Breccias	32
Cretaceous Sedimentary Rocks	35
Structural Geology	35
Bedding	35
Fractures	27
Faults	37
Weing	37
Size and Geometry of the Ore Zone	39
Sulphide and Oxide Mineralogy	44
Introduction	47
Chalgonurita	4 /
	47
Molybdenite	47
Pyrite	50
Sphalerite	52
Mangetite	52
Hematite	53
Leucoxene	53
	•
TER 4. COMPUTER ANALYSIS	54
Introduction	54
Data Collection	54

h

No hour the state

vii.

Data Treatment	Page 56
Results	58
Interpretation of Results	58
Correlation Between Grade and Other Parameters	58
Importance of the Sulphide Mineralizatic Stages to the Ore Zone	on 65
Importance of the Copper-Molybdenum Correlation	67
Efficiency of "GEOLOG" Logging	68
CHAPTER 5. HYDROTHERMAL ALTERATION	69
Introduction	69
Alteration Stages	69
Alteration Zones	70
Contact Thermal Metamorphism	73
Biotite Zone	73
Transistion Zone	78
Epidote Zone	80
Wall-rock Alteration	84
Sericite and Chlorite Zone	84
Sericite Zone	89
Pyrophyllite Zone	95
"Yellow Dog" Zone	100
Relations Between Alteration Type and	104
Sulphide Deposition	
Surficial Alteration	106
Formation of the Alteration Zones	108
Introduction	108
Environment of Formation	108
Contact Thermal Metamorphism	109

. They start

A DESCRIPTION OF

111

	viii.
Wall-rock Alteration	Page 116
CHAPTER 6. FORMATION OF THE ISLAND COPPER	125
DEPOSIT	
Models of Formation of Porphyry Copper	125
Deposits .	
A Tentative Model for the Formation of the Island Copper Deposit	128
Step One	128
Step Two	129
Step Three	131
CHAPTER 7. CONCLUSIONS	132
REFERENCES	134
APPENDICES	143
A. "GEOLOG"	143
B. Data Processing	154
C. Statistical Data for: Section 195	169
Section 187	176
Section 179	182
Section 171	188
Section 163	194
Section 155	200
Section 147	206

LIST OF TABLES

			raye
Table	2-1	Table of Formations	5
	2-2	Classes of Metalliferous Deposits	15
	3-1	Tentative Vein Correlation	40
	3-2	Rhenium Content of Some Porphyry Coppers	51
	4-1	Correlation Between Grade and Alteration Intensity	59
	4-2	Summary of Useful Correlation Results	63
	5-1	Mineral Assemblages - Biotite Alteration Zone	77
	5-2	Mineral Assemblages - Transistion Alteration Zone	79
	5-3	Mineral Assemblages - Epidote Alter- Ation Zone	81
	5-4	Mineral Assemblages - Chlorite Sericite Alteration Zone	85
	5-5	Mineral Assemblages - Sericite Alter- ation Zone	90
	5-6	Mineral Assemblages - Pyrophyllite Alteration Zone	96
	5-7	Mineral Assemblages - "Yellow Dog" Alteration Zone	101
	5-8	Temporal Relations Between Stages of Alteration and Sulphide Deposition	105
	5-9	Mineral Assemblages in Clay Size Range	107
	5-10	Summary of the Characteristics of the Alteration Zones Volcanic Rocks	113
	5-11	Summary of the Characteristics of the Alteration Zones Quartz-Feldspar Porphyry	117
	A-1	Coding Data For Modified "GEOLOG" Sheet	148
	A-2	Letter Rock Type Code	152

A CONTRACTOR OF A CONTRACT

が市会

LIST OF FIGURES

			raye
Figure	1-1	Location Map	2
	2-1	Regional Geology	6
	2-2	Mines and Mineral Occurences	16
	3-1	Island Copper Mine - Geology	21
	3-2	Island Copper Pit - Geology	22
	3-3	Generalized Section Showing Geology	23
	3-4	Island Copper Mine - Structure	36
	3-5	Island Copper Pit - Structure	38
	3-6	Sketches Illustrating Age Relations of Veins Within the Ore Zone	43
	3-7	Generalized Section Showing Ore Zone	45
	4-1	Island Copper Mine - Location of Cross-Section	55
	4-2	Generalized Section Showing Alter- ation Divisions	57
	5-1	Island Copper Mine - Alteration Zones	71
	5-2	Generalized Section Showing Alter- ation Zones	72
	5-3	Schematic Diagram of Sericite Enve- lopes in the Quartz-Feldspar Porphyry	91
	5-4	Schematic Diagram of a Sericite Envelope in Volcanic Rocks	91
	5-5	Spatial Relations Between Alter- ation and Sulphide Deposition	105
	5-6	Schematic Diagram Showing Dis- tribution of Alteration Minerals - Contact Metamorphism	110
	5-7	Thirteen Analyses of Bonanza Vol- canic Rocks of an ACF Projection of the Albite-Epidote Hornfels Facies	111
	5-8	Chemical Variations Between Alteration Zones in the Volcanic Rocks	114

3

х.,

		Page
5-9	Schematic Diagram of Early Alter- ation Zones	115
5-10	Schematic Diagram Showing Distrib- tion of Alteration Minerals - Wall-rock Alteration	118
5-11	Schematic Diagram Showing Distrib- tion of Alteration Minerals - "Yellow Dog" Zone	118
5-12	Experimental Studies Relating to Hydrothermal Alteration	120
5-13	Chemical Variations Between Alter- ation Zones in the Quartz-Feldspar Porphyry	122
6-1A	A Schematic Comparison of Alteration and Mineralization in Mafic and Inter- mediate Rocks	126
6-1B	Idealized Cross-Section of a Typical, Simple Porphyry Copper Deposit Showing its Position at the Boundary Between Plutonic and Volcanic Environments	126
A-1	"GEOLOG" Format	145
A-2	Modified "GEOLOG" Format Used at Island Copper	147

xi.

LIST OF PLATES.

	,		
Plate	I.	Lithologies in the Pit Area	25
	II.	Polished Sections	49
	III.	Biotite Alteration Zone	75
•	IV.	Epidote Alteration Zone	83
	V.	Chlorite-Sericite Alteration Zone	88
	VI.	Sericite Alteration Zone	94
	VII.	Pyrophyllite Alteration Zone	9 9
	VIII.	"Yellow Dog" Alteration Zone	103

GEOLOGY OF THE ISLAND COPPER MINE;

1.

PORT HARDY, B.C.

CHAPTER 1: INTRODUCTION

LOCATION

The Island Copper mine is on Rupert Inlet approximately seven miles south of the town of Port Hardy on the northern part of Vancouver Island (Figure 1-1). The mine is accessible by public roads from Port Hardy or by sea through Quatsino Narrows into Rupert Inlet. Barge and freighter docks are at the mine site.

Elevations on the property range from sea level to 500 feet. The area is densely timbered and undergrowth is thick. Annual precipitation, which includes one or two feet of snow, normally averages seventy-five inches. Yearly temperature range is 20°F to 80°F.

PREVIOUS GEOLOGIC WORK

Dawson (1887) published the first maps of Northern Vancouver Island as part of a coastline reconnaisance carried out in 1886. More recently, O'Rourke (1962) described the geology and the ore deposits of the area in an unpublished study for Utah Mines Ltd. Muller (1970, 1973) mapped the area in the summers of 1968 and 1969 as part of the Geological Survy of Canada's mapping program. Northcote (1970, 1972, 1973) mapped an eight-mile-wide strip north of Rupert and Holberg Inlets at one mile to the inch (for the B.C. Department of Mines) during the summers of 1968, 1969 and 1970

and described the general geology and exploration history of the Island Copper deposit.

3.

SCOPE OF THE PRESENT INVESTIGATION

The writer spent nine months on the Island Copper property during the summers of 1970, 1971 and 1972. During this time he mapped outcrops and pit exposures. In addition, he relogged approximately 40,000 feet of core in detail, using a modified "GEOLOG" format (Blanchet and Godwin, 1972). Apparently 70,000 feet of additional core were examined in less detail.

Mineralogy and temporal relations of the alteration minerals were established using thin-sections, polished sections and slabs, and X-ray diffraction techniques. During the course of the study 300 thin-sections, 65 polished sections and slabs, and approximately 550 X-ray diffraction patterns were examined.

A statistical study of the correlation between alteration, mineralogy, fracturing, colour index and copper and molybdenum grades was undertaken for that core relogged with the "GEOLOG" format.

CHAPTER 2: REGIONAL GEOLOGY

INTRODUCTION

Vancouver Island north of Holberg and Rupert Inlets is underlain by rocks of the Vancouver Group, which, as defined by Dawson (1887), include: the Karmutsen Formation, the Quatsino Formation, and the Bonanza Volcanics. Bancroft (1913) and Crickmay (1928) described two additional formations, Parson's Bay and Harbledown, as lying between the Quatsino Formation and the Bonanza Volcanics(Table 2-1 and Figure 2-1).

The Vancouver Group is intruded by rocks of Jurassic and Tertiary age and disconformably overlain by Cretaceous sedimentary rocks. The area is one of large-scale block faults with thousands of feet of displacement. These are offset by younger strike-slip faults with displacements up to 2500 feet.

Mapping is hindered by paucity of outcrop and dense forest cover. Exposures are limited to roads, streams, shorelines and rare cliffs. The absence of detailed stratigraphic information further complicates work in the area. There are no recognized marker units in volcanic rocks of either the Karmutsen Formation or Bonanza Volcanics which makes it extremely difficult to establish displacement on faults confined to these Units. This in turn makes it impossible to determine the stratigraphic thickness of the formations.

The present knowledge of the regional geology is shown in Figure 2-1. The geology is established on a small scale, but additional stratigraphic information and more exposure is essential for detailed interpretation.

Table 2-1

TABLE OF FORMATIONS

After Muller et al. (1973)

Period .		Group or Formation	Lithology	Thickness (feet)
Tertiary		Eocene	Quartz diorite	
Cretaceous	pper	Nanaimo Group	Greywacke, siltstone, shale conglomerate, coal	400
	Ð	Queen Charlotte Group	Greywacke, conglom- erate, siltstone, shale, coal	1,000 - 3,500
	Lower	Disconform Long Arm Formation	able Contact Greywacke, conglom- erate, siltstone	200 - 1,300
Jurassic		Island Intrusion	Quartzdiorite, grano- diorite, quartz mon- zonite, quartz- feldspar porphyry	
	Lower Middl	Intrusive Bonanza Volcanics Harbledown (1)	Contact Andesitic to rhyo- dacite lava, tuff, breccia Greywacke, argil- lite, tuff	1,000 - 2,500
Triassic	Upper	Parson's Bay Quatsino Karmutsen (Includes in	Calcareous silt- stone, shale, greywacke, con- glomerate, breccia Limestone Basaltic lava, pillow lava,	1,000 - 2,000 100 - 2,500 10,000 - 20,000
		upper part inter- volcanic lime- stone)	breccia Limestone	

 Harbledown Formation is correlated with Bonanza Volcanics by Muller et al. (1973).

VOLCANIC AND SEDIMENTARY ROCKS

Karmutsen Formation

Upper Triassic Karmutsen Formation, the oldest rocks in northern Vancouver Island, underlie approximately fifty percent of the area (Figure 2-1). Although the stratigraphic thickness of the formation has not been measured in this area, Muller et al.(1973) estimate it to be 10,000 to 20,000 feet.

Rocks of the Karmutsen Formation are predominantly porphyritic and amygdaloidal basalt flows with rare units of pillow basalt, formational breccias and tuffs. Six chemical analyses reported by Muller (1971) suggest a range in composition between tholeiites and high alumina basalts. This agrees with results of more extensive analyses of Karmutsen rocks in the Buttle Lake Area (Surdam, 1967) and on Texada Island (Asihene, 1970).

Two thin bands of limestone occur near the top of the Karmutsen Formation. The distribution of limestone outcrops is erratic and suggests a series of lenses at the same general stratigraphic horizon rather than one continuous bed.

The lower contact of the formation has not been observed on the northern part of Vancouver Island. The upper contact with limestone of the Quatsino Formation generally is sharp and easily recognized, although limestones and basalt locally are interbedded over a narrow stratigraphic interval at this contact.

Low-grade metamorphism of the Karmutsen Formation rocks has resulted in pervasive chloritization and amygdules filled with epidote, carbonate, zeolite, prehnite, chlorite, and quartz. Northcote (1970) reports pumpellyite, which places the rocks in the subgreenschist, pumpellyite-prehnite-quartz facies (Muller et al., 1973).

Basaltic rocks along contacts with intrusive stocks are in many places converted to dark-coloured hornblende hornfels. Skarn zones occur sporadically along these contacts, both in the inter-lava limestones and in the basalts.

Quatsino Formation

The Upper Triassic Quatsino Formation, defined by Dolmage (1919), paraconformably overlies the Karmutsen Formation. Distribution of this unit is shown on Figure 2-1.

Quatsino Formation consists of massive limestone with rare, thin (2 to 3 inches) interbeds of tuffaceous material. The unit ranges in thickness from 100 to 2500 feet. The upper contact with the overlying Parson's Bay Formation is gradational with limestones grading upward into carbonaceous argillites. Muller and Rahmani (1970) place the upper contact at the first influx of clastic material.

The rocks of the Quatsino Formation show little evidence of metamorphism except for contact metamorphic/metasomatic aureoles adjacent to intrusive stocks. Limestone near a few granitic intrusions is partly silicified.

Parson's Bay Formation

The Parson's Bay Formation of Upper Triassic age was established by Bancroft (1913) at Parson's Bay on Harbledown Island. The term was reintroduced by Muller et al. (1973) as a substitute for the Upper Triassic part of the sedimentary division of the Bonanza Group. The distribution of the

formation is shown on Figure 2-1. Thicknesses range from 200 to 2,000 feet.

The Quatsino-Parson's Bay contact is gradational through a sequence of grey limestone characteristic of the Quatsino Formation, and black calcareous siltstones, shales, and limestones with shaley interbeds characteristic of the Parson's Bay Formation. Muller et al. (1973) define the contact as the lowest stratigraphic horizon where black limestone, shale and siltstone predominate over grey limestone. The upper contact between Parson's Bay Formation and Bonanza Volcanics is the lowest stratigraphic horizon where volcanic tuffs, breccias or flows occur.

The Parson's Bay Formation north of the mine consists of a basal black limestone grading upward into black calcareous shales and siltstones.

A black hydrocarbon with the appearance of tar occurs locally within the argillites as fracture fillings and along bedding planes. A few beds appear to be saturated with the hydrocarbon.

On a regional scale the rocks are unmetamorphosed. Contact effects adjacent to granitic intrusions have not been recorded.

Harbledown Formation

The Lower Jurassic Harbledown Formation was defined by Crickmay (1928) on the basis of mapping on Hanson, Harbledown and Swanson Islands. Muller et al. (1973) have reintroduced the term to designate the Lower Jurassic argillite-greywacke sequence on the islands in Queen Charlotte Sound. They have correlated these rocks with the Bonanza Volcanics of western Vancouver Island.

The lithology of the unit in its type locality is dominantly argillite and is distinguished from rocks of the Parson's Bay Formation by its non-calcareous character.

Bonanza Volcanics

The name "Bonanza Subgroup" originally was applied to sedimentary and volcanic rocks overlying the Quatsino Formation on the west side of Bonanza Lake (Gunning, 1932). Muller et al. (1973) have restricted the term "Bonanza" to volcanic rocks overlying Lower Jurassic or Upper Triassic sedimentary rocks. The name "Bonanza Volcanics" is used for this formation. The distribution of the volcanic rocks is shown in Figure 2-1.

The base of the Bonanza Volcanics is the lowest lava or volcanic breccia overlying the Parson's Bay sediments (Muller et al. 1973). Bonanza Volcanics are overlain disconformably by Cretaceous sedimentary rocks.

Few outcrops and abundant faults make it extremely difficult to measure the thickness of this unit. The best available estimate, is 8,500 feet (Muller et al., 1973).

The Bonanza Volcanics formation consists of bedded and massive tuffs, formational breccias and rare amygdoloidal and porphyritic flows. Porphyritic dykes and sills intrude the lower part of the unit. Northcote (1970) reports the composition of the rocks, based on refractive indices determination of glass beads made by fusing powdered rock samples, to be basalt to andesite through the bulk of the section, with some rhyodacite in the upper part. This agrees with the results of nineteen chemical analyses for samples from an 8,500 foot section of the Bonanza Volcanics Formations reported by Muller et al. (1973).

Regional metamorphism within the Bonanza Volcanics is very low grade, possibly zeolite facies. Plagioclase commonly is albitized and saussuritized. Chlorite, epidote and laumontite occur within the matrix of volcanic breccias, in veinlets, and in amygdules. Coarse intraformational breccias locally are hematitized.

Biotite and amphibolite hornfelses occur adjacent to stocks which intrude the Bonanza Volcanics.

"Pyrobitumen", a black hydrocarbon erratically distributed within the Bonanza rocks, generally occurs as fracture fillings or in the centres of zeolite-carbonate veins. Its distribution is not related to the position of the intrusive stocks.

The Lower Jurassic age of the Bonanza Volcanics is established by fossils in interbedded sediments. In addition, potassium-argon whole rock dates reported by Northcote (1972), suggest a late Jurassic to early Cretaceous age. Northcote considered the whole rock ages as minimum ones and believes the volcanic rocks are slightly older than is suggested by these ages.

Lower Cretaceous Rocks

Lower Cretaceous rocks are divided into three units: Longarm Formation, Queen Charlotte Group and Suquash Formation (Muller et al., 1973). These units are described in detail by Muller.

Lower Cretaceous rocks lie disconformably on Bonanza Volcanics. They consist of well-indurated coarse conglomerates, siltstones, sandstones and greywackes with occasional small, discontinuous coal seams. Muller et al. (1973) believe that they formed during a molasse-type sedimentation cycle.

INTRUSIVE ROCKS

Stocks

A northwest-trending zone of intrusive stocks extends from the east end of Rupert Inlet to Queen Charlotte Sound (Figure 2-1). These stocks range in composition from diorite to quartz monzonite and display a wide variety of textures.

Potassium-argon age determinations reported by Northcote (1972), and Carson (1973) indicate that the stocks crystallized during the early to middle Jurassic time (179.5-148 m.y.)

Quartz-Feldspar Porphyry Dykes

Quartz-feldspar porphyry dykes occur along the south edge of the zone of stocks. Because they are narrow (less than 100 feet) and short (less than 500 feet), they are not shown in Figure 2-1.

Dykes are characterized by coarse, subhedral quartz and plagioclase phenocrysts set in a pink, very fine-grained, quartz and feldspar matrix. Phases within the stock at the east end of Rupert Inlet, which have textures similiar to the quartzfeldspar porphyry dykes, suggest that the dykes are apophyses from the stocks. Radiometric age determinations have not been made on the dyke rocks.

Felsic Dykes and Sills

Felsic dykes and sills occur around the margins of some intrusive stocks. They are less than five feet wide and two or three hundred feet long. These fine-grained, pink, felsitic rocks cut rocks of the Karmutsen Formation, the Quatsino Formation and the Bonanza Volcanics. Northcote (personal communication, 1971) has noted a similarity between these dykes and the rhyodacites occuring at the top of the Bonanza Volcanics. The dykes have had little effect on the rocks they intrude.

Andesite Dykes

Dykes of andesitic composition, which cut the Karmutsen Formation, the Quatsino Formation and the Parson's Bay Formation, were feeders for Bonanza volcanism. These dykes generally are less than ten feet wide. They are easily recognized in the Quatsino and the Parson's Bay Formations, but are difficult to identify in volcanic rocks of the Karmutsen Formation.

Basalt-Dacite Dykes

Tertiary basalt-dacite dykes are reported by Northcote (1970) as intruding lower Cretaceous sedimentary rocks. He also reports a small plug of similar composition intruding lower Cretaceous sediments.

REGIONAL STRUCTURE

The map area (Figure 2-1) is characterized by gently dipping beds offset by a complex pattern of faults. The trata, except for the gentle dip, are essentially undeformed. Folding and flexuring of bedding is observed only adjacent to major faults.

Bedding

Bedding is well developed within the Quatsino and Parson's Bay Formations. Bedding in volcanic rocks is poorly developed. All units are structurally conformable, with strikes slightly north of west and dips between 20° and 40° to the southwest. North-dipping beds invariably are adjacent to major faults and are the result of drag.

Faults

The area is one of block faults offset by younger faults with substantial strike-slip movements. Three prominent directions of faulting; norhtwest, northeast and east-northeast are recorded (Figure 2-1). Northwest-trending faults are most obvious and possibly most important. These faults cut Cretaceous and older rocks and cause repitition of large parts of the stratigraphic section. Although the stratigraphy is not established sufficiently to calculate displacements, the throws of many of these faults are several hundred to thousands of feet.

Northeast faults, of secondary prominence, offset the northwest set and have strike-slip displacements measuring hundreds of feet. The east-northeast faults are poorly developed and their age relative to other fault sets has not been established.

Mineral Deposits and Regional Alteration

Mines and mineral occurences shown in Figure 2-2 are divided into four groups:

Table 2-2

CLASSES OF METALLIFEROUS DEPOSITS (After K. E. Northcote, in Muller et al., 1973)

						· · · ·
	Known or Probable Age	Class	Metal	Example	Mineralogy	Host and Associated Formation
1.	Mid JurassiC	Porphyry Copper	Cu 0.58° Mo5 ₂ 0.0298	Island Copper	Chalcopyrite, molybden- ite, (bornite), magne- tite, pyrite, hematite	Bonanza volcanics; pyro- clastic rocks of andesite and basalt composition. To a lesser extent brecciated and altered guartz-feldspar porphyry
2.	Jurassic and Tertiary	Lead-Zinc Skarn or Re- placement in Limestone	Pb, Zn, (Ag, Au)	н.р.н.	Sphalerite, galena	Limestone of Sicker Group, upper Karmutsen and Quatsino Formations
3.	Jurassic and Tertiary	Copper Skarns	Cu (Au, Ag, Fe)	Old Sport- Benson Lake	Chalcopyrite, bornite magnetite	Sicker Group limestone, in skarnified volcanic and sedi- mentary rocks at Quatsino- Karmutsen contact. Some de- posits in Quatsino-Karmutsen limestones
4.	Jurassic and Tertiary	Iron Skarns	Fe (Cu)	Merry Widow	Magnetite, minor specularite and sulphides	Quatsino Formation and/or adjacent skarnified volcanic and intrusive rocks
5.	Upper Triassic	Copper in Basic Volcanics	Cu	Minning- ton, Rick	Chalcopyrite, bornite, native copper	Karmutsen Basalt, tuff and breccia
6.	Jurassic and Tertiary	Copper-Bearing Quartz Veins & Shear Zones	Cu (Mo/Ag Au, Zn)	Quatsino King	Chalcocite, chalco- pyrite, (pyrite, pyrrhotite, molybdenite)	Karmutsen Formation, Bonanza Volcanics, graitic rocks

Structural Control

 Brecciation in and adjacent to quartz-feldspar porphyry intruding Bonanza rocks presumably following shear zones.

2. ------

- Limestone-intrusive contacts folds, fractures, breccia zones and favourable horizons
- Intrusive contacts, folds fractures, stratigraphic contacts, breccia zones
- Amygdaloidal beds, fractures small shears in basic volcanic rocks
- Narrow shear zones, large fractures, fracture zones near faults and contacts

Associated Alteration

Epidote, chlorite, sericite, pyrite, biotite, silica, kaolin, pyrophyllite, dumortierite, carbonate, laumonite, pyrobitumen

Silicification, skarn

Skarnification, epidote, garnet, various other calcium silicates including wollastonite, diopside, actinolite, hedenbergite, etc., and ilvaite.

Skarnification as above

May or may not be associated with carbonate and/or quartz

Strong silicification and/or carbonatization may or may not be present

Intrusive (Genetic-Spatial)

Silicic stocks and quartz-feldspar porphyry complex.

Granitic to gabbroic and porphyritic intrusions

Jurassic and Tertiary intrusive of varied composition

Jurassic and Tertiary intrusive of varied composition

None; thought to be generated within the volcanic rocks

Granitic to gabbroic and porphyritic intrusions believed to be genetically related to these deposits

				the second s
PC	RPHYRY COPPER DEPOSITS		SKARN DEPOSITS	SK
1.	Bay 29, 77, (Yankee Girl)	COPPER		LEAT-ZIN
2.	Road	10.	Frances	
3.	Island Copper (Bay)	11.	Little Joe	22.
4.	Bay 21	12.	Caledonia	23.
5.	Bay 4	13.	Haw	24.
6.	Bay 74	14.	Mor	25.
7.	Expo #1	15.	North Shore, Lake,	26.
8.	Нер		Jean	27.
9.	Red Dog	16.	Mon, Ti	
		17.	CS 1801, 1809, 1910	
		IRON		COP
		18.	Caledonia	28.
		19.	Sun, St. Claire	29.
		20.	Ori	30.

S	KARN DEPOSITS	COP	PER
EAT-ZI	NC	31.	Har
21.		32.	Deb
22.	Haw 24	33.	Haw
23.	Rain, Main, #1	34.	Haw
24.	HPH, Main, #1	35.	Wit
25.	Norman, Contact Creek	36.	Hol
26.	Laury, Anon	37.	Jay
27.	Expo 81, Expo 202,	38.	Stu
	Bowerman, Dictator	39.	Mil
		40.	AAA
CO	PPER VEINS	41.	Loi
28.	Dem (Rupert)	42.	CS
29.	CS 495		
30.	Aird		

- (1) Porphyry copper deposits
- (2) Skarn deposits
- (3) Copper Mineralization in Volcanic Rocks
- (4) Vein deposits

The system of classification is that used by Carson (1968).

Porphyry copper deposits on the north end of Vancouver Island are associated with bodies of quartz-feldspar porphyry which intrude the Bonanza Volcanics. All known porphyry copper showings are within a zone of hydrothermally altered Bonanza Volcanics approximately one mile wide and fifteen miles long (Figure 2-2). Northcote (1970) described the alteration in this zone as predominantly silicification and argillization with local bodies of pyrophyllitized breccia. Alteration of this type is restricted to the Bonanza Volcanics.

Skarn deposits of copper, iron and lead-zinc are associated with intrusive rocks cutting limestones of the upper Karmutsen Formation, the Quatsino Formations and the lower carbonate sequence of the Parson's Bay Formation (compare Figures 2-1 and 2-2). Skarns mostly occur along the limestone-intrusion contact, but at some skarn showings intrusive rocks are not exposed. Contact alteration consists of silicification of the limestone and formation of epidote-andradite-magnetite skarns locally accompanied by hedenbergite and ilvaite both in limestones and basalts. Chalcopyrite, pyrite, bornite, sphalerite and galena occur within these skarns (Table 2-2).

The copper showings in volcanic rocks are restricted to the Karmutsen Formation. Chalcopyrite, bornite and native copper occur in amygdules, fractures and small shears. Associated alteration consists of minor amounts of carbonate and quartz.

Vein deposits occur in the Karmutsen Formation, the Bonanza Volcanics and granitic rocks (Figure 2-2). Chalcocite and chalcopyrite with pyrite, pyrrhotite, and molybdenite occur in shear zones, large fractures and fracture zones near faults. Intense silicification and carbonatization can be associated with the copper mineralization.

CHAPTER 3: MINE GEOLOGY

INTRODUCTION

Island Copper mine occurs in the volcanic section of the Bonanza Volcanics. Ore zones are in volcanic rocks in the hanging-wall and footwall of a quartz-feldspar porphyry dyke. The dyke contains minor amounts of chalcopyrite but very little ore-grade material.

A detailed knowledge of the stratigraphic position, lithology and structural history of a deposit is in many mineral deposits an obvious prerequisite to a study of the wall-rock alteration associated with the deposit. Stratigraphic position may give an indication of the depth at which the alteration formed and from this pressures can be interpreted. The lithology governs the initial chemical response of the rocks to hydrothermal conditions. Fractures and faults which existed at the time of formation of the deposit largely control the permeability of the rocks to hydrothermal solutions and thus control the extent, the intensity and the patterns of alteration.

STRATIGRAPHIC POSITION

Because of the absence of detailed stratigraphic knowledge of the Bonanza Volcanics, it is difficult to determine the exact stratigraphic position of the deposit. However, it is possible to estimate limits for the stratigraphic position.

First, the stratigraphic thickness of the Bonanza Volcanics must be established. Muller (1970) measured a section of 8,500 feet of Bonanza Volcanics and Jeletsky (1969) reports a section of 8,000 feet. These figures give an indication of the order

of magnitude of the thickness of the unit. Considerable lateral thickening and thinning may be present in this volcanic section, but these cannot be estimated.

Assuming no repetition of the section due to faulting, the Island Copper deposit is, on the basis of geometry, about 5,000 feet stratigraphically above the lower contact with the Parson's Bay Formation. However, there is little outcrop between this contact and the mine area. Because three major northeast trending lineaments, which may represent faults, lie between the contact and the deposit, estimates of stratigraphic position based solely on geometry are extremely hazardous.

Surface diamond drilling at the deposit has penetrated 1,200 feet of the stratigraphic section without intersecting the Parson's Bay Formation. Assuming no repetition of section in the rocks drilled, part of the deposit formed at least 1,200 feet above the Parson's Bay Formation.

Limits to the deposit's depth of formation may be estimated from this data. Maximum depth would be 6,800 feet that is the entire thickness of the Bonanza Volcanic Formation (8,000 feet) less the 1,200 feet intersected by drilling. The minimum depth would be zero feet as the 1,200 feet of rock intersected by drilling could represent the entire thickness of the Bonanza Volcanics in the vicinity of the mine. A reasonable estimate lies between 1,000 and 5,000 feet. This estimate is supported by petrologic data discussed later.

の時に時に時に要素がないました。これに、「ない」ので、「ない」

LITHOLOGY

Volcanic Rocks

The Bonanza Volcanics in the mine area are part of a pile of andesitic pyroclastic rocks with wide variations in texture. These rocks form a belt which strikes N70°W and dips 25° - 30° SW. Primary textures of the volcanic rocks are increasingly more vague as the dyke is approached and disappear within 400 feet of the dyke contact (Figure 3-3).

Fresh, unaltered rocks are lithic tuffs, crystal tuffs, lapilli tuffs and formational breccias (Plate I,, A,B,C,D, E; and Plate IV., A,B) with rare beds of chert. These units have very limited lateral extent, which makes it impossible to correlate most individual units between sections 200 feet apart. However, an exception is a unit of hematitized breccia, which is exposed in core, along the shore of Rupert Inlet south of the pit and in the excavations for foundations of the mill building. It has been traced more than 6,000 feet along strike on the south side of the deposit.

Bedding and graded-bedding are observed in good exposures of tuffs and lapilli tuffs. Breccias locally show bedding but tend to be massive.

Few of the volcanic rocks have retained their original textures. Textures are preserved in lithic lapilli tuffs, lithic and crystal tuffs and formational breccias. Lithic fragments generally are porphyritic sometimes with a trachytic matrix. Many porphyritic fragments are crystal tuffs.

In volcanic rocks near the orebody, alteration is so intense that it is difficult to determine the original mineralogy of the rocks. Plagioclase phenocrysts are invariably albitized. Mafic

PLATE I

OUTCROPS AND HAND SPECIMENS

- A. Bonanza Volcanics Formational Breccia Matrix and many fragments are colored box-car red by pervasive hematite. Scale on outcrop is one inch.
- B. Bonanza Volcanics Lithic Tuff Intricate sedimentary and post-diagenetic structures are shown by some of pyroclastic rocks. Scale on outcrop is one inch.
- C. Bonanza Volcanics Lithic Lapilli Tuff This sample is typical of volcanics on the north wall of the pit. Bedding is difficult to discern but fragmental nature of rock is apparent.
- D. Bonanza Volcanics Lithic Lapilli Tuff A thin section of C showing Lithic nature of fragments
- E. Bonanza Volcanics Formational Breccia Fragments are coloured box-car red by pervasive hematite. Matrix is coloured chalky white by zeolite (laumontite).
- F. Quartz-Feldspar Porphyry Phenocrysts of quartz, plagioclase, and chlorite pseudomorphing mafic minerals are clearly visible.
- G. Cretaceous Conglomerate A sample of conglomerate from Cretaceous outcrops south of mill buildings.
- H. Cretaceous Sedimentary Unit Discontinuous coal seams in the Cretaceous strata.

Abbreviations Used on the Plate

- **q -** quartz
- cl chlorite
- f plagioclase feldspar

minerals are almost invariably chloritized, but pyroxene and amphibole phenocrysts pseudomorphed by chlorite can be recognized in some cases. Quartz phenocrysts have not been recognized. The matrix of the few samples that were not totally altered is a very fine-grained mass of albitic feldspar laths.

Finer-grained volcanic rocks appear to be a combination of waterlain tuffs and graywackes. Breccias may have been formed by submarine mud-flow.

Quartz-Feldspar Porphyry Dyke

A tabular dyke of quartz-feldspar porphyry, 2,400 feet of which is exposed in the pit, has been traced by drilling for more than a mile along strike (Figures 3-1, 3-2). The dyke strikes N70°W and dips at 50°NE, approximately at right angles to the bedding in the volcanic rocks. Exposure in the pit indicates a true width of 400 feet, which corresponds with interpretations from diamond drill intersections. However the actual width of the dyke is variable and accurate estimates are hampered by a marginal breccia (Figures 3-1, 3-2, 3-3) containing a high percentage of dyke fragments. Distinction between dyke and breccia often is difficult in the pit and nearly impossible in drill core, particularly when both dyke and breccia are highly altered. The form of the dyke also is complicated by apophyses of quartzfeldspar porphyry extending from the body of the dyke (Figure 3-2).

At the northwest end of the pit the dyke is capped by pyrophyllite breccia whereas at the southwest end of the pit the dyke plunges under Bonanza Volcanics.

Intense alteration of most of the dyke makes it difficult to

define clearly the original composition. However, the central portion of the dyke, which shows the least alteration, is granodiorite. Less-altered bodies of quartz-feldspar porphyry beyond the map area also are granodiorite (Muller et al., 1973).

The porphyry consists of phenocrysts of quartz (5-15%), plagioclase (20-30%), and occasional mafic minerals, pseudomorphed by chlorite (5-10%) (Plate I., F, and Plate V., A,B,C) set in a fine-grained matrix of quartz (15-20%), plagioclase (10-25%) and potash feldspar (15-25%).

(MAR)

Quartz phenocrysts are the most characteristic features of the rock. They are large (4-5mm.), subhedral and show moderate to strong embayment along the margins. Quartz phenocrysts are resistant to alteration and persist through all types and degrees of alteration.

Plagioclase phenocrysts are slightly smaller (2-3mm.) than quartz phenocrysts. They generally occur in glomeroporphs. The crystals are mostly unzoned or normally zoned; but some complex zoning was noted. Composition of the plagioclase is difficult to determine because the phenocrysts generally are altered to sericite (Plate VI.,H). In the few specimens where the plagioclase is relatively unaltered, compositions of An 5 to 15 were obtained. However, these grains everywhere are associated with altered plagioclases and it is difficult to establish whether these represent average compositions or compositions which are more resistant to alteration.

Mafic phenocrysts are altered, either to chlorite, epidote, carbonate, magnetite and leucoxene, or to white mica, clay minerals, pyrite, and leucoxene (Plate V., B,C,D,E). Rare patches of chlorite are clearly pseudomorphs of euhedral

amphiboles, but most are anhedral.

Most of the fine-grained matrix of the dyke is highly altered. However, where relatively unaltered, it consists of a microgranitic assemblage of equant quartz, subhedral plagioclase (albitic) and anhedral orthoclase. Orthoclase generally is more altered than plagioclase, even in "fresh" rocks, but its presence was confirmed by etching and staining both hand specimens and thin sections.

Magnetite, leucoxene and pyrite are associated with chlorite pseudomorphs and probably formed as by-products during the alteration of the original mafic minerals.

The dyke exhibits many characteristics of an epizonal pluton as outlined by Buddington (1959). It is porphyritic, discordant, and exhibits contact metamorphic/metasomatic effects. The finegrained chilled margins of the dyke are now fragments in the marginal breccia. Northcote (1970) suggested that the intrusions with which it is associated are closely related to extrusive rocks in the upper part of the Bonanza Volcanics, suggesting that they are feeders for the later stages of the volcanism. The dyke is flanked by contact breccias and capped by an explosion breccia. All of these characteristics suggest shallow emplacement.

Radiometric age determinations have not been made on the dyke. However it is believed contemporaneous with the granodiorite stock at the end of Rupert Inlet which has been dated by K-Ar on biotite at 154^+6 M.Y. (Muller et al., 1973).

Intrusive Breccias

Pyrophyllite Breccia

Pyrophyllite breccia occurs as a tabular body capping the

porphyry dyke on the northwest end of the deposit (Figures 3-1, 3-2, 3-3). The breccia zone is approximately 350 feet wide and was traced more than 3,600 feet along strike. The breccia is wedge-shaped, thickening to the northwest.

The breccia is open textured, with fragments separated by matrix (Plate VII., A,B). Average size of the rounded fragments is six inches in diameter with size ranges from one-half inch to eighteen inches. Fragments consist of both quartz-feldspar porphyry recognizable because of the large quartz phenocrysts, and fine-grained massive material, presumably completely altered volcanic rocks. The middle part of the breccia contains a higher proportion of porphyry fragments than the borders.

The original texture of the altered porphyry fragments is largely preserved. Quartz phenocrysts are unaltered and plagioclase and mafic phenocrysts pseudomorphed by patches of finegrained white mica and quartz. Volcanic fragments consist of quartz grains completely surrounded by white mica (Plate VII., H).

The matrix of the breccia is similar to the volcanic fragments, except that the quartz and white mica grains are of finer grain.

Marginal Breccias

Marginal breccias are tabular bodies which roughly parallel the contacts of the quartz-feldspar porphyry dyke (Figures 3-1, 3-2, 3-3). All breccias occuring between dykes of unbrecciated porphyry are also included in this group.

The width of the marginal breccias is extremely variable. In most places there are 50 to 100 feet of breccia between the porphyry dyke and the volcanic rocks on the hanging wall of the dyke; but locally the entire width of the dyke is brecciated.

These breccias continue to at least 1,800 feet below the ground surface without apparent change. However, knowledge of the breccias at depth is based on very few drill holes. Recognition of this type of breccia is difficult both in core logging and pit mapping, making location of the contacts difficult.

Marginal breccias are less distinctly open textured than the pyrophyllite breccia because the fragments usually are separated by vein quartz. Fragment composition ranges from 100 percent volcanic near the volcanic contact to 100 percent porphyry near the dyke contact and with mixtures of varying proportions in between. Breccias surrounded by unbrecciated quartz-feldspar porphyry consist entirely of porphyry fragments. Where volcanic and porphyry fragments are mixed, the breccia is a true breccia, with fragment movement and rotation. However, as the contacts are approached, the breccia resembles a "crackle breccia" with little fragment movement or rotation. Because there are no beds retaining distinctive characteristics near the contact of the breccias, it is not possible to determine direction of movement of fragments within the marginal breccias.

Yellow Dog Breccia

The Yellow Dog Breccia derives its name from characteristic rusty-brown, ferroan dolomite which occurs as tiny veinlets. Tabular breccia bodies range from 50 to 200 feet in width and widen with depth. They are exposed for approximately 800 feet along their length. The bodies trend north and northeast and dip steeply (Figure 3-1, 3-2). The breccias consist of fragments of highly altered volcanic rocks separated by several ages of

quartz and carbonate veins (Table 3-1). Because the fragments do not appear rotated, the breccia resembles a "crackle breccia" more than an intrusive breccia (Plate VIII., A,B,C).

At present, mining development along the south wall of the pit is not adequate to reveal the relationship between the marginal breccia, the "Yellow Dog Breccias" and the porphyry dyke.

Formation of Intrusive Breccias

Breccias associated with ore deposits are subjects of a voluminous literature. The poorly exposed breccias at the Island Copper mine do not lend themselves to detailed investigation at present. As mining operations continue, more detailed study may add information to help establish the origin of these breccias. At present only a few comments are possible.

Marginal breccias adjacent to the quartz-feldspar porphyry dyke probably are formed by upward drag of the intruding dyke. The distribution of fragments, quartz-feldspar porphyry near the dyke, and volcanic near the outer margin of the breccia, supports this theory. Unfortunately the absence of recognizable units within the volcanic rocks adjacent to the breccias makes it impossible to demonstrate direction of movement of fragments in the breccia.

The pyrophyllite breccia, which caps the porphyry dyke, is more typical of intrusive breccias associated with porphyry copper deposits. There are many theories which attempt to explain the formation of this type of breccia. The more popular ideas include:

1) Volcanic Explosion Brecciation (Norton and Cathles, 1973) caused by gas accompanying a magma which shatters the overlying rocks;

2)Collapse Brecciation (Perry, 1961)

States of

caused by the collapse of overlying rocks into an emptied magma chamber;

- 3) Fault Brecciation (Kennedy and Nordlie, 1968) caused by movement on single faults or by movements on one or more intersecting faults;
- 4)Multiple Intrusion Brecciation (Johnston and Lowell, 1961) caused by repeated intrusion and recession of a body of magma;
- 5) Shock Brecciation (Godwin, 1973)
 - caused by a shock wave passing through a body of rock to surface;
- 6)Chemical Brecciation (Sawkins, 1969) caused by hydrothermal alteration of the rock involving large changes in volume;

7) Impact Brecciation (Dietz, 1961)

caused by the impact of celestial bodies on the earth's surface.

A number of these theories are rejected as improbable for the Island Copper examples. The tabular nature of the breccia does not fit the impact breccia theory. Collapse breccias imply a net downward movement, while the porphyry fragments in the pyrophyllite breccia suggest a net upward movement. Shock breccias imply a source for the shock waves which is not evident.

Intense hydrothermal alteration within the Pyrophyllite Breccia makes the chemical brecciation theory attractive at first. However, field studies at Conception Bay, Newfoundland (Buddington, 1916) show that volcanic beds can be traced through a zone of Pyrophyllite alteration with no change in thickness and that the volcanic textures are obscured but not obliterated by the pyrophyllitization. This suggests little change in volume.

and the second

Fault brecciation is another attractive hypothesis, if one assumes that the dyke is intruded into a pre-existing fault zone. However a fault breccia approximately 400 feet wide implies a major fault and there is no evidence of great displacement between the two sides of the dyke.

The field of speculation seems thus narrowed to two hypotheses: volcanic explosion or multiple intrusion, or some combination of the two.

The volcanic explosion theory is very attractive when the extremely fine-grained nature of the matrix in the dyke and the shallow depth of emplacement are considered. Upward flow of volatiles could also explain the intense alteration in the breccia. Northcote and Muller (1972) favour this hypothesis.

The multiple intrusion theory is another attractive hypothesis. Later pulses of magma related to the dyke could account for the internal brecciation of and possibly for the "crackling" of the ore zone.

Unfortunately, while present evidence suggests one of these hypotheses, it is not sufficient to decide between them or to even completely eliminate some of the other ideas.

The formation of the "Yellow Dog" breccias is another major problem. Because of their attitude at right angles to other major structural elements and the ore zone, they were not thoroughly investigated in the drilling program. From their geometry within the pit, widening with depth, Lamb (personal communication, 1972) suggest that they may be cappings on dykes.

Cretaceous Sedimentary Rocks

Cretaceous sedimentary rocks of the Queen Charlotte Group (Muller et al., 1973) disconformably overlie formational breccias of the Bonanza Volcanics on the southeastern part of the Island Copper property (Figures 3-1, 3-4). The Cretaceous rocks are coarse conglomerates with interbedded sandstones and siltstones and occasional thin, poor-quality coal seams (Plate I., G,H). Most cobbles within the conglomerate are coarse-grained granodiorite. Occasional cobbles of fresh quartz-feldspar porphyry have been noted. Cretaceous sediments are well indurated but not metamorphosed. Hydrothermal alteration and mineralization are absent.

STRUCTURAL GEOLOGY

Bedding

Bedding within the Cretaceous sedimentary rocks is welldefined and easily measured. Bedding within the Bonanza Volcanics near the deposit is difficult to recognize and primary structures have been destroyed within the ore zone. Bedding along the north wall of the mine pit generally is poorly defined, but bedding in some outcrops beyond the northern edge of the pit is well-defined. Good exposures of volcanic breccias with welldefined bedding were exposed during the excavation for the mill buildings.

Attitudes of bedding are shown on stereonets in Figure 3-4. Although relatively few points are shown they appear to form significant clusters. From Figure 3-4, it is apparent that bedding within Cretaceous sediments and Bonanza Volcanics is structurally conformable with strikes around 100° and dips near

30° southwest. If the beds were deposited roughly horizontally, then the thirty degree southwesterly dip of the dip of the volcanics is the result of post-Cretaceous adjustment. Further, because the porphyry dyke is pre-Cretaceous and roughly at right angles to the bedding, it was intruded as a vertical body.

This 30 degree southwest tilt of the layered rocks in the vicinity of the Island Copper mine is apparently the result of movement along a fault in Rupert Inlet.

Fractures

Fracture patterns in the vicinity of the Island Copper mine are complex. The complexity appears to come from the superposition of several periods of intense fracturing. An attempt to categorize the fractures on the basis of geometry (Figures 3-4, 3-5) failed to yield reasonable data.

Faults

Recognition of faults in the vicinity of the Island Copper deposit is hampered by lack of outcrop and lack of detailed stratigraphic knowledge.

Airphoto interpretation, described by Rugg and Young (1970), indicates photo linear trends at:

- 1) E to N 70° W
- 2) N 70°E
- 3) N 40° 60°W)
- 4) N 20° W)

Subordinate Trends

The first three trends correspond to regional trends described by Northcote (1970) (Figure 2-1). The fourth trend (N20°W) has not been recognized on a regional scale.

Within the part of the pit developed to November 1972, there are two prominent fault zones. One is the End Creek Fault, which corresponds to the third set of air-photo linears (Young and Rugg, 1971) and to Northcote's (1970) third regional set. It strikes N55°W and dips steeply to the northeast (Figures 3-3, 3-4). The fault is expressed as a zone of crushed rock 50 to 100 feet wide. In the pit, the End Creek Fault forms the south boundary of the porphyry dyke which it apparently offsets. However at depth the fault plane and dyke diverge (Figure 3-3). Offset of alteration assemblages suggests normal movement along the fault plane (Figure 5-2).

Because the End Creek Fault cuts off the ore zone and the alteration patterns, it is concluded that movement was postmineralization. Copper mineralization is not locallized along the fault, which suggests that the fault was not a prominent feature at the time of formation of the orebody.

A second prominent fault zone within the pit, the November Fault, trends northeast and dips very steeply. The fault zone is from 100 to 200 feet wide. The position of the porphyry on the northwest side of the fault suggests a dextral strikeslip movement. Amount of displacement, if any, is unknown. Drilling data suggest that the End Creek Fault displaces the November Fault.

Veins

A tentative correlation between the veins found in the various parts of the ore deposit is given in Table 3-1. Because the veins are too short and irregular to follow from one zone to another, correlation is based on mineralogic similarity.

TABLE 3-1

- Marine

202

TENTATIVE VEIN CORRELATION

Set	Ore Zone "	Yellow Dog" Breccia	Marginal Breccia	Pyrophyllite Breccia	Quartz-Feldspar Porphyry
(1)		Silicification		Quartz	
(2)	Quartz (Smoky) Pyrite	Quartz (Smoky) Pyrite	Quartz Pyrite	Quartz	Quartz Pyrite
(3)	Quartz (Milky) Chalcopyrite Pyrite minor Molybde nite	Quartz Chalcopyrite Pyrite	Quartz Chalcopyrite Pyrite	Quartz minor Chalcopyrite minor Pyrite	Quartz minor Chalcopyrite Pyrite minor Molybdenite
(4)	Quartz Molybdenite Pyrite minor Chalcopyrite (Sericite Envelopes		Quartz Molybdenite	Quartz Molybdenite Pyrite	
(5)	Quartz Pyrite		Quartz		10 10
(6)	"Slips" Molybdenite minor Chalcopyrite minor Pyrite	, , , , , , , , , , , , , , , , , , ,	"Slips" Molybden ite minor Chalcopyrite minor Pyrite		"Slips" Molybdenite minor Chalcopyrite minor Pyrite
(7)				Dumortierite	
(8)		Buff Dolomite			
(9)	Carbonate Zeolite Pyrite minor Sphalerite Hematite Chalcopyrite	Carbonate Pyrite	Carbonate Pyrite minor Sphalerite	Carbonate	Carbonate Zeolite Pyrite minor Sphalerite
(10)	Chalcopyrite Pyrite	Quartz Pyrite	'		·

minor Chalcopyrite

40.

Set 1 "veins" are silicification of the matrix in the Yellow Dog Breccia and quartz veins in the Pyrophyllite Breccia. Veins belonging to this set were not recognized in the Ore Zone, the Marginal Breccia or the porphyry dyke.

Veins of set 2 occur in all parts of the deposit. In the Ore Zone and the Yellow Dog Breccia, they are smoky quartz veins which have been shattered and recemented with material from the third set of veins (Figure 3-6A). In the Marginal Breccia, the Pyrophyllite Breccia, and the porphyry dyke, there are quartz veins containing minor amounts of pyrite.

Quartz-chalcopyrite-pyrite veins of set 3 occur in all parts of the deposit (Figure 3-6 A, B, C, E). They are thin, almost hairline veins and do not have a well-developed uniform orientation. In the Ore Zone they are very closely spaced, but in the other parts of the deposit they are more erratically distributed. Trace amounts of molybdenite occur in these veins in the Ore Zone and quartz-feldspar porphyry.

Quartz-molybdenite-pyrite veins of set 4 occur in the Ore Zone, the Marginal Breccia and Pyrophyllite Breccia. In the Ore Zone they are characterized by alteration envelopes rich in sericite (Figure 3-6, B, C, D, E, F; Figure 3-5).

Quartz and quartz-pyrite veins of set 5 are only recognized in the Ore Zone and the Marginal Breccia. In the Ore Zone they are quartz-pyrite veins (Figure 3-6, C, E); in the Marginal Breccia they are quartz veins. The relationship between these veins and the Molybdenite "slips" of set 6 is obscure, but set 5 are tentatively considered older.

Molybdenite "slips" constitute set 6 "veins". These are fracture surfaces coated with molybdenite (Figure 3-5). The

Figure 3-6

SKETCHES ILLUSTRATING AGE RELATIONS OF VEINS

WITHIN THE ORE ZONE

- A. Set 2 quartz vein within biotitized volcanics (indicated by stippling) crosscut by set 3 fracture filling chalcopyrite, pyrite and quartz, crosscut by a set 4 quartz and molybdenite vein, crosscut by a set 9 carbonate vein.
- B. Biotitized volcanics (stippled) crosscut by set 3 fracture filling chalcopyrite, pyrite and quartz, cross-cut in turn by a set 4 quartz-molybdenite vein with a sericite envelope crosshatched) which is cut in turn by a set 9 carbonate vein.
- C. Biotitized volcanics (stippled) crosscut by set 3 fracture filling chalcopyrite, pyrite, and quartz which are cut in turn by a set 4 quartz-molybdenite vein with an inner quartz-sericite envelope and an outer bleached zone. Both the quartz-molybdenite vein and the alteration envelopes are crosscut by a set 5 barren quartz vein.
- D. A highly altered fragmental volcanic, clots of chlorite in a silicified matrix, is crosscut by a set 4 quartz-molybdenite vein with a sericite envelope, which is crosscut by a set 6 molybdenite slip surface which is cut in turn by a set 9 carbonate vein.
- E. Biotitized volcanics (stippled) are crosscut by set 3 fracture filling quartz, chalcopyrite and pyrite, which is crosscut in turn by a set 4 quartz and molybdenite vein with a sericite envelope which is cut by both a set 5 barren quartz vein and a set 6 molybdenite slip surfaces. The molybdenite slip surface is cut by a set 9 carbonate vein.
- F. A highly altered fragmental volcanic consisting of chloritized and biotitized fragments in a siliceous matrix crosscut by a set 4 quartz and molybdenite vein with a sericite envelope which is cut in turn by two set 9 carbonate veins.

Abbreviations

- QV Quartz vein
- CV Carbonate vein
- ff fracture filling
- Q Quartz
- Mo Molybdenite
- Cp Chalcopyrite
- Py Pyrite
- S Sericite

1 Number indicates vein set outlined in Table 3-1

most recent movement on these surfaces, indicated by slickensides on the molybdenite, fits into the relative position shown in Table 3-1. However the age of deposition of the molybdenite is not known. Many molybdenite "slips" occur in Marginal Breccia and the Ore Zone and a few were noted in the porphyry dyke.

Set 7 and set 8 of veins are restricted to the Pyrophyllite Breccia and the Yellow Dog Breccia respectively. Their relative positions within these zones is clearly established. However, because they cannot be correlated across the other parts of the deposit, they are treated as separate sets.

Carbonate veins (set 9) are found in all parts of the deposit (Figures 3-5, 3-6). These are predominantly carbonate veins but locally contain considerable amounts of zeolite, pyrite and hydrocarbon. Minor amounts of sphalerite, hematite and chalcopyrite have been noted.

Veins of set 10 are recognized only in the Ore Zone and Yellow Dog Breccia. In the Ore Zone they are pyrite-chalcopyrite veins whereas in the Yellow Dog Breccia they are quartz-pyritechalcopyrite veins.

Stereonet plots of some of the vein sets are given on Figure 3-5. Attempts to relate veining geometrically to other structural elements were unsuccessful. Present knowledge of the structural history of the deposit is too fragmentary to allow the various ages of veins to be fitted into a detailed picture.

SIZE AND GEOMETRY OF THE ORE ZONE

The ore zone at the Island Copper mine contains reserves of 280 million tons of 0.52 percent copper and 0.029 percent

MoS₂ (Young and Rugg, 1971). It consists of two parts, one on each side of the porphyry dyke. The bulk of the ore is in volcanic rocks on the hanging wall of the porphyry dyke (Figure 3-7). This part of the ore zone is a roughly tabular body 400 to 600 feet wide and approximately 5,500 feet long which continues essentially unchanged to a depth of 1,000 feet below the ground surface. The zone apparently continues beyond this depth. At the ends of the planned pit the top of the ore zone plunges deeper below the ground surface. It is not known whether this doubly plunging zone is a primary structural characteristic of the ore zone or was superimposed by subsequent tectonism.

The second part of the ore zone is in the footwall volcanic rocks (Figure 3-7) adjacent to the porphyry dyke and is smaller than the hanging wall section. It has been displaced by normal movement on the End Creek Fault. Because it is farther from surface than the hanging wall part, it is not as well defined by diamond drilling.

A minor amount of ore occurs within the dyke. However orebearing quartz-feldspar porphycy is restricted to dykes or blocks faulted from the main dyke (Figure 3-7). The main dyke locally contains minor amounts of copper sulphides along its contacts but the rock is for the most part unmineralized.

Boundaries of ore zones are assay walls. Mineralization continues beyond these assay boundaries into the volcanic rocks and porphyry dyke so that the orebodies are enclosed by a halo of lower grade copper mineralization in the volcanic rocks.

SULPHIDE AND OXIDE MINERALOGY

Introduction

Chalcopyrite and molybdenite are the only sulphide minerals recovered at the Island Copper mine. Pyrite, the only other major sulphide mineral makes up two to five percent of the ore. Sphalerite occurs erratically in carbonate veinlets both within and outside of the ore zone.

The most abundant oxide mineral is magnetite. Other oxide minerals include hematite, which is almost invariably formed from the oxidation of magnetite, and leucoxene, which is associated with chloritized mafic minerals.

Chalcopyrite

Chalcopyrite occurs as veinlets, as disseminations and on slip surfaces. Most chalcopyrite is in set 3 veins (Plate II., A, E, C) which are 0.1mm. thick. Field observations suggest that set 3 veins (Table 3-1) contain the bulk of the copper in the ore zone.

Chalcopyrite also occurs in smaller amounts with the quartzmolybdenite veins (set 4); on slip surfaces (set 6); with sphalerite in carbonate-zeolite veins (set 9); and as late chalcopyrite-pyrite veins (set 10). These occurrences of chalcopyrite, although locally spectacular, do not contribute much copper to the ore zone.

Molybdenite

Molybdenite occurs in quartz veins and on fracture "slip" surfaces. There were three stages of molybdenite mineralization.

First-stage molybdenite, a quantitatively minor stage of

PLATE II

POLISHED SECTIONS

- A A set 3 chalcopyrite vein cutting across a matrix containing disseminated magnetite.
- B A set 3 chalcopyrite and quartz vein cutting a matrix containing disseminated magnetite.
- C A set 3 chalcopyrite and quartz vein cutting a matrix of disseminated magnetite.
- D Molybdenite and pyrite in the centre of a set 4 vein.
- E Magnetite core in a subhedral pyrite crystal.
- F Pyrite and magnetite within a chloritized mafic phenocryst.
- G A set 4 molybdenite-quartz vein.
- H A set 9 carbonate-sphalerite vein in chloritized tuff.

Abbreviations used on the plates

- **cp chalcopyrite**
- py pyrite
- mg magnetite
- mo molybdenite
- sp sphalerite
- q quartz
- cb carbonate

molybdenite mineralization, is associated with chalcopyrite and pyrite and quartz veinlets (set 3). It occurs as small (<0.05mm) subhedral crystals (Figure II, D).

Second-stage molybdenite occurs in Set 4 quartz veins with sericite envelopes (Plate VI., A,B,C). Molybdenite occurs as a mass of tiny subhedral crystals forming veins 0.1 to 2 cm. thick (Plate II.,G). Minor amounts of pyrite and chalcopyrite occur with the molybdenite. This also is an economically minor stage of molybdenite mineralization.

Third-stage molybdenite occurs on "slip" surfaces (set 6 veins). Field observations suggest that most of the molybdenum in the ore zone was deposited during this stage. The molybdenite has been smeared into a thin (<1 mm.) film by movement on the fractures. The relative age of movement on the fracture surfaces can be determined, but the age of the sulphides on the fracture surface is difficult to establish.

Molybdenite at Island Copper has a high rhenium content. Molybdenite concentrate contains between 1,800 and 2,400 ppm (0.18% and 0.24%) rhenium calculated to 100% MoS₂. This is rich relative to most porphyry copper deposits (Table 3-2). The relation between the different stages of molybdenite and rhenium has not been studied.

Pyrite

Pyrite is ubiquitous within the deposit and accompanies at least five sets of quartz veins (Table 3-1). Pyrite content ranges from 2 to 5 percent and locally is up to 15 percent.

Pyrite within the ore zone is associated with chalcopyrite and molybdenite in veinlets and within chloritized mafic minerals

Table 3-2

RHENIUM CONTENT OF SOME PORPHYRY COPPERS

(expressed in ppm on 100% MoS₂)

(after Sutulov 1963, 1974)

North America	¢ .	South America	
McGill	1,600	Chuquicamata	230
San Manuel	1,000	El Teniente	440
Chino	800	El Salvador	570
Cities Service	600	Andina	380
Twin Buttes	600	La Disputada	350
Pima	600	Toquepala	325
Mission	600	Argentinian porph.	170
Bagdad	200	Communist World	•
Esperanza	200	Kounrad	510
Sierrita	180	Almalyk	290
Mineral Park	60	Kadzharan	300
Island Copper	2,000	Aigedzor	1,000
Brenda	80	Dastakert	80
Cananea	700	Medet	125
Bingham	300		

and the local sector

(Plate II., D,E,F). Outside the ore zone, pyrite is disseminated in the porphyry dyke as an accessory mineral. Pyrite also occurs in volcanic rocks far removed from the ore zone.

Most pyrite is in the form of euhedral cubes (0.5 - 2mm.) but rare pyritohedrons have been noted.

Sphalerite

Dark brown to black sphalerite occurs in carbonate-zeolite veins (set 9; Table 3-1) both inside and outside the ore zone (Plate II.,H). The small (to 1 mm.) subhedral sphalerite crystals are associated with pyrite and more rarely chalcopyrite and specular hematite. Galena is very rare. Minute crystals have been reported, with sphalerite.

Magnetite

Magnetite is found both in volcanic rocks and quartz-feldspar porphyry. In volcanic rocks it occurs primarily as fine (<.1 mm.) disseminated grains and with chlorite pseudomorphs of mafic phenocrysts. Locally it is in fracture fillings and quartz veins (Plate II., A,B,C). The magnetite-rich (to 10%) part of the volcanic rocks closely corresponds to the ore zone. In polished sections of magnetite-rich volcanic rocks, magnetite is invariably older than the associated pyrite and chalcopyrite. Molybdenite does not show clear age relations with the magnetite.

In the porphyry dyke, magnetite is found with chlorite pseudomorphs of mafic minerals.

Hematite

Hematite occurs in two forms; first as masses of small (<1 mm.) dark specularite plates in late carbonate veins and second as the alteration product of magnetite near fractures. This hematite appears to be hypogene because there is no obvious relation between the hematite and the depth below the present ground surface. However it cannot be clearly correlated with any hypogene mineralization or alteration events.

Leucoxene

Leucoxene is a general name applied to very fine-grained secondary titanium minerals. It is associated with masses of chlorite and/or white mica which form pseudomorphs after mafic phenocrysts (Plate V., E,F). Leucoxene is found both in the quartz-feldspar porphyry and the volcanic rocks.

Leucoxene provides a useful method to distinguish mafic from feldspar phenocrysts when both have been altered to white mica. Once leucoxene has formed, it apparently is stable and is unaffected by subsequent alteration.

CHAPTER 4: COMPUTER ANALYSIS

INTRODUCTION

The "GEOLOG" computer input format was used in this study for three reasons: (1) to attempt to minimize bias in collection of data by using a standardized format; (2) to record the data in a format where statistical as well as graphical tests of the correlation between copper and molybdenum grades and alteration could be made; (3) to test the efficiency of the computer format logging system in a deposit other than a "classic" porphyry copper deposit.

40,000 feet of drill core, which represent one-third of the core obtained during exploration of the deposit, were logged using computer input format. This core represents forty-two diamond drill holes along seven sections spaced at 800-foot intervals across the ore body (Figure 4-1). This quantity of core is believed large enough to allow statistical tests of correlation.

DATA COLLECTION

Basic data sheets were modified from original "GEOLOG" sheets described by Blanchet and Godwin (1972). Details of the modifications are discussed in Appendix A. In these modifications, the number of hydrothermal minerals was increased and those features of "classic" porphyry copper deposits not observed at Island Copper were omitted. Data collection included: sample location, rock type, colour, fracture density, and amount and mode of occurence of twelve silicate alteration minerals, three iron oxide minerals and

five sulphide minerals.

To use the forms, assuming there is one rock type within an assay interval, rock type is recorded and then all other parameters are recorded. If there is a change of rock type within the interval, the footage of the contact is recorded along with all data for the first rock type, data for the second rock type are recorded at the regular assay interval. Assay values are assumed constant for the entire sample interval. Fracture density data were obtained from original drill logs by Utah Exploration geologists, because useful fracture density data is difficult to obtain from split core.

DATA TREATMENT

To obtain the maximum spatial information, data for drill holes on each section were analysed independently. To consider the two rock types, data for each section were further divided into three parts; the hanging-wall of the dyke, the dyke and the footwall of the dyke (Figure 4-2). The three divisions of each of seven sections gave twenty-one separate batches of data for statistical treatment.

Data cards from each division were computer processed to test three correlations:

- (1) Copper grade versus molybdenum grade.
- (2) Copper grade versus fifteen separate parameters.
- (3) Molybdenum grade versus the same fifteen parameters.

Details of programming and statistics used in the treatment of the data are presented in Appendices Band C.

RESULTS

Results of the statistical study are presented in Table 4-1. The table is designed to present correlations between each independent variable measured and copper and molybdenum grades in adjacent columns for easy comparison. Columns marked "CORR" are correlation coefficients. As this value approaches unity, the degree of correlation increases.

Columns labelled "PROB" are the probability of obtaining the corresponding amount of correlation from random numbers. The smaller the value in this column, the stronger the probability of a correlation between the two variables. Values of less than 0.1000 in the "PROB" column indicate good correlations.

Dashed lines in the table indicate invalid correlations. These result from a complete absence of data for one of the variables; that is, either there are no assays, or the independent variable was not recognized in this part of the section. Data presented in Table 4-1 are summarized in Table 4-2.

INTERPRETATION OF RESULTS

The results of this form of data treatment lend themselves to a number of interpretations.

Correlation Between Grade of Mineralization and Other Parameters

The object of statistical examination of "GEOLOG" data is to examine the correlation between ore grades and alteration as well as other parameters throughout the orebody. This approach is used in an attempt to establish empirically those parameters, other than grade, that would be most useful in defining the orebody. No.24

Market

1

7

		WALL	DYKE				HANGING WALL					
	CU GRADE MO GRADE		CU GRADE MO GRADE			RADE	E CU GRADE MO GRAD			RADE		
	CORR	PROB	CORR	PROB	CORR	PROB	CORR	PROB	CORR	PROB	CORR	PROB
					INDEPEN	DENT VAI	RIABLE QU	ARTZ				
147	0.0610 0	.5402	-0.0621	0.6061	0.1023	Q.1662	0.0081	0.8782	0.2257	0.0002	-0.0936	0.1361.
155	-0.1877 0	.1262	-0.2743	0.0243	0.4060	0.0000	0.3436	0.0002	0.3297	0.0000	0.3897	0.0000
163	-0.3451 0	.0028	0.1869	0.1079	0.2466	0.0 206	-0.2018	0.1779	0.5947	0.0000	0.5204	0.0000
171	0.2351 0	.0007	0.0865	0.2077	-0.0135	0.8553	0.1871	0.9863	0.2038	0.0029	0.1093	0.1064
179	0.5851 0	.0005			0.4227	0.0000	0.2811	0.0000	0.2751	0.0000	0.2237	0.0011
187	-0.2428 0	.3360			0.5800	0.0000			0.3375	0.0000	0.3425	0.0000
195	0.2014 0.	.0021	0.2320	0.0005	0.5148	0.0000	0.4638	0.0000	-0.0668	0.5914	0.0690	0.5760
					INDEPEN	DENT VAF	RIABLE "A	RGILLIC"				
147	0.1563 0.	.1694	-0.0621	0.6051	-0.2444	0.0025	0.1983	0.0136	0.0219	0.7725	-0.0478	0.5554
155	-0.4954 0.	.0009	-0.2411	0.1084	-0.4926	0.0006	-0.3696	0.0003	-0.0337	0.6423	0.0276	0.7001
163	-0.1955 0.	.1237	-0.0586	0.6549	-0.2553	0.0196	-0.2614	0.0901	0.1237	0.2718	0.0306	0.7769
171	-0.2955 0.	.0001	-0.2676	0.0003	-0.2970	0.0001	-0.1489	0.0505	0.0988	0.1662	0.0617	0.3964
179	0.8211 0.	.0001			-0.0941	0.2634	-0.1815	0.0292	-0.4412	0.0000	-0.1569	0.0648
187	-0.4067 0.	.3848			-0.4704	0.0000	*****		-0.2807	0.0000	-0.0973	0.2120
195	-0.0082 0.	.8886	0.1357	0.1229	-0.2836	0.0006	-0.3444	0.0000	-0.2082	0.0930	0.1355	0.2822
					INDEPENI	DENT VAR	IABLE SE	RICITE				
147	0.3480 0.	.0184	-0.3189	0.0573	-0.1031	0.3105	-0.0974	0.3389	-0.2200	0.0124	-0.2132	0.0155
155	-0.4812 0.	.0004	-0.3892	0.0039	-0.2910	0.0044	-0.1304	0.9765	-0.1304	0.1136	-0.0931	0.2645
163	-0.1017 0.	4915	0.4701	0.0009	-0.1907	0.1623	-0.2444	0.2349	0.0593	0.6665	-0.0406	0.7589
171	-0.2952 0.	0002	-0.3633	0.0000	0.2854	0.0092	0.1871	0.0863	0.1637	0.0782	0.0769	0.4202
179				یند سک خو بود ده	-0.2942	0.0167	-0.2307	0.0487	-0.2450	0.0112	-0.2157	0.0309
187					-0.6069	0.0000			-0.1592	0.0107	0.1127	0.2147
195	0.1316 0.	1012	0.1357	0.1229	-0.2836	0.0006	-0.3444	0.0000	-0.0215	0.8357	0.0748	0.5406
					INDEPEND	DENT VAR	IABLE K-I	FELDSPAR				
147	*-****				0.1070.	0.3860	0.1928	0.1099				
155					-0.2252	0.3594	-0.1123	0.6504				
163			******									
171	0.6242 0.	0130	0.1372	0.5960	-0.2978	0.3992	0.0365	0.8810	0.3198	0.0610	0.5310	0.0021
179					_~							
187					-0.0466	0.8173			0.2264	0.2103	0.7352	
195	800 mm											• • • • • • • •
					INDEPEND	DENT VAR	IABLE PY	ROPHYLLI	TE			
147	-0.2337 0.	1806	-0.2675	0.1525					-0.1651	0.6266	-0.1508	0.6561
155					0.1791	0.6328	0.2134	0.5700	-0.2291	0.0612	-0.2610	0.0332
163											• • • • • • •	
171	-0.3026 0.	0124	-0.2219	0.0654	-0.5914	0.0000	-0.2666	0.0212	-0.3867	0.0057	-0.2799	0.0435
179					-0.2574	0.4385	-0.2011	0.5474	-0.3331	0.1805		
187					-0.7709	0.0000			-0.2943	0.0006	-0.2067	0.0611

195 --0.2605 0.0890 -0.0225 0.8566 -0.4505 0.0000 -0.4565 0.0000 -0.2816 0.0546 0.2461 0.0939

TABLE 4-1 (Cont)

Å

A

187

195

-0.6968 0.0015

5

	FOO	IWALL	DY	KE	HANGING WALL			
	CU GRADE	MO GRADE	CU GRADE	MO GRADE	CU GRADE	MO GRADE		
	CORR PROB	CORR PROB	CORR PROB	CORR PROB	CORR PROB	CORR PROB		
			INDEPENDENT VAL	RIABLE DUMORTIER	TE			
147	¥=							
155								
163								
171	-0.3233 0.3355	-0.1865 0.5843	-0.4563 0.0456	-0.3155 0.1670				
179					-0.3839 0.1282			
187		**-	-0.7636 0.0000	, 	-0.2216 0.4900	-0.1537 0.6488		
195	-0.2605 0.0890	0.1468 0.5767	-0.3505 0.0000	-0.3694 0.0001	-0.1744 0.5676	0.2461 0.0939		
,		• •						
			INDEPENDENT VAR	RIABLE CARBONATE				
147	-0.1538 0.1238	0.1888 0.1182	0.4059 0.0000	0.2881 0.0006	-0.1157 0.0809	0.0263 0.6987		
155	0.4072 0.0038	0.4104 0.0036	0.4702 0.0001	0.5419 0.0000	-0.1543 0.1069	-0.2154 0.0019		
163	0.0831 0.5709	0.2819 0.0451	0.1346 0.3265	0.3564 0.0357	-0.2184 0.0030	-0.0436 0.5626		
171	0.0469 0.4918	0.1323 0.0456	0.0624 0.4769	0.1590 0.0615	-0.1986 0.0078	0.1425 0.0548		
179	-0.3083 0.0855		0.0138 0.8024	0.0289 0.6335	0.4200 0.0000	0.2059 0.0044		
187	0.2225 0.2877		0.5529 0.0000		0.1435 0.0044	0.1304 0.4134		
195	-0.0528 0.4546	-0.0225 0.8566	0.4556 0.0000	0.4760 0.0000	0.2251 0.0525	-0.1246 0.2929		
			INDEPENDENT VAF	RIABLE ZÉOLITE		· ·		
147	-0.3462 0.0017	0.1939 0.2267	-0.0031 0.9322	0.0836 0.5853	0.1924 0.0219	√ 0.3634 0.0000		
155					~0.1543 0.1069	0.1299 0.1768		
163					-0.4087 0.0000	-0.2890 0.0009		
171	-0.5143 0.0000	-0.4454 0.0000			-0.5942 0.0000	-0.4208 0.0008		
179	-0.1031 0.5664		-0.2460 0.0032	-0.2235 0.0072	0.1424 0.2448	0.0802 0.5453		
187	-0.4504 0.0318		0.2653 0.1702		-0.0468 0.6228	0.1304 0.4134		
195	0.0848 0.4658	-0.0230 0.8221			-0.2332 0.1574	-0.2761 0.0923		
			INDEPENDENT VAR	IABLE CHLORITE				
147	-0.3230 0.0023	-0.0349 0.7733	0.1311 0.0973	0.0515 0.5285	-0.1687 0.0083	-0.1246 0.0514		
155	0.3929 0.0028	0.3115 0.0179	0.2909 0.0030	0.0873 0.3834	-0.1139 0.0623	-0.1780 0.0040		
163	0.0752 0.5658	-0.2334 0.0635	-0.0143 0.8688	0.3096 0.0505	-0.1381 0.0518	-0.0575 0.4312		
171	-0.3710 0.0000	-0.3490 0.0000	-0.0213 0.8103	0.0337 0.7269	-0.1899 0.0095	-0.1323 0.0693		
179	-0.6127 0.0000		-0.2473 0.0000	-0.1465 0.0118	0.1811 0.0055	0.1021 0.1485		
187	0.0097 0.9155		0.3110 0.0016		0.1869 0.0001	0.1137 0.0627		
195	0.0338 0.6218	-0.0624 0.3574	0.0150 0.8465	0.0117 0.8682	0.2862 0.0134	-0.1297 0.2715		
			INDEPENDENT VAR	IABLE EPIDOTE				
147	-0.4655 0.0003	-0.2378 0 4638	0.4499 0.0469	0.0780 0.7322	-0.5619-0.0000	-0.3227 0.0005		
155	0.6181 0 1127	0.2473 0 5409			-0.6898 0.0000	-0.5484 0.0000		
163	-0.2090 0-0594	-0.1522 0.1725						
171	-0.3813 0.0002	-0.3101 0 0018			-0.3185 0.3546	-0.2538 0-4648		
179	-0.6307 0.0010		-0.3847 0.0000	~0.3316 0.0002	-0.1221 0.3753	-0.1275 0.3688		

0.4162 0.0009 ----- -0.2756 0.0000 -0.2838 0.0038

0.0360 0.7103 -0.1043 0.2314 -0.1957 0.2797 -0.2374 0.1861 -0.2160 0.1497 -0.2966 0.0462

TABLE 4-1 (Cont)

	FOOTWALL			DYKE				HANGING WALL				
	CU GR.	CU GRADE MO GRADE		CU G	CU GRADE MO GRADE			CU GRADE MO GRA			RADE	
	CORR	PROB	CORR	PROB	CORR	PROB	CORR	PROB	CORR	PROB	CORR	PROB
					INDEPEN	DENT VAR	IABLE HE	MATITE				
147	-0.4060	0.0029			0.1025	0.5740	0.0780	0.7322	0.1254	0.4127	0.2255	0.1323
155					-0.1826	0.1877	-0.2144	0.1200	-0,0112	0.9122	-0.1135	0.6061
163	0.1371	0.6052	0.1162	0.6595	0.2733	0.1739	0.0854	0.7275				
171	0.1503	0.1083	0.2234	0.0172	0.3295	0.0005	0.1974	0.0343	0.1147	0.2438	-0.2073	0.0331
179					0.1455	0.1431	0.0734	0.4724	0.0910	0.6481	0.1696	0.4039
187					-0.1383	0.5126			-0.1372	0.3531	-0.1855	0.2657
195	-0.2164 (0.5311	-0.2920	0.3936								
			•		INDEPEN	DENT VAR	IABLE MAG	GNETITE				
147	0.1659 (0.1094	0.2981	0.0130	0.1423	0.0957	0.0437	0.6202	0.2229	0.0012	0.1462	0.0312
155	0.3228 (0.0178	-0.2452	0.0731	0.1809	0.0778	0.0120	0.8749	0.1627	0.0116	0.1017	0.1142
163	0.1802 (0.0165	0.2387	0.0017	0.4038	0.0012	0.2455	0.1493	0.4946	0.0020	-0.3534	0.0273
171	0.2210 (0.0016	0.1726	0.0124	0.3948	0.0011	0.4146	0.0006	0.1201	0.1724	-0.0130	0.0273
179	0.1237 (0.5565			-0.1593	0.0089	0.0742	0.2247	0.1535	0.0291	0.1330	0.0786
187	0.0417 (0.8329			0.3634	0.0023			0.1366	0.0110	0.1529	0.0277
195	0.1571 (0.0430	0.2106	0.0071	0.9043	0.0000	0.7693	0.0000	0.1352	0.3148	-0.1896	0.1527
					INDEPENI	DENT VAR	IABLE MOI	YBDENIT	E			
147	0.4793 (0.000			0.4489	0.0000			0.5320	0.0000		
155	0.4374 (0.0002			0.7266	0.0000			0.6746	0.0000		
163	0.7295 0	0.0000			0.1970	0.1763		· .	0.0644	0.5873		
171	0.6670 (0.0000			0.5365	0. 0000			0.4978	0.00 00		
179					0.5625	0.0000			0.5097	0.0000		
187					~~~~~							
195	0.5742 (0000			0.8188	0.0000			0.4668	0.0000		
					INDEPENI	DENT VAR	IABLE FRA	CTURE D	ENSITY			
147	0.2758 0	0.0062	0.4472	0.0002	0.1397	0.1029	0.1154	0.1805	-0.1539	0.0138	0.0936	0.1363
155	0.6089 0	0.000	0.6252	0.0000	0.2923	0.0032	0.2653	0.0073	-0.1736	0.2530	0.1310	0.0405
163	-0.1236 0	3292	0.0757	0.5566	0.2352	0.1321	0.2964	0.0646	-0.2540	0.0009	-0.1285	0.0597
171	0.5974 0	0.000	0.6188	0.0000	0.2035	0.0665	0.4390	0.0000	0.0039	0.9109	0.1246	0.0770
179	-0.6044 0	0.0005			0.2275	0.0002	0.2085	0.0005	0.0003	0.9449	0.2491	0.0041
187	-0.2056 0	0.3516			0.0499	0.6342			0.1830	0.0002	0.3199	0.0000
195	0.4162 0	0.000	0.4360	0.0000	0.4953	0.0000	0.5101	0.0000	0.0595	0.6145	0.4288	0.0002
	INDEPENDENT VARIABLE GRAYNESS											
147	0.0320 0	0.7600	-0.2043	0.0957	-0.1843	0.0158	-0.0461	0.5594	-0.0601	0.3410	-0.0172	0.7758
155	-0.3834 0	0.0058	-0.1389	0.3316	0.1316	0.1850	0.3305	0.0009	-0.0090	0.8563	0.0378	0.5515
163	-0.4828 0	0.0001	0.1662	0.1991	-0.2587	0.0187	-0.1382	0.4064	0.2382	0.0009	0.1729	0.0141
171	-0.1864 0	0.0055	-0.2094	0.0020	-0.4330	0.0000	-0.2395	0.0026	0.0220	0.7537	0.1430	0.0434
179	0.5028 0	0.0022			0.0734	0.2003	-0.0475	0.4166	-0.2984	0.0000	-0.1970	0.0048
187	0.1737 0	0.4883			-0.2235	0.0323			-0.1145	0.0176	0.0277	0.6691
195	0.0592 0	0.4070	0.0679	0.3388	0.1462	0.0890	0.0313	0.7193	-0.1511	0.2318	0.0891	0.4906

)

SCHOOL SEALS
TABLE 4-1 (Cont)

		FOOT	WALL			DYF	(E		HANGING WALL							
	CU GI	CU GRADE MO GRADE				RADE	. MO GI	RADE	CU GI	RADE	MO GF	ADE				
	CORR	PROB	CORR	PROB	CORR	PROB	CORR	PROB	CORR	PROB	CORR	PROB				
					INDEPENI	DENT VAR	RIABLE ELI	EACHING								
147	0.0331	0.7584	-0.1892	0.1345	-0.1635	0.0490	-0.0005	0.9434	-0.1108	0.0916	-0.0172	0.7758				
155	-0.3871	0.0074	-0.1094	0.4670	0.1752	0.0830	0.3649	0.0004	0,0161	0.7940	0.0205	0.7506				
163	-0.3306	0.0273	0.2700	0.0723	-0.2164	0.0696	-0.1053	0.5383	0.2741	0.0002	0.2115	0.0040				
171																
179																
187	0.2809	0.2213			-0.2395	0.0252			-0.0768	0.1304	0.1342	0.0405				
195	-0.0075	0.8822	0.0144	0.8244	0.1749	0.0522	·0.0849	0.3568	-0.2295	0.0881	0.1089	0.4324				

		SUMMARY	OF	CORREL	ATION	RESULTS					
				Foot	wall		DΣ	yke		Hangi Wall	.ng-
				Cu Grade	M ₀ S ₂ Grade		Cu Grade	M ₀ S ₂ Grade		Cu Grade	M ₀ S2Grade
Altera	tion Minerals	5	•								
1.	Quartz			0	0		+	+		++	++
2.	"Argillic"			0	0			-		0(-)	0
3.	Sericite			0	0		~	0		-	0
4.	K-Feldspar			0	0		Ο.	0		0	0
5.	Pyrophyllite	э		-	-			-		- '	-
6.	Dumortierite	9		-	0		-	-		-	0
7.	Carbonate			0	0		0	+		0(-)	0
[~] 8.	Zeolite			0	Ο.		0	0		0	0
9.	Chlorite			0	0		0	0		0	0
10.	Epidote			-	-		0	-		-	-
11.	Hematite			0	0		0	0		0	0
12.	Magnetite			++	0		++	0		++	0
Other	Parameters										
13.	Cu Grade				++			++			++
14.	M_{OS_2} Grade			++			++ .			++	
15.	Fracture Der	nsity		0	++		++	++		0	++
16.	Bleaching			0	0		0	0		0	0

Positive Correlation +

Strong Positive Correlation ++

Negative Correlation

Strong Negative Correlation

Indefinite Correlation 0

Note: Material logged in the field as "Argillic" was identified as sericite by X-Ray diffraction

63.

TABLE 4-2

L'AMPARTA DE

STARLES .

The requirements of a useful correlation are strength and consistency. An alteration mineral which shows a strong positive correlation with grade in one section and a strong negative correlation in another section is of little use. Although changes in correlation with rock types are expected, the ideal correlation is the same in the volcanics of both hanging-wall and footwall. This is not considered a vital point, because the geometry of the deposit (Figure 3-7) has permitted much better examination of the hanging-wall ore zone than the footwall zone.

Table 4-2 illustrates that the strongest positive correlations for copper grade in volcanic rocks are with magnetite and high molybdenite grades. Quartz has a strong positive correlation with copper grades in the hanging-wall volcanics but not in the footwall. Minerals least associated with copper (negative correlations) are pyrophyllite, dumortierite and epidote. Sericite has a negative correlation with copper grade in the hanging-wall volcanic rocks, but not in the footwall.

ALC: NO DEC

In the quartz-feldspar porphyry, magnetite, quartz, high molybdenite grades, and high fracture densities characterize samples with high copper grades. "Argillic" and sericite have strong negative correlations with copper grades where as pyrophyllite and dumortierite have weak to moderate negative correlations.

Copper and high fracture density have strong positive correlations with molybdenite grades in volcanic rocks. Quartz has strong positive correlation with molybdenite in the hanging-wall volcanics, but not in the footwall. Pyrophyllite

and epidote have negative correlations with molybdenite in volcanic rocks as well as in the quartz-feldspar porphyry.

1000

1000

1.1

In the quartz-feldspar porphyry, copper and fracture density have a strong positive correlation with molybdenite, and quartz and carbonate have moderate positive correlations. Pyrophyllite, dumortierite, epidote, and argillic alteration have negative correlations with molybdenite.

Importance of Sulphide Mineralization Stages to the Ore Zone

It is possible to examine the importance of the different stages of deposition of chalcopyrite and molybdenite to the ore zone using statistical correlation data. This is approached by examining correlations between grades and intensity of individual alteration minerals associated with different stages of sulphide mineralization. A strong correlation between grade and an alteration mineral associated with a particular stage suggests that the stage is an important contributor to the ore zone.

There are four stages of copper mineralization within the deposit. First-stage chalcopyrite mineralization is represented as tiny veinlets closely associated with biotite and magnetite (Plate II, A and B). The strong positive correlation between copper grades and magnetite supports the field observation that this is the most important phase of copper mineralization. Biotite was not recognized in the core at the time it was logged on the "GEOLOG" format.

Second-stage copper mineralization occurs as chalcopyrite with quartz-molybdenite veins. Because these veins are characterized by argillic envelopes, the importance of this stage of copper to the ore zone can be examined by observing the degree

of correlation between "argillic" and sericite alterations to ore grade. Table 4-2 shows that in the hanging-wall ore zone the values range from zero to negative for "argillic", but are negative for sericite. This suggests that copper associated with this stage of mineralization does not constitute a major portion of copper in the ore zone.

Third-stage copper mineralization is associated with molybdenite on slip surfaces. Indefinite correlation between copper grade and fracture density in volcanic rocks as opposed to a strong positive correlation between molybdenite grade and fracture density suggests that this stage of copper is not a major contributor to the ore zone.

Fourth-stage copper mineralization is associated with late carbonate-zeolite veins. In the hanging-wall ore zone there is an indefinite correlation between copper and zeolite and a correlation ranging from positive to negative for carbonate. This suggests that while locally there may be a contribution to the ore zone, by this stage of mineralization, it is of limited importance.

There are three stages of molybdenum mineralization in the ore zone. First, molybdenite occurs with copper in the magnetite-rich zone. The indefinite correlation between magnetite and molybdenite grade suggests a minor contribution to the molybdenum ore.

Second-stage molybdenum is in quartz-molybdenite veins with sericite envelopes. Indefinite correlation between molybdenite grades and intensity of argillic and sericitic alteration suggest that this stage of molybdenum also is a minor contributor to the ore zone.

Third-stage molybdenum occurs on slip surfaces. The strong correlation between molybdenite grade and the fracture density supports the field observation that this is the major contributor of molybdenum to the ore zone.

In summary, field observations that stage-one copper mineralization and stage-three molybdenum mineralization are the stages of sulphide mineralization which made the major contribuitions to the ore zone are supported by the statistical study.

Importance of the Copper-Molybdenum Correlation

Stong correlation between copper and molybdenite grades is another result of the statistical study. As outlined in the previous section, field evidence, supported by much of the statistical evidence, suggests that copper and molybdenum were deposited at distinctly different times. However, correlation between copper and molybdenite grades is one of the strongest correlations obtained in the study.

This appears to be a paradox where two parameters which have a strong mathematical correlation are not, in fact, directly related. In the case of the copper and molybdenite grades, the mutual variable(s) are unknown. It may be a spatial, (e.g. proximity to dyke) instead of a direct temporal relationship. They are genetically related in that they are both part of the same ore-forming system.

This problem with correlation between copper and molybdenite grades illustrates one of the fundamental drawbacks of using correlation analysis. Merely because two sets of data have a strong mathematical correlation does not establish a

direct relationship to each other. Statistical correlation, while it is a powerful technique for examining data, should not be used as the sole criteria for determining the relationship between parameters.

Efficiency of "GEOLOG" Logging

ALC: NO

T. Bass

For the purpose of this study, the "GEOLOG" format proved much faster than conventional core logging methods. However, during this logging, neither graphic logs nor grade estimates were made. It is estimated that logging with "GEOLOG" format accompanied by a graphic log and grade estimates requires approximately the same amount of time as conventional core logging.

The advantage of the "GEOLOG" format is in the amount and type of data which are recorded and the speed with which they can be treated and recovered. Using this format, one obtains "quantitative, specific, and consistent data" (Blanchet and Godwin, 1972) for each assay interval. It also results in collection of data generally omitted during routine logging.

In terms of data treatment, data recorded on the "GEOLOG" format is amenable to many types of computer treatment as outlined by Blanchet and Godwin (1972). The usual descriptive logs cannot be satisfactorily coded for this type of treatment.

"GEOLOG", even when used without a computer, provides a good way of using and retrieving data. All parameters recorded can be examined in terms of assay intervals. The single column devoted to each parameter lends itself to making a colourcoded, strip log parallel to the lithic or graphic log. This allows visual comparison of different variables and lithology or grade.

CHAPTER 5: HYDROTHERMAL ALTERATION

INTRODUCTION

Discussion of hydrothermal alteration at the Island Copper deposit is divided into five parts:

- 1. Discussion of alteration stages.
- 2. Description of alteration types.
- 3. Discussion of the relations between ore zone and alteration types.
- Brief review of the relative importance of hypogene and supergene alteration processes in development of alteration.
- 5. Discussion of the formation of alteration zones.

ALTERATION STAGES

Several problems arise when determining relative ages of alteration minerals:

- The time-transgressive nature of hydrothermal alteration. Minerals alter in response to their chemical environment, which is not necessarily the same in all parts of a deposit at the same time.
- 2. The formation of the same minerals at different times in the sequence of hydrothermal alteration. For example, hydrobiotite in the biotite zone could be a metastable phase created by progressive alteration, a phase created by regressive alteration which partialy destroyed biotite, or a mixture of both.
- 3. Distinguishing alteration envelopes which cut earlier pervasive alteration, from coalescing zoned alteration envelopes. As Hemley and Meyer (1967) observe, the problem is "to avoid mistaking geometric plausibility for geometric fact".
- 4. The correlation of events in different rock types.

Alteration at the Island Copper deposit is divided into two main stages on the basis of cross cutting relations as well as the mineralogical, texture and chemical nature of the assemblages. Contact metamorphism by the quartz-feldsparporphyry dyke produced alteration of the biotite, transition and epidote types. These types of alteration are characterized by:

- Mineral assemblages characteristics of contact metamorphism (Winkler, 1967);
- 2. Pervasive distribution of the alteration minerals;
- Little chemical variation between different types of altered rocks or altered and fresh rocks (Figure 5-7).

Superimposed wall-rock alteration resulted in alteration of the chlorite-sericite, sericite, pyrophyllite and "Yellow Dog" types. These types of alteration are characterized by:

Same and

- 1. Mineral assemblages characteristic of wall-rock
 alteration (Hemley and Meyer, 1967);
- Spatial distribution controlled by fractures and breccias;
- 3. Marked chemical variation between different types of altered rocks and between altered and fresh rocks (Figures 5-8, 5-13).

The contact metamorphism and the wall-rock alteration will be referred to as stage one and stage two respectively.

ALTERATION ZONES

Alteration at the Island Copper Mine is divided into seven types on the basis of criteria recognizable in hand specimen. Mineral assemblages characteristic of the types

were established by subsequent laboratory study. This section includes descriptions of the position, distribution and mineralogy of each of the seven types of alteration.

Lowell and Guilbert (1970) describe alteration effects in porphyry copper deposits in terms of four main types: potassic, phyllic, argillic and pyropylitic. As Fountain (1972) points out, while there is a general similarity of usage between various authors, in detail there are considerable variations in the definitions. Variations are intensified when alteration types, which are defined in intrusive rocks, are applied to volcanic rocks. Therefore, the practice adopted by Bray (1969), Rose(1970) and Fountain (1972) of naming alteration types in terms of the principal alteration minerals usually has been followed in describing the alteration at Island Copper.

Contact Thermal Metamorphism

Biotite Zone

T'LENEL

Biotitized rocks are recognized macroscopically by a distinctive brown colouration of the rocks. Ten per cent biotite is sufficient to impart the distinctive brown colour. Destruction of primary textures within this zone results in a fine-grained felted rock (Plate III., A,C,D.).

Boundaries of the biotitezone are difficult to establish because the boundaries are transitional and in many areas biotite has been destroyed by subsequent alteration. The approximate distribution of the biotite zone is shown in Figures 5-1, 5-2. This zone is well defined on the northeast (hanging-wall) side of the porphyry dyke where is forms a 350foot wide tabular zone which parallels the dyke.

PLATE III

BIOTITE ALTERATION ZONE

- A. Polished slab from the biotite alteration zone shows the absence of primary volcanic textures in this zone. The specimen is cut by a quartz vein which is cut in turn by a carbonate vein.
- B. Thin section of relatively coarse-grained biotite and magnetite, possibly after an amphibole.
- C. Thin section with a biotite veinlet cutting across containing abundant disseminated biotite. The opaque mineral grains are magnetite.
- D. Thin section of a patch of biotite and quartz with magnetite and leucoxene.
- E. Thin section of a patch of chlorite containing some grains of biotite in the centre. Peripheral material is epidote.
- F. Thin section showing chlorite and magnetite along a fracture crossing a matrix containing abundant biotite. The chlorite envelope is offset on a carbonate filled fracture.
- G. Thin section with chlorite on a fracture crossing a matrix containing abundant biotite.

Abbreviations used on the plate

- bi biotite
- cb carbonate
- q quartz
- cl chlorite
- mg magnetite

On the southeast (footwall) side of the porphyry, the zone is less well defined. Normal movement on the End Creek Fault has displaced the biotite zone in the upper parts of the deposit and it has been removed by erosion (Figures 5-1,5-2). However, the biotite zone reappears at depth where the fault plane diverges from the dyke (Figure 5-2).

Examination of thin sections of biotite zone rocks reveals a vague relict porphyritic or fragmental texture with phenocrysts of plagioclase and mafic minerals in a fine-grained matrix. Table 5-1 lists some mineral assemblages from the zone.

Plagioclase phenocrysts are small (< 4mm) with ragged, corroded margins. It is difficult to determine their compositions, because they are both zoned and altered. Where compositions could be determined, they range between An 5-25. Phenocrysts generally have sericitized or saussuritized centres with relatively unaltered margins. The intensity of alteration is highly variable.

Mafic phenocrysts generally are pseudomorphed by ragged patches of chlorite, biotite, epidote, carbonate and actinolite. Crystal outlines of both amphibole and pyroxene locally have been preserved.

The matrix consists of plagioclase (An 20), biotite, chlorite, and minor muscovite, actinolite, hydrobiotite/ vermiculite, quartz and carbonate.

X-ray diffraction indicates the presence of small amounts of hydrobiotite and vermiculite in the biotite zone. The relationship between these minerals and biotite has not been determined, because they are extremely difficult to distinguish optically from biotite.

				-							-				-							
	00-6	00-10	00-13	00-16	00-24	40-2	40-6	40-7	40-30C	80-5	80-37	196-1025	194-866	118-400	191-989	191-1021	191-1072	191-1090	158-430	103-690	103-970	103-565
Plagioclase An<25	x	x	x	x	x	х	x	x	-	-	X	х	-	x	x	x	x	x	x	x	x	х
Sericite	x	х	x	x	x	х	x	х	x	x	х	x	-	х	х	×x	x	x	x	x		х
Epidote	x	x	x	x	x	-	-	-	-	-	x	-	x	x	-	-	х	-	x	-	-	x
Calcite	х	-	-	x	x		-	x	-	-		x		x	-	x	x		-		-	x
Quartz	x	-	-	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	х	x	х
Biotite	x	х	x	, x	-	х	x	x	x	x		x	x	х	x	x	х	х	x	Х	х	x
Green Biotite		x	-	x	-	x	-		-	-	-	-	x	-	-		-	-		-	-	-
Chlorite		x	х	х	x	X	x	x	x	x	x	x	x	x	x	x	x	x	-	x	X	x
Apatite	x	-	-	~	-	x	_	-	-	~	-	-	-			-	-	-	-	-		-
Hydrobiotite	-				x	-	-	x	-	-	x	x	x	-	-	-	-	-	-	-	-	-
Actinolite	-	-	x	-		-	-	-	-	-	-	-	-	-	x		x	x	-	-	-	-
Magnetite	x	x	x	х	x		x	-	-	-	x	-	-	x	-	x	x	x	x	х	x	x

MINERAL ASSEMBLAGES - BIOTITE ALTERATION ZONE (from thin sections and X-ray Diffractions)

Table 5-1

X Abundant

x Present

- Absent

7

Opaque minerals associated with this zone are magnetite and minor amounts of hematite and leucoxene. Magnetite occurs as fine-grained disseminations, with altered mafic phenocrysts and as narrow-fracture fillings (Plate II., A,B,C,E). Hematite is present near fractures and leucoxene is associated with chlorite pseudomorphs of mafic minerals.

Transition Zone

H

Sec.

The transition zone is characterized macroscopically by the presence of chlorite, and the obliteration of primary textures. This zone is transitional between an inner biotite zone, which is adjacent to the porphyry dyke, and an outer epidote zone. Boundaries are gradational and difficult to define.

The zone is well exposed on the northeast (hanging-wall) side of the porphyry dyke. It is approximately six hundred feet wide and parallels the biotite zone (Figures 5-1, 5-2). On the southwest (footwall) side of the dyke, the transition zone is not well defined. Normal movement on the End Creek Fault has displaced the zone, but it reappears at depth where the fault plane diverges from the dyke (Figure 5-2).

Thin sections of rocks from the transition zone reveal vague porphyritic and fragmental textures. There are plagioclase phenocrysts and mafic phenocrysts and fragments, replaced by chlorite, in a fine-grained matrix. Mineral assemblages observed in the zone are outlined in Table 5-2.

Plagioclase phenocrysts generally resemble those of the biotite zone. Mafic phenocrysts are replaced by chlorite, epidote, actinolite, minor carbonate and sericite. The matrix 78,

Table 5-2

MINERAL ASSEMBLAGES IN THE TRANSITION ZONE (From thin sections and X-ray Diffractions)

			163-193	203-782	203-237	201-856	203-903	204-245	201-773	201-775	00-15	00-17	00-21	40-20	40-30C	40-36
Plagioclase	(An	20)	х	х	х	х	х	х	X	·X	х	x	-	x	-	x.
Muscovite			x	x	х	x	x	x	x	x	x	x	x	x	х	x
Epidote			-	٣	x	x	-	-	x	x	x	x	-	_	-	x
Carbonate			x		x	x	-		-	-	x			x	-	x
Quartz			x		x		x	х	x	. —	X	х	х	x	x	x
Chlorite			X	х	x	X	X	x	x	x	X	x	X	X	X	X
Laumontite			-	x	· · ·	-	-	1.00	·	·		-		 *	-	-
Actinolite				x	-	x			x	X		X	-		. <u>-</u>	-
Leucoxene				-	-			· _	-					x	x	. 🛏
Magnetite			X	-		-	x	-	х	x	x	·	-	x	x	x

- X Abundant
- x Present
- Absent

consists of plagioclase(An 20), which is weakly to moderately altered to sericite, and chlorite, actinolite and minor amounts of quartz.

X-ray diffraction shows that the sericite noted in the thin sections is muscovite with minor amounts of hydromica (hydromuscovite?).

Opaque minerals within this zone are magnetite and leucoxene. Magnetite is restricted to the inner part of the zone which is within two hundred feet of the biotite zone. It occurs disseminated through the matrix of the rocks and with chlorite pseudomorphs of mafic minerals. Leucoxene occurs only with chlorite pseudomorphs of mafic minerals.

Epidote Zone

This zone is recognized macroscopically by abundant pistachiogreen epidote. Primary textures of the volcanic rocks are easily recognized within the zone (Plate IV., A,B,C).

Epidote has a relatively uniform distribution throughout the zone and shows no obvious relation to fractures or veins (Plate IV., B, C). The zone is well exposed on the northeast (hanging-wall) side of the dyke. The inner boundary, which is gradational with the transition zone, is approximately eight hundred feet from and parallel to the quartz-feldspar porphyry dyke-volcanic contact (Figures 5-1, 5-2). The position of the outer boundary is not well defined because of lack of exposure, however, the inferred width of the zone is 1,200 feet.

On the southwest (footwall) side of the quartz-feldspar porphyry dyke, the epidote zone is well defined. The inner boundary is the End Creek Fault (Figures 5-1, 5-2). The

	Tal	61	е	5	-3
--	-----	----	---	---	----

6.73

		MI	NER	AL	ASS	EME	SLAC	SES	IN	THE	EP	IDC)TE	ZONE		
		(From	th	in	sec	tio	ns	and	l X-	-ray	Di	ffr	act	ions)		
			Th	in ố	Sec ഗ്	tic s	ns റ			Х- (М	ray atr	Di Di	ffr Mat	actio erial	ns)	
		11A	11B	201-98	183-18	173-33	183-51			GC-20	GC-21	GC-22	GC-23	GC-27		
Plagioclase	(An<20)	Х	Х	Х	Х	Х	Х			x	X,	x		— "		
Saponite			-	-	-	-	-			x	x	x	?	?		
Sericite		х	x,	x	x	x	x			x	-	x	х	?		
Epidote		, X	Х	-	х	х	Х			-	-	-	-	-		
Carbonate	• •		-	-	x	x	x			-	-	-	x	-		
Quartz		-	-	-	x	x				-	-	x	-	-		
Chlorite		x	Х	х	x	x	х			x	Х	х	x	x		
Laumontite		-	-	-	x	-	x			x	х	x	x	x		
Actinolite		· _	-	-	-	x			•	-			-	-		

X Abundant

.

.

- x Present
 ? Questionable
 Identification
 Absent

18

PLATE IV

EPIDOTE ZONE

- A. Outcrop north of the pit showing finely bedded tuff with epidote developed along the bedding planes. The scale on the photo is one inch.
- B. Hand specimen from the outcrop shown in "A", showing the development of epidote along the bedding planes.
- C. Drill core showing patches of epidote in a lapilli tuff.
- D. Thin section showing epidote developed in a tuff.

Abbreviations used on the plate

ep - epidote

outer boundary is parallel to the fault and approximately 1,200 feet to the south.

Thin sections of rocks from the zone show that they are tuffs and lithic lapilli tuffs (Plate IV., D) with patches, veinlets, and disseminated grains of epidote (Plate IV., A,B, C,D). Mineral assemblages observed in the zone are listed in Table 5-3.

Plagioclase phenocrysts usually are moderately sausseritized. Composition of the plagioclase, where possible to measure, is sodic (An 5-20). Zoned plagioclase grains commonly have saussuritized centres and albitic rims. Mafic phenocrysts are altered totally to chlorite and epidote with minor amounts of carbonate, actinolite and leucoxene.

The matrix of the rocks consists of plagioclase (An 20), sericite, and very fine-grained material, probably devitrified glass. X-ray diffraction studies of the matrix indicate: (1) The sericite noted in thin section is muscovite, and (2) The presence of a smectite group clay mineral, possibly saponite. The saponite may be part of the very fine-grained material, but could not be distinguished optically.

Pyrite is the only opaque mineral noted in this zone. Small (<2mm) subhedral cubes of pyrite are disseminated through the matrix.

Wall-rock Alteration

Sericite and Chlorite Zone

The sericite and chlorite zone is recognized by chlorite pseudomorphs of mafic minerals and sericite pseudomorphs of plagioclase phenocrysts. Although it occurs both in the

TABLE 5-4

MINERAL ASSEMBLAGES IN THE CHLORITE-SERICITE ZONE (From thin sections and X-ray Diffractions)

		Qu	art	z-f	eld	lspa	ir p	orp	hyr	Y	Vo	lcar	nic			
	40-38	80-12	80-13	80-42	120-IB	139-850	125-542	103-661	103-781	103-784	120-10A	40-5B v				
Plagioclase (An 10)		-	-	-	-	-	x	-	X	-		x				
Kaolin Group Clay				x	-	x	-	X	x	x					•	. ·
Sericite (Muscovite)	x	X	х	х	Х	'X	x	x	х	x	х	x			x	Abundant
Epidote		-	-	×	-			-		-	,	-			x -	Present Absent
Carbonate	×	x		-	-	x	x	x	x		-	-	÷			
Chlorite	X	X	. X	x	X	х	X	х	X	x	x	x			•	
Quartz .	x	х	X	х	х	x	X	x	x	х	x	X				
Leucoxene	x	x	x			x	x		-	x	-	* 				
Magnetite	-	x	-	-		x	X	x		-	-	x				
Pyrite	-	x	x	x	x	-	x	-	x	x	x	x	•			
Chalcopyrite		-				—			-	x	-					
Molybdenite	-	-	-	-	-		-	-		-	x					•
Quartz Veins	·				÷	х	-			-	x	х		•		
Carbonate Veins	x	-			•	×	x		. 	· •••	x	x				

quartz-feldspar porphyry dyke and volcanic rocks, it is more extensive in the dyke. In the volcanic rocks, it is restricted to the outer part of alteration envelopes on set 4 quartzmolybdenite veins (Table 3-2, Figures 5-3, 5-4).

A.) Quartz-Feldspar Porphyry

Chlorite-sericite alteration within the porphyry dyke is easily recognized macroscopically by the dark green pseudomorphs of mafic minerals and the pale green pseudomorphs of plagioclase (Plate V. A). This pervasive chlorite-sericite alteration shows no clear relation to fractures of veins in the porphyry exposed in the pit. However, it tentatively is regarded as large outer envelopes on the narrower sericite envelopes. The "pervasive" alteration in the porphyry exposed in the pit is believed due to coalescence of these envelopes.

Examination of thin sections confirmed that the plagioclase phenocrysts are moderately to intensely altered. Alteration products as determined by X-ray diffraction, are muscovite, with minor amounts of hydromica (hydromuscovite), calcite and a kaolin group clay mineral. Mafic phenocrysts are altered to chlorite with minor amounts of epidote, carbonate and opaques (Plate V., B,C,D).

The matrix is a fine-grained mixture of quartz, sericite (muscovite) and minor amounts of chlorite, epidote, sodic plagioclase and opaque mineral. K-Feldspar in the matrix which forms up to 15 per cent of the rock in unaltered porphyry is destroyed in this zone.

Opaque and semi-opaque minerals within the chloritesericite zone are magnetite, and leucoxene. Magnetite and

PLATE V

CHLORITE-SERICITE ALTERATION ZONE

- A. Polished slab of quartz-feldspar porphyry showing the texture of the rock. The quartz "eyes", sericitized plagioclase and chloritized mafic phenocrysts are evident.
- B. Thin section showing chloritized mafic minerals, probably amphiboles, with magnetite and leucoxene.
- C. Thin section showing a chloritized mafic phenocryst with pyrite and leucoxene. The subhedral opaques are pyrite and and the lath-shaped opaques leucoxene.
- D. Thin section shows a mass of chlorite altering to white mica. The two large opaque grains are pyrite and the smaller ones are leucoxene.
- E. Thin section showing a mass of white mica with laths of leucoxene. This is apparently a mafic phenocryst which has altered to chlorite and then to white mica leaving the leucoxene unaffected.
- F. The same thin section as "E" with the nicols crossed.
- G. Thin section showing rosettes of chlorite.
- H. Thin section showing a mass of chlorite surrounded by white mica.

Abbreviations used on the plate

q - quartz
f - plagioclase feldspar
leu - leucoxene
ser - sericite (white mica)
cl - chlorite

py - pyrite

leuocoxene are associated with chlorite pseudomorphs of mafic phenocrysts (Plate V., B,C,D).

B.) Volcanic Rocks

Within volcanic rock, chlorite-sericite alteration is restricted to the outer part of sericite envelopes around quartz veins (Plate VI., D: Figure 5-4). This alteration is distinguished macroscopically by its light green colour which contrasts with the chalky white colour of the sericite envelopes.

Thin section study indicates that there are patches of chlorite replacing mafic phenocrysts, as well as rosettes of secondary chlorite (Plate V.,G). The chlorite patches occasionally are rimmed by sericite (Plate V., H).

Plagioclase grains have been intensely altered to muscovite, hydromica (hydromuscovite), and a kaolin group clay mineral.

The matrix consists of quartz, sericite (muscovite), a kaolin group clay mineral, chlorite, magnetite and leucoxene. Magnetite and leucoxene usually are associated with chlorite pseudomorphs of mafic minerals:

Sericite Zone

The sericite zone occurs both in quartz-feldspar porphyry and volcanic rocks where it is recognized macroscopically by the chalky white colour of the rocks caused by the total alteration of chlorite to sericite.

Table 5-5

MINERAL ASSEMBLAGES IN THE SERICITE ZONE (From thin sections and X-ray Diffractions)

												Qua	rtz	-re	Tas	par	
		V	olc	ani	C R												
Sericite (Muscovite) X 40-30A X 40-30A X 120-9A X 120-9A X 40-6 X X X X X X 120-9B X X 40-10 B X X 40-10 B X X X X X X X 40-10 B X X 40-10 B X X X X X X X 40-10 B X X X X X X X X 40-10 B X X X X X X X X 40-10 B X X X X X X X X X 40-10 B X X X X X X X X X X X X X X X X X X X												× 120-1A	× 80-42	× 103-97(× 173-925	X 40-3B	
Kaolin Group Clay	-	-	-	· _	-	x	-	x	-		x	x	x	x	x	•	
Pyrophyllite	-	-	x		x	-	· -	-	-		-		?	-	-	-	
Quartz	Х	Х	X	X	x	x	х	х	х		Х	Х	X	х	х	Х	
Pyrite	x	' x	x	x	x	x	x	x	x		x	х	х	x	x	x	
Chalcopyrite			-	-	-		-		-		••••	-	-		-		
Molybdenite		x	x	-	x	-	· ••••	-			x			-		-	
Quartz Veins	Х	x	x	x	х	X	х	х	X		-	-		-	-	x	
Carbonate Vein		-	x	x	-			*				_	-	-	x		

X Abundant

x Present

? Doubtful Identification

90.

- Absent

ad dw ends and to do a mort Figure 5-4 groot but sugges ous which a

STICK

SCHEMATIC DIAGRAM OF A SERICITE ENVELOPE IN VOLCANIC ROCKS

A.) Quartz-Feldspar Porphyry

Sericite alteration occurs as envelopes on fractures (Plate VI., F: Figure 5-3) which makes it difficult to define the distribution of the alteration (Figures 5-1, 5-2).

Thin sections of rocks from this zone indicate that chlorite pseudomorphs of mafic minerals are altered to sericite. Patches of sericite which have replaced chlorite contain leucoxene distinguishing them from sericite replacing plagioclase. Plagioclase phenocrysts are replaced totally by fine-grained intergrowths of sericite and a kaolin group clay mineral. Quartz phenocrysts are unaffected by the alteration.

The matrix of the rock is altered to a mixture of white mica, quartz, minor clay and opaques. Quartz grains within the matrix are separated completely from each other by the white mica and clay.

X-ray diffraction indicates that the sericite is muscovite and the clay is a kaolin group clay mineral.

Opaque and semi-opaque minerals associated with this zone are leucoxene and pyrite. Leucoxene occurs as tiny (< 0.1mm) grains in patches of sericite which replace chlorite. Pyrite occurs as small (< 1mm) subhedral grains disseminated throughout the matrix. There is no obvious relationship between quartz-sulphide veins and sericite alteration.

B.) Volcanic Rocks

Sericite alteration in the volcanic rocks is restricted to envelopes around quartz-molybdenite veins (Plate VI.,A,B,C,: Figure 5-4). Primary textures are destroyed totally within the envelopes (Plate VI.,D,E). The approximate position of the

PLATE VI

SERICITE ZONE

- A. Sericite envelopes on quartz veins cutting biotitized volcanic rocks. The scale of the photo from the bottom to the sky-line is approximately forty feet.
- B. A closer view of a sericite envelopé (white band behind the hammer handle) cutting biotitized volcanics.
- C. A smaller sericite envelope associated with a quartz vein containing molybdenite. The rock is a lapilli tuff with chloritized fragments in a silicified matrix.
- D. A polished slab of a typical sericite envelope in volcanic rocks.
- E. A polished slab from the inner part of a sericite envelope in volcanic rocks.
- F. Sericite envelope in the quartz-feldspar porphyry. The envelope is locallized along a fracture.
- G. A polished slab of a transition from chlorite-sericite zone to sericite zone in the porphyry. Scale is on the chlorite-sericite zone.
- H. A polished slab of sericitized guartz-feldspar porphyry.

Abbreviations used on the plate

q - quartz
ser - sericite
cl - chlorite

and the second se

sericite zone is shown in Figure 5-1, and illustrated schematically in Figure 5-2.

Envelopes of sericite alteration cut rocks of the biotite zone and the inner part of the transition zone. Most envelopes are clearly related to Set 4 quartz-molybdenite veins (Figures 3-5, 3-6). However, there are some envelopes on fractures which do not contain quartz-molybdenite veins. Plate VI, A, B,C,D,E, illustrates sericite-rich envelopes adjacent to quartz veins.

Figure 5-4 is a schematic diagram of a sericite envelope in volcanic rocks. A "typical" envelope is divided into three parts: an inner zone containing pyrophyllite and traces of a kaolin group clay mineral, sericite and an outer zone of chlorite, sericite and hydromica. The inner pyrophyllite zone rarely is present. Mineral assemblages observed in the sericite zone are listed in Table 5-5.

In thin section, sericite pseudomorphs of plagioclase and mafic phenocrysts can be distinguished from the matrix only because they contain slightly coarser-grained sericite. Pseudomorphs of mafic minerals in places can be identified by the presence of leucoxene, a mineral not formed with pseudomorphs after plagioclase.

Most of the "white mica" noted in thin sections is sericite. However pyrophyllite, a kaolin group clay mineral and hydromica (hydromuscovite) were identified by X-ray diffraction.

Pyrophyllite Zone

Most phyrophyllite alteration occurs in a breccia which caps the quartz-feldspar porphyry dyke on the northwest end

Table 5-6

MINERAL ASSEMBLAGES IN THE PYROPHYLLITE ZONE

Thin Sections

х

X-ray Diffractions

Matrix Fragments 160-135A 160-210A Al Bl ЦЛ DJ IJ 121-206 160-123 160-282 160-210 178-70 123-35 240-1A 40-10A C 71 A ы υ Ω р C-71 C-71 C-71 C-71 C-71 C-71 71 C-71 C-71 P-1 υ X X X X X X White Mica Pyrophyllite Х Х Х х х Х Х Х Х ХХ Х Х Х х Muscovite х Х Х Х Kaolin Group Clay х Х Х х Х x Х Dumortierite Х х х x х Х Х Х X Х Х X Х X ХХ Х Х X X X Х Х Х Х Х Quartz Leucoxene X х х Х Pyrite x Х х х х х x Quartz Veins х х x Carbonate Veins

> Abundant Х

Present x

Absent

of the deposit (Figures 5-1, 5-2).

The pyrophyllite zone is characterized by pyrophyllite and dumortierite. Pyrophyllite is identified macroscopically by its extreme softness and soapy feel. Dumortierite is recognized by its diagnostic blue to mauve colour.

The breccia is a tabular body capping the dyke. It is approximately 350 feet wide and has been traced 3,600 feet along strike. It is wedge shaped, thickening as the quartz-feldspar porphyry dyke plunges to the northwest.

Within the breccia, volcanic fragments, porphyry fragments and matrix have been pyrophyllitized. Primary textures of volcanic fragments are completely destroyed (Plate VII.,B), but the texture of the quartz-feldspar porphyry fragments is unchanged.

Thin sections of volcanic fragments show that they consist of tiny quartz grains isolated in very fine-grained ($< 2_{\mathcal{H}}$) white micas and clays. It is difficult to distinguish volcanic fragments from matrix in thin section.

Thin sections of quartz-feldspar porphyry fragments show that plagioclase and mafic phenocrysts are totally altered to white micas and clay. White mica pseudomorphs of mafic minerals can still be recognized by the presence of leucoxene (Plate V.,E, F). Quartz phenocrysts appear unaffected by the alteration. Matrix of porphyry fragments consists of quartz grains surrounded by white micas and clay (Plate VII.,H).

X-ray diffraction of material from volcanic and porphyry fragments and breccia matrix (Table 5-6) indicates that most of the white mica is pyrophyllite, rarely accompanied by muscovite, and a kaolin group clay mineral.

Dumortierite occurs as rosettes in the matrix (Plate VII., D) and as veinlets (Plate VII., E, F, G,) that locally have colloform
PLATE VII

PYROPHYLLITE ALTERATION ZONE

- A. Outcrop of pyrophyllite breccia. The quartz-feldspar porphyry fragments are apparent; the volcanic fragments are difficult to see.
- B. The same outcrop of pyrophyllite breccia from a slightly greater distance to show the texture of the breccia.
- C. A hand specimen of a quartz vein within the pyrophyllite breccia. The vein appears to cut the breccia, but thin section examination shows pyrophyllite growing into the vein.
- D. Dumortierite rosettes in a pyrophyllite matrix.
- E. Dumortierite veining matrix of pyrophyllite breccia.
- F. A closer view of the dumortierite vein shown in "E". The upper part of the photograph consists of needles of dumortierite. The lower part is quartz and pyrophyllite.
- G. A mass of dumortierite needles in a quartz and pyrophyllite matrix.
- H. Typical matrix in the pyrophyllite breccia. Quartz grains are surrounded and separated by white mica, mostly pyrophyllite.

Abbreviations used on the plate

- pp pyrophyllite
- du dumortierite
- **q -** quartz
- QFP guartz-feldspar porphyry
- Volc Volcanic

texture (Plate VII E). Tiny needles of dumortierite along the margins of these veinlets extend into grains of quartz and into flakes of white mica (Plate VII.,F,G) suggesting that dumortierite postdates quartz and white mica.

Opaque and semi-opaque minerals associated with the pyrophyllite zone are leucoxene and pyrite. Leucoxene occurs within masses of white mica pseudomorphs of mafic phenocrysts. Small (< 2mm) subhedral crystals of pyrite are disseminated through the matrix.

"Yellow Dog" Zone

The "Yellow Dog" zone is restricted to the "Yellow Dog" breccias (Figure 5-1). The zone is characterized by rustybrown fracture fillings of ferroan dolomite (Table 5-7), which transect other alteration zones. Although all parts of the "Yellow Dog" zone have the characteristic brown fracturefilling material, the type of alteration of fragments within the breccia varies with their distance from the porphyry dyke. Near the dyke, fragments in the breccia exhibit alteration characteristic of the sericite zone in volcanic rocks, and there is complete destruction of primary textures (Plate VIII., A, B, C). Volcanic fragments in parts of the breccia farthest from the porphyry dyke (Figures 5-1, 5-2, north wall of pit) show alteration characteristic of the chlorite-sericite zone with partial destruction of primary textures. Breccia matrix is quartz regardless of position relative to the dyke.

М	INE	RAL	AS	SEM	BLA	GES	IN	TH	E "]	YELLOW	DOG	G" ZONE
*****			ns)									
	-1A	ч г.		ς Γ	4	л Ц	9	-7	œ́ I		Cl Fr Se	ay Size action parate
	80-	ΥD	ΥD	ΥD	ΥD	ΥD	ΥD	ΥD	ΥD		ΙA	L PB
Quartz	х	х	х	х	х	х	х	х	Х		х	X
Plagioclase (An 10)		- '	-	-	-	-	-	-	-	•	x	x
Sericite (Muscovite)	Х	-	Х	х	х	Х	х	-	X		Х	Х
Kaolin Group Clay	х	х	'X	х	х	-		X	Х		х	X
Pyrophyllite		-	-	-	-	-,	-		-		-	-
Chlorite	-	?	?			?		-	-			-
Calcite	-		-	-		-	-	-	-		-	-
Ferroan Dolomite	х	х	Х	Х	х	X		х	Х		-	
Pyrite	Х	?	Х	-	• X	-		Х			-	-

TABLE 5-7

- X Abundant x Present ? Doubtful Identification
- Absent ----

PLATE VIII

"YELLOW DOG" ZONE

A. A polished slab of breccia showing the extent and intricacy of quartz veining within the breccia.

- B. A polished slab showing quartz veins, dark gray, cutting sericite alteration which contains extensive fracturefilling pyrite. The quartz veins are cut by later carbonate veins.
- C. A polished slab showing quartz veining cutting a sericitized volcanic fragment.

Abbreviations used on the plate

q - quartz
cb - carbonate
ser - sericite
py - pyrite

100

RELATIONS BETWEEN ALTERATION

TYPE AND SUPHIDE DEPOSITION

Two stages of alteration and multiple stages of metal deposition complicate relating alteration type to sulphide deposition. The relationship is further complicated by the superposition of wall-rock alteration on contact metamorphism. This results in some stages of metal deposition being spatially, but not temporally related to a certain type of alteration. This section is divided into discussions of spatial and temporal relations between alteration types and stages of sulphide deposition.

The spatial relationship between the ore zone and the alter ation zones is shown schematically in Figure 5-2. Figure 5-5 shows spatial relations between types of alteration and each stage of metal deposition. The pyrophyllite breccia which is not shown on the diagram contains no ore grade material. However traces of chalcopyrite and molybdenite occur in quartz veins tentatively believed set 3 and set 4 veins (Table 3-1).

The "Yellow Dog" breccia cuts all zones of contact metamorphism and extends into the unaltered rocks. The boundary of the ore zone moves slightly (20-30 feet) further away from the dyke in the "Yellow Dog" breccia relative to the adjacent volcanic rocks. Chalcopyrite in the breccia occurs as coarse grains in veinlets and with traces of molybdenite in quartz veins. Although it is much coarser grained than in adjacent volcanic rocks it is tentatively correlated with them.

Temporal relationships between metal deposition and alteration type are outlined in Table 5-8. The problem with the "Yellow Dog" alteration type is shown by the table. While the bulk of the alteration within the breccia is sericite,

Figure 5-5

SPATIAL RELATIONS BETWEEN ALTERATION TYPE AND SULPHIDE DEPOSITION

	INTRUS ROCK	IVE S		VOLCANIC ROCKS		
· · · · · ·	QUARTZ-	MARGINAL	CON	UNALTERED		
	FELDSPAR	BRECCIA	BIOTITE ZONE	TRANSITION ZONE	EPIDOTE ZONE	
	sw.		ORE ZONE			NE.
WALL-ROCK ALTERATION						
Sericite Envelopes	*****	******	x x x x x x	x x x x		
METAL DEPOSITION						
1.) Copper						
Stage one (3)		ххх	*****	XXXXXXX X		
* Stage two (4)		*XXXXXXXXX	** * * * *	* * * *		
Stage three (6).		ххх	x x x x x	x x x	·	
Stage four (9)	х	x x	x x	x x x	x x	x .
Stage five (10)		·x	хх	x		
2.) Molybdenum		•				
Stage one (3)		x x	x x x x x	x x x		
Stage two (4)		ххх	x x x x x	x x x		
*Stage three (6)	x X	XXXXXXXXX	*****	*****		
Notes			•		Legend	
(1) Numbers in pa vein sets (Ta	ble 3-1)	s refer to	•	xx	K - Abundant	-
		3	-	x	K - Always H	Present
(2) Stage two - c molybdenum ar of metal to t	opper and e the maj he ore zo	jor contri one.	x	X - Present	Locally	
				1	1	

Table 5-8

TEMPORAL RELATIONS BETWEEN STAGES OF ALTERATION AND SULPHIDE DEPOSITION

VEIN SET (Table 3-1)	STAGES DEPOS	OF METAL . ITION	ALTERATION TYPE
	Copper	Molybdenum	
-	·		Contact Thermal (Biotite, Transition and Epidote Types)
3	Stage One	Stage One	
4	Stage Two	Stage Two	Wall-rock Alteration (Pyrophyllite, Sericite, and Chlorite-Sericite Types)
6	Stage Three	Stage Three	
8			"Yellow Dog" Orange ferroan dolomite
9	Stage Four		****
10	Stage Five		

formed during the stage of wall-rock alteration, the orange ferroan dolomite which gives the zone its name is formed later.

SURFICIAL ALTERATION

At many ore deposits, a major problem in the study of hydrothermal alteration is distinguishing and separating supergene from hydrogene effects. Surficial effects at the Island Copper deposit are minimal and have not obscurred hydrothermal alteration.

Two conditions at the Island Copper deposit indicate the absence of surficial effects. First, there is an absence of abundant iron oxides and copper oxides in the upper part of the deposit. In the central part of the pit, the subcrop surface has a zone of iron and copper oxides approximately one inch thick. This contrasts with other mineral showings on the north end of Vancouver Island which commonly are covered by gossans exceeding 100 feet in thickness.

Second, there is a lack of secondary enrichment of the ore body. Secondary copper sulphide minerals have not been observed in hand specimen or polished section. There is no relation between copper grade and distance below the suberop surface, as would be expected with secondary enrichment of an ore zone.

A study which gives some insight into surficial effects was made on core samples from drill hole no. 216 (Figure 4-1), a vertical hole. Clay-sized material ($\angle 2$ microns) was separated from 13 samples from this hole to test for differences in the mineralogy of the clay-sized fraction near the bedrock surface compared with the deeper parts of the hole. The mineral assemblages for the different samples are tabulated

	DDH. C-216												
		Quartz	Feldspar	Sericite	Chlorite	Kaolinite	Monmorillite	Pyrite					
	48	х	х	-	Х	?	-	-					
	77'	х	-		X	-	-	x					
	120'	Х	х	-	х	?		-					
	205'	х	x	x	x	X	-						
ыг	224'	X		x	x	Х	-						
011	257 '	Х	-	х	x		?	-					
с щ	455 '	Х	-	Х	-	х							
fro	745 '	Х		-	х	-	-	-					
pth	767 '	X	-	Х	Х	-	-	•••••					
De	782'	Х	-	Х	_	х		-					
	800'	Х		х	Х	-		-					
	804'	х	-	Х	×	x		-					
	813'	X	-	X	'x	x	x	-					

and the

N. AND A

のためないのため

Table 5-9 MINERAL ASSEMBLAGES IN CLAY SIZE RANGE

> Notes: 1/ X major phase x minor phase ? questionable identification - absent

2/ Vertical hole

3/ 20' of overburden

107.

in Table 5-9. There is no increase in variety or amount of clay minerals in the samples from the upper parts of the hole indicating that the effects of surficial alteration are very minor.

FORMATION OF THE ALTERATION ZONES

Introduction

This section reviews available data on the environment of formation and discusses the formation of: 1.) Stage 1, Contact Metamorphism 2.) Stage 2, Wall-rock Alteration.

Environment of Formation

The Island Copper deposit is related spatially to the quartz-feldspar-porphyry dyke. Intrusive bodies of this nature are believed coeval with and probably feeders for extrusive rocks in the upper part of the Bonanza Volcanics. Stratigraphic data (Chapter 3), the porphyritic texture of the dyke, and its accompanying brecciation, suggest the deposit formed in a near-surface, low pressure environment.

Temperatures of formation of alteration zones have not been determined. Preliminary studies of samples from many different ages of quartz veins indicate fluid inclusions too small for determining temperatures with available equipment. Indirect methods of estimating temperatures by comparing mineral assemblages with those formed experimentally proved inconclusive. While experimental data give upper limits for temperatures of formation of some minerals present in natural assemblages, they do not indicate lower limits.

Diamond drilling shows that the ore zone is in a constant position relative to the dyke and has the same mineralogy and grade through 1,200 feet of stratigraphic thickness. While data at extreme depths is scanty, alteration patterns seem little changed with depth, except for variations in the mineralogy of the superimposed alteration.

Contact Thermal Metamorphism

Contact metamorphic effects are summarized in Table 5-10. Distribution of mineral assemblages characteristic of this stage are shown schematically in Figure 5-6.

The biotite and transition zones are a hornfels. Chemical analyses of thirteen samples of Bonanza Volcanics (Muller, 1970) a relatively complete sampling of the rock types, were plotted on an ACF diagram of the Albite - Epidote Hornfels Facies (Winkler, 1967) to determine which mineral assemblages could be expected (Figure 5-7). Eleven of thirteen samples plotted in the chlorite-epidote-tremolite field. This corresponds with minerals assemblages found in the biotite, transition and epidote zones (Table 5-10). Lack of mineralogic data for analysed rocks makes it impossible to calculate where the analyses would plot on an A'KF diagram.

A problem remaining in whether or not abundant biotite in the biotite zone represents metasomatism in addition to contact metamorphism. Analyses for potassium, sodium, magnesium and calcium are presented in Figure 5-8. Because only a few analyses are available only arithmetic means and range are plotted.

The arithmetic mean of potassium in biotite zone samples is slightly higher than that from transition and epidote zone samples, but is below the mean and within the range of potassium analyses from fresh rocks. Magnesium analyses are essentially the same in fresh rocks, transition, epidote and biotite zones.

	INTRUSIVE		VOLCANIC													
	ROCKS		······	1	ROCKS											
	Q.F.P.	MARGINAL BRECCIA	BIOTITE ZONE	TRANSITIC ZONE	ON EPIDOTE ZONE	UNALTERED										
	sw.		ORE ZONE			NE.										
ALTERATION MINERALS																
Quartz																
Plagioclase																
Biotite		-		-												
Hydrobiotite Vermiculite				- -												
Chlorite		-														
Actinolite																
Epidote		1														
Magnetite		-			-											
Saponite(?)																
Muscovite		-	<u> </u>			Į										
					FIGURE	5-6										
			LEG	END	SCHEMATIC DIAGE	RAM SHOWING										
	1		Alteration	n Minerals	DISTRIBUTION	OF THE										
			Always Present		ALTERATION MI	INERALS										
			Usually Presen Locally Presen	t, t, -	CONTACT META	MORPHISM										

のないな

ながです。

1

These data suggest that formation of biotite involved little metasomatism.

Analyses for sodium and calcium, which show essentially no variation between samples of fresh rocks and those from contact metamorphic zones support the suggestion that little metasomatism is involved in the formation of these zones. Manganese is slightly depleted in biotite zone samples relative to samples from fresh rocks, transition and epidote zone samples, but the mean value is within the range of analyses from samples of fresh rocks.

Contact metamorphism of a similar nature is reported from several other porphyry copper deposits where much of the ore is in andesitic wall rocks adjacent to an intrusive or breccia. Panguna (Fountain, 1972), El Tiente (Howell and Molloy, 1960), Safford (Robinson, 1966) and Mess Creek (Sutherland Brown, 1970) are the best documented examples. Figure 5-9 is a schematic diagram comparing the distribution of the early alteration zones at Island Copper to Panguna, El Tiente, and Safford. The distrbution at Mess Creek is too complex for this type of diagram.

Figure 5-9 shows that the hornfels (biotite, transition, epidote zones) at Island Copper is relatively narrow compared with alteration zones described at the other deposits. This may be a function of the width of the intrusive. At Island Copper it is relatively narrow (400 feet) while it is much wider at the other deposits.

The close spatial correlation between biotite and copper mineralization at Panguna and El Tiente is also illustrated on the diagram. Biotite at El Tiente and Safford is clearly a pre-ore feature, while at Panguna and Mess Creek, the exact age relations have not been established.

TABLE 5-10

SUMMARY OF THE CHARACTERISTICS OF THE ALTERATION ZONES IN VOLCANIC ROCKS

	CONTAC	CT METAMORPH	ISM	WALL-ROCK ALTERATION									
ZONES	BIOTITE	TRANSITION	EPIDOTE	CHLORITE SERICITE	SERICITE	PYROPHYLLITE	"YELLOW DOG"						
DEFINING MINERALS	Biotite	Chlorite	Epidote	Chlorite& Sericite	Sericite	Pyrophyllite & Dumortierite	Rusty Orange Dolomite						
TEXTURES	Destroyed	Partially Destroyed	Distinct	Partially Destroyed	Destroyed	Destroyed	Partially Destroyed						
PLAGIOCLASE PHENOCRYSTS	Albitic (An 5-25) Slight to moderate sericitiz- ation and saussuritiz- ation	Albitic (An5-25) Slight to moderate sericitiz- ation and saussuritiz- ation	Albitic (An5-25) Moderate saussuritiz- ation	Altered to: Muscovite Minor Kaolinite Hydromica	Altered to: Muscovite Kaolinite	Altered to: Pyrophyllite Muscovite Kaolinite	Moderately altered to: Muscovite Kaolinite						
MAFIC PHENOCRYSTS	Altered to: Biotite Chlorite Epidote Carbonate Actinolite	Altered to: Chlorite Epidote Actinolite Carbonate Sericite	Altered to: Chlorite Epidote Carbonate Actinolite	Altered to: Chlorite Muscovite Carbonate	Altered to: Muscovite Minor Kaolinite	Altered to: Pyrophyllite Muscovite Minor Kaolinite	Altered to: Chlorite Muscovite						
MATRIX	Plagioclase Biotite Chlorite Muscovite Actinolite Hydrobiotite Vermiculite Carbonate Quartz	Plagioclase Muscovite Chlorite Quartz Actinolite Hydromica	Plagioclase Chlorite Muscovite Glass Saponite(?)	Muscovite Kaolin Chlorite Quartz	Quartz Muscovite Kaolinite	Quartz Pyrophyllite Kaolin Muscovite Dumortierite	Quartz Sericite Carbonate Plagioclase						
OXIDES	Magnetite Leucoxene Hematite	Magnetite Leucoxene	Leucoxene	Magnetite Leucoxene	Leucoxene	Leucoxene	Leucoxene						
SULPHIDES	Pyrite Chalcopyrite Molybdenite	Pyrite Chalcopyrite Molybdenite	Pyrite	Pyrite Minor Chalcopyrite Molybdenite	Pyrite	Pyrite	Pyrite Chalcopyrite Molybdenite						

2. 22.2

113

115.

相違い

Wall-rock Alteration

Stage 2 alteration is characterized by the formation of sericite, kaolinite and pyrophyllite. Sericite, as used in this discussion, refers to fine-grained potassium mica (muscovite). Polytypes of the mica were not determined. Kaolinite refers to a Kaolin group mineral or minerals. Pyrophyllite is a misture of the 1T and 2M polytypes in approximately equal proportions.

These minerals occur in: 1) envelopes of alteration on quartz-molybdenite veins and fractures cutting volcanic rocks and quartz-feldspar porphyry respectively, and 2) in breccias containing fragments of both volcanic rocks and quartz-feldspar porphyry. Mineral assemblages are summarized in Tables 5-10 and 5-11 and their distributions are shown schematically in Figures 5-10 and 5-11. Distribution of these minerals produces zones on the scale of: 1) and envelope and 2) the whole deposit.

Figures 5-3 and 5-4 are schematic diagrams of mineral zoning within sericitic envelopes in quartz-feldspar porphyry and volcanic rocks. In volcanic rocks, envelopes consist of progressive zones grading from an inner pyrophyllite-kaolinite and minor sericite assemblage adjacent to the vein, through an intermediate assemblage of sericite and minor kaolinite, to an outer sericite and chlorite assemblage.

Envelopes in quartz-feldspar porphyry, are somewhat different from those in volcanic rocks and consist of a relatively narrow inner zone of sericite and kaolinite and a broad outer zone of sericite and chlorite. Pyrophyllite is not found in these envelopes.

Pervasive sericitic (sericite and kaolinite) alteration of rock fragments in the maginal breccias is due to coalescing of

*	SUMMARY OF TH	E CHARACTERISTI	CS OF THE ALTER	ATION ZONES IN Q	UARTZ-FELDSPAR	PORPHYRY	
ZONES	BIOTITE	TRANSITION	EPIDOTE	CHLORITE SERICITE	SERICITE	PYROPHYLLITE	"YELLOW DOG"
DEFINING MINERALS				Chlorite Sericite	Sericite	Pyrophyllite & Dumortierite	Rusty Orango Dolomite
TEXTURES				Distinct	Distinct	Distinct	Distinct
QUARTZ PHENOCR YSTS				Unchanged	Unchanged	Unchanged	Unchanged
PLAGIOCLASE PHENOCRYSTS		•		Altered to: Muscovite Carbonate Kaolinite	Altered to: Muscovite Kaolinite	Altered to: Pyrophyllite Minor Muscovite Kaolinite	Altered to: Muscovite
MAFIC PHENOCRYSTS				Altered to: Chlorite Minor Epidote Carbonate	Altered to: Muscovite Kaolinite	Altered to: Pyrophyllite Muscovite Kaolinite	Altered to: Chlorite Soricite
MATRIX				Quartz Muscovite Chlorite Epidote Plagioclase	Quartz Muscovite Kaolinite	Quartz Pyrophyllite Kaolinite Muscovite	Muscovite Kaolinite Quartz Plagioclase
OXIDES				Magnetite Leucoxene	Leucoxene	Leucoxene	Leucoxene
SULPHIDES				Pyrite Chalcopyrite	Pyrite	Pyrite	Pyrite

.

TABLE 5-11

117

Υ.

INTRUSIVE VOLCANIC ROCKS ROCKS TRANSITION EPIDOTE MARGINAL BIOTITE UNALTERED Q.F.P. BRECCIA ZONE ZONE ZONE SW. ORE ZONE NE.

Pyrite	-	-	-	-	-	-	-	-	-		-		-	-	-	-	-	-	1	-							
									ati	LEC	ENI	2 nera	als		FIGURE 5-10 SCHEMATIC DIAGRAM S DISTRIBUTION OF T					10 ISHO	OWING	3					
						Always Present Usually Present Locally Present										ALTERATION MINERALS											

ALTERATION MINERALS

Quartz Muscovite Kaolinite Pyrophyllite Mclybdenite Chalcopyrite

INTRUSIVE VOLCANIC ROCKS -ROCKS Q.F.P. MARGINAL BIOTITE TRANSITION EPIDOTE UNALTERED BRECCIA ZONE ZONE ZONE SW. ORE ZONE NE. 2 DVA ΔΔ Δ V "Yellow Dog" Breccia 4 1 ALTERATION MINERALS Quartz Dolomite Muscovite Kaolinite Plagioclase Chlorite Calcite Pyrite Chalcopyrite Molybdenite FIGURE 5-11 SCHEMATIC DIAGRAM SHOWING LEGEND DISTRIBUTION OF THE Alteration Minerals Always Present ALTERATION MINERALS Usually Present -"Yellow Dog" Zone Locally Present

the inner parts of sericitic envelopes. However, as the marginal breccias grade into the capping "pyrophyllite" breccia (Figure 5-2) the mineral assemblage changes to pyrophyllite and kaolinite with minor sericite.

In the "Yellow Dog" breccia, rock fragments are altered pervasively. Near the quartz-feldspar porphyry dyke, the mineral assemblage is sericite and kaolinite. Away from the dyke, the assemblage is sericite and chlorite. This pervasive alteration is tentatively believed due to coalescing alteration envelopes around fractures.

Development of the different mineral assemblages in the superimposed alteration can be explained by hydrogen ion metasomatism (Hemley and Jones, 1966). This process requires that hydrothermal solutions be rich in hydrogen ions and these solutions hydrolize silicate minerals causing release of metal cations into solution. Resulting ratios of metal ions are the principal factor in determining stability of minerals in contact with solution. However, the net effect of these reactions is the removal of metal cations and the ultimate alteration product is quartz.

Figure 5-12 shows results of experimental studies (Hemley et al., 1959, 1961, 1970) to investigate effects of different ratios of metal cations to hydrogen ions on mineral stabilities in simple systems. The diagrams show ratios of metal ions to hydrogen ions plotted against temperature.

These diagrams give considerable insight into the process of hydrogen ion metasomatism. Figure 5-12A represents a rock composed of K-Feldspar and quartz. If a hydrothermal solution at 250°C containing hydrogen ions is introduced into this rock along a fracture, potassium feldspar adjacent to the fracture

will be altered to K-mica (sericite). If more hydrothermal solution is added to the rock, alteration of K-feldspar to Kmica will move outward from the crack and K-mica adjacent to the crack will alter to kaolinite. Thus, two alteration zones are developed adjacent to the crack by one hydrothermal fluid.

Figure 5-12B illustrates what would happen for rocks consisting of sodium feldspar and quartz and Figure 5-12C for rocks consisting of calcium feldspars and quartz.

Mineral zoning within sericite envelopes cutting volcanic rocks can be explained by the theory of hydrogen ion metasomatism. The inner pyrophllite-rich zone represents intense base leaching. The intermediate sericite and kaolinite zones represent partial leaching of bases and perhaps potassium enrichment. The outer chlorite-sericite zone represents base leaching from the feldspars, but not the mafic minerals.

This interpretation is supported by the chemical data, in the case of Island Copper (Figure 5-8). Samples from the sericite zone contain less sodium, calcium, magnesium and manganese than samples from either fresh rocks or biotite, transition and epidote zones. Potassium content is high relative to other alteration zones and fresh rocks. Samples from the pyrophyllite zone (those shown on the figure are from the pyrophyllite breccia) indicate further depletion of all metals including potassium.

In sericitic envelopes cutting quartz-feldspar porphyry, the zonation is not as well developed. However, inner sericitekaolinite part of the envelopes indicates a greater degree of base leaching than the outer chlorite and sericite zone. This is supported by chemical analyses (Figure 5-13). There is less sodium. calcium. magnesium and manganese in the sericite zone

than in the chlorite and sericite zone, but potassium is higher in the sericite than in the chlorite-sericite zone.

Formation of the sericite-kaolinite assemblage within rock fragments in the marginal breccia corresponds to the formation of the inner parts of the sericitic envelopes. The entire breccia represents an area of intense base leaching.

Formation of the pyrophyllite breccia with its assemblage of pyrophyllite and kaolinite and minor (relict?) sericite is by extreme base leaching. That is the removal of potassium as well as the other metals (Figures 5-8 and 5-13. This vertical zonation with the zone of most intense leaching above zones of less intense leaching is well documented in the literature. Butte, Montana (Meyer et al., 1968) Silverton, Colorado (Burbank and Luedke, 1961; Luedke and Hosterman, 1971), Usuga, Japan (Iwao, 1962) and Snedogarian Zone, Bulgaria (Randonova and Velinova, 1970) are particularly well-described examples.

In terms of the theory of hydrogen ion metasomatism, this zoning can be explained by an increase in concentration of hydrogen ions as solution moves upward. Hemley and Meyer (1967) suggest that increased production of hydrogen ions is due to more dissociation of stronger inorganic acids at lower temperatures and possibly production of strongly ionized sulphuric acid by oxidation of H_2S as hydrothermal solutions mix with oxygenated meteoric water. The remaining problem is why pyrophyllite forms so abundantly instead of kaolinite. A satisfactory explanation has not been found.

Distribution of the alteration zones comprising the superimposed alteration (Figure 5-2) offers considerable insight into movement of hydrothermal solutions during this stage of alteration. The most intense leaching is in the marginal breccias

while there are zones of leaching adjacent to fractures in volcanic rocks and quartz-feldspar porphyry. This suggests fresh hydrothermal fluids flowed upward through the marginal breccias and outward into both the porphyry and volcanic rocks. The bulk of the fluid probably continued up through the marginal breccias into the pyrophyllite breccias and eventually to surface.

CHAPTER 6: FORMATION OF THE ISLAND COPPER DEPOSIT

MODELS OF FORMATION OF PORPHYRY COPPER DEPOSITS

Both empirical and genetic models have been proposed for porphyry copper deposits. Empirical models are constructed by listing a number of parameters for many deposits and integrating them into an ideal deposit. Lowell and Guilbert (1970) initiated this approach to porphyry copper deposits using deposits of the southwestern United States plus Bethlehem, El Salvador and Toquepala. De Geoffrey and Wignall (1972) expanded the model to include many of the deposits of the Canadian Cordillera. In 1974, Guilbert and Lowell re-examined their model and developed subclasses to explain variations in zoning. Figure 6-1A is the revised Guilbert and Lowell model of alteration zoning in mafic and intermediate rocks. Similarities between alteration zones predicted by the model and those found at the Island Copper deposit (Figure 5-2) include:

- 1. An inner biotite zone which corresponds with the ore zone.
- 2. An outer propylitic zone which contains chlorite, epidote and minor amounts of sericite.
- 3. A phyllic zone within the biotite zone corresponding to the chlorite-sericite zone within the quartz-feldspar porphyry.

Some obvious differences at Island Copper deposit are:

- 1. Lack of K-Feldspar in the volcanic rocks.
- 2. Lack of a pyrite-rich shell surrounding the ore zone.
- 3. Reversal of chlorite and epidote-rich portions in the propylitic zone.
- 4. Veinlets of calcite cutting all alteration zones.

- 5. Sphalerite occurs throughout the deposit.
- 6. Pyrite exceeding chalcopyrite in the Inner zone (quartz-feldspar porphyry).
- 7. Alteration patterns which are much more complex in the Inner zone (quartz-feldspar porphyry).
- 9. Pyrophyllite forming a major alteration zone.

Another problem with attempting to fit the Island Copper deposit into the Guilbert and Lowell (1974) model is that the model is entirely spatial. The implicit assumption is that alteration zones formed in one system which grew outward from the center. This concept does not fit the evidence at the Island Copper deposit.

The second type of model, the genetic model is constructed by fitting different deposits together into an ore-forming system. Sutherland Brown (1969) initiated this approach with prophyry copper deposits in the Canadian Cordillera. James (1971), using southwest U.S. deposits and El Tiente in Chile, expanded the idea. Hutchison and Hodder (1972) expanded it further to include strataform massive sulphide deposits in the system. Sillitoe (1973) has again expanded the model (Figure 6-1B) to fit porphyry type deposits with coeval volcanism.

Sillitoe followed the Lowell and Guilbert (1970) pattern for lateral alteration zoning, but introduced vertical variation in the alteration. The Sillitoe model is a better approximation of the situation at the Island Copper deposit particularly if Guilbert and Lowell's (1974) revised zoning patterns for mafic and intermediate rocks are used.

A TENTATIVE MODEL FOR THE FORMATION OF THE ISLAND COPPER DEPOSIT

Models discussed in the previous section consider alteration patterns of a number of deposits and explain them in terms of one ore-forming system. This approach ignores the time relations between the different alteration patterns and the possibility of a system evolving over a period of time. The following model is proposed for development of the Island Copper deposit.

Step One

Intrusion of the porphyry dyke is the first major structural event. These porphyry dykes are coeval with Bonanza volcanism and probably are feeders for acid volcanic rocks in the upper part of the formation. Although the exact mechanism of their formation is not known, the marginal breccias and the pyrophyllite breccia were formed contemporaneously with intrusion of the dyke. Fracturing of volcanic host rocks also accompanied dyke emplacement.

A contact metamorphic aureole in the volcanic rocks marked by biotite, transition and epidote zones developed adjacent to the quartz-feldspar porphyry dyke. These zones are much wider than metamorphic aureoles predicted from Jaeger's (1957) calculations for aureoles formed by conductive heat transfer. This suggests lateral heat transfer by circulating water as well as conduction. Water could be either formational water trapped during depositon of volcanics or meteoric water which penetrated the volcanic pile. This type of hydrothermal system would be relatively short lived (a few hundred years) as the dyke would cool rapidly.

Step Two

Step two in formation of the deposit is marked by changes in flow patterns and nature of the hydrothermal solutions. During step one, hydrothermal solutions moved laterally to form contact alteration zones on each side of the dyke. These solutions aided cooling of the dyke by convective transfer of heat, but do not appear to have affected the chemical compositions of the wall rocks.

Flow patterns of hydrothermal solutions during step two are shown by distribution of superimposed alteration (Figure 5-2). Hydrothermal solutions moved upward through marginal breccias and pyrophyllite breccia and laterally through fractures into both guartz-feldspar porphyry and volcanic rocks.

This change in the pattern of hydrothermal flow is due to a change in the position of the heat source driving the system. The primary heat source is no longer the dyke, which is cooling rapidly, but a deeper magma chamber which feeds the dyke. Figures 2-1 and 2-2 show distribution of intrusive and altered volcanic rocks on this part of Vancouver Island. Northcote (1970) suggested that this entire area was underlain by an intrusive of batholithic dimensions. A large intrusive mass such as this would provide a long term heat source.

There are two distinct phases to this hydrothermal system: 1) Copper deposition and 2) Molybdenum deposition.

Although some copper was deposited in quartz-feldspar porphyry, volcanic rocks and breccias, copper in ore grade quantities is confined to volcanic rocks, the marginal and "Yellow Dog" breccia. In volcanic rocks, copper is deposited as fracture fillings in tiny closely spaced fractures. In marginal and "Yellow Dog" breccias, it occurs in relatively large quartz veins. Variation in mode of occurence is due to variation in the size of fractures available to fill. Although minor amounts of molybdenite are associated with this chalcopyrite, it is predominantly a stage of copper deposition.

n h

Locallization of ore grade quantities of copper in volcanic rocks and the marginal and "Yellow Dog" breccias is due primarily to physical controls of ore deposition. Volcanic rocks adjacent to the quartz-feldspar porphyry dyke are intensely fractured as a result of dyke intrusion, and the breccias contained abundant void space. Copper deposition was an early event in this system. If the porphyry dyke were still warm there would be a lateral geothermal gradient pushing hydrothermal solutions away from the dyke into available permeable zones, crackled volcanics and breccias. Chemical controls, while they may be equally important, are not obvious.

Although some molybdenite occurs in quartz-feldspar porphyry, volcanic rocks and breccias, recoverable amounts are confined to marginal breccias, volcanic rocks and the "Yellow Dog" breccia. Molybdenite occurs in quartz veins with envelopes of sericitic alteration and on fracture surfaces (molybdenite slips) which cut these envelopes. Although movement on these fractures occurred after development of sericite envelopes, the time of molybdenite deposition is unknown.

Molybdenite deposition is related to the later part of this stage of hydrothermal activity when the solutions were highly acid. The reasons for the restricted areas of molybdenite deposition is probably due to availability of fractures for

the solutions to move through. Molybdenite deposition on the fracture surfaces which do not have accompanying sericitic alteration tentatively is believed formed as the last event in this system.

Step Three

Formation of carbonate-zeolite veins is the last step in the formation at the deposit. Distribution of these veins in all rock types and cutting all alteration zones indicates a change in the flow patterns of the hydrothermal solutions. The marginal and pyrophyllite breccias are not the principal conduit for hydrothermal activity as they were during step two.

Mineralogy of the veins and lack of associated wall-rock alteration suggest a change in the nature of the solutions. Veins consist of carbonate (principally calcite) and zeolite (laumonite) with minor amounts of pyrite, sphalerite, hematite, and pyrobitumen. This mineral assemblage suggests deposition from low temperature alkaline hydrothermal solutions.

In the Wairakei geothermal system (Steiner, 1953) zeolite veins superimposed on a zone of argillized rock are believed formed by alkaline-rich waters at the end of the hydrothermal system. That is, they began as acid rich water and lost their hydrogen ions through reactions (base leaching) with the wall rocks. If the system at Island Copper were similar, the zone of superimposed alteration by base leaching has moved downward. This is a more reasonable explanation than postulating a change from an acid to an alkali hydrothermal system.

CHAPTER 7: CONCLUSIONS

The following conclusions are drawn from this study:

- 1) The copper-molybdenum deposit of Utah Mines Ltd. formed in volcanic rocks adjacent to a coeval porphyry dyke in a near-surface environment.
- 2) Ore and alteration zones formed symmetrically on both sides of the dyke.
- Alteration assemblages are divided into seven zones, which can be mapped on the basis of megascopic characteristics.
- 4) Alteration assemblages formed during two stages:
 - (i) Pre-ore contact alteration comprising the biotite, transition and epidote zones.
 - (ii) Wallrock alteration comprising the chlorite-sericite, sericite, pyrophyllitic and "Yellow Dog" zones.
- 5) Pre-ore contact alteration is a contact metamorphic aureole on both sides of the dyke. Little metasomatism is involved in the formation of this aureole.
- 6) Wallrock alteration formed after the dyke was largely cooled in a hydrothermal system locallized in breccias around the margins of the dyke.
- 7) The bulk of the copper was deposited prior to deposition of molybdenum.
- 8) The copper ore zone is closely spatially related to the inner part of the contact metamorphic aureole rich in biotite and magnetite. However, deposition of copper mineralization post-dates contact metamorphism.
- 9) Although copper and molybdenum are spatially closely related, the bulk of the molybdenum deposition post-dates copper mineralization. Deposition of molybdenum is closely related temporally to the formation of superimposed alteration.

10) The "GEOLOG" format is an efficient method of

logging core in this type of deposit. It yields a core log amenable to either computer or visual interpretation.

11) Statistical correlation studies between abundance of alteration minerals and ore grade yields data on relations between ore grade and formation and distribution of alteration assemblages. However, correct interpretation of statistical studies requires additional data on age relations between alteration assemblages and ore minerals.
REFERENCES

- Bancroft, J.A., 1913, Geology of the coast and island between the Strait of Georgia and Queen Charlotte Sound, B.C.: Geol. Surv. Can., Mem. 204.
- Blanchet, P.H. and Godwin, C.I., 1972, "Geolog System" for computer and manual analysis of geologic data from porphyry and other deposits: Econ. Geol., v.67, p.796-813.
- Bray, R.E., 1969, Igneous rocks and hydrothermal alteration at Bingham, Utah: Econ. Geol. v.64, p. 34-49.
- Buddington, A.F., 1916, Pyrophyllitization, pinitization and silicification of rocks around Conception Bay, Nfld.: Jour. Geol., v.24, p. 130-152.
- Buddington, A.F., 1959, Granite emplacement with special reference to North America: Bull. Geol. Soc. Am., v.70, p. 671-748.
- Burbank, W.S. and Luedke, R.G., 1961, Geology and ore deposits of the Eureka and adjoining district: U.S. Geol. Surv., Prof. Paper no. 535.

Carson, D.J.T., 1968, Metallogenic study of Vancouver Island with emphasis on the relationship of plutonic rocks to mineral deposits: Phd. Thesis, Carleton Univ., Ottawa.

10000

Carson, D.J.T., 1973, The plutonic rocks of Vancouver Island: Geol. Surv. Can., Paper 72-44.

Crickmay, C.H., 1928, The stratigraphy of Parson Bay, B.C.: Univ. of Cal., Publ. Geol. Sci., v.18, p. 51-63.

Dawson, G.M., 1887, Report on a geological examination of the northern part of Vancouver Island and adjacent coasts: Geol. Surv. Can., Ann. Rept. 1886, v.2, Pt. B, p. 1-107.

De Geoffry, J., and Wignall, T.K., 1972, A statistical study of geological characteristics of porphyry coppermolybdenum deposits in the Cordilleran belt - application to the rating of porphyry prospects: Econ. Geol., v.67, p. 656-668.

Dietz, R.S., 1961, Vredefort Ring structure: meteorite impact scar?: Jour. Geol, v.69, p. 499-516.

Dietz, R.S., 1964, Sudbury Structure as an Astrobleme: Jour. Geol., v.72, p. 412-434.

Dolmage, V., 1919, Quatsino Sound and certain mineral deposits of the west coast of Vancouver Island, B.C.: Geol. Surv. Can., Sum. Rept. 1918. Floyd, A., and Bjerring, J.H., 1969, Parametric and nonparametric correlations and tests of significance: Unpublished Manual, Univ. B.C. Computing Centre.

Fountain, R.J., 1972, Geological relationships in the Panguna porphyry copper deposit, Bougainville Island, New Guinea: Econ. Geol., v.67, p. 1049-1064.

Freeman, L.C., 1965, Elementary Applied Statistics: John Wiley & Sons, p. 108-119, 187-198.

Godwin, C.I., 1973, Shock brecciation, an unrecognized mechanism for breccia formation in the porphyry environment: Geol. Assoc. Can. Proceedings, v.25, p. 9-12.

Guilbert, J.M., and Lowell, J.D., 1974, Variations in zoning patterns in porphyry ore deposits: Can. Inst. Min. & Met. Bull., p. 99-109.

Gunning, H.C., 1932, Preliminary report on Nimpkish Lake Quadrangle, Vancouver Island, B.C.: Geol. Surv. Can., Sum. Rept. 1913A, p. 22-35.

Hemley, J.J., 1959, Some mineralogical equilibria in the system $K_{2}O - Al_{2}O_{3} - SiO_{2} - H_{2}O$: Am. Jour. Sci., v.57, p. 241-270.

Hemley, J.J., and Jones, W.R., 1966, Chemical aspects of hydrothermal alteration with emphasis on hydrogen metasomatism: Econ. Geol., v.59, p. 538-569.

Hemley, J.J., and Meyer, C., 1967, Wall-rock alteration: in geochemistry of hydrothermal ore deposits, ed. H.L. Barnes.

- Hemley, J.J., Meyer, C., and Richter, D.H., 1961, Some alteration reactions in the system Na₂O - Al₂O₃ - SiO₂ - H₂O: U.S. Geol. Surv., Prof. Paper 424D, p. 338-340.
- Hemley, J.J., Montoya, J.W., Nigrini, A., and Vincent, H.A., 1970, Some alteration reactions in the system CaO - Al₂O₃ -SiO₂ - H₂O: Soc. Min. Geol. Japan, Special Issue No. 2, p. 58-63.
- Howell, F.H., and Molloy, J.S., 1960, Geology of the Braden orebody, Chile, South America: Econ. Geol., v.55, p. 864-905.
- Hutchison, R.W., and Hodder, R.W., 1972, Possible tectonic and metallogenic relationships between porphyry copper and massive sulphide deposits: C.I.M. Bull., p. 34-40.
- Iwao, S., 1962, Silica and alunite deposits of the Usuga Mine: a geochemiocal consideration of an extinct geothermal area in Japan: Japanese Jour. Geol. Geogr. v.33, p. 131-141.
- Jaeger, J.C., 1957, The temperature in the neighbourhood of a cooling intrusive sheet: Amer. Jour. Sci., v.255, p.306-318.
- James, A.L., 1971, Hypothetical diagrams of several porphyry copper deposits: Econ. Geol. v.66, p. 43-47.
- Jeletsky, J.A., 1969, Mesozoic and Tertiary stratigraphy of northern Vancouver Island (92E, 92L, 102I): Geol. Surv. Can., Paper 69-1A, p. 126-134.

Hemley, J.J., and Meyer, C., 1967, Wallrock alteration: in

geochemistry of hydrothermal ore deposits, ed. H.L. Barnes.

Hemley, J.J., Meyer, C., and Richter, D.H., 1961, Some alteration reactions in the system $Na_2O - Al_2O_3 - SiO_2 - H_2O$: U.S. Geol. Surv., Prof. Paper 424D, p. 338-340.

Hemley, J.J., Montoya, J.W., Nigrini, A., and Vincent, H.A., 1970, Some alteration reactions in the system CaO - Al₂O₃ -SiO₂ - H₂O: Soc. Min. Geol. Japan, Special Issue No. 2, p. 58-63.

Howell, F.H., and Molloy, J.S., 1960, Geology of the Braden orebody, Chile, South America: Econ. Geol., v.55, p. 864-905.

Hutchison, R.W., and Hodder, R.W., 1972, Possible tectonic and metallogenic relationships between porphyry copper and massive sulphide deposits: C.I.M. Bull., p. 34-40.

Iwao, S., 1962, Silica and alunite deposits of the Usuga Mine: a geochemical consideration of an extinct geothermal area in Japan: Japanese Jour. Geol. Geogr. v.33, p. 131-141.

James, A.L., 1971, Hypothetical diagrams of several porphyry copper deposits: Econ. Geol. v.66, p. 43-47.

Jeletsky, J.A., 1969, Mesozoic and Tertiary stratigraphy of northern Vancouver Island (92E, 92L, 102I): Geol. Surv. Can., Paper 69-1A, p. 126-134.

Johnston, W.P., and Lowell, J.D., 1961, Geology and origin of mineralized breccia pipes in Copper Basin, Arizona: Econ. Geol., v.56, p. 916-940.

- Kennedy, G.C., and Nordlie, B.E., 1968, The genesis of diamond deposits: Econ. Geol., v.63, p. 495-503.
- Lowell, J.D., and Guilbert, J.M., 1970, Lateral and vertical alteration - mineralization zoning in porphyry ore deposits: Econ. Geol., v.65, p. 373-408.
- Luedke, R.G., and Hosterman, J.W., 1971, Clay minerals Longfellow mine, San Juan Co., Colo.: U.S. Geol. Surv., Prof. Paper, 750-C, p.Cl04-111.
- Meyer, C., 1968, Ore deposits at Butte, Montana: Ore deposits of the United States, 1933-1967, p. 1373-1416.
- Muller, J.E., 1970, Northern Vancouver Island (92E, K, L, 102I): Geol. Surv. Can., Paper 69-1A, p. 27-29.
- Muller, J.E., 1971, Chemistry and petrology of some Mesozoic volcanic rocks of Vancouver Island, B.C.: Geol. Surv. Can., Paper 71-1B, p.5-10.
- Muller, J.E., Northcote, K.E., and Carlisle, D., 1973, Geology and mineral deposits of Alter Bay - Cape Scott map area (92L-102I) Vancouver Island, B.C.: Geol, Surv. Can., Open File Rept., Sept., 1973.

Muller, J.E., and Rahami, R.A., 1970, Upper Triassic sediments of northern Vancouver Island: Geol. Surv. Can., Paper 1970-1B, p.11-18.

- Northcote, K.E., 1970, Rupert Inlet Cape Scott map-area: B.C. Dept. of Mines and Petroleum Resources, Geol. Exploration and Mining in B.C., p. 254-278.
- Northcote, K.E., and Muller, J.E., 1972, Volcanism, plutonism and mineralization: Vancouver Island: Can. Inst. Min. & Met., Bull., p. 49-57.
- Norton, D.L., and Cathles, L.M., 1973, Breccia pipes products of exsolved vapor from magmas: Econ. Geol., v.68, p. 540-546.

O'Rourke, J.E., 1962, Geology and ore deposits of northern Vancouver Island: Utah Mines Ltd., Private Report.

Perry, V.D., 1961, The significance of mineralized breccia pipes: Min. Eng., p. 367-376.

Radonova, T.G., and Velinova, I., 1970, The alunite facies of the secondary quartzites in the svednogorian zone: Problems of hydrothermal ore deposition, Inter. Union Geol. Sci., A, No.2, p. 368-372.

Robinson, R.F., and Cook, A., 1966, The Safford copper deposi Lone Star Mining District, Graham Co., Arizona: in Geology of the Porphyry Copper Deposits, Southwestern North America, ed. Titley and Hicks, p. 251-266.

- Rose, A.W., 1970, Zonal relations of wallrock alteration and sulphide distribution at porphyry copper deposits: Econ. Geol., v.66, p. 515-542.
- Sawkins, F.J., 1969, Chemical brecciation, an unrecognized mechanism for breccia formation?: Econ. Geol., v.64, p. 613-617.
- Sillitoe, R.H., 1973, The tops and bottoms of porphyry copper deposits: Econ. Geol., v.68, p. 799-815.
- Steiner, R.H., 1953, Hydrothermal rock alteration at Wairakei, New Zealand: Econ. Geol., v.48, p. 1-13.
- Surdam, R.C., 1967, Low Grade metamorphism of the Karmutsen Group - Buttle Lake area, Vancouver Island, B.C.: unpublished Phd Thesis, Univ. Cal.
- Sutherland Brown, A., 1969, Mineralization in British Columbia and the copper and molybdenum deposits: C.I.M. Bull., p. 26-40.
- Sutherland Brown, A., 1970, Mess Creek: Geol., Exploration, Mining in B.C., B.C. Department of Mines and Petroleum Resources, p. 49-57.

Sutulov, A., 1974, Copper porphyries: Univ. of Utah Printing

Services, p. 141-170.

Sutulov, A., 1963, Molybdenum and rhenium recovery from porphyry coppers; Univ. of Concepcion, Chile, p. 31-40.

Winkler, H.G.F., 1967, Petrogenesis of metamorphic rocks: Springer-Verlag, p. 65.

Young, M.J., and Rugg, E.S., 1971, Geology and mineralization of the Island Copper deposit: Western Miner, v.44, p.31-40.

"GEOLOG"

The development and use of the "GEOLOG" format for recording drilling data is described by Blanchet and Godwin (1972). The system used for recording drilling data at Island Copper is a modified form of one of the earlier "GEOLOG" formats (Figure A-1) which was loaned to the writer in the spring of 1971. Early core logging at Island Copper indicated that limonite was negligible and that very little fracture data could be obtained from the split core; therefore, these sections were removed from the data sheets for this study. Copper and molybdenum assays were added to the "GEOLOG" sheet instead of being recorded on a separate "ASSAYLOG" sheet. The resultant format used for core logging at Island Copper are shown in Figure A-2. Coding sheets for the "GEOLOG" data sheets are illustrated as Tables A-1, A-2.

FIGURE A-1

"GEOLOG" Format

After Blanchet and Godwin, (1972)

	GFOLOG												
E	M	CHAPMAN, WOOD		DRILL	HOLE	E GEO	LOGIO	LOG	HOLE NUMBER				
CS IT	CIP_	AZIN.	OMPANY:		PROPERTY:		LOGGED BY:	DATE:	PAGEOF				
1	TY	C OF HOLE DOH	ZONES	HOST ROCK	FRACTURES	ALTERATION	ASSEMBLAGES	LIMONITES	MINERALIZATION				
4			CON- BOTTON	A TYPE P COLOUR U M T TYPE P CODE U M T E M N S L L N X	G ALL GP1 GP2 GP3 R FRACS Aver to Ants A 30' 30-60' > 60 1 3 5 5 5 5 5 5 5 5 5	3 MODE OF OCCURRENCE	CLE EPC CB OTHER CLE EPC CB ALTENATION A	M N S L	MODE OF OSCUP / (VOL) OF MINERAL HANTS OF DIGHT 4 WHETHALS TO BE BYEN ON AAMES CAND ON DH EACH CODE LINE LEFT 4 AS SHOWN				
ANOVO	× 205 ×	COLLA4 ELEVATION	FAULTS INTERVAL	4-LETTER DO A Y RU CODE FRLL AR	- Construction of Sulphic in Sulphic in Sulphic in Sulphic in Sulphic	$\begin{array}{c c} \mathbf{y} & \mathbf{H}_{\mathbf{T}_{\mathbf{Z}}} & \mathbf{H}_{\mathbf{T}_{\mathbf{Z}}} & \mathbf{H}_{\mathbf{H}} & \mathbf{Y}_{\mathbf{E}} & \mathbf{Y}_{\mathbf{E}} & \mathbf{Y}_{\mathbf{E}} \\ \hline \mathbf{x} & \mathbf{H}_{\mathbf{H}} & \mathbf{M}_{\mathbf{H}} & \mathbf{M}_{\mathbf{H}} & \mathbf{M}_{\mathbf{H}} & \mathbf{M}_{\mathbf{H}} \\ \mathbf{x} & \mathbf{H}_{\mathbf{H}} & \mathbf{M}_{\mathbf{H}} & \mathbf{M}_{\mathbf{H}} & \mathbf{M}_{\mathbf{H}} & \mathbf{M}_{\mathbf{H}} \\ \end{array}$	TE TE TIME OF ACH COUL I	11111 1111	PY CP DO MO M W W W				
LTER	1		DYKES DESCRIBI		A N Fract Fract	² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	₩ E % E % E % E % E %	USE E-LEFTER CODES	Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ				
RUC	NOS	ESTIMATES & ASSAYS	1 2 3 4 5 6	7 8 8 10 11 12 13 14 13 16 17 18 19	20 21 22 23 24 25 26 27 28 2	29 37 21 32 33 34 33 30 37 30 37 40	41 42 43 44 45 46 47 48 49 20 51 52 63 54	55 56 67 58 59 69 61 62 ·	53 64 65 65 67 48 69 TO 71 72 73 74 75 76 77,73 79 83				
15		-{	HAMES										
			•	╺┤┥┥┥┥╴┝╶┧┈┝╌┥	╺┝─╽─┼┝┼┯┽	╺┟╢╸┝┿╴┝┥┥┥╸	┝┼╎┽┥┝┼┥┥	┝┥╾┠╸╎╌╿╌╿╌┠╾╊					
	12	Ingre courses	┽╌┼╌┟╶┆╴┽╺┽	╺┥┥┥┥┥	╺┠╾┠╾┨╼┫╼╄╾┠╌╂╧┨╾┠	╶┼╢┥┽┼┾┝╢┥┥┿┼┾┾┿╸	╞╼┝╸╎╍╎╌┼╌╎╍╎╌┥╼┼╌┠╸╎╌┽╼┝╶┼╼		╺╢╍┼╾┣╍╏╍╅╼╄╼┼╾┽╼┽╾╫╶┽╶┽╾┼╾┼╼┥				
11		VIIVE ESTIMATES	┫╸┼╾┨╾┠╼┞╼┝			╺╁╢╹┫┱╞╖╢┥┥╋┝╽┥			╶╏╼┨╾┨╼╂╼╅╺┫╼┨╼╁╸┧╶┪╼╅╸┧╼┧╼┨				
		164.215 111143											
			┟┥┥										
		STAFLE NUMBER	┥┼┼┼╎┥┥┥	╺┥╺┞╾┞╼┽╍┡╌╿╌┾╾┼╾┨╼┝┑┽╍┥╼┥	╺┝┥┥┥┽┊┥┥	╾┝┿┹┥┥┥┥┥┥	┝╼┠╾┩╼╃╼┨╼┦╼╃╼╂╌┠╴╿╼┥╌┠╸╿╼						
11			┽╌┼╍┼╌┠╼┞╾┾╸┿	╍╢╼┠╼╄╼┼╼┢╸╢╍╊╼┽╍┠╼┝╸║╺┪╺┥	╺┝╎╎╎┥┽	╾╢╴┋┊┪╍┥╾┞┄╿╶┧╾┿╾┡╸╿╺┥╼	┝╼╊┄╏╼┫╼┠╼┠╍╎╌┠╾╂╾┠╼┦╼┥╾┡╼╂╼┥	┝╾╪╌╞╌╿╾╿╼┥╼┿╸╿	· } · } · } · } · } · } · } · } · } · }				
		1	╶<u></u><mark>┥╶<mark>┥╼╎╼</mark>╎╍╎╍┥</mark>	╾ ┥╸┝╺┝╺┥╸┝╺┝╺┝╺┥╸	╈╋╪╋╋	╶╋╬╋╋╋	┝╾╊╍╬╌╋╌┥╌╋╌┥╌┥		┿╋╋╗				
H													
		Invit Novela											
11						<u> </u>							
H	-		╶┠╌┼╍┼╍┼╍┼	╶╢┥╡╎╎╟╎╷╎┥┥	╾╋╍┽┽┽╋╌╋╍╋	╾┼┼╾┼╌┼╌┼╌┼╌┼╌┼	╎╼┝┥╗╗╸╎╍╎┥┥┥╵┝╸╎╸╎╺┥╺┥╺┥		┿╋┥				
			╺╎╾┼╾┼╼┟╼┼╼┼	╾╿╾┼╍┼╍┝╍┼╍┼╍┤╼┤	╶┝┼┽┦┯╋╼╞╸╎╤┥╼╋	╶ ┝┝ <u>╞</u> ┼┼┝┝┼┼┝┼┽╸	┝╾╪╼┠╍╁╾╁╼╎╼┤╼┽╼┼╍╎╼╎╺┾╍┼╍┥	┍╾╪╍┝╼┝╼┥╍╪╍┞╾╡╼╉	╶ ┋┫╷┥╔╗╗╗				
		and a for the first	┥┽┥┥	╶┥╾┼╍┼╌┼╌┼╌┥╼┼╼┼╼┼╼┤╼┥	╺┟╍┟╍╎╍┨╍╁╼╞╼╞╼┾╼┿	╺┢╵┝┾┼┝┼┽┿┝┼┼	┝╍┝╍┼╼┥──╆╍┝╍╎╼┤╾┢╸┟╺┽╍┾╍┤─┥	┍╼╪╾╪╼┼╼┼╼┼					
Li													
			┥┥┥		╍┝┟╌╎╼┽╌┠╼┝╼╃╶╅╸	╾┠╌╿╾╄╍╋╼╄╺╎╌╢╴╿╶┝┥┥╍	┠╾╊╾┫╼┽╾╄╼╄╼┦╼┥╌╏╴╄╶┦╼┞╌┦╸	┝┿┽┝╢┥┥┥┥	┽╀┽┡┾┽┾┽┼┼┼┼┊┊┥┿┥				
11			┥┽┽┥╴┝┑┥╴┝╷╎	╍┧╺┾╍┾╍┤╸╞╧┽╸┼╍┠╼┥╼╢╺┥	╺┝┼┥┥┥┝┥┥┾		┟╾┊╌╎╼╎╍╎╼╎╼┥╌╎╸┝╴╎╶┥╌╎╍╎╌	┝╍┝╼┝╼┝═┥╼┥	╺┼╍┼╍┼╍┼╍┼╍┼╸┽╺┽╸┥				
			┥┽┾┾┝┝┝╹	┈╽╾┠╾┼╾┽╼┝╾╏╼┝╌┥╼┥	─ ┟┥┥┥┥┥┊┊ ┥┼	╺┾╢┑┝┽┑┝╶┼┥┥┥╴╎╶┤┽╸	┝╌┾╌╎╾╅╍┝╍┝╼╎╌╎╾┥╸┝╌╎╼┥	┟╍╪╍┾╸┠╍┼╍┆╼╉╼┾╼┠	╶╉╍╡╌┠╼╁╴╎╴╡╴┟╴╎╴╡╴╎				
			┽┼┼┽┼┼	╾┧╼╞╾┼╾┼╼┼╼┼╼┽╼┥	╺┾╍┼╍┼╼┼╼┼╼┼	╼╆┉┝╾┾╾┼╾┼╍┽╼┽╶┥╶┼╍╁╍╅╾	<mark>┼╍┼╍┼╍┼╍╎╍┼╼┤╼┼╼┼╍┼╍┤╼</mark> ┤╼	┟╾┠╼┼╼┼╼┼╼┼╼┼╸┼					
T	-												
11													
			┥┥┙╸										
			╅╋╋┥	╺┠┥┥┥┥┥┥┥┥			┥┥┥┥┥┥┥	┍┥┥┥┙	┶┫┥┥┝┝┥┥┥┥┥┥				
1													

a specific and

FIGURE A-2

Modified "GEOLOG" Format Used at Island Copper

Γ		[[1			H	051	r i	200	CK			7	FR	λĊ	T									, Z		AI	T)	TH.	AT	10	N	M	IN	ER	ΛI	S											~~~~	Π	MJ	IN I	ERA	L	IZ	AT	IO	N		Leoque	AS	S.	Y	5	
tacts, Its.	e Se	tom to	Interva	cribed	X	e	toox a		our	e	LITY	eral	ture	in sizt	SILV	11.	100	22	ARCT		KA		E	MG	<u>;</u>	KF		6; 	Ţ	B	ę	3	ZE		L L	T	品		Т		— —	T	-	HEN		22 Z	L.T		저		LCF			Na	NG	PB		 			ASSAY		T	ASSAY	
Con		0 0 10 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	の い い	200	d XI	I A	2.	Col	Cod	Qua	K1n	XeT	G7D	0	,		Y		٩,		4	: <	ie:	¥	:=:				: r:	1	4		4	5.	-;;:	; -			:	~		Y		ح ا:		;	~	0 (Y 0	4		-:: ;•				>:	4	: <		;	B			MO	
1 2	3	4 5	5 6	7 8	9	10 1		2 13	14	15 1	C 17	18	19	20	21	22 2	2 24	25	26	27	28 2	83	0 3	32	33	34	35	36 1	17	8 3	5 40	41	42	43	4	45	46 4	4	3 4	9 5	0 51	1 52	2 53	54	55	56 5	58	55	60 6	1 52	ធ		65 6	6	1 63	69	1.	71 7	13	74	75	7: 7	777	3 23	5 80
																_					-														_																		0						-					1	
	_				+					_				-	_	-	Ļ				2			-	 		_				-	.		ð						-	-	-	<u> </u>		4	_		-	-		-	_	-	-	+		_			ļ.,				-	+
	+		+		+	+	+	$\left \right $	$\left \right $		+	-	\mathbb{H}	+	+	+	+			-	+	+	+-	╞	╞		+	+	+	100	+	+			+	-	+	+-	+	+	┿	+	+-	H	+	-+-	+	Η	+	+			-	+	+		+	+	+			4	+	+	+
	-			• -	+	+	-			+	-	-		-	+		+		-		-+	-		┢	\vdash			-	-		-	+	-	-				-	+-		+				-+	-+		+	Ť	-		-	-		-			+		$\left \right $	-+		+	+	+
	Ť	-	1-1	1	\dagger	-+-	1			-+-					1	1	T	-				t	+-	1-	†-			1	-	1	1	T				1	+	1	+	1	+	1	\uparrow	-+	1	+						-†		1	1			+	-			-†	\dagger	+	\dagger
																						-									T		1	Τ				T				Ι					1		2					ľ	T			T	ľ			1	T	T	T
					$\left \right $	_	.				-	_		_	_	4	-	<u> </u>	_		_	_	-	-	L		_		_	-		1			_	_	4.	1	4			-		 -		_			_			_	_		+		.	- 					1		4
					+	+	-		+	-	+		$\left - \right $		+	+	╀	+-		_	-+-	+	1	╞	31		-		-		-	+			+	-				-		1	-	$\left \right $	_	+	-	-				-			+-				.	-				+	+
	-	+-		+-	+	-+-	-		-+	+	1-		$\left \cdot \right $	-	+	+	+-	+		-	+	+	+-	1-	5			+	-	-+-	╋	+	-		-	-	+	+	+	+-	+-	+-	+-	++	-			+		- -				-						$\left \right $		-+	-	+	+
	+	+	++	+	††	+	\dagger			+	+-		\vdash	+	+	+	┢	┢	-	-	+	+	6	$^{+}$	1	Η	+	+	+	+	\dagger	\uparrow		-	+	+	+	+	+	+	+	+	+	†	+	+	+		+	+	+	+	+	\dagger	1		+	+	+	-		+	+	+	+
		1				-	1-			6	-	1.5			1	-		1		-		1	-	t					1	+	1-	1				1	1	t	1	1	t	1	1		-	1	-					-		1			+		1-				+	1	+
										T														-								T				-			T	T	1	1	-			T	1								T			T	T	Γ		T	T	T	T
	4	1				_	1		1	1				-		4	1_					1	_																	1							1_							1										1	
	_		44											_	_	_		L		_	4	1	_		L		_	_	_	_	-		_	_		_	_	_	-			1			_	1								_				4.				_	1	1	4-
					+		-	$\left - \right $		+	-			-	-	-	+-	-	1	_				-				-	-	+						_	_	- -		-	+		+	-		-			-	-	_	-			+.		-+	+		+				+	+-
	-	+	-+-+	- -	+-+				-+-	+			$\left \cdot \right $	-	+	+	-	-	1013	_		-	-	-	-				-	-		+-	-			-	-	.	+	-	+-					-	+	+-	-+			- +	-			-	-			+		-	.	+	+
	+		+	+	+	+	+	+	-+	+	+		Η	+	╉	+	+	1	-	-	-+-	+	+	+	┝		-	+	+	-	+	-	-	-		+	+	┽	+	┽	+	+	+	+	\neg	-	+	+		+		+	+	+	+		-+	+	+	+		+	+	+	+-
		- -	+-	-	+		-		-+	+	-	\square	\square		-†	+	+		-		1	╈		-		-	-	0	-	-	1-	-	-	00				n.	20	1	+	1	-			5		0	-	-	15		-		t	-		-15	-	-	$\left \right $	-		+	+
		1		1			-			-	1			1	1	1		0				1	1	1	-			2	1	Ť	T	1	-	0	Π	1	T	1	1	1	t	1	1			0	1	1	8	-	B		1	1	T				1	1			1	T	Ť
												Γ					P							-												C.	T					1	T				1			T	T		T	T	T			T		1			T	I	1
																													1		T											Ι				_														1				1	
				4-		-	1			_				\downarrow	_	_	1	L		_		_	_	L	_			_	4			1	1_		_	_	_	_	_		1	1.	1_		_		1_			10.				_				-	1				-		
	-				$\left \right $		-	-			-		$\left - \right $	_	-	-	-	_		_	-		- -		-		_		-			-	L	-	_	+	_	+	+	-	+	+	-	$\left \right $		-	1							-	+-				-		$\left - \right $		-	+	-
6		andre	1-1		11		1_	-		_	- I		1		_	-		1	L	_		-	-	L	سمبا	-	_		_		1	-	1-			-+		1	1	1	-	1		1				1			1				1-		_			1			1	1	_

WWWWWWWWWW

147.

1~

TABLE A-1

Coding Data for the Modified "GEOLOG" Sheet

123

1.44

INTERVAL

CNT	Contact
OVB	Overburden
CAP	Capping
SUP	Supergene
TRN	Transition
\mathbf{FLT}	Fault
DYK	Dyke
FRX	Fresh Rocks
REM	Remarks

8 9 10 11

ROCK TYPE

4 letter rock name from Table A-3

Open for local name characteristic etc.

13 14 15 16

COLOUR CODE

13

SHADE

	No Comment
9	White
7	Light Gray
5	Medium Gray
3	Dark Gray
1	Black

14

BLEACHING

No	comment
Li	ghter
No	rmal
Da	rker

L N D

15 16

COLOUR

R	Red(ish)		В	Blue(ish)
ø	Orange(ish)		P	Purple(ish)
Y	Yellow(ish)	•	T	Tan(Brownish)
G	Green(ish)			

17 18

DEFINING MINERAL

2 letter mineral code, if applicable (from Table)

TEXTURE OR STRUCTURE

19

- IGNEOUS ROCK 1. Porphyry a. Groundmass Estimated % Phenocrysts Texture 10-40% 40-60% 608 10% Phaneritic 1 4 2 3 5 7 8 Aphanitic 6 Non Porphyritic b. Diabasic Equigranular D Ε v Vesicular Ι Inequigranular Amygdaloidal Н Graphic А S # Miarolitic Spherulitic Poikilitic Ρ ø Ophitic SEDIMENTARY ROCK 3. METAMORPHIC ROCK 2. Porphyroblastic \mathbf{L} Laminated Q Thin Bedded Lineated Ν \mathbf{L} Medium Bedded F Foliated U G Granulose Thick Bedded Κ Y XX Cross Bedded Slaty Migmatic Bioclastic Μ B \mathbf{F} Fissile J Spare т Clastic Z Spare R **Oolitic**
 - 20 GRAIN SIZE

Sediment

9 8 7		Boulder Cobble	æ	Megapeg Peg
6	-	Pebble		Coarse
5 4		Granule		reurum
י ז		Sand		Fine Crained
2 1		Silt Clay		Aphanitic Glassy

21 22 23 FRACTURES

Fracture Density

A = above medium

Igneous Rock (phenos if Pfy)

F	=	Fair	Η	=	high
М	=	Medium	Х	=	Extreme

22 23 Percent with Sulphides/Percent with Fault Material

0	2.5 <u>+</u> 2. 5		5	50 + 5
1	10 <u>+</u> 5		6	60 <u>+</u> 5
2	20 <u>+</u> 5	•	7	70 <u>+</u> 5
3	30 <u>+</u> 5		8	80 <u>+</u> 5
4	40 + 5		9	90 <u>+</u> 5

ALTERATION ASSEMBLAGES

24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

Mode of Occurence

0	No Comment	5	Envelopes
1	Veins	6	Pervasive cut by
2	Veins Envelopes	l-ar	Envelopes
2	Voing - Envolopes	7	Pervasive cut by Veins
2	Verns - Enveropes	Я	Pervasive replacement
4	Veins Envelopes	, U	of one mineral
		9	Pervasive

25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61

Amount (Percent)

0	2.5 <u>+</u>	2.5	•	5	50 <u>+</u> 5
1	10 <u>+</u>	5		6	60 <u>+</u> 5
2	20 <u>+</u>	5		7	70 <u>+</u> 5
3	30 <u>+</u>	5		8	80 <u>+</u> 5
4	40 <u>+</u>	5		9	90 <u>+</u> 5

MINERALIZATION

63 65 67 69 71

Mode of Occurence

1 Veins

6

Moderate veinlets and disseminations

Veins, veinlets, fracture Disseminations and 7 2 fillings and minor dissemsome veinlets inations 8 Disseminations and Veins and some disseminminor veinlets 3 ations Disseminations 9 Veinlets and moderate 4 disseminations Veinlets = Disseminations

5

64 66 68 70 72

Amount (Percent)

0 0		5	3 <u>+</u> 1
1.	13 + .13	6	6_+ 2
2.	37 <u>+</u> .13	7	12 + 4
3.	75 <u>+</u> .25	8	24 + . 8
4 1	.5 + .5	9	More than 34

IGNEOUS ROCKS

3

General Types		Volcanic Rocks	
dyke	- DYKE	andesite	- ANDS
igneous	- IGNS	basalt	- BSLT
plutonic	- PLNC	breccia	- BRVL
volcanic	- VLCC	dacite	- DCIT
porphyry	- PPRY	diabase	
Dvke Rocks		(dolerite)	- DIAB
alaskite*	- ALSK	feldspathoidal	
aplite	- APLT	andesite	- FDAN
diabase		feldspathoidal	
(dolerite)	- DIAB	basalt	- FDBS
lamprophyre	- LAMP	feldspathoidal	
pegmatite	- PEGM	latite	- FDLT
F - June		latite	- LTIT
Plutonic Rocks		phonolite	- PNLT
alaskite*	- ALSK	guartz basalt	- 07BS
breccia	- BRPL	quartz latite	- 07LT
diorite	- DRIT	rhvodacite	- RYDC
gabbro	- GBBR	rhvolite	- RYLT
granite	- GRNT	trachyte	- TRCT
granodiorite	- GRDR	cracing co	1101
monzonite	- MONZ	METAMORPHIC ROCKS	
quartz diorite		Progressive Metamor	phism
(tonalite)	- QZDR	amphibolite	- AMPB
quartz gabbro	– QZGB	gneiss	- GNSS
quartz monzonite		granofels	- GRFL
(adamelite)	– ZQMZ	granulite	- GRNL
syenite	- SYEN	greenschist	- GRSC
trondhjemite	- TRDJ	areenstone	- GRSN
Ultramafic Plutonic Re	ocks	lit-par-lit gnei	SS- LTGN
anorthosite	- ANRS	migmatite	- MGMT
dunite		mixed aneiss	- MXGN
hornblendite	- HBLD	orthogneiss	- ORGS
norite	- NORT	paragneiss	- PRGS
peridotite	- PRDT	philite	- PHVI.
pyroxenite	- PRXN	quartzite	
serpentinite	- SRPN	schist	- SCHS
		serpentine	- SRPN
Feldspathodial Pluton:	ic Rocks	slate	- SLTE
feldspathoidal		Sidee	0011
diorite	- FDDR	Contact Metamorphic Ro	ocks
feldspathoidal		cale-silicate ro	ock- CLCC
gabbro	- FDGB	hornfels	- HRFL
teldspathoidal		marble	- MRBL
monzonite	- FDMZ	pyroclasite	- PRCL
feldspathoidal		pyroxenite	- PRXN
syenite	- FDSY	skarn	- SKRN
Miscellaneous Plutonic		tactite	- TCTT
carbonatites	- CRBN		

TABLE A-2

LETTER ROCK TYPE CODE

CONTINUED

Cataclastic Metamorphic	Ro	ocks
augen gneiss	-	AUGN
cataclasite		CCLS
mylonite	-	MLNT
SEDIMENTARY ROCKS		
precipito	-	APCT.
ary		ANGU
broggin		PDCC
DIECCIA	_	OT CN
claystone		CLSN
conglomerate		CGLM
greywacke		GRWK
mudstone		MDSN
quartzose		
sandstone		QZSS
sandstone		SNDS
shale	-	SHLE
siltstone		SLSN
Chemical-biogenic Rocks		
carbonaceous rocks		CRBC
chert		CHRT
clastic limestone	-	CLLS
coquina	-	COQN
dolomite	-	DOLM
evaporite	-	EVPR
ironstone		IRNS
limestone	-	LSTN
oolitic limestone		OOLS
phosphorite		PSPR
Fuchting		
Pyroclastic Rocks		
agglomerate	-	AGLM
breccia		BRPC
ignimbrite		IGMB
tuff	-	TUFF
DDBGGTAG H		
BRECCIAS, Unspecified Origin	1	
Undivided	-	BRXX
Mainly Angular		
Fragments	-	BRA
Mainly Rounded		
Fragments		BRR
- with 4th character		
0-9, giving % of		
matrix to total rock		

APPENDIX B

DATA PROCESSING

The computer program described in Blanchet and Godwin's (1973) paper was not used in the treatment of data from Island Copper. The object of this study was to relate hydrothermal alteration to ore rather than to build a basic geologic picture of the deposit, which the Blanchet system was designed to achieve. Data from each cross-section were divided into three portions: hanging wall, dyke and footwall, to obtain the maximum amount of spatial data from the core.

Data selected as amenable to computer processing are: grayness, bleaching, fracture density, amount of the twelve alteration minerals and copper and molybdenum grades.

Quantity of all variable, except grades, was recorded using a semi-quantitative scale. On reflection, it was considered to be closer to ordinal data than to interval data and was treated accordingly. Grade values are interval data.

Data processing was done at UBC Computing Centre using library program UBC-CORR programed by A. Floyd and J.H. Bjerring (1969). This program is designed to compute correlations between different pairs of variables and to perform significance tests of the results. The program can handle nominal, ordinal and interval variables and will calculate correlations between variables of the same or different sizes.

The correlation between copper grade and molybdenum grade, both interval variable, use the standard Pearson's Coefficient of Correlation (Pearson's r). The significance is determined by an F-test of the significance of "R".

Correlations between grades and other variables are mixed correlations between interval and ordinal data and the statistical test used is Jaspen's Coefficient of Multiserial Correlation. This uncommon test is described by Freeman (1965). Once again, the significance of the correlations is determined by F-tests.

WARRAN TO AN

"Listing" of a typical input

TIVE: 11:04 A.M.	UNIVERSITY OF B. C. COMPUTING CENTER DATE: JAN. 14. 1572

	SLIST
2.1	**************************************
. D	
1	\$SIGNON CARG T=100 P=20 C=0
2	CARG
. 4	SRUN *WATELV 6=-TUATA
5	UIMENSIUN X(20).XX(20)
5	
5	5 ReAd(5) $(1, \pm M) = 2$ (X, XX)
3	
10	$21 \cdot 13 \cdot 2(13, 41) \cdot 43 \cdot 5(13, 41) \cdot 63 \cdot 2(13, 41) \cdot 23 \cdot 41 \cdot 13 \cdot 13 \cdot 13 \cdot 13 \cdot 13 \cdot 13 \cdot 1$
11	د ان ان المحمد المحم
12	$IF(X_{A}(1).NE.BLANK) X(1) = X(1) + 1.0$
13	$3 (1) = \chi(1) + 1 \cdot 0$
14	wRIT= (6,13) (X11),I=1,20)
. 15	(1) GD T(1) S T A CR 1 (2000 A CR 2) CR 2 (2000 A CR 2) CR 2 (2000 A CR 2) CR
13	13 CONTRACT, LEF 3.0, F0.2, F0.3)
14	2 UDALINDE SCID
19	
20	5D41A
21	602MZ 3N 5 24L1 9481 91 81 93 93 15 005
22	<u>129/37 97 5 24L1 92 10 91 82 73 91 21 607</u>
23	24-52472 (3N) 5 24-11 (32) 10 91 82 (73 91) 15 611
24	3307M2 ym 5 2442 1282 71 94 91 13 004
25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
, ,0 27	51.02M2 9N 5 2411 72 10 81 94 16 0.5
28	72 92/17 71 9 2511 7382 10 10 95 25 0.14
29	8292 MZ 7L 9 25L1 9881 92 92 21 304
30	94 JZ 4Z 7L 9 25L1 d2 ' 30 94 91 21 004
31	1004X*X 7L 9 25L1 97 82 55 1210 21 004
32	10233XX 7L 9 25L1 7693 90 95 9210 75 614
33	
25	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
35	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
37	1434NUS 3NG 5 3LL 75 92 9291 54 93 52 010
36	15002M2 7N 5 24L1 BO 90 55 34 92 015
3?	151.0ZM7 /N 5 24L1 7181 10 91 95 11 31 .00/
40	163 J7MZ 7N 9 24U1 34 91 74 93 40 007
41	1730222 78 9 2443 9371 91 94 92 53 557
42	1J3GZM7 HE 9 2443 7183 90 92 25 696 1
43	1 FUDZAZ VE V 2643 7132 VU V V
44	
40	
47	
43	24107.42 9L 9 A4 7332
10	2550/M2 AL 9 A4 7333 10 95 12 020
5.)	26+6ZMZ JL 9 A4 7383 10 10 92 91 05 55
The second s	

.

.

.

157.

-	-		
27			

					a fear and a second		
52	<u>282)2MZ 9 2444</u>	9283			55 93	12 1152	
(53	2910242 9L 9 2443	9582			55 9391	14 321	
54	30222.42 91 9 2443	7584		10	45 93	27 1)+7	
55	31213XX 91 9 24M3	76	10		47 43	22 005	
54	3220/1/ 01 0 2643	0607			0.	22.007	
	522.02.12 50 9 2445	2000	10		24	34 013	
	333JLAL 9L 9 24M3				93 94	33 011	
<u></u>	344 J/ML DL 9 2443	7193	10	81	95 93	37 304	
59	3030201 91 9 2443	9534		30	94	37	
60	333247171 9 24 1	96.13			94	J	
61	+111/1/14/14/11 4 24 1	95.94		10 1500	43 41	11. 111/	
40	53 17M21 0 0 0 1 1	116.113	01	10		3,014	
	JCJ201213L 9 24 1	9393	91	10	4.4	-01 0.24	
6.3	50020210L 9 24 1	1213	91	10	94	J3 511	
	533247131 9 24 1	9594	20	10	94	03 011	An and the second s
55	70JZHZ190 9 24 1	9594	90	1.0	93	15 004	
66	7333VL 35L 9 1	96	91		94 91	In G. 7	
	2010/13:1 9:1	72	02	1 01	05 99	1	
40		74	11	31 31	93 92	10 007	
03	9038VL3516 5 1	14	11 95	1	94 91	Ua (4.3-	
59	95 KVL 1586 5 1	14	11 93	103 - N. 17 K.	94 91	97 du +	소 그렇는 바람님께, 말 그렇게 많이
	10033716 9 1	-11	11 94	1:343	94 91		
71	1J335VL37LG 9 1	91	11 94	1013	14 71	- 04 011	
72	107 2/ 4/171 9 1	1594	11. 11.		45		and the second
73	110 1/ 871710 2 1	9692		11	05		
74		7372		한 집 가지 말했는 것이	1 1 1 1 1 1 1 1	04 011	
14	11202021700 9 1	3032	11	11	95	04 503	
15	12032421769 1	7591	92 11		95	4 003	
	1253RVL37LG 9 1	7591	92 11	and the second	15	13 1:3	
77	13033041/16 0 1	9473	90		95	U3 11:5	
73	140.24717LG 9 1	9443	90 91		94		
73	15007 4/1716 9 24 1	4444	#1.1/2 11 11 11 11 11 11 11 11 11 11 11 11 11		34	ul chu	
9.0	1/01: 11710 0 2/ 1	26.24	0000			01 0.55	
	100000011760 9 24 1	1264	4740	LT. SALER S	14	05 004	
이 가슴이 잘 다 들었다. 나는 것은 것은 것을 한 것을 했다.	1/08/05/1/10 9 24 1	9583	90 93	11	94 91	11 (114	
53	13082041711 9 24 1	9133	92	11	54 91	12 0.00	
83	1908RUM1/LT39 24 1	13.34	92	10	54	00 010	
94	2003RXX2/EG 9 3 1	7482	92 10	10	44		and the second
95	204.471/171 9 34 1	7542	919010	1 1 1 1 1 A A	-12	43 44	
64	1014133171 0 2. 1	76.13	01 12	Constant Lot 1	en an Fight wind the s		
	2000000170 9 94 1	7332	91 10	A A SHORE SHE	LE BYERES	03 010	
5/	21002N217L 9 34 1	1595	919010	1. S.	92 .	J3 000	
Рч	22.752.421716 9 24 1	9.114	90 -		.) 3	02 : 16	
6.8	223 JLM217LG 9 24 1	9484	90		•)3	12 602	
90	20 JZM2991 9 24 1	7483			91 91	J1 005	
	30BR04991 9 24 1	7493			52 01	23 064	
	4001476450 6 34 1	04.93		4000	24 00	51 004	않은 것은 것은 것이 집에서 이야 했다.
12	4302425540 5 24 1	74 32		8092	94 90	119 JUL	
43 ····	50024255.40 5 24 1	4482		8012	92 92	12 004	
94	503.2VL95LU / 3 1	7542		80129291		11 007	
Sj	7012055546 5 F3 1	9231	92	9.) 42.71	94 91	01 017	
55	741:10535.46 5 F3 1	9231	• .)2	40 4291	44 91	10 007	
C7	4011150700 9 64 1	72.12	Same and the second second	4201	7. 01	1. 1.1	
		02.54		100110			
43	900.VL91L 9 3 2	9334		104140	10 11	Ua 006	
5)	1003K047/L 9 24 5	9295	92 90		92 91	1	
100	1103xX97L1 9 4	9492	93 93		92	01-014	
101	120 XX X 77LT 9 2	9292	95 90		14 42	11.011	and the second
102	1234 64971 7 9 1	9202	95 00		.14 .12	21 . 11. 15	THE CONTRACTOR OF A DESCRIPTION OF A DESCRIPANTE A DESCRIPANTE A DESCRIPANTE A DESCRIPTION OF A DESCRIPTIONO
101	120447868.01.5	73.13		12		23. 33.	
103		1174)j	13	11 13		
104	14008XX93L 9 3	1494	40 40	·····································	11 10	93.410	유학 영향과 정말한 것 같아요.
105	1503KXX39LT 9 3	7493	90 91 90	34 - FI	15 91	12 015	
106	160-38××971 9 3 3	7393			13 43	1., 1.,	
107	1701333971 9 3 3	1514			13 40	di turi	
103	13030714710 4 3 6	43	방법에서 가지 않는 것은 영화가 없다.	1.1.2.2.1	1. 11	Cherry Starting Starting Starting	
100		7.	Carl M. Ale Children	1077.71		and the second second second	
	170 3871.971.0 9	13	10	104341	14 43	21 1174	
110	1753RVL55/G 5 1	12	91	101292	14 95	/1 014	
111	200 JEMZ 554 5 24 1	9/31	 81 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 -	10	1 75 12	Same 21 Yours described and	
B. BULLET, D. RELET, M. D. DEWERT, MARKET, M. M. 1990, 2228	아니 이 물건 있는 것은 데너희 것 같아요. 이 물건들께서 물건 같은 것 같아.		DOMESTIC: NOT THE OWNER OF THE OWNER OF THE OWNER.	(a) (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c			

.

	112	20802M253N 5	24 1	9791	81				10		33	·12	2 - 5	11.24	
	113	2175RXX55NU 5	24 4	33					13		15	93	54	1)3	and the second
	114	23002MZ97L 9	24 1	9233							54	91	23	012	
	115 .	240BRXX5540 5	1	11					107.	71	93	97	20	012	
	110	250 12 MZ 55NG 5	24 1	9730	81				10		74	91	34	117	
	117	25150459716 9	4	39									2 .	110	
	118	27033035516 5	24 3	9182					10		94			111 4	
	110	230 11 411 9	1	7.)									21	111.	
	120	2112211 5561 5	3	0140					10	21	04	23.20	and the second second	112	
	1 21	27300723303 3		01.04					0110	1	12	-1			
	122	31 31 31 44 55 54 5	, ,	11.11			11 0	2	100	0.00	10	71		011	
	172	1202201 62:016	2	7701			11 7	1	109	261	32	12			
	123	3206471000000000	2	1201			0	1	1097	1	33	12	11	520	
	1.75	32 1.V 59L 9	· · · ·	7.					1.		15	(12			
	175	2204 (1222) VO 2	1.	71 0					14		35	36	1	1.1.1	
	120	343.347.495.11 2	2	7160		41					71		1.5	551	
	127	221 301 30 40 2	1	9352			1.0		5110	200	12	91	14	.1/3	
	125	3400/MZ 1L 9	2413	7400			10			11	43	43	44.3	1.17	
	129	3341405 1LK 4	3.93	1292			10		11	91	22	54	37	011	
	130	3311405 718 4	313	12.12		·····	10		1)	9191	50	54	3.		
	1 1	3004412 11 A	343	1313			10		10	Sec.	22	54	35	010	
	1 ?2	3533242 740 5	2443	9332			10		11	11	35	34 .	53	010	the second se
	133	371-1401 DN D	24	7331			10		82	. 41	44	34	45	:)) 2	에게 사람이 집에서 걸었는 것이다.
	134	SHONZWE IL 9	4	7494			1.0		11	91	54	34	્રંગ અંગે	015	
	135	342 M Sec 66		73 35			10		90	90	75	23	50	210	
	1?5	3730621 541 10	3	73:95			1:)		10	4190	22	23	21	1).14	
	137	ACOWLAL ON O		74			1) 1	0	10	90	55	32	64	(11.5	
	135	+1346 JA 11 9		7532			10		10	91	25	93	37	.111	
	179	41833VL 5NG 5		73			10		90	10.10	34	33	4.)	000	
	140	+2533.JM 7L 9	24	7533			10		18	90	dS	63	1.4	012	
	141	4303KUM 7L 9	24	13.33			10		90	90	7 >	5311	5()	017	
	142	4+26808 54 5	24	9581					10	1:110	26	54		1.24	
	143	40 JUR JA 7L - 4	2.4	9532							du	53	+ 6	010	
and the second s	144	TOUSAVE SE 9		7584			10		10		45	43	31	623	
	145	4703KWA SL 9	3	95,14			10		10	90.10	25	53	2.5	G1,5	
	140	4 50 SRXX 7L 9	24	7533			10		10	9·)	.55	33	34	0.11	
	147	4333RXA /L 9	2.4	7633			10		10	9391	55	33	3.,	(1)	
	148	++01204 71. 9	24	7 3 34	-1 B	226	1.1	11.5	1.)	50 B	55	33	5.4	616	
	149	50002631 7L 9	24	12.33.	08		10		10		55	92	1.1	1.12	
	150	5133242 7L 9	24	7303	80		10		1.0		15	23	57	423	and a second
	151	5200ZMZ 7L 9	24	7+33	80		10		10		75	53	23	013	
	152	5330242 71 9	24	73.33			10				35	53	53	015	
	153	56002112 71 9	24	7333	÷		13			A 11 1	55	53	30	.112	
	1 = 4	5450202 7L 9	24	7333			10		10		55	53.11	2.	012	
	155	550022271 9	24	7333			1.) .			9	055		. 2+	012	
	156	560.07 87 71 9	24	73 13			1.1		10	90	44		10	-21.7	
	1 = 7	5700747 71 4	24	95.32	80				10		15	44	52	.1.)	
	158	5332/47 /10 9	24	9591	81				10	90	15	94	\$ 7	019	
	150	10114 JUN 71 0	24	75.12	80				+ 4		25	4342		1173	
and the second second	140	50 142 1W 71 0	24	7484	30		10	na) ^{an}	10	a Bala Ag	36	94	4.4	034	
	161	510 12019 71 9	24	1544	31		10		1.2		15	44		11.4	
	162	6233747 71 4	24	7632			10		- 4		26	25	dre	645	
	163	0401/47 71 2	24	75.34							24	23	22	021	
	16.	ARMANIC ALL A	3	07			10		41	22	- 4	44		111 -4	
	165	5334103 54 5 5400/107 64 5	24	37			10		61	01	01	04	- 	111.0	
	105	2501 1 1 20 1 30 1	2.4	0731			10	1	41	0101		5.5			
	120	000000000000000	2	2171			10 0			3131		C		117	
	1/4	0 J J A V J J J J J J J J J J J J J J J J	34	00	03		1.1 .4			11.11		40	100	111	. 전 : An Let : 에 10 - 10 12 14 14 14 14
	100	DODUZMA DN 5	24	22	02		10		0.2		11	02	. 1.1.1	111	
	10-1	5 MC 101000	24	23	07		10		36	40	91	44	> > > > > > > > > > > > > > > > > > > >	013	
	170	CONC TRAFCOD	24	93	82		10 9	0		40	44	91		012	그 바람 영상을 다 잘 다 한 것을 알았는 것 같아.
	1/1	5124ND5 5N 5	24	.75		1.1	9	11		93	15	94	[.)	017	이행에서 연습이 다른 것이 한 생물에 가 없었다.

-

:1

172	5301742 5N 5 24	9540		41			54	42	7.1 0	19
173	035 ZHZ 511 5 24	1332 30	10		11		14	93	30 0	/ .
174	0712/12 200 5 24	92.30	10		82	91	34	94	1)2 0	a na ana ang sa
175	59542M2 5N 5 24	9230	10		32	90	93	45	1.10 11	-1
175	7004405 30 1 3	.94				9030	+3	50	1000	31
177	7350242 51 5 24	9331	21 <u>,</u> 2		3 M		55	54		+1
174	710 NUS 5N3 5	82		42		32	53	52	0.1 0	-1
. 173	72002M2 JN 5 24	9361 81	10	90			16	13	10 .1	17
190	73002 47 51 5 24	9331 80	10	30			94	72	21 ú	/
181	740 2646 5N 5 24	9331	10		62	11	95	93	55 0	04
1.52	1500ZM2 5N 2 24	9481	10		81		32	43	3.5 .7	
1 9 3	7-002472 514 5 24	9540	10		32	30	+3	92	21 3	
1 24	1.544.11 514 - 5	1013 20	13	42	1.7		12	91	2	
195	11002M2 5N 5 24	1281	10				13	41	25.0	
1 96	7302/11 51 5 24	9890			32		12	934.)	2.0	17
1 . 7	7903/4/ 50 3 24	9.1.10			30		12	9393	21.1	6 T
193	30027 AZ 54 5 24	9782	10				32	41	1 ()	17
199	310 37 47 54 5 24	9782	10		82		. 12	93	21	
150	. 3203.03 34 5 24	9532	19		81	11 -11	34	53		1/
151	2242/21 Side 5 24	21.32	2.1		11		74	97		1.1
1.72	1336371 530 5 24	43	10	92		42		34		a state a description of sources of the
193	340 33 1 546 5 24	1243 01	10	10				6 d	7.	• •
194	35000VL 3011	04	1.3	40		0211	71	54	7	
195	50) 12 VI 5 4G 5	07	10	90		11.11	1.	54	10 0	
195		0/	10	30		90.32	24	54	37.0	30
1 6 7	173 17 51 6	91	10	41	•••	401%	27	07		37
102	37032 54 6	27	10				92	45	ט נונ ני נינ	307
1 7 5	379.2 DN 5	39	10					9211	29 0	3.0
200		30	1.5			40	31	22		+3
201	572 55 AA 5LO 7	77	10.	30		01	30	97.	21 2	
202		72 34	10	-/1		71	3.7	54	14 0	31
202	21432.12 5105 3 24	7202 12	10	01				24	<u> </u>	
202	12112() 1 of 5 24	7:01 72	10			00	1.5	5.5	12.0 0	
204		74.11 01	10			40	12	22	115 1	
206	7313AU 7 200 2 24	1471 . 91	10				37.	32	103 0	(***
200	13107						11			
204								35		
203	20.121111							and the state of the state		
210		, , , , , , ,	2244							and the second of the second
210			0 0 0 0							
212			100		ve	VE		00	.111	생활 김 씨는 것은 것이 같아요. 이 것은 것이 같아요.
212	DILATS DRLI NU.P	59 US:	ARGL		13	NP .		PP	00	
213		CP HE4	MAG	· · · · ·	JUE	PYI	-P-3	UDE (CO- 30 - 30-0	080 0
214	11A.13F3. J.F5.2.F6.31	WYE COMMEN								
215		THE CUMPLEX								
/10	4 201			•					120. 2010 100.00	
21/	SSIC VOFF									
1.817 SEC. CPU	11%c									
70.773 SEC. ELA	PSED TIME									
POLETS STOP LEAD										
		1997 1997 - 1997 - 1997		9-18-42 9-18-42	Straff.		1999. 1999.	and the		

Typical Computer Output

and the second

All and a second

			1/
RES NC. 776) 57	UNIVERSITY OF B C COMPUTING CENTRE MTS(CC1	41) 13:29:53 FRI DEC 17/71	1 (3.
******************* THIS \$SIGNEN CAPG **LASI SIGNEN WAS: 13:27: USFF "CARC" SIGNED EN AT	JOB SUBMITTED THEOUGH FRENT DESK READER ************************************	****	
EXECUTION BEGINS			
¢	그는 그 같은 것은 것이 가지 않는 것을 가지 않는다.	2월 - 2월 2월 ⁻ 일종 (1999) - 1999	
	and the state of the second state of the second state of the		
	나는 것 이 다시 문가를 많이 다 집안 없을 정말을	가슴을 가면 가슴을 가지 않는 것이다.	
	그는 그렇게 그는 것이 가지 않는 것이 많이 많이 했다.		
	전 그는 것은 것은 것은 것을 가지 않는다.		
		동안 영상에는 것이 물질했다. 것이 많이 많이 많이 했다.	
같은 아이는 것이 않을까?		에 가장 가장 한 것을 알 것을 수 있는 것을 가지 않는다. 같이 같은 것을 같은 것을 것을 갖고 있는 것을	
a na a sa			
사람이 가지 않는 것이 같아?		· · · · · · · · · · · · · · · · · · ·	
	그렇게 잘 잘 잘 하는 것 같아요. 가지 않는 것 같아요.	상황 사망님은 말을 알 감정이 한 동물의	
		김 영상은 것은 방법을 위해 있는 것이다.	
	an a		
		사람은 사람 성격은 가장 같아요. 것이다.	
영상 영상 관계			1. 1. 1. 2.
			•
	그는 것 같은 것 같은 것을 가 많은 것을 가지 않는 것을 가지 않는 것을 다 가지 않는 것이 있다. 것은 것은 것은 것은 것을 하는 것을 수 있는 것을 하는 것을 수 있다. 것을 하는 것을 하는 것을 하는 것을 하는 것을 하는 것을 수 있다. 것을 하는 것을 하는 것을 하는 것을 하는 것을 하는 것을 하는 것을 수 있다. 것을 하는 것을 수 있는 것을 수 있다. 것을 하는 것을 수 있는 것을 수 있다. 것을 수 있는 것을 수 있는 것을 수 있다. 것을 수 있는 것을 수 있다. 것을 수 있는 것을 수 있는 것을 수 있는 것을 수 있다. 것을 수 있는 것을 수 있는 것을 수 있는 것을 수 있는 것을 수 있다. 것을 수 있는 것을 수 있는 것을 수 있는 것을 수 있는 것을 수 있다. 것을 수 있는 것을 수 있는 것을 수 있는 것을 수 있다. 것을 수 있는 것을 수 있다. 것을 것을 것을 것을 수 있는 것을 것을 수 있는 것을 수 있는 것을 것을 수 있는 것을 것을 수 있는 것을 수 있는 것을 수 있는 것을 수 있다. 것을 것을 것을 것을 것을 수 있는 것을 것을 수 있는 것을 것을 것을 것을 수 있는 것을 수 있는 것을 수 있는 것을 것을 것을 수 있는 것을 것을 것을 것을 것을 것을 수 있는 것을		

:: SCOMP ILE DIMENSION X(17),XX(17) DATA BLANK / 1/ 2 5 READ(5,1,END=2)X,XX' 3 FC & 141 (12X, F1.0, 3X, F1.0, 4X, F1.0, 1X, 2(1X, F1.0), 4X, 8(1X, F1.0), 6X, 2(1 4 1 1X,F1.0),16X,F3.2,1X,F3.3,T1,12X,A1,3X,A1,4X,A1,1X,2(1X,A1),4X,8(1X 2, A1), 4X, 2(1X, A1), 16X, A3, 1X, A3) . 00 3 1=4,15 IF(XX(I).ME.BLANK) X(I) = X(I) + 1.03 X(I) = X(I) + 1.07 xPITE (0,13) (X(1),1=1,17) 3 0 GD TD 5 11 13 FCRMAT(1X, 15F4.0, F6.2, F6.3) TT CENTRUE 2 12 \$1.12 13 EN.) SCATA CLEE USAGE DBJECT CODE = 924 EVTES, ARRAY AREA = 136 BYTES, TUTAL AREA AVAILABLE = 102400 BYTES .).14 SFC; EXECUTION TIME= 7.14 SEC, WATFIV - VERSION 1 LEVEL 2 AUGUST 1970 CCMPILE TIME= DATE= 12-17-71 111 B 117 1 14 Same start of the second 140

SXECUTION TERMINATED	
\$PUN ★CCFR 3=-TCATA EXECUTION BEGINS	
and the second	arri mentro des zigno romanero anoras leves percono secono secono secono secono secono secono secono secono se

SECTION 163 HANGING WALL VOLCANICS	
Storium 14.5 Transino Rate Veloani 03	
에는 것은 것은 것을 다시고 있는 것은 것을 가지 않는 것은 것을 가지 않는 것을 가지 같은 것은 것은 것은 것은 것은 것을 것을 것을 갖추지 않는 것은 것을 갖추지 않는 것은 것을 가지 않는 것을 가지 않는 것을 가지 않는 것을 것을 하는 것을 것을 것을 것을 것을 것을 것을 것을 수 같은 것은 것은 것은 것은 것은 것을 것을 것을 것을 갖추지 않는 것을 것을 갖추지 않는 것을	
DEPENDENT VARIABLE = CU-GRD TYPE = 4	
KF; CBSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE	
PP; LOSERVATIONS IN CNLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE DU: CRSERVATIONS IN CNLY CNE CATEGORY OF THE NON-INTERVAL VARIABLE	
SOT COMPATING IN CALL CREACHED ON THE NEW INTERVAL VARIABLE	
VARIABLE NUMBER OF VARIABLE CORR CORPELATION TEST PROB OBSERVATIONS TYPE CODE CODE	
CRAVS 232 2 5 C. 2382 6 C. 0.0008	
CKLT 233 2 5 0.2741 6 0.0002	
1:0.FFA 2:3 2 5 -0.2540 6 0.0003	
ARCL 233 2 5 0.1237 6 0.2718	
FP 233 2 5 0.0 6 0.0 INVALID	
CU 233 2 5 C.O 6 O.O INVALID	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10
CL 233 2 5 -C.1351 6 0.0518	
FP 233 2 5 -(.2090 6 0.0594	
MAG 233 2 5 0.1802 6 0.0165	
MO-GPD 233 4 6 0.7295 7 -0.0	
이 집에 가지 않는 것 같아요. 이렇게 다 생각하는 것 같아요. 것이 같아요. 것이 집에 가지 않는 것이 같아요. 방법에서 이 것이 많아요. 이 것이 같아요. 이 것이 같아요. 이 것이 같아요. 이 가 있는 것이 하 않는 것이 같아요. 이 가 있는 이 이 있는 것이 같아요. 이 가 있는 것이 같아요. 이 이 이 있는 것이 같아요. 이 이 이 이 이 이 이 이 이 있는 것이 ? 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이	
그는 것 같은 것 같은 것 같은 것 같은 것은 것은 것 같은 것 같은 것	
그는 그는 것 같은 것 같은 것 같은 것 같은 것이 같은 것이 같은 것이 있는 것은 것이 있는 것 같은 것이 같은 것이 같이 많이 많이 했다. 것이 같은 것이 같은 것이 같은 것이 같은 것이 같은 것	
그는 그는 것이 같은 것이 다양한 것이 집에 집에 있는 것을 통해야 할 수 있는 것이 가지 않는 것에서 같이 것 같아요. 그는 것이 없는 것이 것이 같이 많이 했다.	
그는 것이 가 전 것들은 것, 방법을 통 성상을 얻어야 했다. 것을 다 말에 가지 않는 것을 수 있는 것을 수 없습니다. 가지 않는 것을 얻는 것을 하는 것을 수 있다. 것을 하는 것을 하는 것을 하는 것을 수 있다. 것을 수 있다. 것을 하는 것을 수 있다. 것을 것을 것을 것을 것을 수 있다. 것을 것을 것을 수 있다. 것을 것을 것을 것을 것을 것을 수 있다. 것을 것을 것을 것을 것을 것을 것을 수 있다. 것을 것을 것을 것을 것을 수 있다. 것을 것을 것을 것을 것을 것을 수 있다. 것을	
이 가장은 것이 많은 것이 같다. 이 것이 같은 것이 같은 것이 같은 것이 같은 것이 같은 것이 같은 것이 같이	
이 것은 것 같은 것은 것 같은 것을 하는 것을 수 있는 것을 많은 것이 것을 수 있다. 것은 것은 것을 가지 않았다. 것은 것은 것은 것을 하는 것이 것을 수 있는 것이 것을 하는 것이 것을 하는 것이 같이 없다. 것은 것은 것은 것은 것은 것은 것을 하는 것이 같이 없다. 것은	
그 같이 있는 것 같은 것 같	NY 25 11

::

1 ..

			1							i se a j	
(0.61	ENDENT VARIAB	LE = MC-GF	D TYP	2 = 4	5 d - 14				a factorio interiore	
	KE: CBS	ERVATIONS IN	CALY CHE CAT	EGORY OF	THE NON-INTERN	AL VAR	ABLE				
	CU; CBS	ERVATIONS IN	CNLY ONE CAT	EGORY OF	THE NON-INTER	AL VAR	ABLE				
≻	VALLABLE	NUMBER OF	VARIARIE	CCFE	CERPLATION	TEST	PROB				
		OBSERVATIONS	TYPE	CCDF	Correct graces	CODE	FROD				·
	GRAYS	272	2	5	0.1729	6	0.0141				
	DKLT	233	2	5	0.2115	6	0.0040				
		233		5	0.5204		-0.0				
	AFGL	233	2	5	0.0306	6	0.7769				an in seg
	KF	233	2	5	0.0	6	0.0	INVALID	그는 일부가 같다.		
	ru	233	2	5	0.0	6	0.0	INVALID			
	C <u>0</u> 7 F	233	2	5	-0.1436	6	C.5626		•		
	CL	233 .	2	5	-1.(575	6	C. 4312				in the h
	L P	233	2	5	-0.1522	6	0.1725				
	• • • • • • • • • • • • • • • • • • •	233	2.	5	(.2387	6	0.0017				
	0-0-0	. 2.5	4	0	0.7295	÷.	-0.0				
						1.5	110				f an the
							- Contraction				
. •											
							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	State and States			
	이 말 같은 것이 같아.					2 같은					
Jahren Tran											
	a states y		an a	19. S	Condenses in the					김 김 영화님이 있는	
		بالمقابسة والعطار			100 CONTRACTOR	105 - A. 13	27316 - 1771 - 1771 - 1771 - 1771 - 1771 - 1771 - 1771 - 1771 - 1771 - 1771 - 1771 - 1771 - 1771 - 1771 - 1771				
Januari ana ang											
		1									
			And Aller	<u></u>	AND				desperant and the second second second		
New Set								the the state of the			
							Sec. Carl				
1.000											
124.625								1999、公司公司			4367.
0.00.000					PASSAGE			and the second			and the state

DICTIONARY OF COD	ξ.	•			
COUPELATICA CODES	- print of the second	a la construction de la construc			
CENTERTICK CONCS					
 GUTTMANS SYMME ELEFEMANS CODEF 	TRIC COEFFICIENT OF	PREDICTABILITY (LAMDA)			
3. GEDERANS AND K	RUSKALS CORFFICIENT	DE RANK ASSICIATION TO	,,		
5. JASPENS COEFFI	CIENT OF MULTISERIAL	CORRELATION (M)			
6. PEARSONS OLEEF	ICIENT OF CURRELATIO	JM (R)			•
STORIFICATOR TEST	CODES				
. PEARSONS CHI-S	QUARED TEST WITH YAT	IES CORRECTION			
2. FANK-KHITHEY U 3. PEASSONS CHI-S	-TEST JJARED TEST				
4. SIGNIFICANCE T	EST FOR G				
6. FHIEST OF SIGN	IFICANCE OF M		A State of the state	All and the second second	
7. F-1FS1 CF SIGN	IFICANCE OF R				
STEP					
EXECUTION TERMINA	TED				
	and the second s				
\$SIGNUFF					
			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
		and the second	Sector Sector		
			비행 것은 그 안 없는	에 걸 것 같아. 같는	
		김 사회 공연을 위해 관계에 가지 않는			
	a de la constante de la constan		Section 1 and a sector of the		
	and a second sec				
instant, see a suite					
전 감독 관계적 것			the states of the second		
	er el apres el april de la compañía		e recents beneficies as		pagi ng
					1 여름 가슴 가슴 드나라 모양을 했다.
				그 말을 다 여름다 모두 지었다.	

.

-

RES NO. 774157	UNIVERSITY OF B C COMPUTING CENTRE MTS(EC141)	13:29:53 FRI DEC 17/71
	에는 모두 가는 것은 모양을 만들어 있는 것은 정말 것을 가장을 가장을 가지 않는 것이다. 같은 것이는 것은 성격에서는 것은 것을 다양하는 것이다. 것은 것을 가장을 가장을 받는 것	
	같겠다면 중 동물을 통하는 것은 지하는 것이라는 것이다.	
	말 감독 관계 방법 방법 것 같은 것 같은 것 같은 것 같은 것 같이 있다.	
	USER: CARG DEPARTMENT: GEOL	
	**** CN AT 13:30:04	성수의 방법은 가격을 위한 것을 가지 않는다.
	**** OFF AT 13:31:19 **** ELAPSEC TIME 74.323 SEC.	
	**** CPU TIME USED 25.243 SEC. **** STOPAGE USED 971.786 PAGE-SEC.	
	**** CARDS READ 267 **** LINES PRIMTED 126	
	 ★★★★ PAGES PEINTEC ★★★★ CARDS PUNCHEE O 	
	**** DEUM READS 57 **** KATE FACTOR 1.0	
	**** APPPUX. CUST OF THIS RUN C\$2.91	
	**** FILF STCPAGE PG-FR00	and the second second second second
	**LAST SIGNON WAS: 13:27:57 12-17-71	- des
	방법 등 수 있는 것이 많은 것이 없는 것을 많이 많이 없다.	
and the second participations	and the second	
	n en	
		1999 Paragram and an an and a strain and a str
		상황 영양 방송 전에 가지 않는 것이 같아.

APPENDIX C

and the second

STATISTICAL DATA FOR:

Section 195 Section 187 Section 179 Section 171 Section 163 Section 155 Section 147
SECTION 195 -- FUCTWALL VOLCANICS

CEPENDENT VARIABLE = CU-GRD TYPE = 4

KF; CBSERVATIONS IN CNLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE

VARIAPI.E	NUMBER OF OBSERVATIONS	VARIABLE • TYPE	C OP R C OD E	CORRELATION	TEST CODE	РРОВ		
 GRAYS	241	2	5	0.0592	6	0.4070		
DKLT	245	2	5	-0.0075	6	. 0.8822		
ND.FRA	245	2	5	0.4162	. 6	-0.0		
OZ	245	2	5	0.2014	6	0.0021	그 같이 있는 것 같아. 엄마	10
ARCL	245	2	5	-0.0082	6	0.8886		
MS	245	· 2	5.	0.1316	6	0.1012	요즘이 있는 사람들은	
 KF	2.45	2	5	0.C	6	0.0	INVALID	
PP	245	2	5	-0.2005	6	0.0890		
DU	245	2	5	-0.2324	6	0.3709		
CB	245	2	5.	-0.0528	6	0.4546		
ZE	245	2	5	0.0848	6	0.4658		
CL	245	2	5	0.0338	6	0.6218		
E P	245	2	5	C. C36C	6	0.71.03		
IIEM '	245	2	5	-0.2164	6	0.5311		
MAG	245	. 2	5	0.1571	6	0.0430		
MO-GED	245	. 4	6	0.5742	7	-0.0		

DEPENDENT VARIABLE = MC-GRD TYPE = 4

. .

KF; OBSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE

VARIAPLE	NUMBER CF	VARIABLE	CORR	COFRELATION	TEST	PROB		
	UBSERVATIONS	TYPE	COCE		CODF	etrodop (Est.		
GRAYS	241	2	5	0.(679	6	0.3388		
DKLT	245	2	Cal. 15	0.0144	6	0.8244		
NG.FRA	245	2 1 1 2 1 2 1 j	6 5 C	0.4360	6	-0.0		
÷QZ	245	2	5	0.2320	6	0.0005	5 a 5 7 7 1 5 1	
ARCL	245	2001	3632 5 B. 28	0.1357	6	0.1229		
MS	245	CONST LAND	01.5.A. 5.1 L.H	0.2710	6	0.0009		
KF	245	enne cviti	10KA 5. (11)	C. C. C.	6	0.0	INVALID	
PР	245	2	5	-0.0225	6	0.8566		
F:U	245	2-300	5 AU E	a 0.1468	6	0.5767		
. CB	245	2	5	-0.2243.	6	0.0013		
Z.F.	245	2	5	-0.0230	6	0.8221		
CL	245	2	. 5	-0.0624	6	0.3574		
. ГР	245	2	6.01 5 Collect	-0.1043	6	0.2814		
HEM	245	2	5	-0.2920	6	6.3936		
MAG	245	2	5	0.2106	6	0.0071		
CU-GRD	245	4	6	0.5742	7	-0.0		

SECTION 195 -- UYKE COMPLEY

DEPENDENT VARIABLE = CU-GPD 1YPE = 4

6

.

KF; OBSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE ZE: OBSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE HEM; OBSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE

VAL	TALLE	NUMBER OF	VARIABLE	COPR	COFRELATION	TEST	PPOB		
		D3SERVATIONS	TYFE	COLF	1775-177 1775-1775-1775-1775-1775-1775-1	CODE	01334		
	GRAYS	169	2	5	0.1462	6	0.0890		
Γ.)KLT	169	12 2 DAR	5 00	0.1749	. 6	0.0522		
	C.FRA	170	2761705	5	0.4953	6	-0.0	이번 모델 및 이 문화 위험	
철수 감독하는 것이다.	QZ	170	2	5	0.5148	6	-0.0	성 말에 다 사람이 되었다.	
atter vit to a	AFGL	1.70	VI CAZA DVI	5 1 5 1 6 4 4	-0.2836	6	.0.0006		·····
	N S.	170	2.	- 5	-0.2513	6	0.0076		
	KF	170	2	- 5	0.0	6	0.0	INVALTO	
	PP	170	2	5	-0.4505	6	0.0000		
	· - D0-	• 170	2	5	-0.3505	6	0.0002		
	СB	170	2	5	0.4556	6	0.0000	조님, 이 유럽 밖에도 늙다면 하는	
	2 F	170	2	5	0.0	6	0.0	INVALID .	·
	٢L	170	2	5	0.0150	6	0.8465		
د	EP	170	2	5	-0.1957	6	0.2797		
	HEM	170	2	5	0.0	6	0.0	INVALID	
	MAG	170	2	5	0.9043	6	-0.0		
M	C-GPD	170	4	6	0.8188	7	-0.0		

		Re							
кF•		NT VARIABLE	= MU-GR		E = 4			• 1 * 6 * F 1	
ZE; HEN;	CB SERVAT	FIONS IN CN FIONS IN CN FIONS IN ON	LY CAF CAT LY ONE CAT	EGCRY OF EGCRY OF EGCRY OF	THE NON-INTERV THE NON-INTERV THE NON-INTERV	AL VARI AL VARI AL VARI	ABLE ABLE		
VARIA	ELE NU DBSF	MBER OF ERVATIONS	VARIADLE TYPE	COFR	CORRELATION	TEST CODE	PROB		
GP DK-	AYS -1.T	169 169	• 2 LALL	5 5	C. (313 C. (849	6	0.7193		
NO.	FI A	170	2.	5	0.5101	6	-0.0		
	ΩZ	170	2	5	0.4638	6	0.0000		
Δ	GL	170	ALV 2 CHERK	5	-0.3+44	6	0.0000		
	MS	170	2	5 5	-0.1895	6	0.0428		
	KF	170	2	5	C.C	6	0.0	INVALIO	
	PP Liberry	170	2	5	-0.4565	6	0.0000	INTALID	
	DU	170	2	5	-1.3694	6	0.0001		
	СВ	170	2	. 5	0.4760	6	0.0000		
	ZE	170	2	5	0.0	6	Ċ.0	INVALID	
	CL	170	2	5	0.0117	6	0.8682		
	ГР	170	2	5	-0.2374	6	0.1861		
	FFM	170	2	5	0.0	6	0.0	INVAL ID	
	MAG	170	?	5	0.7693	6	-0.0		
CU-	GED	170	4	6	0.8188	7	-0.0		

.

. . .

No. of Contract

SECTION 195 -- HANGINGWALL VOLCANICS

DEPENDENT VARIABLE = CU-GRD TYPE = 4.

KF; OBSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE HEM; OBSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE

	VAPIABLE	NUMBER OF OBSERVATIONS	VARIABLE TYPE	840 0 340 0	CORRELATION	TEST	PROB		
	GRAYS	84	2	Ę	-0.1511	6	0.2318		
	DK1.T	86	2	5	-0.2295	6	0.0881		
	NO.FFA	86	2	5	0.0595	6	0.6145		
	RZ	86	2	5	-0.0008	6	0.5914		
	ARGL.	8.6	2 UM2	5	-0.2082	6	0.0930		
1212	۲S	86	2.	5	-0.0215	6	0.8357		
	ĸĘ	- 68	2	100 A 5 5 10 10	0.0	6	0.0	INVALID	한 명국 이유가
	qq	86	2	5	-0.2816	6	0.0546	영양 김 이 영향 감독 위의 생각	
	្រារ	86	2	5	-0.1744	6	0.5676.		
	· CR	· 86	2	5	0.2251	6	0.0525		
		86	2	5 .	-0.2332	6	0.1574		
S all's	C L	. 86	2	5 -	0.2862	6	0.0134		
	FP	86	2	5	-0.2160	6	0.1497	그 방법을 걸려 한 것 같아. 영향은	
Sec. 1	HEM	86	2	5	0.0	6	0.0	INVALID	
	MAG	86	2	5	0.1353	6	0.3148		
	MC-GRD	63	4		C. 4668	7	0.0000		

 $\mathsf{DEPENDENT} \ \mathsf{VAPIABLE} = \mathsf{MO-GRD} \qquad \mathsf{TYPE} = 4$

KF: OPSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE HEM: UBSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE

VARIABIE	NUMBER OF OBSERVATIONS	VARIABLE TYPE	CCER CCDE	COPRELATION	TEST	PROB		
GRAYS	. 84	2	5	0.0891	6	0.4906		
DKLT NO.FFA	86 86 *	2	5 5	0.1089 0.4288	6	0.4324		
GZ ARGL	86 86	2	5 00 005 /5 00	0.0096	6	0.5760		
MS KF	86 86	2	5. 5	C.C748 0.0	6 6	· 0.5406	τηναι τη	
РР Г	33 2011 CAL	2	·17875	0.2461	6	0.0939		
C b 7 F ·	86 .	2	5 1 1 5	-0.1240	6	0.2929	•	•
C L F P	86 36	2	5	-0.1297	6	0.2715		
H E M M A G	86 86	2	5 . 5	0.0	6	0.0	INVALID	
CU-CFD	63	4	6	0.4668	7	0.0000		

SECTION 187 -- FOOTWALL VOLCANICS

DEPENDENT VARIABLE = CU-GRD TYPE = 4

MS: OBSERVATIONS IN ONLY CNE CATEGORY OF THE NUN-INTERVAL VARIABLE KF; OBSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE PP; OBSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE DU; OBSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE HEM; OBSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE MO-GRD; NO OBSERVATIONS

VARIABLE	NUMBER CF Observations	VARIABLE, TYPE	COF.R CODE	CORPELAT ION	TEST CODE	PROB		
GRAYS	2.8	2	5	0.1737	6	0.4883	ang di san banang di sa	
DKLT	- 28	2	5	0.2809	6	0.2213		
NU.FRA	28	2	5	-0.2056	6	0.3516		
67.	28	• 2	5	-0.2428	6	0.3360		
APGL	28	2	5	-0.4067	6	0.3848		
14 S	28	2	5	0.0	6	0.0	INV AL ID	
KF	28	2	5	(.0	6	0.0	INVALID	
P.P	28	2	5	0.0	6	0.0	INVALID	
	2.8	2	5	· C. O	6	0.0	INVALID	
CB	28	2	5	0.2225	6	0.2877		
ZE	28	2	5	-0.4504	6.	0.0318		
· CL	28	2	5	C.(C97	6	0.9155		
FP	· 28	2	5	-0.6968	. 6	0.0015		
HEM	28	2	. 5	0.0	6	0.0	INVALID	
MAG	28	5	5	0:0417	6	0.8329		. 7
MO-GPD	0	4	0	0.0	0	0.0	INVALID	0

DF	PENDENT VARIAB	LE = MO-GP	RD TY	PE = 4				
00 AVC - 10	COCCOUNTIONS		1.2.1.1				I NAME OF	
GRAYS; NL	DESERVATIONS			N. Shigh Second St.				
NO ERA: NO	OBSERVATIONS					<u>. 0.56134</u> .		
NU.FRA; NU	UDSERVALIUNS			1				·
WZ, NO AUCI • NO	COCCOVATIONS				•	9.00.00 V		
MC . NO	OBSERVATIONS		e se li informatione					•
MO, NU	ODSCRVATIONS							
	OBSERVATIONS .				1985.	1990 M.C. 1997		
	DDSERVATIONS		1.1.2.2.1.1.1		·			•
CB• NO	OBSERVATIONS					1. 1. B.H. 198		· · · · · · · · · · · · · · · · · · ·
7 F * NID	OBSERVATIONS			in the second second				
	OBSERVATIONS			그는 그는 바람을 알려 있는 것이다.		0.000		
EP: NO	OBSERVATIONS							
HEM: NO	OBSERVATIONS					그 성경 관품		
MAG: NO	CRSERVATIONS							
CU-GPD; NO	CBSERVATIONS							
VARIAPLE	NUMBER OF OBSERVATIONS	VARIABLE TYPE	C OP R CODE	CORRELATION	TEST CODE	PROB		
GRAYS	SHOLO VANDER	2	C	0.0	0	0.0	INVAL ID	
DKLT	ò	2	0	0.0	õ	0.0	INVALID	
NC.FRA	С	2	0	0.0	0	0.0	INVALID	
Q Z	С	. 2	0	0.0	0	0.0	INVALID	
ARGL	0	2	0	0.0	C	0.0	INVALID	
. MS	· c	2	0	0.0	0	0.0	INVALID	
KF	0	2	C	0.0	0	0.0	INVALID	이 같아요. 말한
qa	· · · 0	2	ο .	0.0	0.	0.0	INVALID	
DU.	C	2	0	0.0	0	0.0	INVALID	
СВ	r 4 - 0	2	• 0	0.0	0	0.0	INVALID	2. Set South
ZE	0	2	0	0.0	0	0.0	INVALID	
CL	0	2	0	0.0	0	0.0	INVALID	
FP	0	2	0	0.0	0	0.0	INVALID	
/ HFM	0	2	О.	0.0	0	0.0	INVALID	Ч
MAG	()	2	0	0.0	0	0.0	INVALID	L V
CU-GRD	0	4.	0	·0• 0	0	0.0	INVALID	•

SECTION 187 -- DYKE COMPLEX

CEPENDENT VARIABLE = CU-GRD TYPE = 4

MO-GPD; NO OBSERVATIONS

VARIABLE	NUMBER OF OBSERVATIONS	VARIABLE TYPE	CORR	CORP ELATION	TE ST CUDE	PROB		
GRAYS	~ 117	2	5	-0.2235	6	0.0323		
DKLT	117	2	5	-0.2395	6	0.0252		
NO.FRA	117	2	5	0.0495	6.	0.6342		
CZ	117	2 .	5	0.5800	6	-0.0		
ARGL	117	2	5	-0.4704	6	0.0000		and the state of the second
MS	117	2	5	-0.6069	6	0.0000		
KF	117	2	5.	-0.0466	6	C.8173		
<u>b b</u>	117	2	5	-0.7709	6	-0.0		
DU	117	· 2	5	-0.7636	6	-0.0		Na tra sé in
CB	117	2.	5	0.5529	6	-0.0		말 나라 가지?
' ZE	117	2	5	0.2653	6	0.1702		and a second
CL	117	2	5	0.3110	6	0.0016		
FP	117	2	5.	0.4162	6	0.0009		말 것 그렇게 생
E E M	117	2	5	-0.1383	6	0.5126		
MAG	117	· 2	5	0.3634	6	0.0023		
MO-GRD	0	4 .	Q	0.0	0	0.0	INVALID	

7.8.

[]F	PENDENT VALTAR	F = MO-GR		- = 4			
01					·		
GRAYS; NO	CRSERVATIONS						
DKLT; NO	OBSERVATIONS						
NO.FRA; NO	CBSERVATIONS						
QZ; NO	CBSERVATIONS						
ARGL; NO	OBSERVATIONS	. S	1			1 - 61 - 21 - 10 - 10 - 10 - 10 - 10 - 10 - 1	
MS; NO	OBSERVATIONS						
KF; NO	GBSERVATIONS						
PP; NO	OBSERVATIONS '						· · · · · · · · · · · · · · · · · · ·
DU; NO	OBSERVATIONS						
CB; NO	OBSERVATIONS	5		0.126524			
ZE; NO	OBSERVATIONS			-0.16.0.5		6483057	
CL; NO	OBSERVATIONS						
EP; NO	OBSERVATIONS	S.,				010005	
HEM; NO	OBSERVATIONS		2			A = T = A =	
MAG; NO	OBSERVATIONS						
CU-GRD; NO	OBSERVATIONS	5	12	- 물로 "제일점로" - 2 -			
VARIABLE	NUMBER OF	VAPIABLE	COPR	CORRELATION	TEST	PROB	
	OBSERVATIONS	AVTYPE	CCDE		CODE		
GRAYS	0	2	0	0.0	0	0.0	INVALID
	· · · · · · · · · · · · · · · · · · ·						*****
DK1 T	C. LYDI	2 00-01	0 0 1.65	0.0	0	0.0	INVALID
DKLT NO.FRA	C C	2 0 1 - 0 6	$\frac{0}{0}$	0.0	0	0.0	INVALID
DKLT NO.FRA QZ	C C	2	0	0.0	0	0.0	INVALID INVALID INVALID
DKLT NO.FRA QZ ABGL		2 2 · 2 2	0 0 0 0	0.0	0 0 0	0.0 C.0 C.0 0.0	INVALID INVALID INVALID INVALID
DKLT NO.FRA QZ ARGL MS		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 0 0	0.0 0.0 0.0 0.0 0.0	0 0 0 0	0.0 0.0 0.0 0.0	INVALID INVALID INVALID INVALID INVALID
DKLT NO.FRA QZ ARGL MS KF		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 0 0 0	0.0 0.0 0.0 0.0 0.0 0.0		0.0 0.0 0.0 0.0 0.0	INVALID INVALID INVALID INVALID INVALID INVALID
DKLT NO.FRA QZ ARGL MS KF		2 2 2 2 2 2 2 2 2 2 2 2		0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0 0.0 0.0 0.0 0.0 0.0 0.0	INVALID INVALID INVALID INVALID INVALID INVALID INVALID
DKLT NO.FRA QZ ARGL MS KF PP		2 2 2 2 2 2 2 2 2 2 2		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0 0.0 0.0 0.0 0.0 0.0 0.0	INVALID INVALID INVALID INVALID INVALID INVALID INVALID
DKLT NO.FRA QZ ARGL MS KF PP CU CB		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	C 0 0 0 0 0 0 0 0 0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	INVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID
DKLT NO.FRA QZ ARGL MS KF PP DU CB ZE		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	INVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID
DKLT NO.FRA QZ ARGL MS KF PP CU CB ZE CL		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	INVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID
DKLT NO.FRA QZ ARGL MS KF PP DU CB ZE CL EP		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	INVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID
DKLT NO.FRA QZ ARGL MS KF PP CU CB ZE CL EP HEM		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	INVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID
DKLT NO.FRA QZ ARGL MS KF PP CU CB ZE CL EP HEM MAG		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		$ \begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$	INVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID

and the second second second

nen and the second

SECTION 187 -- HANGINGWALL VOLCANICS

DEPENDENT VARIABLE = CU-GRD TYPE = 4

	VARIABLE	NUMBER OF UBSERVATIONS	VARIABLE TYPE	CORR	COFRELATION	TEST CODE	PROB		
	GRAYS	4 92	• 2	5	-0.1145	6	0.0176		
and the second second	UK1.T	498	2	5	-0.0768	6	0.1304		
	NO.FRA	498	2	5	0.1830	6.	0.0002		
	0 Z	7 498	2	5	0.3375	6	-0.0		
	AR CL	498	2	5	-0.2807	6	0.0000		
	MS	498	2	5	-0.1592	6	0.0107		
	KF	498	2	5.	0.2264	6	0.2103		
	PP	408	2	5	-0.2943	6	0.0006		
	DU	498	2	5	-0.2216	6	0.4900		영상 한 동안 동안
	СВ	408	2	5	0.1435	6	0.0044	나는 것을 해	
	ZE	498	2	5	-0.0468	6	0.6228	김 씨님 말 날 옷	
	C1	498	. 2	5	0.1869	6	0.0001		
	EP	498 .	2	5	-0.2756	6	0.0000	승리가 있는 것은 소리가 다	
	HEM	498	2	5	-0.1372	6	0.3531		****
	MAG	498	2	5	0.1366	6	0.0110		
	MU-GRD	296	4	6	0.4886	7 .	-0.0		
		요즘 성격에 너무 아파지 영향하는							

180.

MAV OT I

VARIABLE	NUMBER OF OBSERVATIONS	VARIABLE TYPE	CORR	CORRELATION	T EST CODE	PROB	
GRAYS	290	2	5	0.0277	6	0.6691	
DKLT	296	2	5	0.1342	6	0.0405	
NC.FRA	296	AV 6 2 3	5	0.3199	6	0.0000	
QZ	296	• 2	5	0.3425	6	0.0000	
ARGL	296	2	5	-0.0973	6	0.2120	
MS	296	2	24005 02	-0.1127	6	0.2147	
KF	296	2 K 2 K C 1	5. Le	0.7352	6 781	0.0002	
pp.	296	MEX 02 COL	5.005	-0.2067	6	0.0611	
DU	296	36 x 0 2 E EPÉ	5	-0.1537	6	0.6488	
C B	296	26 OV.	Tex 85 Ce	0.0659	6	0.3146	
ZE	296	VER C2E TVL	10065 00	(.1304	6	0.4134	
CL.	296	2	5	C.1137 .	6	0.0627	
·EP	296	≥ 200-08	5 LA	-0.2838	6	0.0038	
HEM	296	2	5	-0.1855	6	0.2657	김 아파는 것은 것을 다 봐야?
MAG	296	2	5	0.1529	6	0.0277	
· CU-GRD	296	4	6	C. 4886	7	-0.0	

DEPENDENT VARIABLE = MO-GRD TYPE = 4

SECTION 179 -- FCGTWALL VOLCANICS

 $\frac{\text{DEPENDENT VARIABLE}}{\text{CU-GRD}} = 4$

DK--LT; CDSERVATIONS IN CNLY CNE CATEGORY OF THE NON-INTERVAL VARIABLE MS; OBSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE KF; CBSERVATIONS IN CNLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE PP: CBSERVATIONS IN CNLY CNE CATEGORY OF THE NON-INTERVAL VARIABLE CU; OBSERVATIONS IN CNLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE HEM; CBSERVATIONS IN CNLY CNE CATEGORY OF THE NON-INTERVAL VARIABLE MO-GRD: NO OBSERVATIONS

	VARIABLE	NUMBER OF CBSERVATIONS	VARIABLE TYPE	CORR	CORRELATION	TEST CODE	PROB	
	GRAYS	39	2	5	C.5C28	6	0.0022	
	? -> DKLT	CONCERNE MONT	2	5	0.0	. 6	0.0	INVALID
	NO.FRA .	39	2	5	-0.6044	6	0.0005	
	QZ	39	2	5	0.5851	6	0.0005	
	APGL	39	2	5	0.8211	6	C.0001	말 같은 것을 많은 호텔이 했다.
a sh	• M'S	. 39	F3 ≥ 2	5	Abf = C.C	6	0.0	INVALID
8	KF	3.9	2	5	C. O	6	0.0	INVALID
	PP.	39	2	5	0.0	6	0.0	INVALID
	· DU	39	2	5	0.0	6	0.0	INV AL ID
	CB	39	2	5	-C.3083	6	0.0855	
	· ZE	39	2	5.	-0.1031	6	0.5664	
	C.L	39	2	5	-C.6127	6	0.0001	
	FP	. 39	2	5	-0.6307	6	0.0010	
5.0	HEM	39	2	5	0.0	6	0.0	INVALID
	MAG	39	2	5	0.1237	6	0.5565	
	MG-GRD	0	4	0	0.0	0	0.0	INVALID

CEPENDENT VARIABLE = MC-GRO TYPE = 4

GRAYS; NO	OBSERVATIONS			180338290 S	Ś. 5	· 동안에 관심하는	
DKLT; NC	CBSERVATIONS			0.012			
NO.FRA; NC	OBSERVATIONS						
QZ; NO	OBSERVATIONS				Q	1. Ya 82	
ARGL: NO	CBSERVATIONS	S.				0.0	
MS; NO	OBSERVATIONS	19.5					*
KF; NO	CBSERVATIONS			+0*0341			
PP; NO	GBSERVATIONS			6 * 6553.			
DU; NO	OBSERVATIONS				Q. Statis	0.10.0.6.5	
CB; NC	CBSERVATIONS			649-	8	67.0	
ZE; NC	CBSERVATIONS	1 5 C 1 C 1	Specific Street	**************************************	8		
CL; NO	· D B S ER VAT. ION S						
EP; NO	CBSERVATIONS	ERBE STOR	C & C EL 1 A L				
HEN; NO	OBSERVATIONS					680¢	diagonal de la composición de
MAG; NO	OBSERVATIONS					2018 I I I I I	
CU-GRD; NO	CBSERVATIONS	A EVE EVIER	CER TH IF	S VEM-INTERANC	-A 85 d V	effe	
				E NUM- FWIERAST	AVNIVI		
VARIABLE	NUMBER CF	VARIABLE	CORR	CCRRELATION	TEST	PROB	
	OBSERVATIONS	1 YPE	CODE		CODE		
i ka ka	HUE MI - AVEL VELE	*C1-880;	1.86.6				
'GRAYS	· C	2	<u>C</u>	0.0	0	0.0	INVALID
CKI T	C	2	0	$\mathbf{C} \bullet \mathbf{O}$	0	0.0	ΙΛΥΔΙΙΟ
NO.FRA	0	~					INALID
07		2	G	0.0	Õ	0.0	INVALID
12/2	C ECLI	CV T 2 - 0	O AKE O DeebTo	0.0	0	0.0	INVALID INVALID
APGL	C ECLI C	2 CM T 23 0 2	C C C	0.0	0	0.0	INVALID INVALID INVALID
AR GL NS	C C	2 2 2	C C Q O	0.0 0.0 0.0 0.0	0 n 0	0.0 0.0 0.0 0.0 0.0	INVALID INVALID INVALID INVALID
ARGL MS KF	C E C L C C C	2 2 2 2	0 0 0 0	0.0 0.0 0.0 0.0 0.0	0 n 0 0	0.0 0.0 0.0 0.0 0.0 0.0	I NVALID INVALID INVALID INVALID INVALID
APGL APGL NS KF PP	C C C C C C C C C C C C C C C C C C C	2 CV T 2 2 2 2 2 2 2 2	C C C C	0.0 0.0 0.0 0.0 0.0 0.0	0 n 0 0 0	0.0 0.0 0.0 0.0 0.0 0.0	I NVALID INVALID INVALID INVALID INVALID INVALID
AR G L N S KF PP DU	C C C C C C C C	2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 0 0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 n 0 0 0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	I NVALID INVALID INVALID INVALID INVALID INVALID INVALID
AR GL NS KF DU CB	C C C C C C C	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 0 0 0 0 0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	I NVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID
AR GL NS KF DU CB 7 F	C C C C C C C C C C C C C C C C C C C	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 0 0 0 0 0 0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	I NVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID
APGL NS KF PP DU CB 7F CL	C C C C C C C C C C C C	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	I NVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID
AR GL MS KF PP DU CB 7 F CL FP	C C C C C C C C C C C C C	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	I NVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID
AR GL N S KF DU CB 7 F CL FP HEM	C C C C C C C C C C C C C C C C C C C	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	I NVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID
AP GL MS KF DU CB 7 F CL EP HEM MAG	C C C C C C C C C C C C C C C	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	I NVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID INVALID

M

SECTION 179 -- DYKE COMPLEX

CEPENDENT VARIABLE = CU-GRD TYPE = 4

DK--LT; OBSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE KF; OBSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE DU; OBSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE

	VARIABLE	NUMBER CF .	VARIABLE	COPR	COPPELATION	TEST	PROB		
	· Eb& W	OBSERVATIONS	TYPE	CODE		CODE	to any second		
	· · · 1.5 + V								
	GRAYS	337	2	5	0.0734	6.	0.2003	경망 등 영습 가슴 가슴 가슴	
	DKLT	52	2	5	C • O	6	0.0	INVALID	
	NU.FRA	308	2.	5	0.2275	6	0.0002		an a
1.0	G Z	338	2	5	0.4227	6	-0.0		
	ARGL	338	2	5 ·	-0.0941	6	0.2634		• • • •
	MS	338	2	5	-0.2942	6	0.0107		
	KF	338	2	5	0.0	6	0.0	INVALID	
	рр	338	2	5	-0.2574	6	0.4385		
	CU	338	2	5	C.O	6	0.0	INVALID	
	CB	3'38	2	5	0.0138	6	0.8024		
	ZE	338 .	2	5	-0.2460	6	0.0032		
	CL	338	. 2	5	-0.2473	6	0.0000		
	EP	338	2	5	-0.3647	6	0.0000		
	HEM	338	2	5	-0.1455	6	0.1431		지금, 그는 호텔을 받았다.
	MAG	338	2	5	-0.1593	6	6.0089		
	MO-GRO	336	4	6	0.5625	7	-0.0		

		515							
	DEP	ENDENT VAPIA	BLE = MO-C	RD TY	PE = 4				
	DKLT; CBS KF; CBS CU; OBS	ERVATIONS IN ERVATIONS IN ERVATIONS IN	CNLY ONE C/ ONLY CNE C/ CNLY ONE C/	ATEGORY OF ATEGORY OF ATEGORY OF	THE NON-INTERN THE NON-INTERN THE NON-INTERN	AL VARI AL VARI AL VARI	ABLE ABLE ABLE	······	
	VARIABLE	NUMBER CF OBSERVATION	VARIABLE S TYPE	CORR CODF	CORRELATION	TEST CODE	PROB	64/F15	
۲	GRAYS	336	2	5	-0.0475	6	0.4166		
	DKLT	MAY. 10 52	2	Call 5 Sector	C.O	6	0.0	INVALID	
. 51. 2	NO.FPA	307	2	5	0.2085	6	0.0005		
	QZ	337	2	5	0.2811	6	C.0000		
	ARGL	L10M8 337MF	2	5	-0.1815	6	0.0292		- C. 100
	MS	337	2 1 2 1 2 1 2 1 2 1 2 1 2 1	5	-0.2307	6	0.0487		
	KE	337	2	5	· · · ·	6	0.0	INVALID	
	PP	AL AVE 337	2	5000	-0.2011	6	0.5474		
in the second	DU	337	2	5	0.0	6	0.0	INVALID	
	CB	. 337	2	5	-0.0289	6	0.6335		
	. ZE	337	2	5	-0.2235	6	0.0072 .		
	CL	337	2	5	-0.1465	6	6.0118		
	EP	337	2	5	-0.3316	6	0.0002		•
	.HEM	337	2	5	0.0734	6	C.4724		
	MAG	337	2	5	0.0742	6	0.2247		
	CU-GRD	336	4	6	0.5625	7	-0.0		
			이 옷 걸렸다. 이 다 가려가 잘 하는 것 같				1 () () () () () () () () () (

185.

SECTION 179 -- HANGINGWALL VULCANICS

DEPENDENT VARIABLE = CU-GRD, TYPE = 4

DK--LT; CBSERVATIONS IN CNLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE KF; OBSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE

VARIABLE	NUMBER OF OBSERVATIONS	VARIABLE TYPE	COPP. CODE	CORRELATION	TEST	PROB	, AMAG	20
	White and Dec	ni sarinat ^a r	 South States 					
GRAYS	271	2	5	-0.2984	6	C. COCO		des pristants
DKLT.	63	2	5	0.0	6.	0.0	INVALID	
NO.FRA	202	2	5	0.0003	6	0.9449		
QZ	272	2		0.2751	6	0.0000		
ARGL	2,72	2 2 2 2 2 2	5 5 J M	-0.4412	6	-0.0		
MS	272	. 2	5	-0.2450	6	0.0112		
. KF	272	2	5 5	0.0	6	0.0	INVALID	
, PP	272	2	5	-0.3381	6	0.1805		
CU	2.7.2	2	5	-0.3839	6	0.1282		
СВ	272	2	5	0.4200	6	-0.0		
75	272	2	5	0.142.9	6	0.2448		
. CL	2.72	?	5	C.1811	6	0.0055		
EP	2 72	2	5	-0.1221	6	0.3753		
HEM	272	2	5	0.0910	6	0.6481		
MAG	272	2	5	0.1535	6	0.0291	말 것입니다 같다.	
MO-GRD	228	4	6.	0.5097	7	-0.0		
	VARIABLE GRAYS DKLT NO.FRA QZ ARGL MS KF PP DU CB ZE CL EP HEM MAG MD-GRD	VARIABLE NUMBER OF OBSERVATIONS GRAYS 271 DKLT 63 NO.FRA 202 QZ 272 ARGL 2.72 MS 272 PP 272 CB 272 CB 272 CB 272 CB 272 CB 272 CL 272 HEM 272 MAG 272 MD-GRD 228	VARIABLE NUMBER OF VARIABLE OBSERVATIONS TYPE GRAYS 271 2 DKLT 63 2 NO.FRA 202 2 QZ 272 2 ARGL 2.72 2 MS 272 2 PP 272 2 CB 272 2 CB 272 2 CB 272 2 CL 272 2 FP 272 2 CL 272 2 HEM 272 2 MAG 272 2 MO-GRD 228 4	VARIABLE NUMBER OF VARIABLE COPP OBSERVATIONS TYPE CODE GRAYS 271 2 5 DKLT 63 2 5 ND.FRA 202 2 5 QZ 272 2 5 MS 272 2 5 MS 272 2 5 KF 272 2 5 CD 272 2 5 MS 272 2 5 CD 272 2 5 CL 272 2 5 FP 272 2 5 CL 272 2 5 HEM 272 2 5 MO-G RD 228	VARTABLE NUMBER OF DBSERVATIONS VARIABLE TYPE COPP CODE CORRELATION GRAYS 271 2 5 -0.2984 DKLT 63 2 5 0.0 ND.FRA 202 2 5 0.00 ND.FRA 202 2 5 0.00 NS 272 2 5 -0.2450 KF 272 2 5 -0.3831 DU 272 2 5 -0.3839 CB 272 2 5 0.4200 7E 272 2 5 -0.1221 FP 272 2 5 -0.1221 HEM 272 2 5 0.1535 MD-	VARIABLE NUMBER OF VARIABLE COPP COPRELATION TEST OBSERVATIONS TYPE CODE CODE CODE CODE GRAYS 271 2 5 -0.2984 6 DKLT 63 2 5 0.0 6 NO.FRA 202 2 5 0.00 6 QZ 272 2 5 0.2751 6 ARGL 272 2 5 -0.2450 6 MS 272 2 5 -0.2450 6 KF 272 2 5 -0.2450 6 MS 272 2 5 -0.2450 6 CU 272 2 5 -0.2450 6 CU 272 2 5 -0.3831 6 CU 272 2 5 -0.3839 6 CB 272 2 5 0.142.9 6 <t< td=""><td>VARTABLE NUMBER OF OBSERVATIONS VARIABLE COPP CORRELATION TEST CODE PROB GRAYS 271 2 5 -0.2984 6 C.0000 DKLT 63 2 5 0.0 6 0.0 NO.FRA 202 2 5 0.0003 6 0.9449 0Z 272 2 5 0.2751 6 0.0000 ARGL 2.72 2 5 -0.4412 6 -0.0 MS 272 2 5 -0.2450 6 0.0112 KF 272 2 5 -0.3381 6 0.1805 CU 272 2 5 -0.3839 6 0.1282 CB 272 2 5 0.4200 6 -0.0 ZE 272 2 5 0.142.9 6 0.2448 CL 272 2 5 -0.1221 6 0.3753</td><td>VARTABLE NUMBER OF DBSERVATIONS VARIABLE TYPE CORP CODE CORRELATION TEST CODE PROB GRAYS 271 2 5 -0.2984 6 C.000 DKLT 63 2 5 0.0 6 0.0 INVALID ND.FRA 202 2 5 0.0003 6 0.9449 0.0000 QZ 2772 2 5 0.2751 6 0.0000 0.0000 ARGL 2.72 2 5 -0.2450 6 0.0112 KF 272 2 5 -0.3381 6 0.1805 CU 2772 2 5 -0.3839 6 0.1282 CB 272 2 5 0.1429 6 0.0055 CU 2772 2 5 0.1429 6 0.0055 CB 272 2 5 0.1429 6 0.0055 FP 272 2 5</td></t<>	VARTABLE NUMBER OF OBSERVATIONS VARIABLE COPP CORRELATION TEST CODE PROB GRAYS 271 2 5 -0.2984 6 C.0000 DKLT 63 2 5 0.0 6 0.0 NO.FRA 202 2 5 0.0003 6 0.9449 0Z 272 2 5 0.2751 6 0.0000 ARGL 2.72 2 5 -0.4412 6 -0.0 MS 272 2 5 -0.2450 6 0.0112 KF 272 2 5 -0.3381 6 0.1805 CU 272 2 5 -0.3839 6 0.1282 CB 272 2 5 0.4200 6 -0.0 ZE 272 2 5 0.142.9 6 0.2448 CL 272 2 5 -0.1221 6 0.3753	VARTABLE NUMBER OF DBSERVATIONS VARIABLE TYPE CORP CODE CORRELATION TEST CODE PROB GRAYS 271 2 5 -0.2984 6 C.000 DKLT 63 2 5 0.0 6 0.0 INVALID ND.FRA 202 2 5 0.0003 6 0.9449 0.0000 QZ 2772 2 5 0.2751 6 0.0000 0.0000 ARGL 2.72 2 5 -0.2450 6 0.0112 KF 272 2 5 -0.3381 6 0.1805 CU 2772 2 5 -0.3839 6 0.1282 CB 272 2 5 0.1429 6 0.0055 CU 2772 2 5 0.1429 6 0.0055 CB 272 2 5 0.1429 6 0.0055 FP 272 2 5

186.

....

DKLT; CBS	ERVATIONS	IN CNLY CNE	CATEGORY OF	THE NON-INTER	VAL VAR	TABLE		
KF; OBS	ERVATIONS	IN ONLY CNE	CATEGORY OF	THE NON-INTER	VAL VAR	TARLE		
PP; OBS	ERVATIONS	IN GNLY ONE	CATEGORY DE	THE NON-INTER	VAL VAR	IABLE		
DU: CBS	ERVATIONS	IN CNLY CNE	CATEGORY OF	THE NIN-INTER	VAL VAP			
								*
VAFIAPLE	NUMBER C	F VARIABL	E CORR	CORRELATION	TEST	PROB		
	CBS FRV AT I	ONS TYPE	CODE	0.0111.011	CODE	, KOD		
GRAYS	228	• 2	5	-C.1970	6	0.0048		
DKLT	63	2	5	0.0	6	0.0	INVALID	
NO.FRA	158	2	5	0.2492	6	0.0041		
QΖ	228	VILLENE 2 DA	5	0.2237	6	0.0011		. · · ·
APCL	228	2	5	-0.1569	6	0.0648		
MS	. 228	2	5	-0.2157	6	0.0309		
KF	228	AZ DE CHZAU	5 07 5	0.0	6	0.0	INVALID	
pp	228	2.	5	0.0	6	0.0	INVALID	• • • • • • • • •
DU	. 228	AVE DVBC 2	0 CO+CE 5	0.0	6	0.0	INVALID	
CP	228	2	5	0.2059	6	. 0.0044		
ZE	228	. 2	5.	0.0802	6	0.5453		
CL	228	2	5	0.1021	6	0.1485		- 1 m - 1
FP	.228	2.	5	-0.1275	6	C.3688		NB
- HEM	226	2	5	0.1696	6	0.4039		
MAG	228	2	5	0.1310	6	0.0786		
CU-GPD	228	4	6	0.5097	7	-0.0	승규는 것이 많이 많이 했다.	

187.

The second states are and the second states of

SECTION 171 - FOOTWALL VOLCANICS

CEPENDENT VARIABLE = CU-GRD TYPE = 4

VARIABLE	NUMBER OF OBSERVATIONS	VARIABLE TYPE	CORR CCDE	CORR FLATION	- TEST CODE	PROB	
GRAYS	279 •	2	-5	-0.1864	6	C.0055	and the second
 DKLT	16	2	5	0.0	6	0.0	INVALID
NO.FRA	231	2	5	0.5974	6	-0.0	
QZ	280	2.	5	0.2351	6	0.0007	
ARGL	280	2	5	-0.2955	6	0.0001	
NS	280	2	5	-0.2952	6	C.0002	
KF	280	2	5	0.6242	6	0.0130	
 pp	280	2 01/2 0000	5	-0.3026	6	0.0124	
ÐU	280	2.	5	-0.3233	6	0.3355	
C.B	280	2	5	0.0469	6	0.4918	
ZE	280	2	5	-0.5143	6	0.0000	
· CL	280	2	5 ^{13/64}	-0.3710	6	-0.0	
EP	280	2	5	-0.3813	6	0.0002	
 . HEM	230	2	<u>,</u>	0.1503	6	0.1083	
MAG	280	2	5 '	0.2210	6	0.0016	승규는 동물에 도망하는 것이다.
PY-MODE	261	2	5	-0.1203	6	0.1016	지 않는 것 같아. 이 것이 없는 것
. PA	260	2	. 5.	-0.2763	6	0.0000	
CP-MODE	. 157	2	5	0.0804	6	0.4013	
 MQ-GRD	230	. 4	6	0.6670	7 .	-0.0	그는 아이는 아이는 것을 하는 것을 했다.

DK--LT: OBSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE

SECTION 171 - FOOTWALL VELCANIES

DEPENDENT VAR LABLE = MO-GRD TYPE = 4

DK--LT: CBSERVATIONS IN CNLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE

	VARIABLE	NUMBER OF OBSERVATIONS.	VARIABLE TYPE	CORR CODE	CORRELATION	TEST	PROB	
	GRAYS	279	2 1/ 1.6	5 (1/80	-0.2094	6	0.0020	
	DKLT	. 16	2	5	0.0	6	0.0	INVALID
	NO.FRA	231	2	5	0.6188	6	-0.0	2°
	QZ	280	1 A.M. 2. A.M. C	5 000	0.0865	6	0.2077	
	ARGL	280	2 S S	5	-0.2676	6	0,0003	
	MS	280	2	5 64 4	-0.3633	6	0.0000 .	
	K.F	280	2	5	0.1372	6	0.5960	
	PP	280	2.	5	-0.2219	6	0.0654	
	.DU	230	2	5	-0.1865	6	0.5843	알려 물건을 가 다 편하면 날았다.
	СВ	280	2	5	0.1323	6	0.0456	영영 김 씨는 것이 같은 것이 많다.
	ZE	28C	2	5	-0.4454	6	0.0000	
	CL	280	2	5	-0.3490	6	0.0000	
	EP	280	2	5	-0.3101	6	0.0018	이는 문제를 통하는 것이 많이 많이 많이 했다.
And the set of the	· HEM	280	2	5	0.2234	6	0.0172	
	MAG	280	2	5	0.1726	6	0.0124	양부산 물란 것은 눈옷을 드시었습니?
	PY-MODE	261	2	5	-0.1140	6	0.1211	그는 것이 집안 못 들어야지 못했는 것이
	PY	260	2	5	-0.3385	6	0.0000	
	CP-MODE	. 157	2	5	-0.1087	6	0.2497	
•	CU-GRD	280	4	6	0.6670	7	-0.0	
								89

SECTION 171 - DYKE COMPLEX

DEPENDENT VARIABLE = CU-GRD TYPE = 4

DK--LT; OBSERVATIONS IN GNLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE ZE; CBSERVATIONS IN CNLY CNE CATEGORY OF THE NON-INTERVAL VARIABLE EP; OBSERVATIONS IN CNLY CNE CATEGORY OF THE NON-INTERVAL VARIABLE

	VARIABLE	NUMBER OF	VARIABLE	CORR	CORRELATION	TEST	PROB	1104018	
Sala 1999		OBSERVATIONS	TYPE	CODE		CODE	0.065.50		
	GRAYS	185	2	6005	-0.4330	. 6	0.0000		
	DKLT	5	2	5	0.0	6	0.0	INVALID	
	NO.FRA	112	2	5	0.2035	6	0.0665		
Sec. 1	QZ	185	2	5 5	-0.0135	6	0.8353		
	ARGL	185	2	5	-0.2970	6	0.0001		
	MS	185	2	5 A.b.S	0.2854	6	0.0092		
	• KE	185	2 .	5	-0.2978	6	0.3992		
	PP	185	2	5	-0.5914	6	0.0000		
	DU	185	2	5	-0.4536	6	0.0456		
	CB.	: 185	2	5 March	0.0624	6	0.4769		
	. ZE	185	2	5	0.0	6	0.0	INVALID	
	CL	185	2	5	-0.0213	6 .	0.8103	경험에 비슷하면	
	EP	185	2	5	0.0	6	0.0	INVALID	
	HEM	185	2	5	0.3295	6	0.0005		
	MAG	185	2	. 5	0.3948	6	0.0011	에 집을 물리고 말하는 것을 물	
	PY-MODF	177	2	5	-0.1442	6	0.1156		يـــــــــــــــــــــــــــــــــــــ
	PY	177	2	5	0.0133	6	0.8414		06
	CP-MODE	144	2	5	-0.2892	6	0.0045		
	MO-GRD	185	4	6	0.5365	7	-0.0	\cdots	
			CHARLES IN MARK CONSTRUCTION OF MILE						

SECTIÓN 171 - DYKE COMPLEX

DEPENDENT VARIABLE = MO-GRD TYPE = 4

DK--LT; OBSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE ZF; OBSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE EP; OBSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE

VAF	IABLE	NUMBER OF	VARIABLE	CORR	CORR ELAT ION	TEST	PROB		
		OBSERVATIONS	TYPE	CODE	n an similar with the	CODE	VARIACIE		
	i na di	SMOOTLYNNIE SING	IN CONTA OVE	CALCER PR	A THE LEFT WERE IN		VARIARLE	* = - B	
· · ·	GRAYS	185	2	5	-0.2395	6 .	0.0026		
C	KLT	5	2	5	0.0	6	0.0	INVALID	
Ν	IO.FRA-	112	2 -	5	0.4390	6	0.0001		
	92	185	2	5	0.0294	6	0.6962	일 같은 것 같은 것	
5. st to	ARGL	185	2	5 .	-0.1489	6	0.0505		
	MS	185	2	5	0.1871	6	0.0863		
	KF	185	2 2001	104 5 4	0.0365	6	0.8810		이 내 아이 집안이
	PP	185	2	5	-0.2666	6	0.0212		
	DU	185	2	. 5	-0.3155	6	0.1670		
	- CB	. 1.85	2	5	0.1590	6	0.0615		
	ZE	185	2.	5	0.0	6	0.0	INVALID	
	CL	185	2	5	0.0337	6	0.7269		
	EP	185	2	5	0.0	6	0.0	INVALID	
	HEM	185	2	5	C.1974	6	0.0343		
	MAG	185	2	5	0.4146	6	0.0006		
PY	-MODE	177	2	5	-0.1514	6	0.0983		H
la state de la com	ΡY	177	2	5	-0.0345	6	0.6648		
CP	-MODE	144	2	5	-0.1466	6	0.1500	상태는 전 전화 영양	,
C	U-GRD	185	4	• 6	0.5365	7	-0.0	and an and a start	

SECTION 171 - HANGINGWALL VOLCANICS .

a la companya

DEPENDENT VARIABLE = CU-GRD TYPE = 4

DK--LT; OBSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE DU; OBSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE

VARIABLE	NUMBER OF. OBSERVATIONS	VARIABLE	CORR	CORRELATION	TEST	PROB		
1	STRUCT IN AME &	GMP CATTORS	Y DP PI	- GRANTERAVI	AV8.1756			
GRAYS	226	OVE 2 MICHUL	5	0.0220	6	0.7537		
DKLT	4 minut	EVE 2CVICCON	5	0.0	6	0.0	INVALID	
NC.FRA	226	2	5	0.0039	6	0.9109		
QZ	226	W2-050	5466	0.2038	6	0.0029		
ARGL	226	2	5	0.0588	6	0.1662		
MS	226	2.	5	0.1637	6	0.0782		
KF	226	2	5	0.3198	6	0.0610		
PP	226	2	5	-0.3867	6	0.0057		
. DU	226	2	5	0.0	6	0.0	INVALID	
CB	226	2	5	-0.1986	6	0.0078	이 그는 것은 것 같아. 나는 것	전망기 조망가
• .ZE	226	2	5	-0.5942	.6	0.0000	2. 영양, 감독 등 등 등 등	
CL	226	2	5	-0.1899	6	0.0095		
EP	226	2 .	5	-0.3185	6	0.3546		
HFM	226	2	5	0.1147	6	0.2438		
MAG	226	2	5	0.1201	6	0.1724	성 같은 것 같은 것	
PY-MODE	215	2	5.	0.1405	6	0.0539		
PY	214	2	5	-0.0216	6	0.7536		
 CP-MODE	174	2	5	0,1159	6	0.1606		<u>و</u>
MO-GRD	226	4	6	0.4578	7	-0.0		N.

SECTION 171 - HANGINGWALL VOLCANICS

10425

.

DEPENDENT VARIABLE = MO-GRD TYPE = 4

DK--LT; OBSERVATIONS IN CNLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE DU; OBSERVATIONS IN GNLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE

	VARIABLE	NUMBER OF OBSERVATIONS	VARIABLE	CORR	CORRELAT ION	TEST CODE	PROB	
	GRAYS	226	SHE 2VICONA	O5 IHE	0.1430	6	0.0434	
	DKLT	110 10 104000	CHE 211ERCEA	5 188	0.0	6	0.0	INVALID
	NO.FRA	226	CHE 2VLECCEA	5	0.1246	6	0.0770	
	ΩZ	226	UNE 2VLECUES	05 196	0.1093	6	0.1064	
	AR GL	226	2	5	0.0617	6	0.3964	
	MS	226	2	5	0.0769	6	0.4202	
	KF	226	2	5	0.5310	6	0.0021	
	PP	226	2	5	-0.2799	6	0.0435	
	DU	226	2	5	0.0	6	0.0	INVALID
	СВ	226	1032 EUR	5	C.1425	6	0.0548	
	· Z.E	226	2	5	-0.4208	6	0.0008	
*****	CL	226	2	5	-0.1323	6	0.0693	ан на на продокти на продок По
	EP	226	2	5	-0.2538	6	0.4648	
	HEM	226	2	5	-0.2073	6	0.0331	
	MAG	226	2	5	-0.0130	6	0.8558	
	PY-MODE	215	2	5.	-0.0120	6	C.8462	그 전 것 같아. 같아.
	PY	214	2	5	-0.1538	6	0.0270	
	CP-MODE	174	2	5	-0.0942	6	0.2580	
	CU-GR D	226	4	6	C.4978	7	-0.0	

.93.

SECTION 163 -- FOUTWALL VOLCANICS

DEPENDENT VARIABLE = CU-GRD TYPE = 4

KF;	UBSERVATIONS.	IN	ONLY	ONE	CATEGORY	OF	THE	NON-INTERVAL	VARIABLE	
PP;	OBSERVATIONS	IN.	CNLY	CNE	CATEGORY	OF	THE	NON-INTERVAL	VARIABLE	
DU;	OBSERVATIONS	IN	CNLY	GNE	CATEGCRY	CF	THE	NON-INTERVAL	VARIABLE	
ZE;	OBSERVATIONS	IN	GNLY	ONE	CATEGORY	OF	THE	NON-INTERVAL	VARIABLE .	
EP;	CBSERVATIONS.	IN	CNLY	GNE	CATEGERY	CF	THE	NON-INTERVAL	VARIABLE	
HEM;	OBSERVATIONS	IN	ONLY	ONE	CATEGORY	OF	THE	NCN-INTERVAL	VARIABLE	

n 5

	VARIAPLE	NUMBER OF OBSERVATIONS	VARIABLE TYPE	CORR CODE	CORRELATION	TFST · CODE	PROB		
	GRAYS	76	2	5	-0.4828	6	0.0001	spinored being a strategy of the second s	
÷.	DKLT	76	2	5	-0.3306	6	0.0273		
	NO . FP.A	76	2 '	5	-0.1236	6	0.3292		
	GZ	• 76	2	5	-0.3451	6	0.0028	그 같은 모양이 나라 가지 않는 것이다.	
	ARGL	76	2	5	-0.1955	6	0.1237	김 황엽 모양 그는 것이 생성한	
	MS	76	2 2801	5	-0.1017	6	0.4915		
	. KE	76	2	5	0.0	6	0.0	INVALID	
1	. PP	. 76	2	5	0.0	6	0.0	INVAL ID	
	DU	76	2	5	0.0	6	0.0	INVALID	
	CB	76	2	5	0.0831	6	0.5709		· · · · · · · · · · · · · · · · · · ·
	ZE	76	2	5	0.0	6	0.0	INVALID	
	CL	76	2	5	0.0752	6	0.5658		
	FP	76	2	5	0.0	6	0.0	INVALID	옷은 바람이 없
	HEM	. 76	2	5	0.0	6	0.0	INVALID	E.
	MAG	. 76	2	5	0.4946	6	0.0020		94
	MO-GRD	76 .	4	6	-0.0644	7	0.5873		

* 73.64

DEPENDENT VARIABLE = MC-GRD TYPE = 4

KF; CBSERVATIONS IN CALY CNE CATEGORY OF THE NON-INTERVAL VARIABLE PP; OBSERVATIONS IN ONLY CNE CATEGORY OF THE NON-INTERVAL VARIABLE DU; CBSERVATIONS IN CALY ONE CATEGORY OF THE NON-INTERVAL VARIABLE ZE; CBSERVATIONS IN CALY CALE CATEGORY OF THE NON-INTERVAL VARIABLE EP; OBSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE HEM; CBSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE

	VARIABLE	NUMBER OF OBSERVATIONS	VARIABLE TYPE	CORR	CORRELATION	TEST CODE	PROB		
	GRAYS	76	*2	5	0.1622	6	0.1991		
÷	DKLT	76	CVI2 CKCU	5	0.2700	6	0.0723		· · ·
	NO.FRA	76	- BMC 2 - BME - C	21.5.5.6.8.5	-0.0757	6	0.5566		
	Q7	76	2	9 - 5 - 8 A	0.1869	6	0.1079		Sala Na
	ARGL	76	2	5	-0.0586	6	0.6549		
	MS	76	2		0.4701	6	0.0009		
	KF	76	2 '	5	0.0	6	0.0	INVALID	
	. PP	76	2	5	0.0	6	0.0	INVALID	
	ΠU	76	2	5	0.0	6	0.0	INVALID	
	CB	76	2	5	0.2819	6	0.0451		
	ZE	76	2	5	0.0	`6	0.0	INVALID	ling lingu
	. CL	76	2	5	-0.2334	6	0.0635		
	EP	76	2	5	0.0	6	0.0	INVALID	
	HEM	76	2	5	0.0	6	0.0	INVALID	
	MAG	. 76	2	5	-0.3534	6	0.0273	김 학생님께는 것이 많이 많이 했다.	
	CU-GRD	76	4	6	-0.0644	7	0.5873		
					경제가 관심을 얻는 것을 것 같아.			성도 전한 관련생활 수의 가격에 드는 것을 같아.	

SECTION 163 -- DYKE COMPLEX

DEPENDENT VARIABLE = CU-GRD TYPE = 4

	KF;	OBSERVATIONS	IN	ONLY	ONE	CATEGORY	OF	THE	NON-INTERVAL	VARIABLE	
	PP;	CRSERVATIONS	IN	CNLY	CNE	CATEGORY	OF	THE	NON-INTERVAL	VARIABLE	
ar i	DU;	OBSERVATIONS	IN	CNLY	CNE	CATEGORY	CF	THE	NCN-INTERVAL	VARIABLE	
	ZE;	CBSERVATIONS	IN	GNLY	ONE	CATEGORY	OF	THE	NON-INTERVAL	VARIABLE	
	EP;	CBSERVATIONS	IN	CNLY	CNE	CATEGORY	CF	THE	NCN-INTERVAL	VARIABLE	
	the second s			and the second second second	and a second second second second						-

VARIABLE NUMBER CBS ERV AT	OF VARIABLE ICNS TYPE	COPR CODE	CORRELATION	TEST CODE	PROB	
GRAYS 91	. 2	5	-0.2587	6	0.0187	
DKLT 91	. 2	5	-0.2164	6	0.0696	
NO.FRA 47	2	5	0.2352	6	0.1321	
QZ _91	2	5	0.2466	6	0.0206	
AFGL. 91	2	5	-C.2553	6	0.0196	
MS 91	M 14 2 2 2 1	5	-0.1907	6	0.1623	
KF 91	2	5	0.0	6	0.0	INVALID
PP	2 .	5	0.0	6	0.0	INVALID
DU 91	. 2	5	0.0	6	C.O	INVALIC
. CB 91	. 2	5	0.1346	6	0.3265	
ZE 91	2	5	C.O	6	0.0	INVALIC
CL 91	2	5	-0.0143	6	0.8688	
. EP 91	2	5	0.0	6	0.0	INVALID
HEM 91	2	5	0.2733	6	0.1739	
MAG 91	2.	5	0.4038	6	0.0012	
MO-GRD 48	4	6	0.1570	7	0.1763	

CEPENDENT VARIABLE = MC-GRD TYPE = 4

KF; OBSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE PP; CBSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE DU; OBSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE ZE; OBSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE EP; CBSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE

	VARIABLE	NUMBER OF OBSERVATIONS	VARIABLE TYPE	CORR	CORRELATION	CODE	PROB		
	GRAYS	48	2	5	-0.1382	6	0.4064		0
	- CKLT	48	2	5	-0.1053	6	0.5383		
	NO.FRA	47	. 2	5	0.2864	6 .	0.0646	승규는 영향이 있는 것이다.	
	QZ	48	2	5	-0.2018	6	0.1779		
a 1,	ARGL	48	2	5	-0.2614	6	0.0901		
	MS	48	2	5	-0.2444	6	0.2349		
	KE	48	2	5 .	0.0		0.0	INVALID	1.14
	PP	48	2	5	0.0	6	0.0	INVALID	
	CU	48	2	5	0.0	6	0.0	INVALID	
	CB	48	2.	5	0.3564	6	0.0357	그는 다 말 말 다 봐.	
	ZF	48	2	5	. 0.0	6	0.0	INVALID	
	CL	. 48	2	5	0.3096	6	0.0505		
	. EP	4-8	2	5	C. 0	6	0.0	INVALID	
	HEM	48	2	5	0.0854	6 .	0.7275		
	MAG	48	2	5	0.2455	6	0.1493		
	CU-GR D	48	4	6	0.1970	7	0.1763	영화 감독 감독 위험	

.76]

SECTION 163 -- FANCINGVALL VOLCANICS

DEPENDENT VACIABLE = CU-GPD TYPE = 4

DK--LT; OBSERVATIONS IN ONLY DNE CATEGORY OF THE NON-INTERVAL VARIABLE KF; OBSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE PP; DBSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE DU; OBSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE

VARIABLE	NU 43EP OF D3 SER VATIONS	VARIABLE TYPE	COFR	COPRILLATION	TEST	PRDB		
GPAYS	232	2	5 -	0.2382	6	0.0009		
DKLT	41	1. C. 2 CV3.2	5 5	0.0	6	0.0	TNVAL ID	
NC.FRA	533	rai ng unya	5	-0.2540	6	(.0(03	1.11.1.1.1.1.1	
67	233	2	5	0.5947	6	-0.0		••••••
AFGI.	233	198 0 2 H S V F S	5	0.1237	6	0.2718		
MS	233	2	5	0.0593	6	0.6565		
KF	233	2	5	0.0	6	C.C	INVALID	
F P	233	2	5	C.0	6	0.0	INVALID	그는 것 같은 생생
ΕU		2	5	0.0	6	C. C	INVALID	것 같은 사람감을 즐
 . (B	233	2.	5	-0.2184	6	0.0030		
7 E.	233	2	Ę.	-0.4087	6	0.0000		이 한 것이 같아?
· CL	233	2	5	-0.1381	6	0.0518	승규는 것 같은 것 같은 것	
· , +b	233	2	5	-0.2090	6	(.0594		
HEM	233	2	5	C.1371	6	0.6052		이번 영화에 집에 같이 했다.
٨٨	233	2	5	C.1802	6	0.0165		
 PY-MUDE	231	2	5	0.1019	6	C.1387		
ργ	231	2	5	0.0185	6	0,7789		õ
CP-MCDE	177	2	5	0.1431	6	0.0723	아들은 것이 같아?	신 것을 얻는 것의
MG-GRO	233	4	6	0.7295	7	-0.0		
the second s	and the second				 Call and the state of the state 			

SECTION 163 -- HANGINGWALL VOLCANICS

DEPENDENT VARIABLE = MO-GRD TYPE = 4

DK--LT: CRSERVATIONS IN CNLY CNE CATEGORY OF THE NON-INTERVAL VARIABLE KF; GBSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE PP; CBSERVATIONS IN GNLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE DU; CBSERVATIONS IN CNLY CNE CATEGORY OF THE NON-INTERVAL VARIABLE

	VARIAFLE	NU43EX OF	VARIABLE	CORR	COFRELATION	TEST	PROB		
		OBSERVATIONS	TYPE	CODE		CODE			19 g 20 10 10
		- SERANDI TO POLIT			UE THE WOWLD'INT		AV61 VBFB		
	GRAYS	232	?	5	0.1729	6	00141		
	DKLT	41	2	5	C. 0	6	C. O	INVALID	^
	NC.FRA	233	2	5.	-0.1285	6	0.0597		
	QΖ	553	2	5	C. 5204	6	-0.0		
	ARGL	233	2	5	0.0306	6	C. 7769		
	P'S	233	2	5	-0.(406	6	0.7589		
	ΚĿ	233	2	5	0.0	6	0.0	INVALID	
	ΓP.	233	2	5	· · · ·	6	0.0	INVALID	
	DU		2	5	0.0	6	0.0	INVALID	
	С.В	233	2	5	-0.0436	6	0.5626		
ē*	2 E	233	2	5	-0.2890	6	0.0009		
	CL.	233	2	5	-0.0575	6	0.4312		
	FΡ	233	5	5	-0.1522	6	C.1725		
	HEM	233	2 .	5	C.1162	6	0.6595	성격 관련을 알 수요?	
	MAG	233	?	5	0.2387	6	0.0017		
	DY-NIDE	231	~~~~	5	-0.(555	6	0.4278	an a suite an air an	to to
	PY	231	2	5	-0.0601	6	0.3894		6
	CP-MCIDE	177	2	5	-0.1169	6	C.1438		· · · · · · · · · · · · · · · · · · ·
	CU-GRD	233	4 .	6.	C. 7295	7	-0.0		

	DEP	ENDENT VAR IA	BLE = CI	J-GRD TY	PE = 4	tel en	stat ()	FRANTIO
	KE . CB C	EDVATIONS IN	CALV CAR	CATECORY OF	THE NON-INTED			
		EDVATIONS IN		CATECODY DE	THE NEW-INTER	VAL VAP		
		ERVATIONS IN	I ONLY ONE	CATEGORY OF	THE NON-INTED	VAL VAR	TABLE	
	7F • CBS	ERVATIONS IN	CNLY CNE	CATEGORY OF	THE NON-INTER	VAL VAR	IADEL	
	HEM: DBS	FRVATIONS IN	I ONLY ONE	CATEGORY DE	THE NON-INTER	VAL VAR	IABLE	
		LINVATIONS IN			<u> </u>		14020	
	VARIABLE	NUMBER OF	VARIABI	E CORR	CORPELATION	TEST	PROB	
		OBSERVATION	IS TYPE	CODE	NE NUMERICARA V	CODE	at e	
	GRAYS	70	2	5. Abé	-0.3834	6	0.0058	
2	DKLT	70	2	5	-0.3871	6	0.0074	
	NO.FRA	70	2	5	0.6089	6	0.0000	
	QZ	70	2	5	-0.1877	6	0.1262	
	ARGL	70	2		-0.4954	6	0.0009	
	MS	70	2	5	-0.4812	6	0.0004	
	KF	70	2	5	0.0	6	0.0	INVALID
	· PP	70	2	5	0.0	6	0.0	INVALID
	· DU	70	2	5	C.C	6	0.0	INVALID
	СВ	70	2	5	0.4072	6	0.0038	
	ZF	70	2	5	0.0	6	0.0	INVALID
	CL	70	2	5	0.3929	6	0.0028	
	EP	. 70	. 2	.5	0.6181	6	0.1127	
	HEM	70	2	5	0.0	6	0.0	INVALID
	MAG	70	2	5	0.3228	6	0.0178	
	MO-GRD	70	4	6	0.4374	7	0.0002	

SECTION 155 -- FOOTWALL VOLCANICS

	DEP	ENDENT VARIA	ABLE = MO	-GRD TY	PF = 4			
	KF; CBS	ERVATIONS IN	N CNLY CNE	CATEGERY DE	THE NON-INTERV	AL VARI	ABLE	
	PP; ORS	ERVATIONS IN	N CNLY CNE	CATEGCRY CF	THE NON-INTERV	AL VARI	ABLE	
	CU; GRS	ERVATIONS IN	ONLY ONE	CATEGORY OF	THE NON-INTERV	AL VARI	ABLE	
	ZE; CBS	ERVATIONS IN	V CNLY CNE	CATEGORY OF	THE NON-INTERV	AL VARI	ABLE	
÷.,	HEM; OBS	ERVATIONS IN	ONLY ONE	CATEGORY OF	THE NCN-INTERV	AL VARI	ABLE	
	VAPIABLE	NUMBER OF OBSERVATION	VARTABL	E CORR CODE	COFRELATION	TE ST CODE	PROB	
	GRAYS	70	2	5	-0.1389	- 6	0.3316	
	DKLT	70	AVEL 2	5	-0.1094	6	0.4670	
	NO.FRA	70	2	5	0.6252	6	0.0000	
	QZ	70	OVER 0 2 C	5	-0.2743	6	0.0243	
	APGL	70	2	5	-0.2411	6	0.1084	
	MS	70	0.64 2	5	-0.3892	6	0.0039	
2	KF	70	2	5	0.0	6	0.0	INVALID
	. PP	10H.1 A701/1	2	5.	0.0	6	C.O	INVALID
r w ^{ie}	. DU	70	2	5	0.0	6 .	0.0	INVALID
	CB	. 70	2	5	0.4104	6	0.0036	
	ZE	70	2	5	0.0	6	0.0	INVALID
	. CL	.70	2.	5	0.3115	6	0.0179	
	EP EP	70	2	5	0.2473	6	0.5409	
	HEM	7.0	2	5	0.0	. 6	0.0	INVALID
	MAG	70	. 2	5	-0.2452	6	0.0731	
	CU-GRD	. 70	4	6	0.4374	7	0.0002	

16.0

........

SECTION 155 -- DYKE COMPLEX

DEPENDENT VARIABLE = CU-GRD TYPE = 4

영상은 전문 전쟁을 가지 않는다.

								Constant States in the second second		
DU;	CBSERVATIONS	IN	ONLY	CNE	CATEGCRY	CF	THE	NON-INTERVAL	VAPIABLE	
ZE;	OBSERVATIONS	IN	ONLY	ONE	CATEGORY	OF	THE	NON-INTERVAL	VARIABLE	
EP;	CBSERVATIONS	IN	ONLY	ONE	CATEGORY	OF	THE	NON-INTERVAL	VARIABLE	

	VARIABLE	NUMBER OF	VARIABLE	CCRR	CORRELATION	TEST	PROB		
6 S	UNITED IN A	OBSERVATIONS	TYPE	CODE		CODE			
	GPAYS	119	2 2	5	0.1316	6	0.1850		
	DKLT	120	2	5	0.1752	6	0.0830		
	NO.FRA	120	2	5	0.2923	6	C.0032		
	QZ	120	OMT 2 OWE C	5	0.4060	6	0.0000		2 .
	ARGL	120	2	5	-0.4926	6	0.0000		
	MS	120	2	5	-0.2910	6	0.0044		
	. KF	120	2 6 6 6	5	-0.2252	6	C.3594		
	PP	120	2.	5	0.1791	6	0.6328		
	DU	120	2	5	0.0	6	0.0	INVALID	
	СВ	120	2 .	- 5	0.4702	6	0.0001		
	· ZE-	120	2	5	0.0	6	0.0	INVALID	
	CL	120	2	5	0.2909	6	0.0030		
	EP	120	· 2	5	0.0	6	0.0	INVALID	8 - F 10 - E
	HEM	120	2	5	-0.1826	6	0.1877		
	MAG	120	2	5	0.1809	6	0.0778	승규 영향 위험을 입장되었다.	
	MU-GRD	120	4	6	0.7266	7	-0.0	말 같이 가 같이 없다.	

P.F.	DENDENT VARTAR			DE - /			
LC	PENDENT VARIAD		U ITP	² = 4	· • •		
DU; OB	SERVATIONS IN	CNLY ONE CAT	FGCRY OF	THE NON-INTER	VAL VAR	IABLE	
ZE; OB:	SERVATIONS IN	ONLY ONE CAT	EGORY OF	THE NON-INTER	VAL VARI	IABLE	
EP; CB.	SERVATIONS IN	GNLY CNE CAT	EGCRY OF	THE NON-INTER	VAL VAR	IABLE	
VARIARIE	NUMBER OF	VARIABLE	CORR	CORRELATION	TECT	DDUB	0
	OBSERVATIONS	TYPE	CODE	CONNECATION	CODE	FRUB	
CDAVE	110	2		0.0005	,	0.0000	
OK ATS	119		5	0.3305	6	0.0009	· ·
UKLI	120	<u> </u>	5	0.3649	6	C.0004	
NU.FRA	120	ola 2∧vstv0	5	0.2653	6	0.0073	
QZ	120	2	5	0.3436	6	0.0002	
ARGL	120	2	5	-0.3696	6	0.0003	
MS	120	. 2	5	-0.1804	6	0.0765	
KF	120	2	5	-0.1123	6	· C.6504	
PP	120	2	5	0.2134	6	0.5700	
DU	120	2	5	0.0	6	0.0	INVALID
CB	120	2	5	C. 5419	6	0.0000	
• ZE	120	2	5	0.0	6	0.0	INVALID
C1.	120	2	5	0.0873	6	0.3834	
EP	120	2	5	0.0	6	0.0	INVALID
. HEM	120	2	5	-0.2144	6	C.1200	
MAG	120	2 .	5	0.0120	6	0.8749	
CU-GRD	120	4	6	0.7266	7	-0.0	

.

같은 사람들이 가지 않는 것 같은 것이다.

Angli Salat integralist

SECTION 155 -- HANGINGWALL VOLCANICS

DEPENDENT VARIABLE = . CU-GRD TYPE = 4

KF; CBSERVATIONS IN CNLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE DU; OBSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE

VARIABLE	NUMBER OF DBSERVATIENS	VARIABLE TYPE	CORR CODE	CORRELATION	TE ST CODE	PROB	
CB VAS	293	2	5	-0.0090	6	0.8563	
DKIT	292	2	5	0.0161	6	0.7940	
NO.FRA	291	2	5	-0.0736	6	0.2550	the second se
QZ	293	2	5	0.3297	6	0.0000	
ARGL	2 93	. 2	5	-0.0337	6	C.6423	
 MS	293	2	. 5	-0.1304	6	0.1136	
KF	293	2	5	C.0	6	0.0	INVALID
рр	293	2	5	-0.2291	6	0.0612	
DU	293	2	5	0.0	6	0.0	INVALID
СВ	293	2	5	-0.1983	6	C.0040	
7 E	. 293	2	5	-0.1543	6	0.1069	
 · CL	293	2	5	-0.1139	6	C.0623	
ĘΡ	293	2	5	-0.6898	6	-0.0	
HEM	293	2	5	-0.0112	6	0.9122	
MAG	293 .	2	5	0.1627	6	0.0116	
MO-GRD	292	4	6	0.6746	7	-C.O	

DEPENDENT VARIABLE = MC-GRD TYPE = 4

KF; OBSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE DU; OBSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE

VARIABLE	NUMBER OF CBSERVATIONS	VARIABLE TYPE	CCRR COCE	COPRELATION	TEST CODE	PROB		
GRAYS	292 •	2	5	0.0378	6	0.5515		
DKLT	291	2	5	0.0205	6	6.7506	*	
ND.FRA	290	2	5	0.1310	6	C.0405		
 QZ	292	2	5	0.3897	6	-0.0		
ARGL	292	2	5	0.0276	6	0.7001		
MS	292	2	5	-0.0931	6	0.2645	an fa Shub	•
KF	292	2	5	C.O	6	C.O	INVALID	
PP	292	2	5	-0.2610	6	0.0332		
DU	292 .	2	5	0.0	6	0.0	INVALID	
 СВ	292	2	5	-0.2152	6	0.0019		
Z.F	. 2.92	2	5	-0.1299	6	0.1768		
. CL	292	2	5	-0.1780	6	0.0040		
EP	. 292	2	5	-0.5484	6	0.0000		
HEM	2 92	2	5	-0.1135	6	0.6061		
MAG	292	2	5	0.1017	6	0.1142		
 CU-GRD	292	4	6	0.6746	7	-0.0		
	KF; OBS	ERVATIONS IN O	NLY ONE CA	TEGORY OF	THE NON-INTERN	VAL VARI	ABLE	
--	----------	----------------	------------	-----------	--	----------	---------	-------------------
	DU; CBS	ERVATIONS IN C	NLY CNE CA	TEGORY OF	THE NON-INTERV	AL VARI	ABLE	
	VAPIABLE	NUMBER CF	VARIAPLE	CCRR	CORRELATION	TEST	PROB	
		OBSERVATIONS	TYPE	CODE	and the second	CUDE		
Sugar -			LASE C					나라 가 가지 않는 것이 같다.
ala san ing sa	GRAYS	118	2	5	0.0320	6	0.7601	
	DKLT	118	2	5 .	0.0331	6	C.7584	
	NO.FRA	118	2	5	0.2758	6	C.0062	
	· QZ	118	2	5	0.0610	6	0.5402	
	APCL	113	2		0.1563		-0.1694	······
	MS	118	2 .	5	0.3480	. 6	0.0184	승규는 말 아파 아파 아파
i jana	. KF	118	2	5	0.0	6	0.0	INVALID
~ 아파 나라	рр	118	2	5	-0.2337	6	0.1806	
g al Magasah	DU	118	2	5	C.0	6	0.0	INVALID
	· CB ·	118	. 2	5	-0.1538	6	0.1238	
		· <u> </u>				6	0.0017	
North Inc.	CL	118	2	5	-0.3230	6	0.0023	
이 왜 옷에 많이 봐.	FP	118	2	5	-0.4655	6	0.0001	
ligalitati deg	HEM	. 118	2	5	-0.4060	6	0.0029	
10000000	· MAG	118	2	5	0.1659	6	0.1094	
g 2019 Million	MO-GRD	83	4	. 6	0.4793	7	0.0000	

SECTION 147 -- FOOTWALL VOLCANICS

그는 그는 것이 안 있는 것은 것이 가지 않는 것이 없다.

DEPENDENT VARIABLE = CU-GRD TYPE =

r,

. 7

DEPENDENT VARIABLE = MO-GRD TYPE = 4

8.8

KF; OBSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE DU; OBSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE HEM; OBSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE

VARIABLE	NUMBER OF OBSERVATIONS	.VARTABLE TYPE	CORR CODE	CORRELATION	TEST CODE	PROB		
GRAYS	83 .	42 2 ILE	5 000	-0.2043	6	0.0957		
		2.7.01.70			6	-0.1345		
NO.FRA	83	2	5	0.4472	6	0.0002		
QZ	83	2	5 (SUB)	-0.0621	6	0.6061	об на 19	
APGL	83	2	5 0.05	-0.3273	6	0.0128		
MS	83	2	5	-0.3189	6	0.0573		
KF	83	2	5	1460.0	6	0.0	INVALID	
		2			6	-e-1525		
DU	83	2 .	5	0.0	6	0.0	INVALID	
CB	• 83	. 2	5	0.1888	6	C.1182		
7 E	83	2	5	C.1939	6	0.2267		
· CL	. 83	2	5	-0.0345	6	0.7733		
EP	. 83	.2	5	-0.2878	6	0.4638		
HEM		2		0.0	6	-0.0	-INVALID	
MAG	83	2	5	0.2581	6	0.0130		
CU-GRD	83	. 4	6	0.4793	7	0.0000		
				양동 등 방법은 전쟁을 위한 것을 위한 것을 했다.				

207.

SECTION 147 -- DYKE COMPLEX

DEPENDENT VARIABLE = CU-GRD TYPE = 4

PP; CBSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE DU; OBSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE

	VARIABLE	NUMBER QF	VARIABLE	CORR	COPR FLAT ION	TEST	PROB	
	0.891.82	OBSERVATIONS	IYPE	CCDE		CODE		
	GRAYS	188	2	00.065	-0.1843	. 6	0.0158	
편 옷 있는 것 같아.	DKLT	188	81702	CON25 C	-0.1635	6	0.0490	그는 전쟁을 넣는 다양을 했다.
	NO.FRA	167	2	5	0.1397	6	0.1029	
	QZ	138	2	5	C.1023	6	0.1662	
	AKGL	188	2	5	-0.2444	6	0.0025	
	MS	188	2 .	5	-0.1031	6	0.3105	성대 공품 관계 중요즘 것이 없다.
	KF ·	188	2	5	0.1070	6	0.3860	그는 여름 옷을 들었다.
	· PP	188	2	5	0.0	6	. 0.0	INVALID
	DU	188	2	5	0.0	6	0.0	INVALID
	СВ	188	. 2	5	0.4059	6	C.0000	
	. <u></u>	188	2	5	-0.0031			
	· CL	188	2.	5	0.1311	6	0.0973	
	EP	188	· 2	5	0.4499	6	C.C469	
성장 전 방법	HEM.	188	2	5	0.1025	. 6	0.5740	승규는 것이 아니는 가슴을 가지?
	· MAG	188	2	5	0.1423	6	0.0957	
	MO-GRD	188	4	6	0.4489	7	-0.0	

.80

2261

DEPENDENT VARIABLE = MO-GRD TYPE = 4

PP; CBSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE DU; OBSERVATIONS IN ONLY ONE CATEGORY OF THE NON-INTERVAL VARIABLE

	VARIAELF	NUMBER OF OBSERVATIONS	VARIABLE TYPE	CORR	CORRELATION	TEST	PROB		
	GRAYS	188	2		-0.0461	6	0.5594		
	DKLT	188 •	2	5	-0.005	6	C. 9434		
_			2	5	0.1154	6	- 0.1805-		·····
	GZ	188	2	LLC(5,1, LL	0.(C81	6	C.8782		
	ARGL	188	2	CEC 5 1. Q.	-0.1983	. 6	0.0136		
	MS	188	2	5	-0.0574	6	0.3389		
	KF	188	2 01-0	5 5	0.1928	6	0.1099		
	PP	188	2	5	0.0	6	0.0	INVALID	
		188	2	5	C. C		e . o	INVALID	
	CB	188	2	5	0.2881	6	0.0006		
	7.E	188	2	- HY 501 V.C.	0.0836	6	0.5853		
	CL	188	2	5	0.0515	6	0.5285		
	EP	188	2	5	0.0780	6.	0.7322		•
	HEM	188	2	5	0.0700	6	0.6967		
			2	5		6	-0.6202-		•
•	CU-GRD	188	4	6	0.4489	7	-0.0		

209.

	T b *			0.4670.0			
• • • • • • • • • • • • • • • • • • •			<u>e a</u>			0.5292	
		SECTION 147-	HANGINGW	ALL VOLCANICS	ę.		
							Topy in the
		S. S. S.		1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	Q	641040	
UE	PENDENT VARI	ABLE = CO-1	GRD IY	PE = 4		G 13980 - 647 139	
KF; CB	SERVATIONS 1	IN CNLY CNE C.	ATEGORY OF	THE NON-INTER	VAL VAR	IABLE	
CU; CB	SERVATIONS 1	IN CNLY ONE C.	ATEGCRY OF	THE NON-INTER	VAL VAR	IABLE	
VARIABLE	NUMBER GI	VARIABLE	CORR	CORRELATION	TEST	PROB	
	OBSERVATTO	INS TYPE	CODE		CODE		
CDAYS	205		-	0.0401	CODE	0.0410	
DKIT	285	2	5	-0.0601	6	0.3410	
NO-FRA	286	. 2	5	-0.1539	6	0.0138	
07	286	2	Sec. 5 & 01	0.2257	6	0.0002	
ARGI				0-0219	A 9 1 0 1 0 10		
MS	286	2	5	-0.2200	6	6.0124	
KF	286	2	666 5 1	0.0	6	0.0	INVALTO
PP	286	2	5	-0.1651	6	0.6266	INTALIO
DU	286	2	5	0.0	6	0.0	TNVALID
. CB	286	2	5	-0.1157	6	0.0809	
ZE	2.86	2	5		6		
. CL	286	2	5	-0.1687	6	0.0083	에는 아내는 것 같아요.
EP	286	2	5	-0.5619	6	-0.0	
HEM	286	2	5	0.1254	6	0.4127	
· MAG	286	2	5	0.2225	6	0.0012	
MC-CRD	283	4		0.5320	7	-0.0	

617 NE NE

DEPENDENT VARIABLE = MO-GRD TYPE = 4

KF; CBSERVATIONS IN CALY ONE CATEGORY OF THE NON-INTERVAL VARIABLE DU; CBSERVATIONS IN LALY ONE CATEGORY OF THE NON-INTERVAL VARIABLE

VARIABLE	NUMBER OF OBSERVATIONS	VARIABLE TYPE	CORR CODE	CORRELATION	TEST	PROB	
GRAYS	282	2	5	-0.0172	6	0.7758	
NO.FRA		<u> </u>	5	-0.0487	6	0.1361	
ΩZ	283	2	5	0.1976	6	0.0012	
ARGL	283	2	5	-0.0478	. 6	0.5554	영양 없는 것 같은 것이 있는
MS	283	2	5	-0.2132	6	0.0155	
ΚF	283	2	5	0.0	6	00	INVALID
PP	283	2	5	-0.1508	6	0.6561	
		2	5		6	0.0	INVALID
CB	283	2	5	0.0263	6	0.69.87	
. ZE	283	2	5	0.3634	6	0.0000	
CL	283	2	5	-0.1246	6	0.0514	
EP	283	2	5	-0.3227	6	C.0C05	
• HEM	2.83	2	5	0.2255	6	C.1323	
MAG		2	5	0.1462		0.0312	······································
CU-GRD	283	4	6	0.5320	7	-0.0	

21