APPENDIX III

DRILL LOGS

A SUMMARY REPORT ON THE

J & L MINERAL OPTION

LEAD-ZINC-GOLD-SILVER PROSPECT

BRITISH COLUMBIA

NTS: 82M/8E

For: Selco Division - BP Resources Canada Limited Vancouver, BC

R. Pegg, BASc., P.Eng Project Geologist

Brian Grant Senior Geologist

February 27, 1985

BPVR 84-53

HOLE TYPE DDH COLLAR ELEV. 838.929 LOCATION: UG	
CONNORS	I&L
NORTHING: 9909.950 SO EASTING: 10,718.442 AZIMUTH: 222° DEPTH: 27.74 m DATE LOGGED: CORE SIZE: B.Q. LOGGED BY: T INTERVAL FROM TO COLOUR GRAIN SIZE TEXTURE ALTERATION ORE FRACTURES PER METRE RECOVERYETC: COLOUR GRAIN SIZE TEXTURE ALTERATION MINERALS PER METRE RECOVERYETC: COLOUR GRAIN SIZE TEXTURE ALTERATION MINERALS PER METRE RECOVERYETC: COLOUR GRAIN SIZE TEXTURE ALTERATION MINERALS PER METRE RECOVERYETC: COLOUR GRAIN SIZE TEXTURE ALTERATION MINERALS PER METRE RECOVERYETC: COLOUR GRAIN SIZE TEXTURE ALTERATION MINERALS PER METRE RECOVERYETC: COLOUR GRAIN SIZE TEXTURE ALTERATION MINERALS PER METRE RECOVERYETC: COLOUR GRAIN SIZE TEXTURE ALTERATION MINERALS PER METRE RECOVERYETC: COLOUR GRAIN SIZE TEXTURE ALTERATION MINERALS PER METRE RECOVERYETC: COLOUR GRAIN SIZE TEXTURE ALTERATION MINERALS PER METRE RECOVERYETC: COLOUR GRAIN SIZE TEXTURE ALTERATION MINERALS PER METRE RECOVERYETC: COLOUR GRAIN SIZE TEXTURE ALTERATION MINERALS PER METRE RECOVERYETC: COLOUR GRAIN SIZE TEXTURE ALTERATION MINERALS PER METRE RECOVERYETC: COLOUR GRAIN SIZE TEXTURE ALTERATION MINERALS PER METRE RECOVERYETC: COLOUR GRAIN SIZE TEXTURE ALTERATION MINERALS PER METRE RECOVERYETC: COLOUR GRAIN SIZE TEXTURE ALTERATION MINERALS PER METRE RECOVERYETC: COLOUR GRAIN SIZE TEXTURE ALTERATION MINERALS PER METRE RECOVERYETC: COLOUR GRAIN SIZE TEXTURE ALTERATION MINERALS PER METRE RECOVERYETC: COLOUR GRAIN SIZE TEXTURE ALTERATION MINERALS PER METRE RECOVERYETC: COLOUR GRAIN SIZE TEXTURE ALTERATION MINERALS PER METRE RECOVERYETC: COLOUR GRAIN MINERALS PER METRE	32 M/8E
SOURCE TYPE DDH STRUCTURE STRUCTUR	JG-J-68 + 3.2
AZIMUTH: 222° DEPTH: 27.74 m DATE LOGGED: CORE SIZE: B.Q. LOGGED BY: T INTERVAL FROM TO ROCK TYPE COLOUR GRAIN TEXTURE ALTERATION ORE MINERALS PER METRE RECOVERYETC): O 2.52 Qtz-Ser Phyl LITGYGRN FG FOID SER AS,Py,Po 14 90% -thin to med bndd,two sets of - sul 2nS,PbS bnding mainly seen in thin Py bnd bnds at 1.40 and 1.37 m cut	South Wall
DEPTH: 27.74 m DATE LOGGED: CORE SIZE: B.Q. LOGGED BY: T INTERVAL FROM TO COLOUR GRAIN TEXTURE ALTERATION ORE MINERALS PER METRE RECOVERYETC: O 2.52 Qtz-Ser Phyl LITGYGRN FG FOID SER AS,Py,Po 14 90% -thin to med bndd,two sets of - sul bnding mainly seen in thin Py bnd (07) bnds at 1.40 and 1.37 m cut	
INTERVAL FROM TO COLOUR GRAIN FG FOID SER AS,Py,Po 14 90% —thin to med bndd,two sets of — sul (07) (07) CORE SIZE: B.Q. LOGGED BY: TO CORE SIZE: B.Q. LOGGE	
TO ROCK TYPE COLOUR GRAIN TEXTURE ALTERATION ORE MINERALS PER METRE RECOVERYETC): O 2.52 Qtz-Ser Phyl LITGYGRN FG FOID SER As,Py,Po 14 90% — thin to med bndd,two sets of — sul 2ns,PbS bnding mainly seen in thin Py bnd bnds at 1.40 and 1.37 m cut	
FROM TO ROCK TYPE COLOUR GRAIN TEXTURE ALTERATION ORE MINERALS PER METRE & COTE (FRACTURES, FAULTS, FOLDING, BEDDING, MINERALS PER METRE RECOVERY PETC): O 2.52 Qtz-Ser Phyl LITGYGRN FG FOID SER As, Py, Po 2ns, PbS bnding mainly seen in thin Py bnd bnds at 1.40 and 1.37 m cut	TM & NH
TO COLOUR SIZE TEXTURE ALTERATION MINERALS PER METRE RECOVERY FIGURES, FAULTS, FOLDING, BEDING, MINERALS PER METRE RECOVERY FIGURES, FAULTS, FOLDING, FOLDING	REMARKS
bnding mainly seen in thin Py bnd bnds at 1.40 and 1.37 m cut	RALIZATION, TYPE, AGE RELATIONS
bnding mainly seen in thin Py bnd bnds at 1.40 and 1.37 m cut	ulp in verythin (1.0 mm)
	nd both // to and cross-
tr chl in qtz lenses @2.04 m ZnS	utting foln
	nS -Tr thin red bnds with
minor kinks and crenulation les	esser PbS
development between 2.0 and 2.20 -Py	Py-Tr mg to cg diss along
	oln in very thin bnds &
remobilization of sericite into cr	crosscutting foln.
mineralized bnds crosscut foln -As	As-Tr-fg to mg diss
	Po-Tr- very thin diss bnd
+fold crosses core axis 0480 and ge	generally // to foln and in small diss patches and
	meared on foln.
from 1.58 to 1.64 phl becomes	
slightly darker and chlorite	
PAGE 1 0F 9 DRILL HO	

\$ si	ELCO	EXPLORATION WESTERN CANAD	Α			DR	ILL		LO	G	HOLE NO. 84-1
INTER	VAL					RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
2.52	2.64	Qtz-Ser-Chl Phyl	GRNGY	FG	FOID	Ser&Chl	 		100%	-thin bndd, foln crosses core	-Tr Po smeared on foln plane
		(07)								axis at 48°	& in small diss patches
				-						-thin boundinaged qtz lense	and very thin bnds //to fo
										<u>@ 2.53.</u>	-Tr fg As diss and within Po bnds
2.64	2.91	Qte	LtGY GR	1 FG	FOID	Ser	Po,As,Py		100%	-foln crosses core axis	-Tr diss As, Tr very thin
		(06)								@50 ^O	Po bnds crossing core axi
										-minor concordant and	@55°; slightly cross
										crosscutting qtz bnd with	cutting
										white feldspars.	-Po also smeared on
										-Ser increase towards 2.91	foln with TrPy
										-02.73 to 2.75 thin Po strs	
										with qtz veinlets + minor	
										feldspar, Tr diss As and	
										Tr ZnS	
2.94	6.79	Qtz-Ser Phyl(Tr Chl)		N FG	FOTD	Ser TrChl	As Zns Py	,	100%	-thin to med bndd locally	-As 1%,Py 1%, tr ZnS, tr I
		(07)	-greyer	10						siliceous	-Po fg smeared on foln
			towards							- minor chl from 3.05to3.29	planes
			6.79							- Local ser lenses from 6.56 to	
										6.68	TrZns two 1 cm wide bnds
											-04.81 - 2 mm wide red Zn
											(fg to mg) +
	2	9									84-1

Ssi	ELCO	EXPLORATION WESTERN CANAD	Δ			DR	ILL		LO	G	HOLE NO
INTER	VAL				DESC	RIPTION	1			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN	TEXTURE	ALTERATION	ORE	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
				3.2					1.000 (02)		Cg Py +As diss along foln.
										-	from 5.34 to 5.20,13 thin
											strs of Cg Py+Cg As and
											minor red ZnS and tr PbS
		<u> </u>									crossing the core axis @53°.
6.79	6.91	Qtz-Chl-Ser Phyl	GRN-GY	FG	FOTD	Ser+Chl	Po,As		100%	-thin bndd, locally siliceous	-very thin Tr Po bnds // to
		(06)								-bnding(foln)crosses core axis	s foln with diss Tr Cg As
				1						@51 ⁰	in same bnds
										-all bnds are very discontiu-	-Po also smeared on foln plan
										ous -minor crosscutting feldspar veinlets angle to core axis = 34	
6.91	7.14	Qtz-Ser Phyl	LIGYGRN	FG	FOTD	Ser,TrCh	Py,Po,As		100%	-tr chl clots on foln planes	-Tr Cg As with Py strs.
		(07)								-thin to med bndd	-Py 2% -og diss // to foln
										-foln and sulp cross	
										core axis at 480 -minor boudinaged qtz lenses	-Po 2% in thin mono strs // foln.
7.14	8.68	Qte (06)	LIGYGRN	FG	FOID	Ser,minor Chl	Po,Py,As			-thin to med bndd-thin bndd where is more sericitic	-TrPo in very thin strs // to foln.
										-foln crosses core axis varies from 45° to 55°	s -Tr Py diss -07.74 a 1.5 cm wide zone of Cg Py, Mg PbS and Fg Po
								-			
	3	9									041

PAGE 3 OF 9

\$ SE	LCO	EXPLORATION WESTERN CANAD				DR	ILL		LO	G	HOLE NO. 84 - 1
INTERV	/A L					RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
						-				-07.46 to 7.57 and 0 8.19 to 8.26 dk grey, thinly bndd chloritic horizons interbndd with qtz + minor	in thin irregular strs withi small tight folds crossing core axis at 44
										-white qtz lenses between chl zones -minor crenulation cleavage developed from 8.30 to 8.53	
8.68	10.08	Qtz-Chl- ser Phy.	GRN-GY	FG	FOTD	Chl+Ser	Py,Po,As ZnS		100	-thin bndd, minor qtz lensing with Tr chl and tr feldspars -foln crosses core axis @ 35	strs // to foln.
										-foln crosses core axis @ 35° -locally sericitic	-Tr Py Cg diss along foln and within Po strs. -Tr As in thin discontinuous bnds // to foln.
								·		·	-Tr ZnS associated with qtz lens.
10.08	10.14	Qtz (13)	Buff	f.g.		Chl			100	-tr chl, minor feldspar	-Tr irregular Po strs.
10.14	10.52	Ote (06)	LIGYGRN	f.g.	fotd.	Ser, Chl	Po,Py,Zr As	S		-minor interbndd ser + chl bnds	-Tr Po strs // to foln
										-foln crosses core axis at 38° -sulp_crosscut foln @ angle of 50°	
	GE 4	_ OF	J	L	I	1	I	i		1	RILL HOLE NO. 84-1

\$ si	ELCO	EXPLORATION WESTERN CANAD				DR			LO	G	HOLE NO. 84-1
INTER	VAL				DESC	RIPTION	1			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	& Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										-minor feldspar in strs	
										// to sulp strs.	
10.52	11.55	Chl-serQtz Phy:	GY	FG	FOTD	Chl-ser	O,Py,As PbS,Cpy		100	-locally siliceous	-Po 1% thin strs // to
		(05)								-foln crosscuts core axis @	foln
										34° to 41°	-Tr diss Py, As, PbS
										-thin bndd	within these strs and
									-	-tr barite? strs //	Py as single individual
										to foln. @ 10.83	grains
11.55	12.40	Qtz-ser Phyl	LIGYGRN	FG	FOTD	Ser, minor	As, ZnS, Pl	S	100	increasing ser (+chl) towar	ds- sulp with thin strs assoc
		(07)			1015	Ch1	1,10			12.40	ted with qtz.
		***************************************								-thin to med bndd	
										-minor qtz veins with feldspr	s - thin Tr Po + ZnS strs.
										// foln	// to foln.
										-foln crosses core axis	- As mg diss in
					-					-foln becomes more irregular	qtz strs // to foln.
										with increasing ser content	- Tr diss py.
12.40	13.48	Qtz-Ser Chl Phyl	GRN-GY	FG	FOID		Zns Po,Pk Py As	S		-foln crosses core axis @380	-As Tr -diss mg
							y no			-thin bndd	-Po-1% thin strs at
										-qtz lensing // to foln	angle of 520
										with tr associated feldspar	
										Jordopan	with tr diss PbS
											-tr diss Py
	1.										

PAGE _____ OF _9

\$ s	ELCO	EXPLORATION WESTERN CANAD	Α			DR	ILL		LO	G	84-1 HOLE NO
INTER	VA L					RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
13.48	14.57	Qte (06)	LTGYGRN		FOID	Ser-TrChl	Po,ZnS PbS, As		100	-thin to med bndd, qtz lenses up to 3 cm wide with	-Po 2% in thin irregular strs crossing the core
						 				associated Po strs and	axis @ 56 ⁰
										feldspars with minor solution	-ZnS 1% @ 13.96 in
			•							brecciation	thin irregular strs associa
										-foln crosses core axis @410	with Po strs.
										minor folding @13.86 with fold axis crossing core @ 40°	-As Tr Mg diss within Po +Zn str.
											PbS Tr -with ZnS strs.
											PyTr-diss strs // to foln.
											-TrPo smeared on foln planes
14.57	16.06	Chl-Qtz-Ser Phyl	GRN-GY	FG	FOID	Chl+Ser	Po, PbS, Cpy			-thin to med bndd.	-Tr cpy with Po str at 15.24
		(05)					СРУ			-interbndd chl phyl with	and 15.36
										qtz-ser phyl	-Po Tr to 1% in thin strs
										-minor qtz lensing with	
										associated feldspar -foliation crosses core	
										axis at 45°	
										-mineralized bnds cross core	
										axis @51°	
										-kink bnd at 14.92	
			L	1							

PAGE 6 0F 9

Şs	ELCO	EXPLORATIO WESTERN CANA				DR	ILL		LO	G	HOLE NO
INTER	VAL				DES	CRIPTION	۱			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
16.06	16.60	Qte	GY	FG		chl, ser			100	-med bndd, FG diss	-Tr Po smeared on
		(06)								chl + argillaceous material?	foln plane
										gives grey colour -foln crosses core axis	
										-Tr ser, minor qtz lens with Tr Chl.	
16.60	18.60	Chl-Qtz Phl	LTto DK	Y FG	FOID	Chl,ser	Ро		100	-locally very chloritic as	- Tr Po smeared on foln.
		(05)								med (up to 2 cm wide) chl	plane
										pyl bnds occur throughout	
										-qtz lensing with Tr green	
										chl and minor feldspars.	
										-qtz lenses are boudinaged	
										-foln crosses core axis from 420 to 560	
										- local shring disrupts foln	
										slightly	
18_60	18.72	Otz lens	White	FG		Tr Chl			100	-qtz lens - lower half consist	s of feldspars that have
20100		(13)								undergone solution brecciation Fragments are irregular and co	on with interstitial gtz and c
18.72	19.19	Chl-Qtz Phy	DK GY	FG	FOTD	Chl,Tr S	er Po		100	-thin bndd	- Tr Po in thin strs and
		(05)								-abundant baudinaged qtz	patches-very discontinous
			-			-					
	AGE	<u> </u>		l	L	<u> </u>	L			<u> </u>	84-1

\$ sı	ELCO	EXPLORATIO WESTERN CANA				DR	ILL		LO	G		HOLE NO 84-2
ORILLING CO.		LOCATION SKE	гсн	DE	PTH D	TESTS IP ANGLE	AZIMUTH	DATE	STARTED:	Sept 4/84	PROJEC	T: J&L
CONNC	RS			- co	LLAR -	87.75 ⁰	005.13° 217°	DATE	COMPLETED:	Sept 7/84	N. T. S. :	82 M/8E
				30	I				R ELEV.	837.054	LOCATIO	10,500 E. Crosscut
				60).96 m	81.5	220	NORT	HING :	10,015.256		
				91	.44 m. –	79	223 ^O	EAST	NG:	10,500.224		
								AZIMU	TH:	222 ^O		
								DEPT	4:	97.54 m	DATE L	Sept 3/84
OLE TYPE								CORE	SIZE:	B-Q	LOGGED	BY: N.H.
INTER	RVAL(m)				DESCR	IPTION				STRUCTURE		REMARKS
FROM	ТО	ROCK TYPE	COLOUR	G R AI S I Z	N TEXTURE	ALTERATION	ORE FR MINERALS PE	ACTURES R METRE	core recovery	(FRACTURES, FAULTS, FOLDING, BE ETC):	DDING,	MINERALIZATION, TYPE, AGE RELATIONS
0	1.52	chl-ser-Qtz phy	11 Dk grey gree	FG	FOTD	Chl +Se			22	thinly bndd, minor thir	1 .	Tr Po as diss grains
		(05)	9166,							boundinaged barren qtz		and v. thin discontinuous bands that parallel or cross
										Foln ranges from 36 to 40 from core axis.)	the foliation at a low angle.
										40° from core axis.		Po is also found smeared alon foln planes.
1.52	1.81	Qtz-ser-chl phyl	ned grey	FG	FOTD	Ser+mino	Po Py Zn\$		100%	thinly badd unit become		Between 1.52 and 1.69
		(07)					PO, Py, ZIIB		1000	increasingly siliceous		tr. diss c.g. Py
										wards qtz vein at 1.81	m.	between 1.69 and 1.81
										folm 320 from core axis		~1% c.g. py as diss grains
										minor kink fold at 1.59 minor barren boudinaged		and as thin bands associated with po and ZnS
						-				veins near 1.52 m and a	a	~1% f.g. po as diss grains and v. thin strugers often
								-		ZnS, py, po and chl at	1.79	associated with py & ZnS and
										vein may also contain i feldspars	f.g.	as blebs within qtz vein at 1.79
		·										
	-											

PAGE ______ OF ____

\$ si	ELCO	EXPLORATION WESTERN CANA			**************************************	DR	ILL		LO	G	HOLE NO 84-2
INTER	VAL				DESC	RIPTION	N			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	%core	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
									recovery		~1% ZnS as f.g. diss gns and as v. thin m.g. bands ass- ociated with py and po and as blebs within the gtz vein at 1.79
1.81	2.26	Otz vein (13)	White			chl I	y, ZnS	-fracture	close to		py diss throughout tr ZnS dominantly associated with the light green chloritic zone between 2.09 and 2.12 ZnS is m.g. and dk red.
2,26	3.52	Otz-ser phyll (07)	med grey green	f.g.	fotd.	ser & minor chlorite	Ry, Ro		100%	Thinly banded locally sil- iceous.a thin zone of more chlorite material exists between 3.05 and 3.14. Qtz vein between 2.38 and 2.57 contains ~5% c.g. feldspars plus ~30% sericitic material of the host rock. At con- tact at 2.38 phyllite has been locally silicified. Between 2.26 and 2.36 - grey qtz veins composed of 2mm interlocking qtz blebs interstitial to the qtz blebs are grains of light green chlorite, pyrite and minor	Overall ~1% e.g. py concentrated between 2.26 and 2.48 where it attains a concentration of ~3% Py occurs as diss grains and as thin stringers associated with qtz veins po occurs throughout the zone as thin bands parallel to sub parallel to the foliations, and as diss gns and smears on foln planes. ~2% po throughout the zone.
										fuchsite. foln within zone ranges from 40° to 50° from the core axis.	

PAGE ____ 2 ___ 0F ___ 36 .

\$ SE	LCO	EXPLORATION WESTERN CANA				DR	LL		LO	G но	_E NO
INTERV	/ A L				DESC	RIPTION		*		STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, MINERAL	IZATION, TYPE, AGE RELATIONS
3.52	3.74	ser phyll (04)	lt grey green	f.g.	fotd. and folded	ser and minor chl	Ру	highly fractured	>100% 1	folds appear to be kink folds blebs	g. py near 3.74 as within a mildly cic zone
						1 10 10 10 10 10 10 10 10 10 10 10 10 10				contains minor barren qtz veins locally zone contains thin chloritic lamellae	
3.74	5.81	chl-ser phyll (05)	med dk grey green	f.g.	fotd.	chl and minor	P2, 'Py		100%		dominantly as smears planes plus as v.
										sheared offlimb of kink associated and contains minor and as	el to foln. Tr. m.g. py ated with thin po strs c.g. euhedra within veins.
										is 18 from the core axis, at 3.98 foln is 36 from the core axis, at 4.97 foln is 90 from the core axis, at 5.49 foln is 38 from the core axis	
										foln is 38° from the core axis Small kink fold have been observed at 4.96 which has a f.a.x. at 82° and at 5.33 which has a f.a.x. of 82°	
										has-a f-a,xof-82 ⁰	
5.81	8.19	chl phyll (05)	dk grey green	f.g.	fotd	chl	Po		100%	from 40° to 45° locally zone smears contains minor thin barren minor	thin postrs in
										qtz veins that roughly para- close part llel folm. Zone appears to veins. become slightly more sere- eitic between 7.72 and 7.78	moxumity to thin qtz

3 36

				DR	ILL		LO	G	HOLE NO. 84-2
								STRUCTURE	REMARKS
ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
Otz vein & chl phyll (13 & 05)	white dk gy grn	f.g.		chl & minor ser.	Po, Py		100%	Otz vein contains ~20% c.g. feldspar plus white sericite and light green chlorite chl phyllite occurs between two	"1% po as thin strs within the phyllite and on the perimeters of the qtz veins, and as smears on foln planes
								main qtz veins between 8.24 and 8.38. The phyll has a rough foln at 40°, and is locally very dark.	-trace py within thin stringer associated with po.
chl-ser phyll (05)	dk_gy green	f.g.	fotd	chl & se	rPo, Py	mod. fracture between 9.45 and	100% d	Thinly bndd, with the thick- ness of bands tending to in- crease towards 8.43; foln @ 8.90 is 45 @9.27 is 35	Tr. py smears on foln planes and as v. thin stringers roughly parallel with the foln. Tr po as smears on
						9.58		~2% boudinaged qtz veins locally siliceous	foln and as v. thin strs
Qtz Vein (13):	white -	c.g.	mass	minor se & chl	r Pop		100%	orite top and bottom contacts	
chl-ser phyll (05)	med gy green	f.g.	fotd.	chl & se	r Po, Py		100%	Thinly bndd, Qtz vein at 10.25 to 10.30 that contains ~20%c.g. feldspars.folns range from 45 to 50°. kink folds occur locally within the zone. @ 10.55 f.a.x. is at 75° @10.83 f.a.x. is at 75°. @11.80 f.a.x. is at 80° At this last location the foln diverge away from the	Tr. py as thin strs within the qtz veins. Tr po as thin strs and as smears on foln planes.
	Qtz vein & chl phyll (13 & 05) chl-ser phyll (05) Qtz Vein (13):	Otz vein & chl white phyll dk gy (13 & 05) grn chl-ser phyll dk gy green Otz Vein white - lt gy chl-ser phyll med gy	ROCK TYPE COLOUR GRAIN SIZE Otz vein & chl white f.g. phyll dk gy (13 % 05) chl-ser phyll dk gy green Otz Vein (13): Chl-ser phyll med gy f.g. chl-ser phyll med gy f.g.	WESTERN CANADA ROCK TYPE COLOUR GRAIN SIZE TEXTURE Qtz vein & chl white f.g. phyll (13 & 05) grn chl-ser phyll (05) Qtz Vein (13): Qtz Vein (13): Chl-ser phyll ROCK TYPE COLOUR GRAIN SIZE TEXTURE TEXTURE TEXTURE TO LOUR SIZE TEXTURE F.g. fotd GRAIN SIZE TEXTURE TO LOUR SIZE TO LOUR SIZE SIZE TO LOUR SIZE SIZE SIZE SIZE SIZE SIZE SIZE SIZE	WESTERN CANADA ROCK TYPE COLOUR GRAIN SIZE TEXTURE ALTERATION ALTERATION Chl & grain (13 & 05) grn Chl-ser phyll (05) Qtz Vein (13): Qtz Vein (13): White - c.g. White - c.g.	ROCK TYPE COLOUR COLOUR GRAIN SIZE TEXTURE ALTERATION MINERALS Otz vein & chl white f.g. chl & Po, Py phyll dk gy (13 & 05) grn chl-ser phyll dk gy green Otz Vein Chl & Po, Py green Otz Vein Chl & Ser Po, Py Chl & Chl & Ser Po, Py Chl & Ser Po, Py	ROCK TYPE COLOUR GRAIN SIZE TEXTURE ALTERATION ORE FRACTURES PERMETRE Qtz vein & chl white f.g. chl & Po, Py phyll dk gy (13 & 05) grn Chl-ser phyll dk gy (05) Qtz Vein white - c.g. mass minor ser Po (13): lt gy chl-ser phyll med gy f.g. fotd. chl & ser Po, Py Chl-ser phyll med gy f.g. fotd. chl & ser Po, Py Chl-ser phyll med gy f.g. fotd. chl & ser Po, Py Chl-ser phyll med gy f.g. fotd. chl & ser Po, Py Chl-ser phyll med gy f.g. fotd. chl & ser Po, Py Chl-ser phyll med gy f.g. fotd. chl & ser Po, Py	DESCRIPTION ORE FRACTURES SCORE ORE ORE	DESCRIPTION STRUCTURE ST

BAGE 4 OF 36

\$ s	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO 84-2
INTE	RVAL				DES	RIPTION	1			STRUCTURE	REMARKS
FROM	ТО	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
11.86	12,13	chl phyll (05)	dk gy green	f.g.	fotd.		-P o		100%	thinly bndd highly folded with small scale kink folds. f.a.x@12.12 is 75° and foln at 12.12 is ~42°.	~1% po strs that locally parallel foln v. thin po locally smeared on foln.
12.13	12.93	chl-ser phyll (05)	med grn gy	f.g.	fotd		Po,Py		100%	thinly banded with locally siliceous zones and sericitic zones; foln. 38 to 44 locally zone contains small kink folds @12.25 f.a.x. is 72 This zone locally contains medium qtz veins that locally contain minor m.g. feldspars and light green chlorite.	Al% py as m.g. diss blebs and as thin strs that parallel foln. minor py associated with po in strs within qtz veins. Al% po as smears on foln planes and as thin strs associated with qtz veins.
12.93	13.00	chl phyll (05)	dk gy grr	f.g.	fotd		Po, Py		100%	V. thinly bndd.; med-qtz vein parallels foln at 12.95 foln is at 45°.	Tr. po as smears on foln planes and as blebs and strs in qtz veins. Tr. py as blebs and strs. in qtz vein
13.00	13.23	chl-ser pyhll (05)	gy grn	f.g.	fotd.		Py, Po	highly		<pre>~ 20% qtz veins which are white, opaque and trans- lucent gy, foln is 35</pre>	Tr. po diss grains that have been smeared on foln planes and as f.g. interstitial bleks within qtz vein. Tr py as diss grains that are locally smeared on foln planes.

PAGE __ 5 __ 0F __ 36

\$\ s	ELCO	EXPLORATION WESTERN CANA				DRI	LL		LO	G	HOLE NO 84-2
INTER	RVAL				DESC	RIPTION				STRUCTURE	REMARKS
FROM	TO	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC)	MINERALIZATION, TYPE, AGE RELATIONS
13.23	13.53	chl-ser phyll (05)	gy grn	f.g.	fotd.		Po,As		100%	Thinly bndd locally siliceous and locally highly sericitized especially in zones associated with qtz veins. Zone contains ~5% white to gy translucent qtz veins. foln of 52%	are smeared on foln planes Tr po as thin strs in qtz veins. Tr m.g. As as diss grains within the qtz veins.
13.53	13.69	Ote (06)	lt gy gri	f.g.	weakly fotd.				100%	Med banded, locally moderatel chloritic - chloritic zones appear to follow foln but are only roughly parallel.	
13.69	17.04	chl-ser phyll (05)	med gy green	f.g.	fotd		Po,Py		100%	Thinly bndd - Contains 4 small bnds of chloritic qte similar to above zone from 14.19 to 14.22 and from 14.62 to 14.65 and from 16.17 to 16.19 and from 16.24 to 16.26 folm ranges from 40° to 50° except at 16.19 it is 68° small kink fold at 8.15 has a f.a.x.of 67° locally within the zone mod qtz veins are present between 14.63-14.64; 14.85-14.95; 16.07-16.14. These qtz veins contain up to 50% c.g. feldspars and locall contain light green chlorite	

PAGE 6 OF 36

Ss	SELCO	EXPLORATION WESTERN CANA				DR	LL		LO	G	HOLE NO. 84-2
INTER	RVAL				DESC	RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
17.04	18.84	chl-ser phyll (05)	med gy green	f.g.	fotd.		Po,Py		100%	Med bndd - locally highly sericitic contains a small Qte horizon between 18.01 and 18.05 - unit contains ~15% qtz veins that are	~ 1% po as V. thin strs parallel to foln and as thin strs associated with the qtz veins, also as smears on folu planes. Tr py as thin strs
									-	locally boudinaged foln are disrupted locally in vicinity of qtz veins. A larger qtz vein exists betwee 17.44 and 17.50 that contains 15% c.g. feldspars foln of 4 @17.020;36°@18.05 (at contact of Ote) and 45° @ 18.70.	5 ~ 4 [°]
18.84	20.71	chl-ser phyll (05)	med gy green	f.g.	fotd.		Ро		L00%	Thinly banded. Minor boud- inaged qtz veins foln ranges from 380 to 450	~1% Po as diss grains and as v. thin strs parallel to foln and as smears on foln planes.
20.71	20.90	Otz vein (13)	gy white	c.g.	vein	minor chl & ser	Ро		100%	Qtz vein contains~15% c.g. subhedral feldspar with minor sericite plus light grn_chlorite.	∠1% po as thin discontinuous strs.
20.90	21.60	chl-ser phyll (05)	med gy green	f.g.	fotd		Po		*	Thinly bndd. Zone becomes increasingly serecitic and siliceous towards 21.60.in the serecitic zones there are several thin qtz-feld-spar veins. foln ranges from 340 to 380. foln are less regular within sericitic zone associated with qtz-feldspar veins	

PAGE 7 OF 36

\$ s	SELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-2
INTER	VAL				DES	CRIPTIO				STRUCTURE	REMARKS
FROM	т о	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATION
21.60	23.15	<u>Qte</u> (06)	lt gy grn	f-m.g.	weakly fotd	chl & minor ser	Ро		100%	Weakly bndd with thin bnds of chlorite material minor	∠1% Po as diss grains and thin crosscutting strs wi
						Ser				sericite on foln. surfaces.	in the f.gQte between
										Minor thin qtz-feldspar veins	22.39 and 22.51 and as th
										that cross cut foln at a low	strs that roughly // folr
										angle. Thin veins trend at 30°	within the sericitic zone
				A						where the foln. is roughly 25°	at 22.51.
										@22.39 to 22.51 there is a fir	er
										grained Ote that appears to be	2
		· ·								folded with the folds being	
		i.								sheared off in a sericite zone at 22.51. There is a similar	3
										zone between 22.82 to 22.86 wh	nich
										has a med. f.g. Qte horizon bo	punded
										on both sides by thin sericite	e zones.
		·								Foln. range from 25°-35° throu	ghout
										most of the section but down t	:0 0 ⁰
									***************************************	within folded f.g. Qte between	22.39
										and 22.51.	
			-			-	-				
	8	36			L	<u></u>	<u></u>			L	84-2

\$ sı	ELCO	EXPLORATION WESTERN CANAD	Δ			DR	ILL		LO	G	HOLE NO. 84-2
INTER	VAL				DESC	RIPTIO	N			STRUCTURE	REMARKS
FROM	т о	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
23.15	26.15	Qte	lt. gy	m.g.	sucrosio	minor ser	PbS, Py Po		100%	clean, massive weakly fotd	Tr Po dominantly as strs
		(06)								with ser on foln. planes	// to foln. within the seri-
										foln. is at 45° -locally	citic zone between 24.24-24.4
										the zone contains f.g. Qte	Tr Py as smears on foln.
										and a sericitic zone between	planes. Tr Pbs associated with
										24.24 -24.43. This zone is	feldspar within the qtz vein
										ser-phyll with minor Qtz &	between 25.37-25.40
										Chl. The Qte contains one	
										Qtz-feldspar vein at 25.37	
										-25.40 that contains ~ 5%	
									-	feldspar.	
26.15	27.04	Qtz-chl Schist	med grn	f-m.g.	fotd		Po,As		100%	This unit has a gradational	Tr. po as thin strs and blebs
		(06)								upper contact near 26.15. The	associated with the Qtz-feld-
										unit grades from a Qte to Qtz-	spar veins and as smears on
										chl phyll. foln ranges from	foln. planes. Tr As-only ob-
										44° to 48°. Zone contains mino	r served as a single diss
										thin feldspar -qtz veins that	grain at 26.65.
										cross cut foln at 34°	
27.04	27.55	chl-ser phyll	med gy grm	f.g.	fotd		Po		100%	thinly bndd. irregular foln	>1% po as thin discontinuous
		(05)	1 9.11							appears to have been disrupted	strs. and as diss blebs with
										by boulinaged qtz veins. foln.	in the qtz veins.
									-	range from 45° to 51°. V. small scale folding appears	
									~~~~~	evident locally within the zon	e.

PAGE 9 OF 36

<b>\$</b> 5	ELCO	EXPLORATION WESTERN CANAD	Α			DR	LL		LO	G	HOLE NO 84-2
INTER	VAL				DES	RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
27.55	35.15	chl-Qtz-ser phyll	med grn gy	f.g.	fotd	chl+ser	Py + Po		100%	thinly budd with local ser	tr.py as v. thin strs and f
		(05)								rich zones, and several zones	diss grains throughout the z
										of thinly badd Qtz-chl phyll	and as smears along foln.
										plus chloritic Qte between	planes. Strs roughly // foln
										27.73-27.85, 28.83-28.84,	locally within the gtz veins
										28.93-29.05, 30.39-30.42,	Py + Po occur as c.g. blebs
										33.47-33.51. Ser. content is	and as thin strs. Concentrat
										locally high foln's cut 45°-	of sulphides appears to in-
										50° throughout most of the	crease in zones with higher
										zone. Towards 35.15 the foln	sericite concentrations.
										drops to~42°.	-Tr po occurs as f.g. masses
			-						•		and strs associated with py.
										Otz veins occur sparsely	
										throughout . Prominent quartz	·
										veins occur between 27.55 to	
										27.57 (contains minor feldspar)	
										30.81 to 30.84 (contains minor	
										feldspar).32.75 to 33.04 there	2
										is ~30% qtz vein in chl-ser	
										phyll. qtz vein contains~15%	
										light grn chlorite.	
										small veins occur at 33.15, 33.	.20,
										33.24, 33.39	
										A folded qtz vein between 33.5	
										33.57 with a f.ax. of 80°. Med	qtz veins
	10 AGE	36								with minor feldspar occur betw B3.72-33.74 and 34.01-34.06	ween

DRILL HOLE NO. _____

\$ si	ELCO	EXPLORATION WESTERN CANAD	Α			DR	ILL		LO	G	HOLE NO. 84-2
INTER	VAL		T		DESC	RIPTION	J			STRUCTURE	REMARKS
FROM	TO	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE		ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
35.15	35.76	Qtz-chl phyll	lt-grn	f.g.	#81ded	mino: ser	Po,Py		100%	thinly bndd, locally highly	
		(06)	-							folded. Minor intercalated	
										chl-ser phyll zone contains	
		1								$\sim$ 30% qtz veins that are lo-	
										cally boudinaged and often	
										cross the foliation at a low	
										angle or // tofoln. foln range	
										from 45° near 35.15 to 55° nea	ar
										35.76. A large qtz vein is pre	9-
										sent between 35.49 to 35.60 wh	nich
										contains <5% feldspar and mind	or
										light grn chl. locally the oth	ner
***************************************									•	smaller qtz veins contain up t	co
										70% feldspar near 35.41-betwee	en
										35.60 and 35.62 there is a thi	n
										bnd of chl-ser phyll.	
										-f.ax within the zone are 40°	
										near 35.25 and 80° near 35.76	
35.76	37.60	Chl-Qtz-ser phyll	med.gy grm	f.g.	fotd.		Py,Po		100%	thinly bndd.locally siliceous	~1% py as m.g. diss grain
		(05)								and locally highly sericitic e	
										pecially between 36.56-36.78.1	4
										are fairly constant ranging fr	
										48° to 50° throughout the zone	Tr po as m.g. diss blebs
											and strs. locally it occ
								-		The zone contains several qtz	as silears on torn, prane
		36	<u> </u>	L				<u> </u>		veins that are white to trans	lucent

PAGE_11 OF_____

\$ si	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-2
INTER	VAL				DESC	RIPTION	V			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										gy and occur between 35.86-	
										35.91 and between 36.38-36.57	
										Veins are locally folded and	
										contain minor feldspar and	
		30.00 mm. 10.00								light green chlorite. Locally	
										bands of the phyllite cross the qtz vein undisrupted by	
										the introduction of the vein	
										material-No orientation could	
										be derived from the folds with	1-
										in the veins.	
37.60	38.20	Qtz-vein	white	c.g.	vein	chl+ser	Py,Po		100%	massive, contains~1% ultra c.	g. <1% po as thin strs and
		(13)							•	feldspar(up to 3 cm wide) Veir	diss blebs usually close
										contains ~30% remnant chl-ser	to the contacts with the
										phyll.~5% remobilized or veir	DIMITTUE HOLLEON
										derived chl + minor ser. local	lly < 1% py as m.g. diss blebs
										within the qtz vein there are	and strs.
										minor, v. thin, acicular micas	s?
										(maybe an amphibole)	
38.20	39.61	Chl phyll	dk. grn	f.g.	fotd	minor se	Py,Po		100%	Thinly to v. thinly bndd.foln	<1% py-mainly as diss grains
		(05)·								ranges from 45° to 50°, contain	ins concentrated between 39.26
										minor thin qtz-fledspar veins	and 39.28
											1- 41% po as diss grains throu
			ļ							tains minor intercalated ser-qphyll at 39.17-39.20 and 39.4	rtz -out and as minor smears on B- foln planes.
										39.47	

PAGE 12 OF 36

DRILL HOLE NO. _____

\$ si	SELCO	EXPLORATION WESTERN CANAD	Δ			DR	LL		LO	G	HOLE NO. 84-2
INTER	VAL				DES	CRIPTION				STRUCTURE	REMARKS
FROM	TO	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
39.61	40.31	Chl-Ser-Qt#8Phyll	međ gy grn	f.g.	fotd		Py,Po		100%		<pre></pre> 1% c.g. py as diss. grains
		(05)								siliceous with intercalated	and as thin strs composed of
										qtz-chl phyll at 40.01-40.03	c.g. euhedral py.
										and at 40.14-40.18. Qtz veins	<1% po as diss grains and as
										at 39.62-39.68, at 39.86, and	thin strs and smears on fol
										at 39.97-39.98. These veins	planes.
										contain minor feldspar &	
										light grn chl. The quartz	
										veins have been folded and	
										boudinaged disrupting the	
										surrounding foliations. The	
										undisturbed folm. are at~45°	•
			med gy								
40.31	45.14	chl-qtz-ser phyl		f.g.	fotd		Py,Po		-100%	Thinly bndd. contains local	tr. diss. m.g. py and py st
		(05)								zones rich in ser and quartz	-usually within sericitic
										throughout are fairly regular	zones and associated with
										throughout are fairly regular with foln. ranging from 35°-4	0 ^o gtz veins.
										foln are less reg in serici-	-tr. po as smears on foln
										tic zones	planes and associated with
										zones of chl-ser phyll occur	py strs.
										at 41.64-41.76, 43.08-43.40,	
										44.06-44.20, and 44.63-44.73	
										The zone contains ~1% qtz vei	ns
										that locally contain feldspar	S
										and light green chloride. The	
										veins // and crosscut the fol	n.

PAGE 13 OF 36

\$ si	ELCO	EXPLORATION WESTERN CANADA	Δ			DR	LL		LO	G	HOLE NO84-2		
INTER	VAL					RIPTION				STRUCTURE	REMARKS		
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC)	MINERALIZATION, TYPE, AGE RELATIONS		
45.14	46.17	chl-ser phyll	med gy	f.g.	fotd.	٠.	Po, Py	,	100%	thinly bndd becoming v.	< 1% py occurs as diss euhedra		
		(05)								thinly near 43.14.foln.	grains throughout		
										range from 90° at 45.30 and	∼1% po as flattened diss		
										up to 40° which is the domi-	grains and as smears on foln		
									•	nant angle of foln through-	planes.		
										out the zone. At 45.30 a smal	1		
										fold exists with a f.ax. of 90	0		
										Close to this fold small crenu-			
										lations have been observed wi	cions have been observed with		
										axes similar to that of the			
										larger fold present. The Zone			
										locally contains thin qtz-fel	d <b>-</b>		
										spar veins that // the foln a	nd		
										locally cross-cut the folm.			
46.17	46.60	Qtz-chl phyll	gy gm	f.g.	fotd		Po,Py		100%	-thin to med bndd. contains Q	te -trace py as diss grains		
		(06)								between 46.22-46.39. The zon	e and thin strs.		
										appears to be a transition zo	ne -trace po as diss grains		
										between Chl-ser phyllite at 4			
										and Qtz-ser phyll at 46.60			
46.60	47.31	Qtz-Chl-Ser Phyll	gy with	f.g.	fotd		Po,Py		100%	-thinly bndd with local semi	-tr py as diss grains and		
		(06)								massive zones within intercala	ted/thin discontinuous strs.		
										Qte.	especially within the high		
										-Ote occurs between 47.07 and	ly ser region between 46.7		
	14 36									47.31. foln are irregular in z	ones/and 47.99		

\$ si	ELCO	EXPLORATION WESTERN CANADA	A			DR	LL		LO	G	HOLE NO. 84-2
INTER	VAL					RIPTION				STRUCTURE	REMARKS
FROM	ТО	ROCK TYPE	COLOUR	GRAIN	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING,	MINERALIZATION, TYPE, AGE RELATIONS
										with high ser content	-tr po as flattened diss grain
										-minor chl occurs throughout	and as thin discontinuous str
										within thin chl zones	associated with py.
										-minor qtz-feldspar veins	
										occur within highly ser	
										regions and disrupt the foln.	
										-foln. @46.65 is 45° @47.85	
	- William of the Control of Contr							-		is 35° @47.07 is 50°	
47.31	48.38	chl-qtz phyll (05)	grn gy	f.g.	fotd		Ро		100%	thinly bndd, foln is a constant 43° throughout.	-tr po as m.g. diss euhedra throughout and as smears on
		[								minor thin qtz-feldspar veins	foln planes.
										// foln.and account for less	
										than 1% of the zone.	
48.38	51.07	chl-ser-qtz phyll	gy grn	f.g	fotd.		Po,Py		100%	thinly bndd, locally siliceous	∼1% py as c.g. diss grains
		(05)	31 3						2000	folms. are locally irregular	throughout the phyllite and
						1				foln @43.40 is 51°; at 49.66	qtz veins. Locally py occurs
										is 31°; @ 50.19 is 36°;@50.80	
										is 42°. The zone contains sev	
											-tr po. as diss grains and as
									***************************************	48.91-48.93, 50.37-50.44.	rare thin discontinuous strs.
		!								These gtz veins are discor-	po is locally smeared on
										dant with and disrupt the	foln. planes.
										foln, they locally contain	
		36								minor feldspar and light grn chl.	

\$ si	ELCO	EXPLORATION WESTERN CANADA	1			DR	ILL		LO	G	HOLE NO. 84-2
INTER	VAL				DESC	RIPTION	V			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
51.07	51.38	Chl-Qtz phyll	Lt gr gy	f.g.	fotd	-	Ру,Ро		100%	-v. thinlybndd-constant foln.	-tr py as diss grains and
		(05)								of 450-minor thin qtz-feldspar	r smears on folm. planes
										veins // the foln.	-tr po as diss grains and
											smears on foln. planes
51.38	54.16	Qtz-Chl-Ser phyll	Lt gy	f-m.g.	fotd	chl	Pbs,Py, Po, As		_100%	thin to med bndd locally	∼1% py as c.g. within strs
		(06)	—grn—							highly siliceous especially	often associated with po and
										between 52.56-53.02.local re-	locally with As.
										gions contain minor chl that	-larger strs occur @ 51.66,
										has coloured the qtz rich zone	es/52.93, and sporadically be-
										grn. foln. ranges from $40^{\circ}$ 50°	tween 53.62-53.69(high As
										with the dominant foln at~45°	concentration)
										-feldspar vein at 51.56-51.66	~1% po as m.g. associated
										~80% feldspar that has been	with py in strs or as minor
										locally altered to sericite	thin monomineralic discon-
										in a radial fashion~15% qtz	tinous strs and smears on
					The second secon					-thinqtz-feldspar veins occur	r foln. planes.
										locally throughout ~1% by vol-	- Tr As concentrated as c.g.
										ume.	As in strs between 53.62-
										•	53.69 associated with m.g.
									·		po and c.g. py.
											Tr Pbs - located in one thi
											stringer at 51.68 associate
											with po.
											84-2

DRILL HOLE NO.

\$ si	ELCO	EXPLORATION WESTERN CANADA				DR	ILL		LO	G	HOLE NO84-2
INTER	VAL				DESC	RIPTION	١			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
54.16	63.28	chl-ser-Qtz phyll	med gy grn	f.g.	fotd		Py,Po,Pb	s	100%	Thin to med bndd. Zone varies	~l% py as c.g. diss grains
		(05)	92							locally from a chloritic Qte	and thin strs often associa-
										to a ser phyll. Qtz rich hori	- ted with qtz veins
										zons occur @56.38-56.76; 58.9	0 <1% po as diss grains are
										-59.13; 61.46-61.54. Larger s	er associated with py in thin
										-phyll horizons occur at 62.4	l- strs
										62.99; 63.07-63.15 foln @54.46 is 48; @55.47 is	-Tr pbs as a minor componer
										foln @54.46 is 48; @55.47 is	within thin str within th
	······································									42°; @58.32 is 90°; @58.88 is	qtz veins between 56.45-
										460 and remains a fairly con-	56.63.
										stant 46° to 63.28	
										- small folds occur at 58.32 f.	ax
										at 88 ⁰	
										- minor thin qtz veins through	out
										that locally contain feldspa	r
										-veins locally // foln, but ma	ny
										veins are discontinuous and d	is-
										cordant to the folm.	
63.28	64.50	Qtz-Ser-phyll	lt gy gr	n f-m.g.	fotd	minor chl	Po,Py,As		100%	v. thinly to med bnddlocally	1-2% po f.g. in thin disco
		(07)								highly siliceous (Qte) especia	lly tinuous strs. With a large
										between 63.62-63.91. Zone is mo	
										chloritic towards 54.16. foln.	L. C.
										in the zone is fairly constant	at 550 y of strs associated wi
										-thin qtz-feldspar veins occur 63.97-63.99 and at 64.28-64.30	at As and by between 63.97-
	17	36				J	L	l	<u> </u>		84-2

PAGE 17 OF 36

\$ si	ELCO	EXPLORATIOI WESTERN CANA				DR	LL		LO	G	HOLE NO. 84-2
INTER	VAL				DESC	RIPTION				STRUCTURE	REMARKS
FROM	ΤO	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
											<1% c.g.py within thin strs
											and associated with qtz vein
											~1% c.g. euhedral As within
											thin qtz-feldspar veins at
											63.97-63.99, 64.28-64.30 and
											as diss grains within the
										•	phyllite.
64.50	64.56	M.S.	silver gy	<b>c.</b> g.	brecciate	ed ser	As		100%	60% c.g. fractured sub-	
		(12)								hedral As with ~ 5% ser-qtz	
										phyll fragments within a quar	tz
										gange-contact at 64.50 is roug	ghly
										concordant with the foliation	
										which is slightly folded. At a	con-
										tact there is a 3mm bnd of f.o	J•
										As. The contact at 64.56 has a	
										thinner (1 mm) band of f.g. As	5.
										At this contact the wall rock	
										a 2 mm sericite rich that //'s	5
										and is in contact with the As	hori-
										zon. The wall rock at this cor	ntact
										contains minor diss. As. Conta	acts
										are roughly at 60 ⁰ .	
64.56	65.53	Qtz-Ser Phyll (07)	Lt gy grn	f.g.	fotd	minor chl	ZnS,As,P	Y	100%	thin-med bndd with local ser horizons concentrated towards	rich ~ 3% Zns as thin wispy str
											that are concentrated ix
PA	18	36 _ of								64.56, minor Ca veins at 65.27	

DRILL HOLE NO. 84-2

\$ sı	ELCO	EXPLORATION WESTERN CANADA	А			DR	ILL		LO	G	HOLE NO. 84-2
INTER	VAL		Ī		DESC	RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										65.41. Ca veins are thin and//	and attain a concentration
										and locally cross-cut the folm	Of 5% between 65.22-65.37
										foln. range from 52° to 56°	of 5% between 65.22-65.37 and between 65.47-65.53. Zns strs roughly // the fo
										fold @ 64.90 has f.ax of 76 ^o	but are often connected by
											thin cross cutting strs. Z
											is med orange. Between 64.
											and 64.70 the core is barr
											of ZnS
											41% As-as m.g. euhedron ass
											ciated with thin ZnS strs
											as minor diss grns
											Tr py-very local as f.g.
											diss grains associated wit
											ZnS strs
65.50	66.01		med gy	m.g.	bndd	minor ch	Po.ZnS.P	<u> </u>	100%	thinly bndd-locally contains	∼1% ZnS as thin wispy strs
65.53	66.01	(03)	31			+ser	As	1	100%	thin agrillaceous horizons and	that generally // the fol
										chl and/or ser on foln.planes	but locally cross cut the
					<del> </del>					Foln. range from $52^{\circ}$ - $60^{\circ} \sim 2\%$ C	folm, especially where th
										veins that locally // foln and	are associated with Ca ve
					1			<del> </del>		in other areas cross-cut the fe	ol- ZnS is localized into 2
										iation and one locally ptygmat	icall main zones @65.70-65.74
										fólded. Ist becomes darker tow	
										66.01 as a result of increase	
										argillaceous component.	
		36	<u> </u>	İ	<u> </u>		<u> </u>				
PA	AGE 19	OF								DR	ILL HOLE NO. 84-2

\$ si	ELCO	EXPLORATION WESTERN CANAL				DR	LL		LO	G	HOLE NO. 84-2
INTER	VAL					RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										-tr po as diss grains and	-tr py as diss grains and as
										locally as blebs within ZnS	blebs locally within ZnS
										strs.	stringers
											- tr. As. as f.g. euhedral dis
									10/1974 August 1974 August 197		grains within ZnS strs.
66.01	70.00	Lst + chert?	Dk grey	f.g.	veined	chl + mi- nor ser	ZnS,PbS, Py,As		100%	thin to med bndd-locally	$\sim$ 10% ZnS which is dominantl
		(02)					- 1 /			highly siliceous, argillaceou	s dk orange but lightens to
										component varies highly throug	h- a light orange @66.77-67.(
										out finer grained sections ar	e and @69.39 to 69.43 at wh
										highly siliceous. Zone contai	ns point the ZnS grades into
										qtz and Ca veins locally with	honey blonde ZnS
										both minerals being present	-Honey blonde ZnS is also
										within local veinsbetween 6	9.65/located @68.33-68.39 when
										and 69.81 the limestone is a	n it also grades laterally
		-,								(03) that contains a lesser a	mount/into light orange,then o
										of ZnS.	orange ZnS.
										foln. within the zone are @66	.01 ZnS occurs as wispy coa-
										is 55°; @66.78 is 65°; @67.78	is lescing strs. that on a
										43°; @68.25 is 50°; @68.99 is	
										@69.95 is 48°.	foln, but on a small sca
											the strs cross-cut the f
											and form masses of coale
											cing strs often associat
			-								with gtz and Ca veins.

2U 36 PAGE _____ OF ____

\$si	ELCO	EXPLORATION WESTERN CANA				DR	LL		LO	G	HOLE NO. 84-2
INTER	VAL					RIPTION				STRUCTURE	REMARKS
FROM	т 0	ROCK TYPE	COLOUR	GRAIN	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
											Within the zone there are
											zones that have a de-
											creased ZnS content-es-
											pecially @6617-66.25;
											@66.52-66.68; @67.07-
											67.24; @67.50 -67.57;
											@68.61-68.94; @69.65-69.9
											∼Tr As as f.g. diss grain associated with zones that have
											a high concentration of ZnS
											strs.
											∼Tr Py occur as m.g. diss
											grains locally within and per
											pheral to local ZnS strs and
											diss grains within the Lst.
											-high py concentration zones
											occur @68.86-68.95; @69.32-
											69.34.
											Tr Pbs as f.g. diss grains
											within local areas associated
											with ZnS stringers and espec-
											ially where py is present wit
											in the ZnS strs.
									-		
				-							
				· · · · · · · · · · · · · · · · · · ·							

PAGE 21 OF 36

\$ sı	ELCO	EXPLORATION WESTERN CANADA	4			DR	ILL		LO	G	84-2 HOLE NO
INTER	VAL				DESC	RIPTIO				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R A I N SIZE	TEXTURE	ALTERATION	ORE	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
70.00	70.66	Lst	lt-dk gy	m.g.	fotd(bndd	chl+ser	ZnS,As,P	7	100%	-med-thinly bndd with minor	~1%.ZnS-occurs between 70.25
		(02) close to (03	)							intercalated argilliceous hor-	70.29 as thin discontinuous
										izons. Zone contains ~10% c.g	strs that crudely // the fo
										Ca veins that are locally high-	
										ly folded and in other locali-	-11 As as i.g. diss. grains
										ties they // the folm. folm at 70.05 is 50 which is fairly	associated with the ZnS strs between 70.25-70.29.
										pervasive throughout.	-Tr py as m.g. diss grains
										A small slip plane occurs at	throughout the zone.
										70.56 and has an orientation of	
										77°·	
70.66	72.30	Qtz-ser phyll	lt gm gry	f.g.	fotd	ser	ZnS,Py,A	5	100%	Thin to med brddminor interca	ll-Most of the sulphides occu
		(07)					GF1/10			ated m.g. Lt. gy Lst @70.72-70.	81 as thin strs and blebs
										and 71.98-72.60	within the qtz veins exce
											between 71.98 and 72.60
										-Between 71.24-71.94 the zone c	on-where ZnS and py occur as
										tains~30% qtz. veins. Within	thin strs // to foln. wit
										this zone the qtz veins disrupt	in limestone
										he foln.	< 1% As as c.g. blebs and
										foln. @71.54 is 41°; @71.96 is	strs within qtz veins.
										46 [°]	<pre>/l% po as f.g. blebs and strs within qtz-veins</pre>
											<pre>&lt; 1% py as m.g. and c.g.</pre>
											diss grains and as blebs and strs associated with

PAGE 22 OF 36

\$ si	ELCO	EXPLORATI WESTERN CAN				DR	ILL		LO	G	HOLE NO. 84-2
INTER	VAL				DESC	RIPTION				STRUCTURE	REMARKS
FROM	TO	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC)	MINERALIZATION, TYPE, AGE RELATIONS
						-					√1% Zns(red) occurs as thin
											bnds within Lst between 71.98
											and 72.60 and as thin strs a
											blebs within a qtz vein be-
											tween 71.78 and 71.83.
		. 35									-Tr Cpy as small grains asso-
											ciated with po within a qtz
											vein at 71.35-71.39
72.30	72.73	Ote	lt. gy	f.g.	weakly	minor	ZnS,Py,A	s			all GC dle and an aring ag
	72.75	(06)	1c. 9y	1.9.	Tota.	Ser	meng?		1.00%	semi-massive with minor serici zones and ser on foln. foln ar	ticel% ZnS-dk red occurring as
				ļ						$\sim 43^{\circ}$ near 72.30 and 53° near	The second secon
											crudely // the faint foln.
		-								72.73.	The ZnS is concentrated
											72.47-72.61 -tr diss f.g. py associated
											with the zones that contain
											ZnS.
											tr. diss sulpho salts as
											sparsely distributed f.g.
											acicular crystals associate
											with the ZnS strs
											tr-diss f.g. As associated
											with py +ZnS
	AGE 23										84-2

PAGE 23 OF 36

DRILL HOLE NO.

\$ si	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-2
INTER	VAL				DESC	RIPTION	١			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
72.73	73.39	Lst	lt gy gn	n f-m.g.	bndd	minor ser	As,Py, ZnS		100%	med bndd. contains a small uni	t/tr ZnS (red) as small blebs
		(03)								of clean Ote between 72.92 -	associated with Ca veins i
										73.14. Lst is bndd with dark	Ote section.
										f.g. argillaceous bands in a	tr As as f.g. diss grains
										m.g. lt. gy Lst locally dis-	associated with ZnS in the
										rupted by c.g. Ca veins.	Ote. tr py diss throughout
										foln ~ 58°	and as v. thin strs // to
											foln.
73.39	73.87	Qte	med gy	f.g.	weakly by to mottle	dd d ser	ZnS, Pv, As, meng		100%	weakly bndd in zones that con-	
		(06)								tain thin ser rich horizons	tinuous swirled strs
										and mottled in zones of clean	
										Qte. Zone is locally calcareou	
										Ser concentration increases to	
		·····		!						wards 73.39 foln is~53° near	associated with ZnS strs
										73.39.	sulphosalts as small diss
											acicular laths associated
											with ZnS strs.
											Strs roughly // foln. nea
											73.39, but become increas
		· · · · · · · · · · · · · · · · · · ·									ly irregular towards 73.8
73.87	74.47	M.S. + Qte		c.g. sul	- bndd	ser	As,ZnS P Meng	y		Qte+Qtz -ser phyll with~ 30%	
		(12 +06)		f.g. Qte		SET	Meny			sulphides over its length ~25%	\$
										As; ~2% ZnS; ~3% py; tr meng	
		. 36									

\$ SE	LCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO84-2	
INTERV	'AL				DESC	RIPTION	1			STRUCTURE •	REMARKS	
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS	
										Sulphides occur as massive ba	ınds	
										that // the foln. and as cros	ss-	
										cutting strs usually rich in	ZnS	
										and Py.		
										-Otzite within the zone occurs		
										as med bnds with foln of rough		
										46°		
										-Qtz-ser phyll v.f.g. small te	ension	
										gashes filled with Ca-gashes	are at	
										a low angle to the core axis	and a	
										high angle to the foln.		
						,				-Zone is locally calcareous		
										-As major component of massive	e sulph-	
										ides in which it occurs as fr	cactured	
										c.g. masses and as f.g. matri	ix with	
										M.S. ZnS occurs as thin c.g.	strs	
										evenly distributed throughout	-Red	
										and orange ZnS - occur within	n the same	
										strs often associated with	n cg. py.	
										-py -occurs as c.g. masses wit	thin re-	
										mobilized strs. pyrite horizo	on occurs	
										at the contact at 73.88  - Meng occurs as thin acicular	r laths	
										diss throughout the gangue in the ralized zones and locally the intercalated seds.	in min-	

\$ si	ELCO	EXPLORATION WESTERN CANAL				DR	LL		LO	G .	HOLE NO. 84-2
INTER	VAL				DES	CRIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
74.47	75.77	Qtz-ser phyll	lt-gy grn	f.g.	fotd	minor ch	As, ZnS, Py	1	100%	thin-med budd-local cb ff	~1% As as c.g. fract subhec
		(07)	7-9-11				Chy-mend-			foln are highly irregular and	grains in patches and strs
										folded within the ser rich and	± '
										fairly regular within the qtz	veins. As also occurs as f
										rich bands -locally minor chl	diss grains associated wit
										foln near 74.47 is 55°	ZnS strs.
										@75.40 is 35°; @75.60 is 45°;	_tr ZnS as thin strs that
										-qtz veining occurs locally w	th roughly // foln.
										a large quartz vein @75.36-75	.46 - tr Py c.g. fractured
										which contains ~40% c.g. As.	euhedra in thin strs asso
											ciated with c.g. As
											- tr meng f.g. diss, euhe-
											dral, acicular needles
											associated with As + Py
											and ZnS strs.
											-tr cpy located in one pla
											@75.40 as a v. small wisp
											grain within an As+Py st:
95 33	76.00			f-m.q.	locally		ZnC Dr. Ac				
75.77	76.03	M.S. (12)	orange brown	1-111.9.	milled		ZnS,Py,As PbS		100%	massive sulphide consists of a	e cen-
		, , , , , , , , , , , , , , , , , , , ,								tral zone from 75.74-75.96 of	milled
										m.s. with a f.g. pyritic core	grading
			ļ							out in both directions to zone	
										higher ZnS content ~50% py (29 rounded grns 48% f.g. (ground-	as c.g. mass)
	26	36 .									04.2

PAGE 26 OF 36

\$ s	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G .	HOLE NO. 84-2
INTER	VAL				DESC	RIPTIO				STRUCTURE	REMARKS
FROM	ТО	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										~25% ZnS dk orange to red. f	.g.
										darker outside of milled sulp	hides
										in thin m.g. strs.	
										-tr As as f.g. component with	py in
										the matrix of the milled zon	e
										contact at 75.77-75.79 contai	ns~10%
										ZnS and 15% Py with tr amount	s of
· · · · · · · · · · · · · · · · · · ·										PbS and As. Pyrite is c.g. su	brounded
										grains concentrated in a bnd	at 75.79
										Similar contact at 75.96-76.0	l with a
										dominant pyritic horizon @76.	00-76.01
										Unit contains~15% Ote and qt	z gangue
										with minor rounded Ca clasts	within
76 02	77.06				fotd and		ZnS,PbS,			the milled M.S.	
76.03	77.86	Qtz-ser phyll (07)	lt grn g	y r.g.	folded	ser	Py, As		100%	thinly bndd contains ~ 3% c.g.	Ca ∠1% ZnS as thin strs that
										veins and ~1% qtz veins. The is locally highly folded.	zone roughly // the folm. and have been folded along
										foln varies highly throughout	.f.ax. with the foln. @77.50 -
										on minor folds @76.32 is 82°;	77.59. ZnS forms a v.thi
										@77.00 is 86°.	selvage around a grey Cl
											vein
											<1% py. c.g. diss grains
											usually associated with
											qtz veins
											tr As v. small diss gns
	27	36									and thin strs concentrat

DRILL HOLE NO. _____84-2

\$ sı	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-2
INTER	VAL			The second secon		CRIPTIO				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN	TEXTURE	ALTERATION	ORE	FRACTURES PER METRE	% core	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
						-			1		towards 76.01
											tr PbS. v.small diss grains
											concentrated towards 76.01
77.86	78.16	MS	redish	f-c.q.	milled	ser	ZnS,Po,Py	fractured	1000		
		(12)	brown				As,Cpy	at@78.05	100%	77.86-78.05 is a zone that	77.86-78.05 contains~15% ZnS
		(12)	-			-				contains ~30% sulphides as	(red and dk orange) as m.g.
~~~			-		<del> </del>	-				folded horizons and strs in	strs with locally intergrown
			-				-			Otz-ser phyll	po
						-		ļ			√10% po as massive patches
						·					intergrown with ZnS
					-		-				\sim 5% Py c.g. diss throughout
					-	-					sulphide strs
		A			ļ	ļ		ļ			-tr Cpy associated with ZnS
					ļ						Po stringers. Small blebs
					-						-tr c.g. As
										78.05-77.86-milled texture	
										M.S.	
			-							\sim 60% py(60% c.g. rounded grain	
										and fractured euhedra 40% f.	.g.
										matrix)	
										\sim 20% po as a fine grained mat	rix
										interfingered with Zn	
										\sim 10% ZnS (red) as f.g. grains	
										within strs and patches asso	cia-
					-	-				ted with interfingered Po	
	28	. 36		<u></u>		1					84-2

PAGE 28 OF 36

DRILL HOLE NO.

\$ sı	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO84-2
INTER	VAL				DESC	RIPTION	I			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING,	MINERALIZATION, TYPE, AGE RELATIONS
										~5% As as rounded grains and	
										as fract. c.g. euhedra	
										~5% ser phyll fragments +minor	
										qtz as a matrix.	
										-contact at 77.86 is conformal	ole
78.16	80.56	Qtz-ser phyll	It grn gy	f.g.	otd folded	ser	As,Py,ZnS Po		100%	thinly bndd highly folded.	-Tr As as m.g. subhedral grai
		(07)					10			Folding is locally ptygmatic:	E, within thin strs that crudel
										ax. @79.50 is 60°; @79.12 is	// folded foln.
										70° in most other regions fold	dTr py as m.g. subhedral
										in is complex and there are	grains in thin py-strs that
										local slip surfaces which have	e locally occur with As
										displacements up to 1 cm making	ng -tr ZnS as a c.g. bleb withi
										f.ax. measurements difficult.	the qtz vein at 78.35-78.39
										Qtz veins at 78.35-78.39 cross	-tr m.g. po in strs associa
										cuts foln and is oriented at	30 ted with py.
										in the opposing sense to the	gen-
										eral foln. this vein splits in	nto
										three // veins.	
80.56	80.69	Qte	lt gy grn	m.g.	strs	ser	As,Py			Thinly bndd with~21% sulphide	e -20% py as c.g. subhedral
		(06)		-			_			a crude foln is oriented @~25	in med strs
										-30°	-1% As as diss grains in
											py strs
80.69	80.91	M.S.	Brassy Br	n m.g.	locally		As, ZnS, Py	,		weakly bndd ~40% As both as c	
		(12)			_milled					subrounded grains and f.g. wi	
	29									the matrix	

\$ si	ELCO	EXPLORATION WESTERN CANAD	Α			DR			LO	G	HOLE NO. 84-2
INTER	VAL				DESC	RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC)	MINERALIZATION, TYPE, AGE RELATIONS
										\sim 2% ZnS as a f.g. component of	
										the matrix and as m.g. orange	
										ZnS strs // to bnding. bnding	
										is oriented at ~20°-30° at the	
										contact @80.69 and at 45° at	
										the contact @80.91	
										~15% m.g. py as sub rounded	
										grains and f.g. within the ma-	
										trix of the M.S.	
										-M.S. have a Qtz-ser gangue	
80.91	80.91 81.69	Lst	lt gy	F−m.g.	bndd		As, Py		100%	gy bndd Lst becomes coarser	-tr. f.g. As, py as strs
		(03)								grained towards 81.69	close to the contact at 80.9
										-minor graphite on local part-	-Tr c.g. py diss throughout
-										ings - minor boudinaged Ca	
										veins, especially near contac	t
										at 80.91	
										bnding ranges from 35° to 45°	
											,
81.69	82.13	Lst breccia	Blk with	f.gc.g	. breccia		Ру		100%	-highly brecciated ~30% Ca	-tr Py as c.g. diss euhedra
		(02)	maco vo							veins at 70% Graphitic	
										some of the fragments show	•
										minor rotation folding occur	S
									gan district for the all the thin makes and the gan	within larger clasts of the	
										Graphite Lst	
										foln at the contact 082.13 i	S
							•			~ ₃₉ .	

PAGE 30 OF 36

\$ si	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-2
INTER	VAL					RIPTION				STRUCTURE	REMARKS
FROM	ТО	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
82.13	83.48	Qtz-ser Phyll	lt gy grr	ıf.g.	fotd.+ veining	ser	Py, As		100%	-thinly bndd. unit contains	<1% As as c.gf.g. fract
		(07)								15% gy Ca veins(sweats) +~2%	grains within strs. between
										qtz veins. Veining locally di	s-82.90-83.21 and as minor di
										rupts the foln. foln. ranges	grains and small discontinuo
										from 30-35°. unit is more gra	- strs.
										phitic towards contact @82.13	<1% py as fractured c.g. sub
			•								hedra in strs.
83.48	83.48 83.67	Ca vein(sweat)	lt gy	c.g.	weakly brecciate	ed	Ру		100%	c.g. Ca vein with qtz selvage	s -tr diss c.g. py.
		(11)								Locally the vein contains gra	ph-
										itic material.	
										The vein is cross-cut by smal	ler
										veins that have penetrated Ca	
										crystal fragments from the or	igi-
										nal vein. These late stages	have
										caused displacement due to di	lu-
										tion within c.g. Ca grains.	
83.67	85.08	Lst	med gy	m.g.	bndd sweatouts		Ру		100%	-gy banded Lst with∼2% cb sw	eats tr. c.g. diss py that ha
		(02)								and tension gashes + a Ca vei	been locally cross-cut b
										@24.02-24.08. folding occurs	close/Ca veins.
										to the contact @83.67 which h	
										f.ax. of 880. fold limb is cu	off
										by a Ca vein @83.67.from 84.9]
										85.08 the Lst is highly grap	
	31.	₃₆								and tightly folded with a f.a	x of 84-2

\$ si	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G ·	HOLE NO. 84-2
INTER	VAL				DESC	RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										810	
		·								-graphitic zone is highly fra	C-
										tured.	
85.08	89.36	Qtz-ser phyll	lt gy gr	n f.g.	fotd	ser	Py,As,Po)	100%	thinly bndd-interbedded Qte	- Tr py as c.g. euhedra
		(07)								@ 86.05-86.16 and @87.26-87.5	0 in thin strs.
										and @88.37-88.67. Ser content	is
										locally high especially near	- Tr Po as m.g. masses
										85.08. Foln ranges from 520 -	often associated wit
										57°. Towards 85.08 there is an	Py strs in qtz veins
										increase in boudinaged qtz	-Tr As as c.g. fract.
										veins.	grains in thin mono-
											mineralic strs and
											a minor component in
											local py strs.
89.36	90.29	Qte	lt gy gr	ı f.g.	fotd	ser	As,Py		100%	v. thinly bndd-semi massive	Tr Py as m.g. fractured
		(06)								clean with v. minor ser on	grains within thin strs
				·						foln planes. foln ranges from	Tr As. f-m.g. fract gra
		***************************************								45°-56° -unit contains minor	gtz within thin strs.
										veins.	
90.29	92.23	Ohn gow Dhvill	15 000		fotd		D D	_	1000		
90.29	92.23	Qtz-ser Phyll	lt.gy.gn	1 1.g.	TOEG	ser	Py,Pbs,A	LS	100%	thinly bndd~1% qtz veins. fol	Tr. py as m.g. subhedra
		(07)				-				fairly regular except near qt	
										veins. A large qtz vein occur	
1	32	36								90.60-90.72. This vein contain	ns Tr Pbs as f.g. blebs

\$ 5	ELCO	EXPLORATION WESTERN CANAD	Δ			DR	LL		LO	G	HOLE NO. 84-2
INTE	RVAL				DESC	RIPTION	l			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core	(FRACTURES, FAULTS, FOLDING, BEDDING,	MINERALIZATION, TYPE, AGE RELATIONS
		·								minor feldspar foln range from	within the larger qtz veins
										40 ^o -50 ^o	
										-minor interbedded Qte	
										@89.98-90.03 and 90.66-90.69	
92.23	92.64	Qte	lt grn g	v f.a.	fotd	ser	Py,ZnS,Po		100%	thinly bndd with a small inter	The fire was in this linearity
		(06)				332	17/1112/10		100%	bedded Qtz-ser phyll @92.29-	uous strs often associated
										92.34. Minor qtz feldspar vein	s/with qtz feldspar veins
										that cross cut the foln. vein	- Tr Zns (red) as thin blebs
										orientation is at 35° whereas	- Tr f.g. Po associated with
					-					foln is at 48 ⁰	py in qtz-feldspar veins.
92.64	93.33	Ser-qtz phyll	lt gy,gr	n f.a.	fotd	ser + minor Chl			100%	thinly bndd -locally siliceous	- Tr ZnS(red) as thin dis-
		(04)	31,94		1000	MINOI CIT	-		100%	especially close to 92.64.foln	continuous strs // to the
										is a fairly constant 45 [°]	foln.
										a minor slip surface near 92.6	4 -Tr Py as c.g. diss grains
										has caused minor displacement	of -Tr Po as minor smears on
										the foln. Qtz-Ca veins cross-c	ut foln. planes
										the foln and locally // the ab	ove
		·								mentioned slip. locally the qt	Z
										veins contain feldspar.	
93.33	93.60	Qte (06)	lt. gy	f.g.	fotd.	ser +	ZnS,Po		100%	thinly to weakly bndd foln is	Tr ZnS occurs as small red
		(00)								very regular and ranges from 3	
											veins
·	33	 - 36 _ 0F	<u> </u>		L	L	l			foln planes. V. minor qtz feld	spar tr po f.g. within thin RILL HOLE NO. 84-2

SELCO		EXPLORATION WESTERN CANADA	7			DR	ILL		LO	G	HOLE NO
INTERV	/A L				DES	CRIPTION				STRUCTURE	REMARKS
FROM	ТО	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										veins that cross-cut folm.	strs. that x-cut foln. and as
											local smears on folm. planes
93.60	96.03	Chl-Qtz-Ser Phyll	med gy	f.g.	fotd	ser+mino	ZnS,Po, Py		100%	thin to med bndd irregular	tr ZnS(red) occurs locally
		(05)	grn			GII.	FY			folns. local siliceous zones	with Po in thin discontinuous
		X = /								and some chlorite zones. A	strs that crudely // strati-
										small qte bnd occurs @94.28	graphy
										to 94.33. Zone contains~1%	tr po occurs in thin discon-
	,									qtz veins that locally contain	
										minor feldspar. Veins are lo-	smears on foln. planes
										cally folded. foln @93.70 is	45/ tr Py as c.g. diss grains
										@94.33 is 60°; @94.79 is 45°;	and as blebs and discon-
										095.60 is 43 ^o	tinuous strs.
96.03	97.54	Qtz-Chl phyll	lt gy gr	n f.a.	fotd	ser+min	r ^{Po,} Py,A CPy	\$		thinly bndd-locally contains	-tr As f-m.g. fract grains
		(06)	31 3			Chl	CPy		85%	zones of high ser and/or chlor	r- within thin strs locally
		(66)								ite concentrations + foln are	associated with Po and min
										regular in silica rich zones	
										becoming increasingly irregula	Py ar -tr Po f.g. masses within
										with increased ser content. Zo	
										contains ~1% qtz-feldspar vei	ns and within fractures in
										@97.54.	the qtz feldspar veins
											-tr Py as m.g. diss grains
											and locally concentrated
											thin strs - tr Cpy associated with Po
				End	of Hole					END OF HOLE	in a gtz vein

\$ SE	LCO		OR ATION RN CANADA			RILL L	OG		S	amp	le da	ata
	SAM	APL E			CORE RECOVE	RY VISUAL ESTIMATES		А	SSAY	RESUL	_ T S	
NUMBER	FROM	ΤO	TOTAL	Sp. Gr	% AMT. LOS	1	% Pb	% Zn	% As	g/t Ag	g/t Au	
47001	63.50	64.50	1.00		100%	1% Po, tr. As + Py	< 0.01	0.01	0.966	1.7.	0.4	
47002	64.50	64.56	0.06		100%	60% As	0.18	0.01	22.500	12.3	2.2	
47003	64.56	65.53	0.97		100%	3% ZnS,<1% As, tr. Py	1.42	3.58	0.315	26.4	0.3	
47004	65.53	66.01	0.48		100%	1% ZnS, tr.Po,Py,As	0.21	1.23	0.034	8.6	0.3	
470 05	66.01	67.01	1.00		100%	10% ZnS,tr. As,Py, PbS	2.42	14.80	0.013	50.9	0.5	
470 06	67.01	68.01	1.00		100%	10% ZnS,tr. As.,Py,Pbs	1.31	8,86	0.006	32.7	0.2	
470 07	68.01	69.01	1.00		100%	5% ZnS,<1% Py,tr.PbS,As	2.36	7.94	0.018	55.5	0.4	
470 08	69.01	70.00	0.99		100%	5% ZnS,tr. As,PbS, Py	2.24	7.94	0.038	46.8	0.5	
470 09	70.00	70.66	0.66		100%	1% ZnS, tr. As., Py	0.21	0.46	0.029	2.6	0.8	
470 10	70.66	71.66	1.00		100%	<1% As,Po,Py,tr ZnS,CPy	Y 0.05	0.04	0.585	4.4	0.4	
470 11	71.66	72.30	0.64		100%	<1% As,Po,Py, ZnS	0.28	0.30	0.899	7.3	0.2	
470 12	72.30	72.73	0.43		100%	1% ZnS,tr. Py, As, Meng	0.19	1.00	0.106	3.7	0.4	
470 13	72.73	72.92	0.19		100%	tr Py	0.04	0.07	0.056	1.9	0.2	
470 14	72.92	73.13	0.21		100%	tr Po, ZnS, Py	0.03	0.04	0.050	3.0	0.4	
470 15	73.13	73.39	0.26		100%	tr ZnS, Py, As	0.02	0.03	0.064	0.3	0.2	·
470 16	73.39	73.87	0.48		100%	1% ZnS,Py, As.tr Meng	0.04	1.30	1.810	3.0	1.7	
470 17	73.87	74.47	0.60		100%	25% As,2% ZnS,3%Py,trMe	erg 0.84	5.54	7.990	15.4	8.8	
470 18	74.47	75.12	0.65		100%	1% As, tr ZnS, Py, Meng	0.30	1.16	3.650	3.8	2.3	
470 19	75.12	75.77	0.65		100%	1% As, tr ZnS,Py,Cpy,M	eng 0.14	0.57	3.210	3.7	10.0	
470 20	75.77	76.03	0.26		100%	50% Py,25% ZnS,trAs,Pb	6.96	24.00	1.240	126.1	4.7	
470 21	76.03	77.11	1.08		100%	<1% ZnS,tr.As,PbS	0.66	0.53	0.372	12.7	0.6	
470 22	77.11	77.86	0.75		100%	∠1% Py, Tr. ZnS, As	0.08	0.08	0.013	4.8	0.1	
470 23	77.86	78.16	0.30		100%	15% ZnS,10% Po,20% Py, 3% As tr CPy	1.06	10.70	0.892	30.8	1.6	
470 24	78.16	79.16	1.00		100%	tr As, Py, ZnS, Po	0.08	0.13	0.852	5.5	0.7	
470 25	79.16	80.16	1.00		100%	< 1% As, tr Py, ZnS	0.04	0.13	2.470	3.4	1.0	
470 26	80.16	80.56	0.40		100%	tr Py, As	0.04	0.02	1.770	2.7	0.9	

PAGE 35 OF 36

\$ 5€	SELCO EXPLORATION WESTERN CANADA					DF	HLL L	OG		9	amp	le dat	ca
	SAI	MPLE			CORE	RECOVERY	VISUAL ESTIMATES		А	SSAY	RESU	LTS	A Control of the Cont
NUMBER	FROM	то	TOTAL METRES	Sp. Gr	%	AMT. LOST	(% ORE MINERALS)	% Pb	% Zn	% As	g/t Ag	g/t Au	
47027	80.56	80.91	0.35		100%		30% As,20% Py,2% ZnS	2.50	2.96	6.120	50.7	11.1	
470 28	80.91	81.69	0.78		100%		tr As, Py	0.04	0.05	0.089	0.3	0.3	
		ļ											
		ļ	-		-			ļ		ļ			
					1								
					-						· .		
					-								
					-			-		-			
-		 			-								
										-			
				1									
									-				
			-		-				ļ	-			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								-					
			-	 	 								
										-			
					-			-	-				
		 		<u> </u>	-								
	36 E												

	ELCO	EXPLORATION WESTERN CANAD	A			DR	ILL		LO	G		HOLE NO84-3
DRILLING CO.	CONNORS	LOCATION SKETC	Н	DEPT	н Б	TESTS IP ANGLE	AZIMUTH	DAT	TE STARTED:	September 7/84	PROJEC	T: J & L
			-1	- COLLA	\R +	19.69°	041.75	DAT	TE COMPLETED	September 7/84	N. T. S. :	82M/8E
								COL	LAR ELEV.:	838.800	LOCATIO	ON: 10,500 E
						-		NOI	RTHING:	10,018.576		crosscut
								EAS	TING:	10,500.290		
									MUTH:	0420		
								ı	PTH:	15.24 m		OGGED: September 8, 1984
HOLE TYPE	D.D.H.							COF	RE SIZE:	B.Q.	LOGGED	BY: R. Pegg
INTER	RVAL	ROCK TYPE			DESCR	IPTION				STRUCTURE		REMARKS
FROM	TO	ROCK TIPE	COLOUR	GRAIN SIZE	i	ALTERATION	ORE MINERALS	FRACTURE PER METRI	C.R.%	(FRACTURES, FAULTS, FOLDING, BEETC):	DDING,	MINERALIZATION, TYPE, AGE RELATIONS
0.00	0.44	Qtz-Chl Phyll to	lt grn to	f.g.	fotd		Ро		91	foln 72 ⁰		3% Po strs & f.f. mostly alon
		dirty Qte (06)	9Y			-				minor qtz(<u>+</u> feld)veinle	ts	foln
										grading towards a sil Q	tz-Ser	
0.44	0.44 0.94 Lst 1t g	lt gy	m.g.	bndd		As,Py,Po)	100	-minor qtz grains(m.g.)		tr As,Po, & Py grains	
		(03)								recrystallized; bndd 82		
										qtz in chaotic area wi	.th	
										coarser calcite		
										30% argl-bnds (up to 1	cm)	
0.94	4.36	Lst	дХ	m.g.	bndd		Py,Po,ZnS	1	100	-irreg calcite sweatout	s (7%)	11% Py subhedral to euhedral
		(02)			chaotic			***************************************		with lt to gy qtz grai	ns (m.g	.) tr Po patches with Py mostly
										a few narrow more argl	.bnds	tr ZnS m.g. str + grains at
										(up to 3 cm wide)		at 3.60 m
										minor c.g. qtz patches	 3	-most sulphs within argl bnds
										minor silicification; h	onds 72 ^C Krift	
4.36	4.89	Lst	lt gy	m.g.	bndd		Py,Po		85	narrow wispy ser bnds	(1 mm)	<pre>< 1% Py grains (f.g m.g.)</pre>
		(03)								increase in ser toward	ds end	≪1% Po strs found with ser.
										of unit. bnds 70°.		
	1	1	**************************************							· · · · · · · · · · · · · · · · · · ·		91-3

PAGE 1 OF 4

\$\footnote{\sqrt{5}} = \footnote{\sqrt{5}}	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO 84-3
INTER	RVAL				DES	RIPTION	ı			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R A I N SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	C.R.%	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC)	MINERALIZATION, TYPE, AGE RELATIONS
										contact 71° (slip)	
										narrow calcite + qtz bands	
										(up to 1 cm wide)	
4.89	5.58	Ser -Qtz Phyll	lt gy	f.g.	fotd		Ро		100	1	. 2% Po strs + f.f. (along fol)
		(04)								minor qtz (+ feld) veinlets	
										& patches (brecciated). slip a	t
										contact	
5.58	6.78	Lst	lt gy	m.g.	bndd		Po,Py		100	c.g. calc-qtz patches + veinl	ets 1% Py f.gm.g. tr Po.f.g
		(03)								some appear as tension gashes	mostly with ser.
										(parallel to c.a.)	
										minor wispy ser. concens(1-2%)
										brecciated gy argl (f.g.) bnd	S
										bnds 68°-70°	
										unit appears shrd & recryst	
6.78	8.59	Lst	gy to dk	m.g.	bndd		Py,Po		100	narrow calcite-qtz bands	1% Py (f.g m.g.)
		(02)								bands 65-69 ⁰	tr Po strs
										minor dk gy, f.g. argl bnds	
										-appears that some calcite-qtz	
										bands are infilling small fau	lts
										-tension gashes (discontinuou	s)
										which are roughly parallel to	
										& offset ~ 2-7 cm. less calcit	
										qtz + more leuco towards cont	
8.59	8.83	Lst	v.lt gy	m.g.	bndd				100	10% v. narrow (up to 1 mm) se	
-		(03)								bnds.minor calcite-qtz lenses veinlets. bnds 72-74 . Slip a	&
										veiniets. bnds /2-/4 · Slip a	t contact.

PAGE ____ OF ___ 4

\$ si	ELCO	EXPLORATION WESTERN CANAD	Δ			DR	LL		LO	. HOLE NO84-3
INTER	VAL				DESC	RIPTION				STRUCTURE REMARKS
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	C.R.	(FRACTURES, FAULTS, FOLDING, BEDDING, MINERALIZATION, TYPE, AGE RELATIONS ETC.):
8.83	9.44	Qtz-Ser Phyll	Lt. gy	f.g.	fotd		Po, Py		100	soclinal (85°) folding 1% Po patches + f.f.
		(07)								minor qtz lenses (up to 1% Py patches with the
										4 cm wide) - feld.
										foln 78°; shrd. minor slip
										at 9.29 m
9.44	15.24	Chl-Qtz Phyll	grn	f.g.	fotd		Po, Py		100	shrd. minor qtz + bull qtz 2% Po strs, f.f.+patche
		(05)								lenses. foln 61°-70° 1% Py (f.gm.g.) most
										-at 9.79-10.37 m assoc. with qtz lenses
										more sil with numerous qtz
										(_ feld) lenses + v. narrow
										ser bnds
										- at 13.47-13.50 m dirty
										Qtzite
										-at 13.62 misoclinal folding
		·								before qtz-feld vein which
										has also been folded (ser
										bnds) (Plunge 85° to c.a.)
										- some of feld alt to ser.
										at 10.98-11.00 m broken core
										at 13.29 small slip(1 mm gouge)
-										(kink folds before slip)
										-at 14.38-14.59 m. large qtz
				ALLEGA TI A PROFITE TOWN TO THE RESIDENCE OF THE PERSON TO THE PERSON TH						veins(up to 5.5 cm wide) + ser
				and the control of the second						bands + feld grains (f.gc.g.)
										& sulph f.f. & chl.
	3									

PAGE _____ OF ____

DRILL HOLE NO.

\$ sı	ELCO	EXPLORATION WESTERN CANAL				DR	LL		LO	G	HOLE NO84-3
INTER	VAL				DESC	RIPTION				STRUCTURE	REMARKS
FROM	ТО	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE		(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										(feld grains are brecc)	-at 14.38-14.59 v. mind
									***************************************	bull & gy qtz	CPy in qtz vein with Po
										foln near end 72°-75°	+ Py
										-END OF HOLE -	
		- I di									
	1										
	4	4	J		L	L	<u> </u>	L			84-3

\$ sı	ELCO	EXPLORATION WESTERN CANAL				DR	LL		LO	G	HOLE NO	084-4
DRILLING CO.	CONNORS	LOCATION SKET	СН	DEPT	4 0	TESTS IP ANGLE	AZIMUT	' 1	E STARTED	Sept 6/64; Sept 10/64	PROJECT: J	I & L
			-	- COLLA	R	- 89.5°	232.0	90 DAT	E COMPLETE	D: Sept 10/84; Sept 17/84	N. T. S. :	32M/8E
				30	.48 m	- 87.5°	222 ⁰	COL	LAR ELEV.:	837.495	LOCATION: 10,670E	Crosscut
				60	.96 m	- 86.5°	222 ⁰	- 1	THING:	9,990.536		
				91	.44 m	- 85.2°	224 ⁰		TING:	10,669.767		
				117	.96 m	- 84 ⁰	222 ⁰		MUTH:	222 [°]		
UOLE TYPE							ļ	1	TH:	119.48 m	L	eptember 9, 1984
HOLE TYPE	DDH							COR	E SIZE:	B.Q.	LOGGED BY :	N.H.
INTER	RVAL	ROCK TYPE			DESCR	IPTION			- 1 -	STRUCTURE		E M A R K S
FROM	T 0		COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	MINERALS	PER METRE	S Core Recover	(FRACTURES, FAULTS, FOLDING, BE ETC):	DDING, MINERALIZATIO	N, TYPE, AGE RELATIONS
0.00	1.40	chl-phyll	dk gy	f.g.	fotd.	chl	po	highly	7 6%	thinly bndd, highly	tr po as	s smears on
		(05) grn						fract		foliated and fractured, too foln planes, and as		nes, and as
										highly fractured to measure thin discontinuous strs		
1.40	14.01	chl-ser phyll	med gy	f.g.	fotd.	chl+ser	po, py		100%	thinly bndd - unit con	tains - tr po as	s thin strs and
		(05)	grn							small Qte horizons @ 4	.00 - as smear	s on foln planes
										4.14, 6.92 - 7.00, 8.3	9 - 8.46, -locally	as blebs within
										9.37 - 9.50 these unit	s are qtz veir	ns.
										light gy and med bndd	with tr py as	m.g.
										ser + chl on foln plan	es diss gra	ains.
										qtz veins that locally	contain	
										feldspar account for ~	1% of the	
										unit.		
										Larger qtz veins occur	@ 4.67 -	
										4.87, 5.01 - 5.09, 5.6	1 - 5.68,	
										6.03 - 6.13. These qt		
										contain minor light gr	n chlorite	
										and white ser.		

PAGE 1 OF 34

\$\footnote{5}	ELCO	EXPLORATIO WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-4
INTER	RVAL					RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										Foln are regular except in	
										close proximity to the	
										qtz veins.	
										- foln is fairly constant	
										throughout ranging from 38° t	0
										45°.	
										small kink folds were	
										observed at 12.86	
										with f.ax at 78°.	
14.01	15.57	Qte	lt gy	m.g.	fotd.	ser	po, py		~ 100%	locally thinly bndd and	- tr po as diss grains
		(06)								locally semi massive - minor	and smears as foln planes
****										interbedded serphyll @ 14.04-	- tr po as diss grains
										14.18, and 14.87 - 15.50	and smears on folm. plane
										foln ranges from 38 ⁰ -45 ⁰	
										with ser on foln planes.	
15.57	15.74	Ser phyll	lt gy	f.g.	fotd.	ser+clay	As, po,		100%	thinly bndd with fault	- tr f.g. As associated
		(04)					ру			gouge @ 14.57 - 14.58	with po in strs assoc-
										c.b. f.f fault gouge is	iated with feldspar veins
										mod calcareous minor qtz-	- tr f.g. Po in strs
										feldspar veins that roughly	associated with feldspar
										parallel the foln.	veins and as smears on
										Foln is roughly 38°.	foln. planes.
·											- tr diss f.g. py.

PAGE 2 OF 34

\$ si	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G HOLE NO. 84-4	
INTER	VAL					RIPTION				STRUCTURE REMARKS	
FROM	т 0	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, MINERALIZATION, TYPE, AGE RELATED):	IONS
15.74	16.90	chl-ser phyll	med gy	f.g.	fotd.	chl+ser	po, py		100%	thinly bndd~2% qtz tr po as thin disconti	.n-
		(05)	grn							veins that contain minor uous strs associated w	ith
										c.g. feldspar; foln are qtz veins and as diss	
										generally highly regular grains and smears on f	oln
										except in the vicinity of planes.	
										qtz veins.	
										foln ranges from 38°-40°.	
										qtz veins crudely parallel	
										the folm.	
16.90	19.53	chl-phyll	med gy	f.g.	fotd.	chl+mino	py, po,		100%	thinly bndd - locally the - tr po as smears on fol	.n
		(05)	grn			ser	As			unit contain sericitic zones planes.	
										@ 17.56 - 17.67. The unit - tr As as f.g. diss gra	ins
										contains 1% qtz veins that distributed sparsely	
										locally contain minor feldspar throughout.	
										and light green chlorite tr py m-c.g. as thin	
										foln. ranges from 38°-45° discontinuous strs	
										The unit contains < 1% qtz associated with qtz-fe	eld-
					·					veins that locally contain spar veins, and as dis	ss
										minor c.g. feldspar. Veins grains throughout.	
										locally parallel the folm.	
										and in other localities the	
										veins have been folded with	
										a f.ax of 56°.	

PAGE ___ 3 ___ 0F ___ 34 ___

\$\frac{1}{5} = \frac{1}{5} = \	ELCO	EXPLORATION WESTERN CANAC				DR	ILL		LO	G	HOLE NO. 84-4
INTER	RVAL					CRIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
19.53	26.19	chl-ser phyll	med gy	f.g.	fotd.	chl+ser	ру, ро		100%	- unit contains small inter-	tr po as m.g. diss grns
		(05)	grn							bndd Qte, Qtz-chl phyll, and	and smears on foln planes
										ser phyll.	Locally as blebs assoc-
										- Qtz-chl phyll occurs @ 19.5	3- iated with Qtz-feldspar
										19.60, 19.76-19.80, 19.96-	veins.
										20.02, 20.38-20.46, 20.77-	
										20.82, 22.09-22.17, 22.51-	
										22.59, 22.72-22.77, 24.72-	tr py as c.g.
										24.76, 26.11-26.15	diss blebs and as thin
										Qte occurs @ 21.45-21.51	strs associated with po
										and 25.62-25.81.	and qtz veins.
										The remainder of the unit is	
										thinly bndd with ser content	
										varying throughout.	
										Foln. ranges from 43°-48°	
										and are highly regular	
										throughout.	
										Qtz veins occur locally with-	
										in the zone. These veins	
4										locally contain c.g. feldspar	•
										Larger veins occur @ 19.86-	
										19.90, 20.57-20.65, 22.20-	
										22.31, 23.91-24.01, and	
										25.31-25.42. The qtz veins	
										tend to occur in ser rich reg	ions.

PAGE 4 OF 34

DRILL HOLE NO. _____84-4

\$\frac{1}{5} =	ELCO	EXPLORATION WESTERN CANA				DR	LL		LO	G	HOLE NO84-4
INTER	VAL				DESC	RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										Qtz-feldspar veins parallel	
						-				and x-cut the foln @ 25.75	
										the veins are at 32°.	
										Locally the veins contain lt	
										grn chl.	
26.19	26.32	Qte	lt gy	m.g.	fotd.	ser+mino	r po		100%	thinly bndd and locally	- tr po as smears on
		(06)	grn			chl	-			weakly folded. Both contacts	
		<u> </u>	3=							have a high ser content. Foln	
										ranges from 50°-53°.	
		***************************************								Minor x-cutting qtz-feldspar	
										vein at an orientation of 30°	•
26.32	26.58	Lst	lt gy	m.g.	fotd.	minor se	r		100%	weakly bndd with minor ser	- barren of any sulphide.
		(03)				+qtz				on foln planes.	
										Foln ranges from 44° to 48°.	
26.58	40.02	Lst	med gy	m.g.	bndd	qtz	py, po		100%	Gy bndd Lst with localargill	iceous - tr py as f.g.
		(02)								(up to 3 cm wide) horizons an	
										sweats and veins that locally	
										qtz+feldspar. Lst is locally	·
										brecciated in and proximal to	The second secon
										ca sweats+ca-qtz veins account	
										~5% of the unit. Veins are 1	
										folded into ptygmatic folds.	
										the veins parallel the folm.	and as f.g. blebs

PAGE 5 OF 34

\$\footnote{5}\$	ELCO	EXPLORATIO WESTERN CANA				DR	LL		LO	G	HOLE NO. 84-4
INTER	RVAL				DESC	RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										Foln ranges from 38°-50°	in ca-qtz veins.
										throughout the zone with	
										no apparent trend.	
										- veining appears to diminish	
										near the centre of the unit.	
40.02	40.35	Lst	lt gy	m.g.	weakly	ser+qtz	py, As		100%	med bndd with lt grn ser bnds	. Al% As as v.c.g. fract
		(03)			bndd					locally mod silicified.	euhedra within a qtz-
										Foln throughout is 48°	feldspar vein.
										qtz-feldspar vein occurs	∼1% py as v.c.g. fract
										@ 39.14 - 39.18 which contain	s euhdera within a qtz-
· · · · · · · · · · · · · · · · · · ·										c.g. As+py.	feldspar vein.
40.35	40.67	Qte+ser phyll	lt gy	f.g.	fotd.	ser+mino	r py, po		100%	Interbdd Qte with ser phyll	- tr po as m.g. flattened
		(06) + (04)				chl				equal quantities of both	diss grains and as f.g.
										irregular foln especially	thin discontinuous strs.
										close to qtz veins. Zone	
										contains ~10% qtz veins	- tr py as f.g. euhedra
		·								that are locally folded	in thin strs associated
										foln~48°	with po.
****										veins contain minor feldspar.	
•											
	<u> </u>	J	J					<u> </u>			

PAGE 6 OF 34

DRILL HOLE NO. 84-4

 $\frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{$

SELCO	EXPLORATION WESTERN CANAD	Α			DR	LL		LO	G	HOLE NO	
INTER	VAL					RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
40.67	41.43	Ser-Qtz phyll	med gy -	f.g.	fotd.	ser+	po, py,		100%	thinly bndd with minor -	- tr Zns is one thin str
		(04)	grn			minor chi	Zns			interbedded Qte @ 40.93 -	@ 41.15 dk red.
										41.01. foln are locally	
										irregular especially near	- tr po as thin strs
										qtz veins - minor qtz-feldspa	r throughout the zone.
										veins.	- tr py as m.g. grains
										foln ranges from 38 ⁰ near	in strs associated with po.
										40.67 to 45° near 41.43.	
41.43	41.86	Qte+ ser phyll	lt grn -	f.g.	fotd.	ser	cpy, po,	mod	100%	Interbedded Qte with ser	- <1% po as m.g. flattened
		(06) + (04)	gy				py, As	fract		phyll zone is locally	diss grains and as f.g.
										highly fractured - measurable	components in thin strs
										foln. is ~35° foln are	associated with py and As.
										fairly irregular.	- Tr As as c.g. fract sub-
											hedra in strs associated
***************************************											with f.g. po.
											- Tr py f.g. component
											locally within po strs.
											- Tr cpy v.local as f.g.
											blebs within po strs.
41.86	42.35	Ser-Qtz phyll	med gy -	f.q.	fotd.	ser+	po, py,		100%	thinly bndd. < 1% qtz-	- Tr po f-m.g. blebs and
		(04)	grn			minor chl	As			feldspar veins.	thin irregular strs that
		1	3							foln are irregular but	crudely parallel both the
										faint and range from 35°	foln and locally the vein-
										to 45° with veins ranging	ing.

PAGE 7 OF 34

DRILL HOLE NO. _____84-4

\$\s	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-4
INTER	IVAL					RIPTION			The second secon	STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										from 25°-35°.	- Tr py m.g. associated
						*					with po in thin strs.
											- Tr As m.g. associated
										-	with py+po in strs
											especially near 41.86.
42.35	42.60	Qte	lt gy -	f.g.	fotd.	ser+chl	py, po		100%	- minor interbedded ser phyll	- tr py as c.g. diss
		(06)	grn							@ 42.49 - 42.53.	euhedral grains concentra-
										- Qte is semi-massive with	ted within the ser phyll
										irregular weakly developed	- tr po as m.g. blebs
										foln.	within the ser phyll and
											as f.g. diss grns within
											the Qte.
42.60	44.70	Ser-qtz phyll	med gy-	f.g.	fotd.	ser+	py, po		100%	thin to med bndd, mod regular	- tr py c.g. diss subhedral
		(04)	grn			minor ch				foln which is disrupted by	grains throughout the
										local qtz-feldspar veins.	phyllite.
										foln ranges from 35° to 40°	
										locally highly siliceous with	- tr po m.g. thin discon-
										a minor chl content. < 1% qtz	tinuous strs that x-cut
										veins that locally contain	the foln. and locally
			-							feldspar.	contain py.

PAGE 8 OF 34

\$5	ELCO	EXPLORATION WESTERN CANADA	Δ.	-		DR	ILL		LO	G	HOLE NO. 84-4
INTER	VAL					RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
44.70	45.26	Qtz-chl-ser phyll	med grn-	f-m.g.	fotd.	chl+ser	1		100%	V.thinly bndd; qtz content	- tr py c.g. subhedral
		(06)	ду	· · · · · · · · · · · · · · · · · · ·						variable throughout. foln.	diss grains.
										mod regular. Foln ranges	- tr po f.g. diss grains
										from 35°-40°. Very minor	and smears on foln. planes
										qtz veins.	
45.26	46.72	Qtz-ser-chl phyll	med. grn-	f.g.	fotd.	ser+chl	py, po		100%	thin to med bndd;slightly	- tr py c.g. subhedral
		(07)	дУ							irregular foln with small	diss grains.
										scale crenulations.	
										foln is disrupted in the	- tr po f.g. diss grainsand
										vicinity of qtz veins which	v.thin discontinuous strs.
-		Ÿ								occur @ 46.15 - 46.20,	
										46.32 - 46.35.	
										locally the qtz veins con-	
										tain minor c.g. feldspar	
										and f.g. light grn chl.	
46.72	47.10	Ser phyll	med. gy	f.g.	fotd.	ser+	po		+100%	V.thinly bndd - unit contains	- ⟨ 1% po as f.g. masses
		(04)	- grn			minor ch				a large interfingering qtz	within the qtz veins and
										veins @ 46.72 - 46.88 that	fractures at the vein
										contains minor f.g. lt grn	contacts.
										chl + a dk grn-blk mica?	
·											
· · · · · · · · · · · · · · · · · · ·											
				TARREST - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -							

PAGE ___ 9 __ 0F ___ 34

\$\ s	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO84-4
INTER	VAL				DES	RIPTION	1			STRUCTURE	REMARKS
FROM	T 0	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
47.10	47.37	Qtz vein	wh-gy	c.g.	vein	ser+	As, Zns		100%	Qtz vein contains.~15% ser	∼ 3% As c.g. fract
		(13)				minor ch	1			phyll frags and ~2% c.g.	subhedra concentrated
		·								feldspar.	in a discontinuous band
										Between 47.10 and 47.30 is	@ 47.10 - 47.30.
										a discontinuous band that	- tr Zns as small red blebs
										contains ~ 60% As in a qtz	within the above mentioned
										matrix.	band.
										The vein contains tr amounts	
										of lt green chl + a dk grn-	
										blk mica.	
47.37	48.75	Ser-Qtz phyll (04)	med gy -	f.g.	fotd.	ser+	po, As,		100%	thinly bndd with interbedded Qtz-ser phyll @ 47.47- 47.48,	- tr po f.g. thin strs that x-cut foln and are often
		1 (0.1)	3=		1		PI			47.63-47.84. These units are	associated with thin gtz-
										lighter gy than the surround-	
					1					ing phyllites.	with c.g. As.
										foln are fairly regular	- tr As c.g. fractured
										except @ 48.35-48.43 where	subhedra in thin strs
										foln have been disrupted by	associated with po.
										a qtz vein which contains	- tr py f.g. associated with
										minor c.g. fract feldspars	po in thin strs.
										foln are fairly constant	
										30° except near qtz vein.	
					-						
					1						

\$ si	SELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO84-4
INTER	VAL				DES	RIPTION	l			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
48.75	50.86	chl phyll	med-dk	f.g.	fotd.	chl+	po, py		100%	V.thinly bndd minor inter-	- tr po thin strs that
		(05)	gy-grn			minor ser				bndd Qtz-chl phyll @ 49.73-	parallel the foliation and
										49.79 and 50.35-50.48. (1%	diss grains that are
										qtz veins with minor c.g.	locally smeared on foln
										feldspar. These veins	planes.
										parallel and crosscut the	- tr py m.g. subhedral diss
										foliation. Zone is mod.	grains within po strs and
										fractured @ 50.45-50.48	throughout the phyllite.
										foln ranges from 30°-35°	po and py are locally in
										and is fairly regular.	small blebs within qtz
											veins.
50.86	51.90	chl-ser phyll	med-dk	f.g.	fotd.	chl+ser	po, py		100%	V.thinly bndd - unit con-	- < 1% po thin strs that
		(05)	gy-grn							tains a small unit of Qtz-	roughly parallel the foln.
										ser phyll @ 51.72 - 51.82.	these strs are locally
										The main zone contains~1%	associated with qtz-
										Qtz vein with one large vein	feldspar veins. Locally
										@ 81.07 - 81.17 which con-	po occurs as f.g. diss grns
										tains minor c.g. feldspar and	that have been smeared on
										f.g. lt grn chl	the foln planes.
										foln is regular except near	
										the above mentioned qtz vein	- tr py c.g. subhedra
										foln range from 35°-38°.	associated with po strs
											and as diss grains.

PAGE ____11___ OF ___34___

DRILL HOLE NO. ____84-4

\$s	ELCO	EXPLORATION WESTERN CANAC				DR	ILL		LO	G	HOLE NO. 84-4
INTER	RVAL				DES	RIPTION	ı	0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		STRUCTURE	REMARKS
FROM	ТО	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
51.90	53.63	chl phyll	dk grn -	f.g.	fotd.	chl+	po, py		100%	V.thinly bndd - minor inter-	- tr po as v.thin strs
		(05)	gy			minor ser				bedded ser phyll @ 53.01-	that crudely parallels the
										53.08 - minor interbedded	foln and as diss grains
	·									Qte @ 53.61-53.63.	in the phyllite and the
										The zone contains < 1% qtz	qtz veins. locally the
										vein with minor feldspar.	diss grains have been
										two larger qtz veins occur	smeared on foln planes.
										@ 52.47-52.49 and 52.57-	
										52.62 - veins crudely	- tr py m-c.g. diss sub-
										parallel foln.	hedra throughout and
										foln is regular throughout	locally associated with
										the unit except v.locally	po strs and qtz veins.
										around the above mentioned	
										qtz veins and locally where	
										there are minor open folds.	
										foln ranges from 36°-45°	
										with a weak trend of in-	
										creasing foln towards the	
										centre of the zone.	
53.63	56.03	chl-ser phyll	med gy-	f.g.	fotd.	chl+ser	po, py,		100%	thinly bndd. locally	<1% As c.g. fract subhedra
		(05)	grn				As			irregular foln which is	in strs with interstitial
										often associated with qtz	Po. These strs occur
			-							veins ~1% qtz veins that	between 53.63 and 53.87.
		•			-					locally tr amounts of m.g.	<pre>< 1% po as thin strs that</pre>
					<u> </u>	<u> </u>				feldspar and minor light	crudely parallel foln.

PAGE 12 OF 34

\$\sqrt{s}	ELCO	EXPLORATION WESTERN CANA				DR	ILL		G	HOLE NO84-4	
INTER	RVAL				DES	CRIPTION	ı			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										grn chl.larger qtz veins	locally the strs occur
										occur @ 55.00-55.04 (folded)	, associated with qtz veins.
										55.16-55.19, 55.61-55.64, and	po also occurs inter-
										two v.white veins @ 55.88-	stitially in As strs and
										55.90 and 55.97-56.03.	as an irregular mass with-
										qtz veins are folded and	in the qtz vein at 55.97-
										boudinaged and locally con-	56.03.
		,,								tain up to 60% feldspar.	- tr py m.g. diss grains
										foln. ranges from 35°-45°.	throughout and associated
											with po mass within the
											qtz vein at 5.97-56.03.
56.03	58.14	chl phyll	dk grn -	f.g.	fotd.	chl+		locally	100%	Thinly bndd - highly fract.	- tr py c.g. subhedra diss
-		(05)	gy			minor ser	As	highly fract.		between 56.71-57.66 with	within phyllites assoc-
										minor fault gouge @ 56.71-	iated with the qtz vein
										56.74.	@ 57.51-57.33.
										<1% qtz veins with c.g.	
										fract. feldspar + minor	- tr As c.g. diss grains
										lt grn chl.	associated with py and qtz
										two mod Qtz veins occur	veins.
										@ 56.65-56.70 and 57.51-	
										57.53.	- tr po as flattened diss
										foln are fairly irregular	grains and smears on foln
										with zones that the chl is	planes.
										aligned subparallel to the	
										core axis.	

PAGE 13 OF 34

SELCO		EXPLORATION WESTERN CANA		· · · · · · · · · · · · · · · · · · ·		DR	ILL		LO	G	HOLE NO 84-4
INTER	VAL					CRIPTION				STRUCTURE	REMARKS
FROM	ТО	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										foln are locally folded with	
						-				small scale discontinuous	
										folds @ 56.29	
		775077500000000000000000000000000000000								foln are ~40°-45°.	
58.14	59.12	Qtz vein	white	c.g.	vein	ser-chl	py, po		100%	qtz vein contain -	- tr py as c.g. subhedra
		(13)								~ 15% chl-ser phyll	localized in strs and blebs
										~ 5% v.c.g. feldspar	within the qtz vein.
										∼ tr lt grn chl	
										contacts at both ends	- tr po within thin strs
										are discordant with	often associated with py
										the folm.	and appear to follow
										Ser phyll occurs @ 58.22-	fractures within the qtz
										58.28.	vein.
										feldspar is concentrated	
										near the phyll and occurs as	
										white to creamy white v.c.g.	
										fractured subhedra in feldspa	ar
										strs and as diss grains with:	in
										the qtz veins.	
										locally the feldspars are	
										being replaced by sericite	
										feldspar strs appear to	
										follow fractures within the	
										qtz.	
			1								

PAGE 14 OF 34

\$ s	ELCO	EXPLORATION WESTERN CANA				DR	LL		LO	G	HOLE NO 84-4
INTER	VAL				DESC	RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
59.12	67.08	chl-Qtz phyll	med gy-	f.g.	fotd.	chl+	po, py		_	thinly bndd with minor	- tr py c.g. diss
		(05)	grn			minor ser		fract		interbndd chl-ser phyll and	subhedra distributed
						plag				chloritic Qte and Qtz-chl	throughout and locally
										phyll. Qte occurs @ 60.75-	within strs associated
										60.84, 60.96-61.14, 63.68-	with po.
										63.84.	
										Qtz-chl phyll occurs @	- tr po in thin strs and
										66.86-66.94.	flattened grains
										Chl-ser phyll occurs @	parallel to foln and
										60.84-60.96.	locally as smears on
										Zone contains~1% qtz veins	foln planes.
										concentrated near the middle.	
										Qtz-veins contains tr feldspa	r.
										There are also very minor fel	d-
										spar blebs and strs within th	e
										phyllite, plag occurs locally	
										as m.g. diss grains (alterati	on).
										foln are regular except near	qtz
										veins and in local folded reg	ions.
										foln range from 28°-48° with	no
										apparent trends of varying fo	ln.
										f-a.x. @ 64.90 is 83°.	
67.08	69.01	Qtz-chl phyll (06)	dk grn	f.g.	fotd.	chl, pla	g po, py		100%		 d - tr py c.g. diss subhedra ndd. and as m.g. diss grains.
		(00/								Chl-Qtz phyll @ 68.27-68.41	within qtz-feldspar veins

PAGE 15 OF 34

\$ si	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO84-4
INTER	VAL				DESC	RIPTION	N			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE		(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										zone contains tr amounts of	
						ĺ				qtz+feldspar veins that crude	ely - tr po as flattened diss
										parallel the foln and locally	grains and smears on
										crosscut the foln at a low	foln planes.
										angle.	
									*	Plagioclase occurs locally	
										within the zone and between	
										67.79 and 68.78 plagioclase	
										attains a concentration of	
										~ 20%. Plag occurs as m.g.	
										diss grains that appear to	
										be secondary and due to	
										alteration, plag is creamy	
										white and imparts a yellowish	1
										tinge to the core.	
										Plag is concentrated in thin	
										local bnds that x-cut the	
										foln at a low angle that is	
							-			the orientation of an earlier	
										metamorphic fabric that is	
										visible @ 67.82-67.86 and	
										is disrupted by the younger	
										foln. that is pervasive	
- 40-7										throughout the unit.	
			_							Foln range from 38°-45°.	

PAGE 16 OF 34

\$5	ELCO	EXPLORATION WESTERN CANAL				DR	ILL		LO	G	HOLE NO 84-4
INTER	VAL				DES	RIPTION	1			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING,	MINERALIZATION, TYPE, AGE RELATIONS
69.01	76.31	Chl-Qtz phyll	med grn-	f.g.	fotd.	chl+	po, py		100%	thinly bndd with variable	<1% m.gc.g. diss
		(05)	ду			minor ser	+			ser+qtz contents. Minor	subhedral and euhedral
										interbndd Qtz-chl phyll	grains locally concen-
										@ 72.53-72.68, 74.73-	trated in thin strs and
										74.75, 74.83-74.88.	blebs often associated
										unit contains ~ 2% qtz	with qtz veins.
										veins that are locally folded	- tr po dominantly as
										and locally contain minor	small blebs within qtz
										lt grn chl+feldspar.	veins associated with py.
										The unit locally contains	
										m.g. diss plag in tr	
										amounts.	
										Larger qtz veins occur @	
										69.57-69.76, 73.95-74.03,	
										74.33-74.42, 74.47-74.50,	
										74.92-74.94, 75.33-75.36,	
										75.44-75.53, 76.26-76.31.	
										These intervals	
										may contain up to 50% wall	
										rock and up to 20% feldspar.	
										Foln are regular throughout	
										except in zones associated	
										with qtz veins when the chl	
										has been displaced and has	
										locally been aligned parallel	
										to the core axis.	

PAGE ____17__ OF __34____

\$s	ELCO	EXPLORATION WESTERN CANADA	Δ			DR	ILL		LO	G	HOLE NO. 84-4
INTER	R V A L				DESC	RIPTION	N .			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										Foln ranges from 40°-50°	
						·				with a mode of 45°.	
										Mini crenulations can be	
										observed locally on foln	
										planes.	
76.31	77.78	Qtz-chl phyll	lt grn -	f.g.	fotd.	chl +	py, po		100%	thinly bndd locally contains	- tr py as c.g. diss
		(06)	дУ			minor plag				minor qtz-feldspar veins	subhedral grains through-
										that are locally folded and	out.
										x-cut the folm.	- tr po as small flattened
										Two foln are visible -	diss grains.
										one is an older metamorphic	
										fabric that is now cut and	
										displaced by the newer more	
										prominant foln.	
										Foln is 60° .	
										Zone contains minor m.g.	
										plagioclase diss throughout.	
77.78	83.12	chl-ser-Qtz phyll	med grn-	f.g.	fotd.	chl+ser	py, po,		100%	thinly bndd ranging from	- tr py as m-c.g. subhedra
~	-	(05)	дĀ				As			f.g. to ultra f.g.	in thin strs parallel to
										locally the phyllite has	foln and as diss grains
										a negligible qtz content.	throughout. Locally py is
										Zone contains~1% qtz	associated with As and
										veins that locally contain	po in strs.
		<u> </u>								minor feldspar.	

PAGE 18 OF 34

DRILL HOLE NO. ____84-4

\$\footnote{5}	ELCO	EXPLORATION WESTERN CANAC				DR	ILL		LO	G	HOLE NO 84-4
INTER	RVAL		1		DESC	RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
									-	The zone locally contains a	- tr As as c.g. subhedra
										small ser phyll band @ 83.00-	in strs associated with
										83.16.	qtz and feldspar and
										Foln is fairly regular	locally with py and po
										throughout except in folded	prominant As strs occurs
										zones and in zones associated	@ 80.01-80.02, 82.08-
										with qtz veins.	82.09.
										Foln ranges from 45°-55°.	- tr po as thin irregular
											strs and within As+py
											strs. Po also occurs
											as m.g. flattened diss
											grains and smears on
											foln. planes.
83.12	83.30	Qtz-chl phyll	lt med	f.g.	fotd.	chl+	ру		100%	thinly bndd folded folns	- tr py as c.g. euhedra
		(06)	grn		folded	minor plag				folding is too small scale	within a stringer that
										to obtain f-a.x. measurement.	is parallel to the
										Zone contains minor feldspar	feldspar veins with an
										veins (~1 mm wide). The zone	orientation of 43°.
										also contains tr amounts of	
										f-m.g. diss plagioclase	
										(probably as an alteration	
										product). Foln that is well	
										developed in surrounding rocks	3
										is weakly developed and slight	ly
										disrupts the folded folm obser	rved.

PAGE 19 OF 34

\$ s	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO 84-4
INTER	VAL					RIPTION				STRUCTURE	REMARKS
FROM	т о	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
83.30	86.64	chl-ser phyll	med grn -	f.g.	fotd.	chl+ser	ру, ро		100%	thinly bndd with locally	- tr py as c.g. euhedra
		(05)	9y							highly irregular foln	and subhedra diss
										especially in heavily	throughout and concen-
										veined regions.	trated in thin strs
										Unit contains > 5% qtz veins	often associated with
										that locally contain lt grn	feldspar veins and
										chl+c.g. feldspar.	locally with po.
										Unit locally contains	
										minor interbndd Qtz-chl phyll	- tr po as irregular strs
										@ 83.47-83.52, 85.70-85.74,	and blebs within qtz
										86.20-86.24, 86.33-86.38.	veins and locally within
										Folding is too discontinuous	the phyllite.
										to measure any f-a.x.	
										Foln in less fotd regions	
·										is~56°.	

PAGE ______ OF _____ 34

MINERALIZED ZONE

\$ si	ELCO	EXPLORATION WESTERN CANA				DR	LL		LO	G	HOLE NO. 84-4
INTER	VAL				DESC	RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
86.64	87.56	Ser-Qtz phyll	lt gy-	f.g.	fotd	ser+	ру, ро		100%	mottled with irregular foln.	- tr po as thin strs that
		(04)	grn			minor chl				contains minor qtz veins whic	h crudely parallel foln.
										locally contain minor c.g.	- tr py associated with
										feldspar. The veins cross-	po strs.
										cut the foln. Foln ranges	
										from 40°-45°.	
87.56	89.08	Ser phyll	lt gy -	f.g.	shrd	sertchl	py, po,		100%	mottled with irregular foln -	-~1% py m-c.g. fract
		(04)	grn				As			contains ~ 20% qtz veins that	subhedra within med
										are folded and contain minor	strs associated with po
										feldspar - folding is too	prominent strs are at
										hectic to get any f-a.x.	87.56-87.58, 87.92-
										measurements. Foln range	87.95, 88.08-88.11 and
										from 40°-45°.	a pyritic zone at the
										Foln at contact with M.S. @	M.S. contact @ 89.07-
										89.09 is 45°.	87.95.
											-~l% po irregular masses
											and strs that crudely
											parallel the foln and
											as a matrix in py strs.
											- tr As m.g. subhedral
											grains in po, py strs.
			-								
			1								

PAGE 21 OF 34

\$ s	ELCO	EXPLORATION WESTERN CANA				DR	LL		LO	G	HOLE NO
INTER	IVAL				DES	RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
89.09	90.79	M.S.	brassy	c.g. frags	milled		pbs, py,		100%	70% py	
		(12)	brown	f.g. matrix			As, Zns			25% As	
									-	2% Zns	
										1% Qtz blebs	
			-							1-2% qtz gangue	
-										The zone is a continuous zone that contains~40% c.g. round	
										rounded As grains within a f.	.g. matrix of ~30% py, ~20%
										As, ~2% Zns. Locally between	n 90.17 and 90.35 Zns has been
										remobilized into thin Zns str	cs. This same zone contains
										√5% wt qtz blebs. Tr pbs occ	curs as m.g. blebs within the
										qtz blebs.	
										The contact at 89.08 contains	s remobilized Zns strs and c.g.
										fract. As within a qtz gangu	ue. Contact is $@ \sim 42^{\circ}$.
										The contact @ 90.79 is gradat	cional into a zone of M.S. with
										decreased py and increased As	s and Zns.
90.79	90.92	M.S.	mauve	f.g.	milled	minor ser	As, Zns,		100%	75% As	
		(12)					ру			15% Zns	
										3% py	
										2% ser phyll frags (lc Zr wi	ocally ser phyll frags contain ns that stop abruptly at contact th M.S.)
										5% Qtz blebs	
										f.g. milled M.S. with ~3% c.g	g. rounded py grains and \sim 1%
										m.g. rounded As grains with~	2% ser phyll and 5% Qtz as

PAGE 22 OF 34

\$\s	ELCO	EXPLORATIO WESTERN CANA				DR	ILL		LO	G	HOLE NO 84-4
INTE	RVAL				DESC	RIPTION	V			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										rounded frags within a f.g. m	matrix composed of 80% As and
										20% Zns.	
										Locally Zns has been remobili	zed in local areas associated
										with rounded qtz blebs.	
										Contact @ 90.79 is gradationa	l as described above.
										Contact @ 90.92 is at 50° and	is fairly abrupt with f.g.
										As rich M.S. on the upper sid	e at m.g. Zns rich stringer
										massive sulphide on the lower	side.
90.92	91.01	M.S.	red brn	m.g.	lace work	minor se	Zns, As	s,	100%	50% Zns	
		(12)					ру		·	tr As	
										tr py	
										15% ser phyll frag	s
										35% qtz gangue	
										- Zns lacework that engulfs a	nd locally penetrates
										phylitic frags. Zns is dk	orange-red.
										- As occurs within the zone a	s f.g. diss grains
										concentrated near the conta	cts @ 90.92 and 91.01.
										- Py occurs as f.g. diss grai	ns also concentrated near
										the contacts.	
										- Contact @ 90.92 is abrupt a	s described above.
										- Contact @ 91.01 is gradation	nal, grading downwards into
										a lower concentration of Su	lphides with a decrease in
										Zns and an increase in As+p	у.
										Contact is $0 \sim 40^{\circ}$.	
			_1							- Locally Zns strs appear to	be folded with the ser phyll fra

PAGE 23 OF 34

DRILL HOLE NO. ____84-4

\$ s	ELCO	EXPLORATION WESTERN CANAL				DR	LL		LO	G	HOLE NO. 84-4
INTER	VAL				DESC	RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
91.01	92.54	Ser-Qtz phyll	lt grn-	f.g.	fotd.	ser+	Zns, As,		100%	thinly bndd with locally	1 → 3% Zns
		(04)	дУ			minor chl	ру			siliceous zones and ser phyll	> 1% py
									-	zones. Unit contains ~5%	<1% As
										sulphides.	
										Zone contains ~2% qtz veins	- Zns occur as thin, red,
										that locally contain minor	irregular strs that
										feldspar.	crudely parallel the
						-				Foln are locally irregular	foln.
										and in local zones have been	- Locally Zns strs x-cut
										displaced by minor slips.	Qtz-veins.
										Locally the zone appears to	- Zns strs often contain
										be highly folded with small	tr diss f.g. As.
										scale kink folds.	- Py occurs as c.g.
										Foln ranges from 45 ⁰ -65 ⁰ .	subhedra within thin py
										Zone was continued to 92.54	strs and as diss grains
										to incorporate all the Zns	throughout the unit.
										strs.	
											As occurs as f.gm.g.
											subhedra diss within Zns
											and Py strs and as diss
											grains within the ser-qt:
											phyll.
92.54	97.54	Ser-Qtz phyll	1t med	f.g.	fotd.	ser+	As, py,		100%	thinly bndd locally siliceous	- ∠1% As c.g. fract
		(04)		gy-grn		minor chl	po			contains 1% qtz veins that	subhedra within thin
										locally contain minor feldspar	. stra that crudely

PAGE 24 OF 34

\$\footnote{5}	ELCO	EXPLORATION WESTERN CANAD				DR	ILL		LO	G	HOLE NO 84-4
INTER	RVAL	_				RIPTION				STRUCTURE	REMARKS
FROM	ΤO	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										Generally foln are fairly	parallel the foln.
										regular but are locally irreg	- Prominent As strs occur
										ular within zones of high ser	@ 94.10-94.13, 94.98-95.00
**************************************										content and in areas associat	ed 95.08-95.10. As strs have
										with qtz veins.	a qtz gangue.
										Foln ranges from 38°-45°.	- <1% po in thin strs
		_								Small kink folds occur @	often associated with
										96.50 with f-a.x. of 44°.	qtz veins and locally
											with As strs. Po also
											occurs as diss grains
											and smears on foln.
											planes.
											- tr py occurs as c.g.
											subhedra within qtz veins
											and as diss m.g. through-
											out the phyllite.
											- mineralization decreases
											past 95.90 with po strs
											being the main mineral-
											ization.
										(hole was exte	ended - continued next page)

\$\s	ELCO	EXPLORATION WESTERN CANA				DR	LL		LO	G	HOLE NO. 84-4
INTER	RVAL					RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
97.54	103.41	Qtz-ser phyll	med gy -	f.g.	fotd.	ser	As, po,		98%	thinly bndd foln is fairly	- 1% po, < 1% As, tr py,
		(07)	grn				py, Zns			regular throughout the unit	tr Zns.
										foln ranges from 37°-47°.	- po occurs as thin-med
,										The unit contains. 1% qtz	irregular locally discon-
										veins that v.locally contain	tinuous strs and locally
										minor feldspar.	as irregular masses within
										Small kink folds disrupt the	qtz veins.
										folm locally and have f-a.x.	- As occurs as c.g. fractured
										of 340-460 and axial planes	subhedra within med bnds
										6°-15°.	associated with qtz and
											locally with py+Zns.
											These bnds occur @ 97.98-
											98.02 and 98.35-98.38.
											- py occurs as m.g. subhedra
											within po strs and locally
											associated with As bnds.
	-		1								- Zns occurs as red m.g.
											irregular masses associated
											with the As band @ 97.98-
	 										98.02.
103.41	104.01	Ser-phyll	lt-med	f.g.	fotd.	ser+clay	, po	highly	45%	- fault zone within thinly	- 1% po as thin strs
	llength	(04)	дy					fract		bndd pyll. Shearing appears	and smears on foln and
	0 .32 m)									to have been localized along	slip surfaces.
										foln planes.	

PAGE _____ OF ____ 34

\$ s	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-4
INTER	RVAL				DESC	RIPTION	١			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
104.01	106.20	Ser phyll	lt grn -	f.g.	fotd.	ser	po, py,		96%	thinly bndd - foln is mod	
		(04)	93				As, Zns	weakly fracture	d	irregular with increasing	~ 2% py, 1% As, tr po,
										regularity towards 106.20	tr Zns.
										corresponding to an increased	l - py occurs as m-c.g.
										qtz component within the	subhedra in thin-med
										phyll and a decreasing	strs associated with qtz
										qtz vein content.	and locally with Zns and
										Foln ranges from 37°-45°.	As and v.locally with po
										The unit contains 3% qtz	strs.
			·							veins that crudely parallel	- As occurs as c.g. fract
										and locally disrupt the foln.	subhedra in a bnd assoc-
											iated with qtz @ 105.83-
											105.92 and as a minor
											component in py+Zns strs
											bnds and strs crudely
											parallel the foln.
											- po occurs in thin strs
											that crudely parallel the
											foln.
											- Zns occurs as dk orange-
											red interstiatial masses
											and strs within py strs
											concentrated between
											105.32 and 105.59.
	<u> </u>	L									

PAGE 27 OF 34

\$ s	ELCO	EXPLORATION WESTERN CANADA	Δ	-		DR	ILL		LO	G	HOLE NO. 84-4
INTER	VA L				DESC	RIPTION	١			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
106.20	108.02	Qtz-Chl-Ser phyl]	med-dk	f.g.	fotd.	ser+chl	po, py,		100%	thinly bndd - mod regular	2% po, tr py, tr Zns
		(06)	gy-grn				Zns			foln throughout	- po occurs as thin strs
										foln ranges from 40 ⁰ -45 ⁰	throughout that parallel
								_		Unit is locally highly	the folm. Po also occurs
								-		siliceous.	as thin selvages in local
										The unit contains minor	qtz veins and as slick-
										boudinaged qtz veins that	enside smears on foln
										crudely parallel the folm.	planes.
											- py occurs as m.g. sub-
7											hedral diss grains
											throughout.
		,	-								- Zns occurs between 107.38
											and 107.43 as irregular
											strs and masses associated
											with qtz veins and po strs.
108.02	109.62	Qtz-Ser-Chl phyll	lt gy…−	f.g.	fotd.	ser+	po, py,		100%	thinly bndd - mod irregular	1% po, tr py, tr As.
(actual	length		grn			minor chl				foln throughout. The unit	- po occurs as thin, irreg-
1	.89 m)									contains ~3% qtz veins that	ular discontinuous strs
										are boudinaged and roughly	that crudely parallel the
										parallel the foln.	foln except when they are
										The unit is mildly calcareous	associated with qtz veins
										foln ranges from 38°-45°.	the po forms irregular
											masses and strs.
											- py occurs as m.g. diss
											subhedra throughout, local

PAGE 28 OF 34

\$ si	ELCO	EXPLORATION WESTERN CANADA	Δ.			DR	LL		LO	G	HOLE NO. 84-4
INTER	VAL				DES	CRIPTION				STRUCTURE	REMARKS
FROM	TO	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
											concentrated in thin po
						-					strs.
											- As occurs as m.g. diss
											subhedra, concentrated
											thin bnds @ 108.53-108.61.
109.62	109.99	Qte	lt grn -	f.g.	fotd.	ser+chl	py, po,		100%	thin-med bndd - fairly regula	r tr py, tr po, tr As
		(06)	д У				As			foln x-cut by either another	
										foln or a fracture plane	- py occurs as m.g. subhedra
										foln is 0_{\wedge} 45° with the	in thin strs that parallel
										second folm or fract @ 30° -	and x-cut the folms.
										mineralization is concentrate	d - po occurs in this strs
										along the shallower foln.	locally associated with py.
			-							Unit is mildly calcareous	- As occurs m.g. subhedra
											within thin po strs.
109.99	111.45	Qtz-Ser-Chl phyll	lt-med	f.g.	fotd.	ser+	As, pbs,		100%	thinly bndd - heavily veined	1% py, 1% po, <1% Zns,
		(07)	gy-grn		veined	minor chl	py, Zns,			between 110.75-111.45 in	tr As, tr pbs.
										this interval the unit	- py occurs as m-c.g.
										consists of~ 30% qtz veins	subhedra as diss grains
										which contain minor 1t grn	and within thin discontin-
										chl+feldspar+sulphides.	uous strs and irregular
										foln is fairly irregular and	blebs associated with qtz
										highly irregular in heavily	veins.
										veined zones.	- po occurs in thin, irreg-
										foln ranges from 44°-47°.	ular discontinuous strs

PAGE 29 OF 34

\$\footnote{5} = 1	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO
INTER	RVAL				DES	RIPTIO	٧			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
											roughly parallel to the
						-					foln and as irregular
											blebs associated with
											qtz veins.
											- Zns occurs as thin bnds
											associated with qtz veins
											@ 110.78-110.79, and
											11.08. The zone is dk red
											and is associated with As.
											- As occurs as m.g. subhedra
											within Zns bnds, and in
											thin strs.
											- pbs occurs as m.g. diss
											grains within the qtz
·											veins.
111.45	114.82	chl-Qtz phyll	med grn-	f.g.	fotd.	chl+ser	po, Zns,		100%	thinly bndd - fairly regular	1% po, 1% py, tr As,
		(05)	gy				As, pbs,			foln throughout	tr Zns, tr pbs.
							ру			foln ranges from 40° near	- po occurs as thin, irreg-
										111.45 to 55° near 114.82	ular discontinuous strs
										The unit contains.~1-2%	that locally parallel the
										qtz veins that locally	foln.
										contain mod feldspar	- py occurs as m-c.g. diss
										qtz veins locally disrupt	euhedra plus as c.g.
										the foln.	subhedra within thin strs
							L			The unit contains three	associated with po.

PAGE 30 OF 34

\$ si	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-4
INTER	VAL					RIPTION				STRUCTURE	REMARKS
FROM	ТО	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core	(FRACTURES, FAULTS, FOLDING, BEDDING,	MINERALIZATION, TYPE, AGE RELATIONS
										sericitic zones @ 113.41-	- As occurs in a thin bnd
										113.76, 114.26-114.49,	of M.S. @ 113.01-113.05
										114.76-114.82.	that consists of 80% c.g.
											fract subhedral As with-
											in a qtz gangue with tr
											Zns, tr pbs, tr py.
											- Zns occurs as red inter-
											stitial grains within the
											above mentioned massive
											As zone.
											- pbs occurs as m.g. diss
											grains locally within qtz
											feldspar veins and within
											the above mentioned mass
											As bnd.
114.82	119.48	chl-ser phyll	med-dk	f.g.	fotd.	chl+ser	po, py,		100%	thinly-v.thinly bndd	tr po, tr py, tr As.
		(05)	gy-grn				As			mod regular foln throughout	- po occurs as thin discon-
~			132 3							except in mildly folded zones	tinuous strs that parallel
										foln ranges from 40°-50°	the folm, and locally as
										locally the foln are folded	small irregular masses
										into short period open folds	within qtz veins, and as
										with f-a.x. of 65°.	smears on foln.
										The unit contains ~1% qtz vei	ns - py occurs as f-m.g. diss
										that locally contain feldspar	
										The unit contains several hig	

PAGE 31 OF 34

\$\si	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO 84-4
INTER	VAL					RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE		(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										sericitic zones @ 117.33-	locally associated with As.
										117.36 and 117.69-117.98.	- As occurs in several thin
										The unit also contains several	strs as m-c.g. subhedra
										interbndd Qtz-ser phyll zones	associated with py @
										@ 116.06-116.12, 116.22-116.34	, 116.67-116.71. As does
										and 119.32-119.43.	not occur beyond this
									·		point in the hole.
										- END OF	HOLE -
-											
		· · · · · · · · · · · · · · · · · · ·									

PAGE 32 OF 34

DRILL HOLE NO. 84-4

SE	LCO		ORATION RN CANADA			DR	ILL L	OG	S	amp	le d	data	
	SAN	1 P L E			CORE	RECOVERY	VISUAL ESTIMATES		ASSAY	RESUL	T S	Make Specific Control of the Control	
NUMBER	FROM	ΤO	TOTAL	Sp. Gr	%	AMT. LOST	(% ORE MINERALS)		% Pb	% Zn	% As	g/t Ag	g/t Au
47029	47.10	47.24	0.14		100		√3% As, tr Zns		0.08	0.09	4.210	2.2	4.7
47030	88.08	89.08	1.00		100		√1% Po, 1% Py, tr As		0.04	0.04	0.309	4.0	0.1
47031	89.08	89.96	0.88		100		70% Py, 25% As, 2% Zns tr Pbs in a Otz ganque	,	10.30	12.50	4.470	217.6	14.1
47032	89.96	90.79	0.83		100		70% Py, 25% As, 2% Zns tr Pbs in a Otz gangue		16.60	12.50	3.640	355.6	12.6
47033	90.79	90.92	0.13		100		75% As, 15% Zns, 3% Py Qtz+ser gangue.	,	37.30	15.30	1.070	725.7	12.0
47034	90.92	91.01	0.09		100		50% Zns, tr As, Py in Qtz gangue with minor	al	frags 7.99	22.20	1.430	154.3	8.2
47035	91.01	91.88	0.87		100		~3% Zns. > 1% Pv. <1% As	1	0.53	7.05	0.633	14.4	0.7
47036	91.88	92.54	0.66		100	actual length	~3% Zns, >1% Py, ∠1% As		0.81	3.15	1.040	12.0	1.7
47037	92.54	93.54	1.00		100		<1% As, <1% Po, tr Py		0.06	0.17	0.155	0.1	0.2
47038	93.54	94.54	1.00		100	actual length	<1% As, <1% Po, tr Py		0.04	0.03	0.932	5.9	0.3
47039	94.54	95.54	1.00		100		<1% As, <1% Po, tr Py		0.02	0.02	0.644	3.2	0.3
47040	95.54	96.54	1.00		100		tr As, tr Po, tr Py		0.01	0.02	0.023	3.4	< 0.1
47041	96.54	97.54	1.00		100		tr As, tr Po, tr Py		< 0.01	0.01	0.005	0.1	< 0.1
47042	87.56	88.08	0.52		100		∿l% Po, Py, tr As		0.29	0.09	0.019	5.3	0.2
			- Contin	uation of	hole -								And the same of th
47098	97.54	98.40	0.85		100		2% As, tr Po, tr Zns,	tr Py	0.01	0.03	2.150	2.7	0.7
47099	98.40	99.41	1.01		84	actual length 0.85	tr As, tr Po		<0.01	0.01	0.108	2.5	0.2
47100	99.41	100.41	1.00		100		1% Po, tr As		< 0.01	0.01	0.038	4.6	0.2
47101	100.41	101.41	1.00		100		1-2% Po, tr Py		< 0.01	< 0.01	0.008	4.5	0.3
47102	101.41	102.41	1.00		100		tr Po, tr Py		< 0.01	< 0.01	0.010	4.1	< 0.1
47103	102.41	103.40	0.99		100	actual length	1% Po, tr Py		< 0.01	< 0.01	0.002	4.0	0.1
47104	103.40	104.01	0.61		45	actual length	1% Po		< 0.01	0.01	0.005	2.5	0.3
47105	104.01	104.71	0.70		100		1% Po, tr Py, tr As		0.03	0.01	0.206	3.1	0.3
47106	104.71	105.51	0.80		88	actual 7 dength	4% Py, < 1% Zns, <1% As		0.19	0.19	1.300	6.7	2.2
47107	105.51	106.20	0.69		99	actual length	3% As, 1% Py, tr Po, t:	r Zns	0.16	0.06	2.780	8.6	0.3
47108	106.20	107.06	0.86		100	0.68 actual length 0.90	√2% Po, tr Py, tr Zns		< 0.01	< 0.01	0.018	< 0.3	0.5

PAGE 33 OF 34

DRILL HOLE NO. ____84-4____

\$ SE	LCO		OR ATION RN CANADA			DR	ILL L	OG	8	amp	le d	lata	
	SAM	PLE			CORE	RECOVERY	VISUAL ESTIMATES		ASSAY	RESU	LTS		
NUMBER	FROM	T O	TOTAL	Sp. Gr	%	AMT. LOST	(% ORE MINERALS)		₩ Pb	% Zn	% As	g/t Ag	g/t Au
47109	107.06	108.02	0.96		100		l% Po, tr Py, tr Zns		< 0.01	0.02	0.011	3.9	0.2
47110	108.02	108.78	0.76		100		1% Po, tr Py, tr As		0.01	< 0.01	0.470	5.3	0.2
47111	108.78	109.62	0.84		100	actual length	1% Po, tr Py		< 0.01	< 0.01	0.066	1.2	0.1
47112	109.62	109.99	0.37		100		tr Py, tr Po, tr As		< 0.01	< 0.01	0.071	1.9	0.2
47113	109.99	110.75	0.76		100		1% Po, 1% Py, tr As		0.01	0.01	0.432	2.5	0.3
47114	110.75	111.45	0.70		100		1% Zns, 1% Py, 1% Po,	tr Pbs, tr As	0.09	0.21	0.236	5.9	0.3
47115	111.45	112.35	0.90		100		1% Po, 1% Py, tr Pbs		0.07	0.01	0.019	2.6	0.1
47116	112.35	113.25	0.90		100		1% As, 1% Po, tr Py, t	z Zns, tr Pbs	0.12	0.04	0.891	5.0	1.2
47117	113.25	114.04	0.79		100	actual length	1% Po, tr As		0.02	0.04	0.064	3.3	0.1
47118	114.04	114.82	0.78		100	actual length	tr Po, tr As, tr Zns		0.01	0.06	0.170	3.8	0.3
47119	114.82	115.82	1.00		100		tr Po, tr Py		< 0.01	0.01	0.006	2.6	0.1
47120	115.82	116.82	1.00		100		tr Py, tr Po, tr Zns		< 0.01	0.01	0.192	2.4	0.3
	•												
							The second secon						
					 								
					1								

PAGE 34 OF 34

\$ s	ELCO	EXPLORATION WESTERN CANAC				DR	LL		LO	G		HOLE NO84-5
DRILLING CO	CONNORS	LOCATION SKET	СН	DEPT	н р	TESTS IP ANGLE	AZIMUT	H DATE	STARTED:	September 10, 1984	PROJEC	J&L
			-1	- COLL		- 45.5°	?	1	COMPLETED	September 13, 1984	N. T. S. :	82M/8E
				30	.48 m	- 45 ⁰	226		AR ELEV.:	837.527	LOCATIO	N: 10,670 Crosscut
				60		- 44 ⁰	229		THING:	9,989.563		
				90	.00 m	- 42.5°	229			10,669.738		
								AZIM		222 ⁰		
						***************************************		DEPT		90.53 m	DATE LO	September 17, 1984
OLE TYPE	D.D.H.							CORE	SIZE:	B.Q.	LOGGED	BY: N.H.
INTE	RVAL	DOCK TYPE			DESCR	IPTION				STRUCTURE		REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BE ETC):	DDING,	MINERALIZATION, TYPE, AGE RELATIONS
0.00	0.61	lost core						-	0%			
0.61 1.42	chl phyll	dk grn	f.g.	fotd.	chl+	po	mod frac	100%	V.thinly bndd, evenly	ract-	tr po as diss grains and	
	7.01 1.42	(05)				minor ser				ured throughout (subpar	allel	minor smears on foln
										to foln)		planes.
										folm is regular through	nout	
										foln ranges from 72°-80)°	
										The unit contains tr an	nounts	
										of qtz-feldspar veins	hat	
										crudely parallel the fo	oln.	
·												
1.42	4.90	chl-ser phyll	med gy	f.g.	fotd.	chl+ser	po	locally	100%	V.thinly bndd, locally	folded	tr po - occurs as f.g.
		(05)	grn					mod frac	t	@ 4.28-4.44 folds exist	with	diss grains and smears
										fractures along axial	olanes.	on foln planes.
										This folded region is		
										fractured to obtain f.		
			1							or axial plane orienta		
										tr amounts of qtz vein		
	L	41			J	J	L			LET AMOUNTES OF GEZ VEIN	occur	04-5

PAGE _____ OF __41____

\$ 5	ELCO	EXPLORATION WESTERN CANADA	1			DR	ILL		LO	G	HOLE NO. 84-5
INTER	RVAL				DES	RIPTION	I			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										within the unit and contain	
						-				minor lt grn chl+feldspar.	
4.90	7.33	chl phyll	dk grn-	f.g.	fotd.	chl+	po	mod fract	85.6%	V.thinly bndd - minor inter-	- tr po occurs as thin
		(05)	gy			minor ser			- 17 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	bndd chl-ser phyll @ 6.14-	irregular strs and as
										6.22, and 6.40-6.66	diss grains and smears
										foln is regular throughout an	d on foln planes.
										ranges from 68°-76°	
										The unit contains tr amounts	
										of thin qtz-feldspar veins	
			S							that parallel the folm.	
7.33	8,44	ser-qtz-chl phyl	l med gy	f.g.	fotd.	ser+chl	po		100%	V.thin-thinly bndd - minor	- tr po as thin discontin-
		(04)	-grn							interbndd Qte @ 7.43-7.56	uous strs parallel to
										foln is fairly regular with	foln, and as diss grains
										increasing regularity with	and smears on foln planes.
										increasing qtz component	
										foln is ~80°	
										small kink folds have f-a.x.	
										at 85° and an axial plane	
										of ~21°	
										The unit contains tr amts	
-										of thin qtz-feldspar veins.	
8.44	9.57	Qte	lt grn -	f-m.g.	fotd.	minor ser+chl	po, py	locally	100%	The unit is generally massive	- tr po as diss grains and
		(06)	gy .		locally			fract		with minor fotd regions	v. thin discontinuous strs

PAGE __2 ___ OF ___41

\$\ s	SELCO	EXPLORATIO WESTERN CANA				DR	ILL		LO	G	HOLE NO 84-5
INTE	RVAL				DES	RIPTION	V			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										that contain minor ser+chl.	- tr py as v.local
										Qte has a speckled appearance	. m.g. diss grains.
										The unit contains 1% qtz	
										veins with a large qtz vein	
										@ 8.81-8.88. This qtz vein	
										contains minor dk chl+feld-	
										spar at the veins contact.	
										With the Qte there are	
										feathery protrusions of	
										ser into the vein material	
										foln within the unit are	·
										fairly irregular and range	
										from 55°-82°.	
										Sheared zones occur @ 8.58-	
										8.62 and 8.79-8.80.	
	10.07	11 11							1000	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
9.57	18.27	chl phyll	med-dk	f.g.	fotd.	chl+ser+	po, py	locally mod frac	100% t	thinly-v.thinly bndd, ser	tr po, tr py
		(05)	grn-gy			plag				content varies throughout.	- po occurs as v.thin dis-
										Locally the unit contains	continuous strs that
·										interbndd Qte @ 16.64-	parallel the foln and as
								<u> </u>		16.71, 17.72-17.81, and	irregular blebs within
										18.21-18.23 folding occurs	qtz veins. Locally po
										locally within the Qte with	occurs as m.g. diss grains
										an axial plane at 70° and a f-a.x. of 82° @ 16.66.	and smears on foln planes
****							-			a r-a.x. of 82 @ 16.66.	- py occurs as m.g. diss
	لــــــا			<u> </u>	L	L	L	1		L	subhedra both within

PAGE 3 OF 41

SELCO		EXPLORATIO WESTERN CANA				DR	ILL		LO	G	HOLE NO
INTE	RVAL		Ī			RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core	(FRACTURES, FAULTS, FOLDING, BEDDING,	MINERALIZATION, TYPE, AGE RELATIONS
										The unit also contains minor	the phyll and locally
										interbndd Qtz-chl phyll @	within the qtz-veins.
										11.46-11.59, 14.54-14.59,	
										16.81-16.86, 16.52, 16.55	
										within the Qtz-chl phyll	
										an earlier fabric is folded	
										and disrupted by the later	
										regional folm.	
										foln are fairly regular	
*****										throughout and range from	
										70°-82°.	
										The unit contains ~ 1%	
-										qtz veins a feldspar vein	
										that locally x-cut the foln	
										at a low angle. Locally	
										the veinsare folded. Locally	
										tr m.g. plag occurs diss in	
										zones associated with	
										qtz-feldspar veins.	
18.27	18.47	qtz-ser phyll	lt-med	f.g.	fotd.	ser+	po, py,		100%	thin-med bndd, unit is a	tr po, tr py, tr As
		(07)	gy-grn			minor chl	As			thinly inerbndd sequence of	- po occurs as diss grains
										Qte+ser phyll	and smears on foln planes
										foln are regular throughout	- py occurs as diss m.g.
~										and range from 75°-85°	subhedra only visible
										@ 18.37 the foln have been	on foln planes.

PAGE ___4 __ OF ___41

\$\footnote{\sigma} = \footnote{\sigma} = \foot	SELCO	EXPLORATION WESTERN CANADA	1			DR	LL		LO	G	HOLE NO 84-5
INTER	VAL					RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										displaced and weakly dragged	- As occurs as m.g.
						-				along a v.thin slip plane	diss euhedra only visible
										oriented @ 65°, the slip	on foln planes.
										plane now hosts a v.thin qtz-	
										feldspar vein.	
18.47	18.90	Lst	lt gy	m.g.	bndd	ser	py, po		100%	thin-med bndd locally contain	s tr py, tr po
		(03)								thin-med bnds of sericitic an	d - py occurs as m.g. diss
										argillaceous material. Local	ly euhedra.
						-				the unit contains qtz blebs	- po occurs as smears on
										dominantly concentrated in	foln planes (partings).
										coarser grained bnds and ca	
										veins.	
										bnding is oriented @ 80°-85°	
										- gradational contact @ 18.90	
										into a darker grey Lst	
										with increased ca veins (swear	cs).
			•								
18.90	26.18	Lst	med-dk	m.g.	bndd	minor ser	ру	locally	100%	thin to med bndd with	tr py as m.g. diss
		(02) close to an	дУ					fract		local thin to med argilliceou	euhedra throughout and
		(03)								bnds. The unit contains ~3%	concentrated to 1% within
										casweats and contains~2%	argilliceous bnds.
										qtz-ca veins. The upper	
										section @ 18.90-19.35 contain	S
										~ 50% casweats and locally	
										contains small (2 mm x~4 mm)	

PAGE _____5 ___ OF ____41___

\$ s	ELCO	EXPLORATION WESTERN CANA			•	DR	ILL		LO	G	HOLE NO. 84-5
INTER	VAL					RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
									,	remnant frags of argilliceous	6
										material within the ca sweats	3
										bnding is oriented @ 74°-90°	
										both large scale open folds	
										and small scale hectic tight	
										folds are present locally	
										within the unit.	
										Open folds located @ 21.65-	
										21.73 have f-a.x. @ 86°-90°	
										and axial planes @ 74 ⁰ -78 ⁰	
										the small scale tight folds	
										have an axial plane of 71°	
										Qtz-ca veins ~ 60% c.g.	
										Ca with 40% subrounded	
										Qtz blebs (2 mm across	
										to 15 mm across).	
·										The unit grades in an 02	
							-			Lst at both contacts.	
26.18	26.35	Lst	lt-med	m.g.	bndd r	minor ser	ру		100%	thin-med bndd, unit	tr py as m.g. diss
		(03)	gy							locally approaches an (03)	euhedra throughout.
										Lst. Unit has an abrupt	
										contact @ 26.35 that	
										x-cuts bnding at a low	
			_							angle.	
			<u>.j.</u>	<u> </u>						bnding is oriented @ 80°-82°.	

PAGE 6 OF 41

\$\footnote{5} \text{s}	ELCO	EXPLORATION WESTERN CANAI				DR	ILL		LO	G	HOLE NO
INTER	RVAL				DESC	RIPTION	١			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING,	MINERALIZATION, TYPE, AGE RELATIONS
										the contact @ 26.35 is	
										oriented @ 70°.	
26.35	26.56	Ser-Qtz phyll	lt gy -	f.g.	veined	ser	Zns, pbs	,	100%	irregular foln throughout	5% Zns, 3% py, <1% As,
		(04)	grn				As, py			The unit contains ~ 25%	tr pbs.
										qtz-feldspar veins that	- Zns occurs as dk red bnds
										have disturbed the folms.	@ 26.35 and 26.54-26.56
										Lower contact of unit is	the lower bnd @ 26.54-
										a Zns bnd which has a	26.56 is associated with
					-					lower contact@ 26.56	py, As, pbs and a qtz-
77.47.22										which is oriented @ 65°	feldspar vein.
										and is subparallel to	- py occurs as c.g. rounded
										the foln within the	subhedra within the Zns
										next unit.	band @ 26.54-26.56.
											- As occurs as c.g. sub-
											rounded subhedra within
											the Zns bnd @ 26.54-26.56
											- Pbs occurs as m.g. diss
					·						xtals diss within qtz-
											feldspar vein associated
	,										with the Zns bnd at 26.54-
											26.56.
26.56	27.12	ser-qtz phyll	lt gy -	f.g.	fotd.	ser+	Zns, po,		100%	thinly bndd - regular foln	tr po, tr Zns, tr py
		(04)	grn			minor ch	py			except between 26.94-27.05	- po occurs as flattened
										where the foln has been	diss grains throughout and

PAGE ______ OF ____41___

\$\footnote{\sigma} \sigma}	ELCO	EXPLORATION WESTERN CANADA	Λ			DR	ILL		LO	G	HOLE NO84-5
INTER	RVAL				DESC	RIPTION	I			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										disrupted by qtz veins that	locally as irregular blebs
										locally contain minor lt grn,	and thin strs associated
										chl+minor feldspar.	with qtz-feldspar veins.
										foln ranges from 65°-70°.	- Zns occurs as dk red thin
										The unit contains ~10%	irregular strs associated
										qtz veins described above.	with qtz-feldspar veins
											@ 26.56-26.57 and @
****											26.88-26.89.
											- py occurs as m-c.g. diss
·											euhedra throughout and
											locally as small diss blebs
						1					in qtz feldspar veins.
27.12	29.52	ser-chl-qtz phyll	lt-med	f.g.	fotd.	chl+ser+	po, py,		100%	thinly bndd - regular foln	tr As, tr po, tr py,
-		(04)	gy-grn			plag	As, Zns			throughout except @ 27.84-	tr Zns.
										28.01 where the zone appears	- As occurs as c.g. subhedra
										to be highly folded and veined	within two strs associated
										foln ranges from 75°-90°	with qtz-feldspar veins
										The unit contains ~1% qtz-	@ 29.45-29.46 and @ 29.47-
										feldspar veins. Locally	29.48. As also occurs
										the veins are penetrated	locally as c.g.
										by feathery sericite wisps.	Subhedra associated with
										The zone locally contains	po strs.
										f-m.g. diss plag especially	- Po occurs throughout as
										@ 27.50-27.61, 28.70-28.82,	thin irregular strs and
										and 29.39-29.45. The plag	diss grains. It locally

PAGE 8 OF 41

\$5	ELCO	EXPLORATION WESTERN CANAD				DR	ILL		LO	G	HOLE NO84-5
INTER	RVAL				DESC	CRIPTION	l			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										imparts a yellowish tinge to	occurs as thin discontin-
										the rock - towards 29.52 some	uous selvages around qtz
										of the plag may be Barite	veins.
										(oxidized to a yellowish	- py occurs as m.g. diss
										orange colour.	subhedra and euhedra
				v=							throughout, and locally
											as m.g. subhedra in po
											strs.
											- Zns occurs as dk red v.thir
				***************************************							strs in several location @ 27.63 associated with Po and at 28.94 associated
											with qtz-feldspar veins.
29.52	30.90	chl-ser phyll	med grn	f.g.	fotd.	chl+ser	po, py		100%	thinly bndd even, regular	tr po, tr py
		(05)	- gy							foln throughout	- po occurs as thin discon-
										tr amts of qtz feldspar	tinuous strs that crudely
										veins. One larger vein	parallel the foln and as
										occurs @ 29.83-29.86	irregular blebs within qtz-
										which contains 50% qtz	feldspar veins.
										and 50% v.c.g. fractured	- py occurs as m-c.g. sub-
										feldspar. The veins	hedra within thin strs
										crudely parallel the folm.	associated with po and as
				Manager (Manager)						foln range from 84°-85°.	diss grains throughout.

PAGE 9 OF 41

\$ si	ELCO	EXPLORATION WESTERN CANAL				DR	ILL		LO	G	HOLE NO. 84-5
INTER	VAL	_			DESC	RIPTION	V			STRUCTURE	REMARKS
FROM	ΤO	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
30.90	33.55	Qte	lt gy	f-m.g.	mass, to	minor chl+ser	po		100%	V.thinly bndd to mass, clean	tr po occurs as f.g.
		(06)			weakly fotd					with minor interbndd qtz-chl	flattened diss grains
										phyll near 30.90. The	that have locally been
										regional foln is not well	smeared on foln planes.
										developed. The prominant	
										foln present appear to be	
		-								an earlier metamorphic	
										fabric. These foln are	
~~~	,									folded into v.small scale	
				····						folds. Orientation on	
1										these folds is difficult	
										because the unit is clean	
										and there are no folded	
										marker horizons for	
										measurement. The unit	
										contains tr qtz-feldspar	
***************************************										veins.	
33.55	34.36	qtz-chl phyll	lt to dk	f.g.	bndd	chl	po		100%	thinly bndd - mass. The	tr po as flattened f.g.
		(06)	grn-gy							unit grades locally into qte	diss grains.
					·					bnding is oriented @ ~70°.	
										The unit has increasing	
										chlorite component towards	
										34.36.	
										The unit contains tr amts of	
										thin qtz-feldspar veins.	

PAGE ______ OF _____41____

\$\s	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-5
INTER	RVAL				DESC	RIPTION	1			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
34.36	34.92	chl-ser phyll	med-dk-	f.g.	fotd	chl+ser+			100%	thinly bndd highly irregular	tr po, tr py
		(05)	grn-gy			minor pla	g			foln in zones associated with	- po occurs as m.g. diss
										qtz veins.	flattened grains through-
										foln where it is more regular	out and locally as thin
										is @~75°.	discontinuous strs.
										The unit contains ~7% qtz	- py occurs as m.g.
										veins that are boundinaged	diss subhedra.
										and contain variable amts	
***********										of feldspar and locally	
·										contain minor lt grn chl	
···										locally the unit contains	
										strs and diss grains of	
										yellow stained plag?	
~										which are concentrated	
										in the highly veined	
										regions of the unit.	
34.92	38.75	Qte	lt gy	m.g.	weakly	minor chl+ser+	ру		100%	thinly-v.thinly bndd - mass	- tr py as f-m.g. diss
		(06)			fotd.	plag				The unit is locally chloritic	euhedra throughout.
										The massive sections have a	
										sucrosic texture.	
										The folm are poorly developed	
										and range from 68°-90°.	
										An earlier metamorphic fabric	
										is observed locally and is	
	<u> </u>	<u> </u>		L			<u> </u>	<u></u>		folded and disrupted by the	

PAGE ____11___ OF ___41___

SELCO INTERVAL		EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-5
INTER	RVAL					RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										regional folm.	
										The zone contains minor qtz-	
										feldspar.	
										Locally m.g. plag. occurs	
										as diss grains, locally	
										these grains have been	
										stained yellow.	
38.75	39.32	chl-ser phyll	med grn	f.g.	fotd.	chl+ser	py, po		100%	thinly bndd. foln are fairly	tr py, tr po
		(05)	<b>-</b> 9y							irregular except between	- py occurs as m.g. diss
										39.02 and 39.10 where the	euhedra locally concen-
										foln is ~70°.	trated into thin irregular
										The unit contains ~10% qtz	strs often associated with
										veins which contain minor	qtz veins.
										feldspar and lt grn chl.	- po occurs as m.g. diss
										A large qtz vein occurs @	grains within qtz veins.
										38.75-38.82.	
39.32	40.48	Qte	lt gy -	f-m.g.	mass	chl+plag	ру		100%	thinly bndd - mass.	- tr py as m.g. diss euhedra
		(06)	grn		- Dilda					The unit contains interbndd	throughout and locally
										chl phyll @ 39.57-39.72	concentrated in blebs
										and contains interbndd Qtz-	within qtz veins.
										chl phyll @ 40.27-40.48.	
										Qte locally has a sucrosic	
										texture.	
										foln (bnding) ranges from	

PAGE 12 OF 41

\$ s	ELCO	EXPLORATION WESTERN CANAD	Δ			DR	ILL		LO	G	HOLE NO. 84-5
INTER	VAL				DESC	RIPTION	1			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										70°-89°. The unit contains	
										∼l% qtz-feldspar veins that	
										are locally boudinaged and	
										folded.	
										In one locality @ 40.35 the	
										qtz vein has been folded	
										with a f-a.x. of $80^{\circ}$ and	
										an axial plane @ 59°.	
		- N								The qtz vein parallels an	
										earlier metamorphic fabric	
		•								that is locally disrupted	
										by the regional folm.	
										Locally the zone appears	
										to contain yellow stained	
										m.g. diss plag. (up to 10%).	
40.48	41.82	chl-ser phyll	med-dk	f.g.	fotd.	ser+chl+	po, py		100%	thinly bndd - fairly regular	
•		(05)	gy			minor pla	g			foln throughout.	
										foln of ~ 69°	
										The unit contains a small bno	đ
										of chl phyll @ 41.15-41.30.	
	·									Two small slip planes with	
										minor fault gange occur @	
										40.80 and @ 41.71 both	
										oriented prallel to the	
										foln.	

PAGE 13 OF 41

\$ s	SELCO	EXPLORATION WESTERN CANA	ANADA DRILL LO						G	HOLE NO. 84-5	
INTER	VAL				DESC	RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										The unit contains tr amts of	
										dk gy qtz veins that are	
										folded.	
										The unit locally contains	
										minor m.g., diss, yellow	
										stained plag.	
								10001111			
41.82	43.83	chl phyll	dk grn-	f.g.	fotd.	chl	ру	locally mod fract	100%	thinly-v.thinly bndd	tr py as m-c.g. diss
		(05)	дĀ							regular foln throughout	euhedra throughout.
										except in v.local zones	
										associated with qtz veins	
										Foln ranges from 65°-69°.	
										The unit contains ~1% qtz	
										veins that locally contain	
										minor lt grn chl + feldspar.	
										The small veins locally	
				w						parallel the folm.	
43.83	44.15	Otz-ser phyll	gy :-brn	f.q.	fotd.	ser+	ру		100%	thinly bndd foln are regular	tr py occurs as diss
		(07)	<del>                                    </del>			minor chl				in zones without qtz veins	m-c.g. euhedra throughout
				***************************************						and mod irregular in zones	and as c.g. subhedra
										associated with qtz veins	associated with the qtz
										folm is ~45° in undisturbed	veins.
										regions.	
										The unit contains ~15% qtz	
										veins that locally	

PAGE ____14___ OF ___41___

\$\frac{1}{5} =	ELCO	EXPLORATION WESTERN CANAD				DR	ILL		LO	G	HOLE NO. 84-5
INTE	RVAL					RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC)	MINERALIZATION, TYPE, AGE RELATIONS
										contain minor dk grn chl	
										+ feldspar.	
										The veins crosscut the foln	
										at low-high angles.	
										The unit is mod fract between	1
										44.00 and 44.15.	
44.15	44.75	Qtz-chl phyll	med-dk	f-m.g.	fotd.	chl+ser+	ру	mod fract	100%	thinly bndd - massive.	- tr py as m.g. diss
		(06)	gy-grn			plag				locally the unit has	euhedra throughout.
										a speckled appearance due	
										the f-m.g. diss plagioclase	
										foln are regular throughout	
										and are oriented @ ~70°.	
										The unit contains < 1% qtz	
										veins which locally contain	
										minor feldspar + lt grn chl.	
										The zone is mod fract espec-	
										ially near 44.15.	
44.75	46.58	chl phyll	dk grn-	f.g.	fotd.	chl+	py, po	locally	100%	thinly bndd - regular	tr py, tr po
		(05)	gy			minor ser	1	mod fract		foln throughout	- py occurs as m.g. diss
										v.locally highly siliceous	euhedra throughout, and as
										The unit contains zones	c.g. subhedra associated
										with tr m.g. diss plagioclase	e. with qtz veins.
										foln ranges from 80°-90°	- po was only observed as
					<u> </u>		<u></u>			with the steeper angles	v.local smears on folm plan

PAGE 15 OF 41

\$ si	ELCO	EXPLORATION WESTERN CANAD	ρΔ			DR	ILL		LO	G	HOLE NO. 84-5
INTER	VAL				DESC	RIPTION	V			STRUCTURE	REMARKS
FROM	т 0	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
,										near the centre of the unit.	
										The unit contains tr amts	
										of qtz veins that contain	
										minor lt grn chl + feldspar.	
46.58	48.76	chl-ser phyll	med-dk	f.g.	fotd.	chl+ser	py, po	minor	100%	thinly bndd variable ser and	tr po occurs in thin
		(05)	gy-grn					fault gouge		chl content, minor interbndd	strs often associated with
								gouge		Qte @ 48.41-48.49.	py one larger str occurs @
										Thin bnd of fault gouge	46.90-46.91 that contains
										(2 mm wide) @ 47.83.	c.g. py.
										foln is regular throughout	
										and ranges from 70°-85° with	tr py as m.gc.g.
										no apparent trend	subhedral diss grains
					-					Unit contains <1% qtz veins	that are locally concen-
										which contain minor feldspar	trated into thin strs.
										and lt grn chl. Locally the	
										zone contains v.thin feldspar	
										veins that parallel the folm.	
48.76	49.79	Qte	lt gy	f.g.	fotd.	ser	py, po,		100%	V.thin-med bndd.variable ser	<pre>&lt;1% py as c.g. and f.g.</pre>
		(06)					Zns, As			content with local zones of	subhedra in thinstrs
										qtz-ser phyll that grade into	locally associated with
	-									qte.	Zns and As especially near
										Dominant folm is regular and	the contact @ 49.79.
										it cross cuts and disrupts	
			1							an earlier fabric that appear	s

PAGE _____16___ OF ____41

\$ s	ELCO	EXPLORATION WESTERN CANA				DR	LL		LO	G	HOLE NO84-5
INTER	VAL				DESC	RIPTION		And the second s		STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
									_	as v.small scale folds that	tr po in thin strs that
										have been dragged along the	are discordant with the
										dominant foln.	foln and as flattened diss
										The dominant foln ranges	grains and smears on foln.
										from 74 ⁰ -82 ⁰ .	Po is absent below 49.54.
											tr As as m.g. subhedra
											within strs associated
			ļ								with py and near the
											contact @ 49.79 As is
											associated with a Zns
·										-	str.
											tr Zns in a thin str @
			-								49.78.
49.79	50.27	M.S.	brassy	c.g. grn:	milled	ser	py, As,		100%	65% py	
		(12)	brn	in f.g.			Zns			20% As	
				Mucrix						10% Zns	
										~3% ser phyll frags	
										l% Qtz vein frags	
										1% Qtz gangue at con	tact @ 49.79
										A highly pyritic zone occurs	between 49.85-49.89 that
								-		consists of 80% py and 20% As	•
										The top 3 cm of the zone bet	ween 49.79 and 49.82 consists
										of 60% c.g. fractured As + 20	% c.g. and f.g. py + 5% m.g.
			-							red Zns within a qtz matrix.	
				<u> </u>		<u> </u>				L	

PAGE 17 OF 41

\$\footnote{\sigma} \sigma}	ELCO	EXPLORATION WESTERN CANAL			DRILL LOG DESCRIPTION STRUCTUR	G	HOLE NO84-5					
INTER	IVAL				DESC	RIPTION			-	STRUCTURE	REMARKS	
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS	
										The remainder of the unit con	sists of 10% c.g. rounded	
										py + 5% c.g. rounded As + 3%	rounded phyll frags + 1%	
-										Qtz blebs in a f.g. matrix of	dominantly py + Zns with	
										minor As.		
										The zone has a decreasing py	content towards 50.27 and an	
										increasing Zns content toward	s 50.27.	
										Locally Zns has been remobili	zed into m.g. red strs within	
										qtz blebs and locally into v.thin strs that penetrate		
		•								phyllite frags. Contact @ 49.79 is at 65° and is fairly		
										abrupt. Contact @ 50.27 is gradational.		
									J-1			
50.27	50.43	M.S.	red-brn	m.g.	milled	ser	Zns, As,		100%	40% py		
		(12)					ру			35% Zns		
										15% As		
										5% ser phyll frags		
							,,,,			5% qtz blebs		
										The zone consists of ~5-10% r	ounded c.g. As + ~10% rounded	
										c.g. py + 5% folded stretched	and rounded ser phyll frags	
										+ 5% rounded and stretched qt	z blebs within a matrix of	
									,	f.g. py and Zns with minor As	•	
										Zns within the matrix is a la	cework of red Zns that locally	
										penetrates and is folded with	in ser phyll frags and qtz	
										blebs.		
										The lower contact is a zone f	rom 50.39-50.43 composed of	

PAGE ____18___ OF ___41___

\$\ s	ELCO	EXPLORATION WESTERN CANAL				DR	ILL		LO	G	HOLE NO. 84-5
INTER	RVAL				DESC	RIPTION	1			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
									$\sim$ 50% Zns in a lacework of or	ange Zns that engulfs and	
						·				locally penetrates boudinaged	ser phyll frags and boundin-
										aged qtz blebs.	
										This contact has a crude orie	ntation of 85 ⁰ .
										This zone also contains ~1% c	.g. subhedral As.
50.43	50.81	Ser-Qtz phyll	lt gy-	f.g.	fotd.	ser	Zns, py		100%	thinly bndd, fairly irregular	∼1% Zns as orange m.g.
actual = C	length .48 m	(04)	grn				pbs			folm. Zone contains ~5%	strs that crudely parallel
										boundinaged qtz veins.	the foln. These strs
										Foln ranges from 79 ⁰ -86 ⁰ .	locally cross cut qtz
											veins.
											- tr py is c.g. subhedra
											localized in strs often
											associated with qtz veins.
											- tr pbs as m.g. diss
											euhedra associated with
											Zns strs.
50.81	50.88	Qtz	gy silve	r c.g.	veined		As, Zns,		100%	Qtz ~40% sulphides	
		(13)					py, pbs			~ 35% As	
										3% Py	
										1-2% Zns	
										tr pbs	
										60% qtz gangue	
											actured grains diss throughout
								but concentrated near the t	wo contacts.		

PAGE ___ 19 __ 0F ___ 41 ___

\$ s	ELCO	EXPLORATION WESTERN CANAC				DR	ILL		LO	G	HOLE NO. 84-5
INTER	VAL				DESC	RIPTION	١			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										- Py occurs as m.g. fractured	subhedra concentrated near
										50.88.	
										- Zns occurs as v.thin strs a	and irregular blebs dominantly
										concentrated near 50.88.	
										- Pbs occurs as f.g. diss euh	edra near the contact @ 50.88.
										- grain size of As tends to i	ncrease towards both contacts.
										- both contacts are concordan	t with the foln.
										contact @ 50.81 is at 82 °	
										contact @ 50.88 is at 75°	
50.88	51.58	Qtz-ser phyll	lt grn -	f.g.	fotd.	ser	Zns, py,		94%	thinly bndd and locally folde	ed ~3% Zns
( actual	length 70 m)	(07)	9 <u>y</u>				pbs, As			into open folds. Zone contai	ns ~1% As
	, ,									~15% qtz veins that locally	~ 1% Py
										disrupt the folm.	tr Pbs
										Foln range from 72 ⁰ -90 ⁰ .	- Zns occurs as red and
											orange strs that are
											locally concentrated in
											lacework massive sulphides
											@ 50.98-50.99 and
·											51.46-51.50.
											- As occurs as c.g.
											fractured subhedra con-
											centrated in local thin
											strs locally associated
											with Zns.
							<u> </u>				- Py occurs as m-c.g.

PAGE ______ 20___ OF _____ 41____

\$\si	SELCO	EXPLORATION WESTERN CANA				DR	LL		LO	G	HOLE NO. 84-5
INTER	RVAL				DESC	RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING,	MINERALIZATION, TYPE, AGE RELATIONS
											subhedra locally concen-
											trated in thin strs
											throughout.
											- Pbs occurs as f.g. euhedra
											diss within zones assoc-
	·										iated with Zns.
51.58	52.06	M.S.	silver-	c.g.	sulphide	ser	As, Zns,		94%	80% As	
(actual	length 0.62 my	(12)	brn		brx		pbs, py			5% Zns	
	.,,									5% py	
										tr pbs	
										2% ser-Qtz phyll	remnants
										10% qtz gangue + r	ounded qtz blebs
										The zone consists of several	zones of v.c.g. brecciated
										As separated by zones of mill	ed sulphides and zones of Zns
					-					lacework.	
										- As occurs dominantly as v.c	.g. brecciated grains in a qtz
										matrix locally associated w	with c.g. py. As also occurs
										within the milled bnds as c	.g. rounded grains and as a
•										component within the f.g. m	atrix.
										- Zns occurs within thin strs	that locally form coelescing
										masses of lacework Zns ofte	n associated with rounded
										qtz blebs Zns is dominantly	red with minor orange Zns
										often in the same strs.	
										- py occurs locally with the	c.g. As breccia as c.g.

PAGE 21 OF 41

\$ s	ELCO	EXPLORATION WESTERN CANAD				DR	ILL		LO	G	HOLE NO 84-5
INTER	R V A L				DESC	RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										irregular masses that appear	to locally replace the As.
										Py also occurs in the milled	bands as both c.g. rounded
										grains and within the fine g	rained matrix.
										- pbs occurs as diss grains us	ually associated with Zns
										rich zones.	
52.06	55.67	Ser-Qtz phyll	lt grn-	f.g.	fotd.	ser	Po, As,		94%	thinly bndd, locally highly	~ 1% Py
(actual	length	(04)	9y		folded		Py, Zns,			folded unit contains ~ 5% qtz	∠l% As
							Сру			veins that are locally folded	<1% Po
										with the folm. Folding is	∠l% Zns
										locally highly complex with	tr Cpy
										folds locally being refolded	
										and sheared off.	- py occurs as c.g. sub-
										Axial planes of folds range	hedral grains concen-
										from 25°-35° f-a.x. measure-	trated in thin strs
										ments were difficult due to	associated locally with
										the small scale nature of the	As especially close to
										folding.	52.06.
										Foln within the regions	- As occurs as c.g. sub-
										range from 90° at the	hedral grains in strs
										contact @ 52.06 to 0 in	associated with py -
										the centre and back to 85°	generally concentrated
										@ 55.67.	towards 5.2.06.
											- Po occurs as thin strs
											both parallel and x-cut the folm locally po is

PAGE 22 OF 41

\$\frac{\$}{5}\$	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-5
INTER	RVAL					RIPTIO				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
											associated with cpy.
											- Cpy occurs as thin wispy
											strs and blebs that are
											locally associated with
											Zns strs and in other
											localities with po strs.
55.67	56.07	M.S.	silver-	m-c.g.	milled	ser	As, Py,		94%	80% As	
(actual 0	length .40 m )	(12)	9y				Zns, Pbs Cpy			8% Py	
										l% Zns	
										tr Cpy	
										tr Pbs	
										l% Feldspar	
										5% Ser phyll	
										5% Qtz gangue	
										Zone ranges from a c.g. As br	reccia to milled massive
										sulphide.	
			-							Sulphide content drops off to	~20% from 55.99-56.07.
										The upper contact @ 55.67 is	roughly @ 70° and is semi-
										conformable with the foln in	
										55.67-55.70 the zone contains	s c.g. feldspar with tr
										amounts of pbs surrounded by	c.g. fractured As with inter-
										stitial red Zns in a qtz gar	ngue. Below this horizon the
										zone consists of As with les	sser py and tr amounts of cpy
										as thin wispy stringers Grain	n size and the relative py,

PAGE 23 OF 41

\$ si	ELCO	EXPLORATION WESTERN CANAL				DR	ILL		LO	G	HOLE NO 84-5
INTER	VAL					RIPTION				STRUCTURE	REMARKS
FROM	<b>T</b> 0	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										As and gangue concentration v	vary along its entire length.
										The coarser grained the As th	ne greater the qtz gangue
										content. Ser phyll fragments	are locally folded with
										f-a.x. of 45 ^o .	
										The contact @ 56.07 is abrupt	ly cut by a qtz vein that has
										an orientation of~80°.	
56.07	57.48	Qtz-Ser phyll	lt gy	f.g.	fotd.	ser	Zns, Py,		94%	thinly bndd locally folded	~1% Py
(actual	length	(07)	grn				Po, As			with small scale open folds.	tr As
	10 111									Minor qtz veins that cross	tr Zns
									***************************************	cut the folm. Folm ranges	tr Py
										from 85 ⁰ -90 ⁰ f-a.x. of a	- Py occurs as c.g. sub-
										minor fold is 83°. In one	hedra diss throughout an
										location a small scale kink	concentrated in strs
										fold with an axial plane at	often associated with
										8 ^O ( ^S 4?) has been folded by	qtz and locally As.
										another fold that has an	Percentage of py in-
										axial plane of 16 ⁰ ( ^S 5?) the	creases towards 57.48.
										intersection of these folds	- As occurs as c.g. sub-
										has created a lineation of	hedra in strs associated
									****	70° ( ^L 5?).	with py dominantly
											present between 56.76 &
											57.48.
											- Zns occurs as thin strs
	····										associated with py + As strs and locally with

PAGE 24 OF 41

\$ s	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-5
INTER	VAL				DES	RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
											- Po occurs in thin strs
											throughout.
											- all the strs roughly
											parallel the folm.
57.48	F7 00	<b></b>	1,						0.10		
57.48	57.99	M.S.	brassy	v.c.g.			Py, As,		94%	50% Py	
		(12)	yellow				Zns, Pbs			5% As	
			-							<pre>4 1% Zns</pre>	
			-							tr Pbs	
										25% Ser-Qtz phyll	
										20% Qtz gangue	
										- Zone consists of thick bnds	s of ultra c.g. subhedral py
										with v.c.g. As in qtz gangu	ie separated by bnds of Ser-
										Qtz phyll.	
										- grain size decreases slight	tly towards 57.99.
										Zns occurs as interstitial str	cs in c.g. As+py m.s. concen-
										trated in two locations @ 57.	.70 and 57.78.
										Pbs occurs as f.g. diss xtals	s close to the contact @ 57.48.
											rmable with the contact @ 57.48
										having an orientation of ~80°	and the contact @ 57.99
										having an orientation of 85°	)
57.99	60.05	Ser-Qtz phyll	lt grn-	f.g.	fotd.	ser+	Zns, Pbs	,	100%	thinly bndd unit locally cont	tains 1% Po
		(04)	97 .			minor chl				interbndd Qte @ 58.08-58.11	1% Py
										and 58.55-58.81.	tr As
										Foln are weakly contorted thr	oughout, tr Pbs

PAGE 25 OF 41

\$ s	ELCO	EXPLORATION WESTERN CANAD	)Δ			DR	ILL		LO	G	HOLE NO 84-5
INTER	RVAL				DES	RIPTION	ı			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										Foln ranges from 75°-82°.	- Po occurs as thin strs
										The unit contains ~2% boudin-	and irregular masses and
										aged qtz veins that locally	throughout the unit as
										contain minor lt grn chl +	m.g. flattened diss
										feldspar and roughly	grains that are locally
										parallel and locally disrupt	smeared on foln planes.
										the foln.	- Py occurs as c.g. subhedra
										Locally lt grn chl occurs as	in thin strs often assoc-
										a fracture filling.	iated with interstitial po
										Earlier foln have been	- Zns occurs locally in thin
		. 41								disrupted and folded.	strs often associated with
											minor As + minor Pbs in a
											qtz gangue. Zns is red.
											- As occurs f.g. diss graine
											within Zns strs and
											locally within larger po
											strs.
											- Pbs occurs as f.g. diss
											grains within py, po, and
											Zns strs often associated
											with qtz veins.
60.05	60.82	Qtz-Chl phyll	med gy	f.g.	fotd.	ser+chl+			100%	thinly bndd with interbndd	- tr po, tr py, tr As, tr
		(06)	grn			minor plag				Qte @ 60.46-60.49, 60.52-	Zns, tr Pbs.
			ļ							60.60, and 60.79-60.81.	- Po occurs as flattened dis
	<u> </u>	<u> </u>			<u></u>	<u> </u>	L	<u> </u>		Foln are locally irregular	grains and locally in thin

PAGE ____ 26 ___ 0F ___ 41

SELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-5	
INTERVAL				DESC	RIPTION	٧			STRUCTURE	REMARKS	
FROM TO	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS	
									and weakly folded.	strs often associated with	
									Foln ranges from 85°-90°.	m.g. py that roughly	
									The unit contains.~1%	parallel the folm.	
·									boundinaged qtz veins.	- Py occurs as m.g. subhedra	
									m.g. plagioclase occurs	within thin strs associated	
									locally in tr amounts.	with po.	
										- As occurs as m-c.g. sub-	
										hedra in thin strs assoc-	
										iated with po + Zns.	
										- Zns occurs in a thin	
										stringer, associated with	
										po + As. dark red in colour	
										- Pbs occurs as m.g. diss	
										grains within thin qtz	
		<u> </u>								veins.	
60.82 61.34	Qtz-ser phyll	lt grn-	f.g.	fotd.	ser+plag	Po. Pv.		100%	thinly bndd, foln are	1 % po, <1% As, tr Py,	
	(07)	97		2000.	Por Proj	Zns, Pbs		1000	irregular except in highly	tr Zns, tr Pbs.	
	\	1-34							siliceous zones.	- Po occurs as irregular	
									Unit contains ~ 5% qtz veins	strs and masses associated	
									that locally contain mod	with qtz veins and as	
									amounts of c.g. feldspar	more regular thin strs	
									Foln ranges from 85° in one	within the phyllite.	
									direction to 85° in the	- As occurs as c.g. subhedra	
									other direction.	within po strs Py occurs as f-m.g.	

PAGE 27 OF 41

DRILL HOLE NO. ____84-5

\$\frac{1}{5} =	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO 84-5.
INTE	RVAL				DES	RIPTIO	N			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R A I N SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
											subhedra in po strs.
											- Zns occurs as a minor
											component in the irregular
		-									po strs within qtz veins.
											Zns is red.
											- Pbs occurs as m.g. diss
											grains associated with the
											qtz veins.
										·	
61.34	66.08	Qtz-Chl phyl	l med-dk	f.g.	fotd.	ser+chl+	Po, Zns,		100%	thinly bndd locally highly	<b>∠</b> 1% Po
		(06)	gy - grn			plag	As, Py			siliceous with interbndd	tr Zns
										Qte @ 61.58-61.78, 62.13-	tr As
										62.28, 63.66-63.70, 63.98-	tr Py
										64.02, 64.92-64.96, 66.01-	- Po occurs as thin strs
									-	66.07.	parallel with the foln
				-						Unit contains ~ 2% qtz veins	and as irregular blebs
										that locally contain feldspan	in qtz veins.
										and lt grn chl + sericite.	- Zns occurs as thin strs
										Locally thin veins composed	parallel to the foln
										of 80% feldspar + 20% qtz	associated with both Po
										parallel to the folm.	and As and very locally as
										The unit contains m.g. diss	v.thin selvages around
										plagioclase xtals throughout	boudinaged qtz veins.
										and locally contains up to 20	0% - As occurs v.locally as m.g.
										plagioclase.	diss subhedra associated
		<u> </u>	1							Foln are fairly regular	with Zns strs.

PAGE _____ 28___ OF ____ 41____

DRILL HOLE NO. _____84-5

\$\s	ELCO	EXPLORATION WESTERN CANADA	1			DR	ILL		LO	G	HOLE NO84-5
INTE	RVAL				DESC	RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
-										throughout being locally	- Py occurs as m.g. diss
										disturbed by qtz veins.	subhedra often associated
										Foln ranges from 78 ⁰ -85 ⁰	with po strs.
										locally. Folm are folded	
										in small open folds.	
66.08	67.70	Qtz-Ser-Chl phyl	1 lt-med	f.g.	fotd.	ser+	Po, Py,		100%	thinly bndd, locally highly	tr As, tr Po, tr Py,
		(07)	gy-grn			minor pla	g As, Zns			siliceous. Folm are fairly	tr Zns.
										regular except within local	- As occurs as c.g. subhedra
										highly sericitic zones.	within a qtz vein @ 67.39-
										The unit contains <1%	67.40.
										boudinaged qtz-veins with	- Po occurs as thin irr-
										minor feldspar. Zone	egular strs concentrated
										contains minor secondary	@ 67.67-67.70 and as
										plag especially @ 67.01-	flattened diss grains
										67.08. Foln ranges from	throughout.
										78 ^o -90 ^o .	- Py occurs as m-c.g. diss
											grains sparsely distributed
											throughout.
											- Zns occurs as small red
											blebs within a quartz
											vein associated with As @
											67.39-67.40.
					<u> </u>					L	

PAGE ______ OF _____ 41

S si	ELCO	EXPLORATION WESTERN CANAD	Λ			DR	ILL		LO	G	HOLE NO84-5
INTER	VAL					RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
67.70	71.43	Qte+Qtz-Chl-Ser phyll	lt gy	f.g.	fotd.	ser+chl	Po, As,		100%	Interbedded unit of Qte with	tr Po, tr As, tr Zns,
		(06)	dk gy				Zns, Py			ser-chl-Qtz phyll - separate	tr Py.
			grn							lithological bnds are usually	- Po occurs in thin strs
										less than 10 cm wide. Locall	y often associated with thin
										the chlorite content is v.low	feldspar veins and as diss
										within the phyllites.	flattened grains and smears
										Qte is clean, massive and	on foln planes.
										locally contains two meta-	- As occurs as m.g. subhedra
					3					morphic fabrics an S1 or S2	within thin strs associated
										cross cut by an S3.	with po + Zns.
										Foliation (dominant-regional	- Zns is red and occurs
										foln). S foln ranges from	within thin strs assoc-
	·									78 ⁰ -90 ⁰ . Phyll ranges from	iated with po + As located
										chl-Qtz phyll to ser-Qtz phyl	1. @ 70.57-70.58.
										Foln are less regular in the	- Py occurs as m.g. diss
										sericitic regions	grains and as a minor
											component within local post
										The unit contains ~1% qtz	
										veins that locally contain	
····										lt grn chl + c.g. feldspar	
										- thin feldspar veins paralle	1 &
										cross cut the folm.	
71.43	73.58	chl-Otz phyll- otz-chl phyll-	dk gy	f.g.	fotd.	chl. plac	Po, Py,		100%	Interbndd unit of dominantly	tr po, tr py, tr Zns.
		(05) + (06)	grn	~•5•	1000.	January Place	Zns		1000	chloritic phyllites with	- Po occurs in thin strs
		(00)	7.11				2113			variable qtz content.	that crudely parallel

PAGE ____30 OF ___41

\$5	ELCO	EXPLORATION WESTERN CANAD	4			DR	LL		LO	G	HOLE NO. 84-5
INTER	RVAL				DES	RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										Locally the unit grades into	the foln and as diss
										a Qte. Secondary plagioclase	flattened grains and
										occurs throughout with local	smears on foln planes.
										concentrations of up to 10%.	- Py occurs m.g. subhedra
										The plag imparts a yellowish	within thin strs and is
										tinge to the rocks.	locally associated with
										Prominant v.tight folds	po and Zns.
										occur locally with Qtz-chl-	- Zns occurs @ 71.88 as dk
										phyllite. f-a.x. of~88°.	orange m.g. xtals within
										A fracture with open space	a stringer associated
										occurs @ 73.45 and has an	with py.
										orientation of 34°.	
73.58	74.77	Qte .	1t 9y-	f.q.	fotd.	ser+plag-	Po		100%	thinly bndd and locally folder	- tr po occurs as m.g.
		(06)	grn			minor chl				into fairly open kink folds	irregular blebs within
										that are locally ruptured alo	ng qtz veins and as diss
										the axial planes. These kind	ks grains throughout.
										have axial planes of 36°. In	
										another locality the unit is	
										folded isoclinally with a	
										f-a.x. of 85° and an axial	
										plane of 80°. The unit local	ly
										contains minor m.g. plagiocla	
										diss throughout and concentra	ted
										locally around fractures.	
										- An earlier metamorphic fabr	ic

PAGE 31 OF 41

DRILL HOLE NO. ____84-5

\$\square s	ELCO	EXPLORATION WESTERN CANAI			······································	DR	ILL		LO	G	HOLE NO84-5
INTER	IVAL					RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES (	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										occurs locally and is discor-	
										dant to and disrupted by the	
										pervasive foln.	
										Unit contains ~ 2% Qtz veins	
										that often contain mod c.g.	
										feldspar and minor lt grn chl	
74.77	75.14	Otz-Chl phyll	med gy	f.q.	fotd.	chl+minor	Po		100%	thinly bndd, locally highly	- tr po as thin discontin-
		(06)				ser plag	·			siliceous. Mod m.g. plag-	uous strs that parallel
		2 2 2								ioclase throughout. Folm is	the foln.
										fairly regular throughout.	
										Foln ranges from $80^{\circ}-86^{\circ}$ .	
75.14	75.89	Qtz-Chl phyll	lt gy-	f.g.	fotd.	ser+minor	Po, Zns,		100%	thinly-v.thinly bndd. The	tr As, tr Po, tr Zns
		(06)	grn			chl+plag	As			unit is locally highly	- As occurs as f-m.g. sub-
										sericitic. The unit contains	hedra in thin strs locally
										~2% Qtz-feldspar veins.	associated with Zns.
										Locally the Qtz-feldspar	- Po occurs in thin irreg-
										veins have been sheared	ular strs and locally as
										by small slip planes oriented	thin selvages in boudin-
										at 19 ⁰ . Large Qtz veins are	aged qtz veins.
										displaced by ~1 cm, whereas	
										thinner qtz veins containing	- Zns occurs in a thin
										sulphides are only displaced	stringer associated with
			ļ							by ~0.1 cm.	As + minor po. Zns is
										The unit contains minor m.g.	dk red.

PAGE 32 OF 41

\$5	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-5
INTER	R V A L				DESC	RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC)	MINERALIZATION, TYPE, AGE RELATIONS
										plagioclase and thin bnds of	
										chloritic phyllites. Foln	
										are regular near 75.14 gradin	ā
										into more irregular folns	
										towards 75.89, which corres-	
										ponds roughly with decreasing	
										chl and increasing ser.	
75.89	76.70	Qte	lt gy	f-m.g.	fotd.	ser+plag-		,	100%	clean with minor interbndd	tr Po, tr As, tr Zns,
		(06)				minor chl	As, Py			ser-chl-Qtz phyll. Qte	tr Py.
										contains minor ser on foln	
										planes. Minor m.g. plag	- Po occurs as diss grains
										occurs dominantly in	and smears on folns and i
										chloritic phyllite bnds.	strs associated with py +
····										Foln is fairly regular	As on fracture planes
										throughout.	oriented @ 80 ⁰ .
										Foln ranges from 74°-85°.	- As occurs as m.g. subhedr
										The zone contains several	within strs along the
										prominant fractures that	above mentioned fracture
										have had minor movement	planes.
										on them. Two of these	- Zns occurs as small blebs
										fractures are oriented @	associated with py along
										50 with a displacement of	fracture planes oriented
										0.5 cm and @ 28° with a	@ 45 [°] .
										displacement of 0.4 cm.	- Py occurs as m.g. subhedr
	<u> </u>			L						These fractures have	associated with As + po i

PAGE 33 OF 41

\$5s	ELCO	EXPLORATION WESTERN CANAD	A			DR	ILL		LO	G	HOLE NO. 84-5
INTER	RVAL				DESC	RIPTION	l			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES (	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										locally formed vugs with f.g.	thin strs oriented @ 80°.
										qtz crystals in them.	
										A set of parallel fractures	
										are oriented @ 80° in the	
										opposite sense to the folm.	
										These fractures contain	
										mineralization and are dis-	
										placed by the two above	
										mentioned fractures.	
										Locally the zone contains	
										irregular feldspar veins.	
											· .
76.70	77.69	Qtz-Chl phyll	med gy -	f.g.	fotd	ser+chl+			100%	thinly bndd, fairly regular	tr Po, tr As, tr Py
		(06)	grn			minor pla	g As			foliation throughout.	- Po occurs as thin strs
										Foln ranges from 79 ^o -90 ^o .	that locally parallel the
										The zone contains minor	foln.
										qtz-feldspar veins.	- As occurs as c.g. fractured
										Several open fractures	subhedra within a qtz vein
										occur within the zone.	@ 76.80-76.81.
										These fractures are roughly	- Py occurs as m.g. subhedra
						1				oriented @ 15 ⁰ -20 ⁰ . These	
										fractures contain qtz +	
										lt grn chl. Locally zone	
										contains minor m.g. plag-	
	<b></b>									ioclase, Minor displace-	
	L	<u></u>								ment occurs on fractures.	

PAGE 34 OF 41

\$\footnote{S} =	ELCO	EXPLORATION WESTERN CANADA	1			DR			LO	G	HOLE NO. 84-5
INTE	RVAL				DESC	RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
77.69	80.46	chl-Qtz-ser phyll	dk gy	f.g.	fotd.	chl+plag	Po		100%	thinly bndd minor interbedded	tr Po in thin discon-
		(05)				minor ser				Qte @ 79.03-79.06, 79.34-	tinuous strs.
										79.51, 79.66-79.72. The	
										unit also contains minor	
										sericitic horizons -	
										unit contains <1% qtz veins	
										with minor feldspar	
										- m.g. plagioclase is locally	
								-		diss.	
										- the unit contains an open	
										fracture @ 78.17 that has	
										been partially filled with	
										qtz.	
										Foln is regular except in	
										close proximity to qtz veins.	
										Foln ranges from 83 ⁰ -86 ⁰ .	
	·									Small folds occur @ 80.02	
										with an axial plane parallel	
										to the foln of 86°.	
80.46	83.40	chl-Qtz phyll	dk gy	f.g.	fotd.	chl+plag	Py, As		100%	thinly bndd and locally folded	tr Po, tr As
		(05)	grn					<u> </u>		unit contains~l% qtz veins	- Po occurs as irregular
										which locally contain feldspan	r. thin strs often associated
										Unit contains minor interbndd	with qtz-veins.
										Qte.	
	L	L			L	<u> </u>			L	Foln are regular except close	- As occurs locally as m.g.

PAGE 35 OF 41

SELCO					DR	ILL		G	HOLE NO. 84-5	
IVAL							The state of the s		STRUCTURE	REMARKS
то	ROCK TYPE	COLOUR	GRAIN	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
									to qtz veins.	diss subhedra.
									Foln range from 82 ⁰ -90 ⁰	
									f-a.x. of the folds have	
									orientation identical to	
									the folm.	
									Folds are v.tight approaching	9
									isoclimal.	
									Plag occurs locally within	
			-						the zone as m.g. diss xtals.	
84.11	Qte	med gy	f.g.	fotd.				100%	thinly bndd with minor	tr As, tr Py, tr Po.
	(06)				plag	Ру			interbndd chl-ser phyll. m.g	- As occurs as m.g. diss
									Secondary plag occurs within	grains and as diss grains
									the phyllite horizons.	within thin strs that
									Foliation are highly regular	parallel the Qtz-feldspar
									within the Qte and mod	veins.
									regular within the phyllite.	- Py occurs as m.g. diss
									Foln ranges from 78°-85°.	grains with thin strs
	~~~~								The zone contains minor	associated with As.
									Qtz-feldspar veinsthat are	
									oriented @ 80° in the	- Po occurs as flattened
									opposite sense to the foln.	diss grains and smears
										on foln planes.
		-								
	TO	VAL TO ROCK TYPE ROCK TYPE 84.11 Qte	RVAL ROCK TYPE COLOUR COLOUR 84.11 Qte med Gy	WESTERN CANADA RVAL ROCK TYPE COLOUR GRAIN SIZE COLOUR GRAIN SIZE MEDITAL SIZE 84.11 Qte med gy f.g.	WESTERN CANADA ROCK TYPE TO COLOUR GRAIN TEXTURE SIZE TEXTURE 84.11 Qte med gy f.g. fotd.	WESTERN CANADA TO ROCK TYPE COLOUR GRAIN SIZE TEXTURE ALTERATION ALTERATION Med Gy f.g. fotd. chl+mino:	WESTERN CANADA TO ROCK TYPE COLOUR GRAIN SIZE TEXTURE ALTERATION MINERALS OFFICIAL SIZE BALL OFFICIAL SIZE OFFICIAL S	TO ROCK TYPE COLOUR GRAIN TEXTURE ALTERATION ORE MINERALS FER METRE COLOUR GRAIN SIZE TEXTURE ALTERATION MINERALS FER METRE DESCRIPTION ORE MINERALS FRACTURES FR	WESTERN CANADA DESCRIPTION ROCK TYPE COLOUR GRAIN SIZE TEXTURE ALTERATION ORE PERMETRE RECOVERY SIZE TEXTURE ALTERATION MINERALS PERMETRE RECOVERY ROCK TYPE OF TO SIZE TEXTURE ALTERATION OF TEXTURES ALTERATION OF TEXTURES OF TEXTURES RECOVERY ROCK TYPE OF TO SIZE TEXTURE ALTERATION OF TEXTURES ALTERATION OF TEXTURES OF T	TO ROCK TYPE TO OBSCRIPTION OESCRIPTION ORE FRACTURES Core Recovery (FACTURES, FAULTS, FOLDING, BEDDING, SIZE TEXTURE ALTERATION MINERALS PER METRE Recovery to que veins. Foln range from 82°-90° f-a.x. of the folds have orientation identical to the foln. Folds are v.tight approaching isoclinal. Plag occurs locally within the zone as m.g. diss xtals. 84.11 Qte med gy f.g. fotd. chl+minor As, Po, 100% thinly bind with minor interbind chl-ser phyll.m.g Secondary plag occurs within the phyllite horizons. Foliation are highly regular within the Qte and mod regular within the Qte and mod regular within the phyllite. Foliation are highly regular within the ph

PAGE ____ 36 ___ 0F ___ 41 ___

\$ s	ELCO	EXPLORATION WESTERN CANAL				DRI	LL		LO	G	HOLE NO. 84-5
INTER	VAL					RIPTION				STRUCTURE	REMARKS
FROM	т 0	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC)	MINERALIZATION, TYPE, AGE RELATIONS
84.11	88.61	chl-phyll	dk grn-	f.g.	fotd.	chl + ser	, Py		100%	v.thinly bndd. Unit con-	tr Py as diss grains and
		(05)	дУ			plag				tains minor interbndd Qte	smears on foln planes.
										@ 85.23-85.28, 86.92-87.09,	
										87.13-87.21, 88.14-88.18.	
										The unit also contains minor	
										bnds of Qtz-chl phyll and	
										locally chl-ser phyll.	
										The unit contains ^ 1%	
										barren m-c.g. qtz veins	
										that locally contain	
										minor feldspar.	
										Secondary plag occurs	
										locally within the unit	
										and ranges from m-c.g.	
										diss grains concentrated in	
										highly chloritic zones.	
										Plag attains a concentration	
										of up to 5%. Foln is fairly	
										regular throughout. Foln	
										ranges from 90° to 78° in	
										both directions. Minor fold	S
										occur locally f-a.x. of 77°.	
										In one of the Qte zones @	
										86.92-87.09 the Qte has been	
										brecciated by qtz veins.	

PAGE __37___ OF __41___

\$\s	ELCO	EXPLORATION WESTERN CANA		***************************************		DR	ILL		LO	G	HOLE NO. 84-5
INTER	RVAL				DESC	RIPTION	1			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
88.61	89.90	Qtz-chl phyll	med grn-	f.g.	fotd.	chl+ser+			100%	thinly bndd - locally the uni	.t
		(06)	gy			plag				grades into a chl-ser phyll.	
										The unit contains ~ 5% seconda	ary
										plag as m-c.g. diss grains	
										distributed throughout the	
										zone. The unit contains ~1%	
										qtz veins that locally contai	n
										minor feldspar and are locall	У
										folded f-a.x. on folded qtz	
										vein @ 88.62 is 75°.	
										Foln ranges from $64^{\circ}-80^{\circ}$ with	ı
										angles decreasing towards 89.	90.
89.90	90.53	Qte	lt gy	f.g.	spotted+	ser+	Po, Pbs,		100%	weakly bndd zone contains	1% Py, 1% Po, ≺1% Pbs,
		(06)			veined	minor pla	Py, Zns			~30% qtz veinsthat x-cut	< 1% Zns.
										the folm.	- Py occurs as f.g. diss
										The qte has a spotted appear-	subhedra within the qte
										ance due to the f.g. diss py	and as irregular strs and
										and locally due to f.g. diss	blebs within qtz veins.
										plagioclase. Foln are highly	- Po occurs as irregular
										irregular and disrupted by	strs and blebs within qtz
										qtz veins.	veins and as minor diss
										Qtz veins locally contain	grains within the qte.
										minor feldspar.	- Pbs occurs as c.g.
											irregular blebs associated with py blebs in qtz vein.

PAGE 38 OF 41

SELCO		EXPLORATION WESTERN CANA				DR	ILL	ı	- O G	HOLE NO. 84-5
INTER	VAL				DESC	RIPTIO	V		STRUCTURE	REMARKS
FROM	ΤO	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										- Zns occurs as dk red-blk
						·				c.g. irregular masses
										within qtz veins.
			-				ļ			
									- END OF F	IOLE -
									22.5 01 .	
		<u> </u>	-							
							-			
			<u> </u>							
		-								

										The state of the s
										A 100 Million and 100 Million
			1							

PAGE 39 OF 41

SSE	SELCO EXPLORATION WESTERN CANADA					DR	ILL LO) G	S	amp	le d	ata	
	SAM	A P L E			CORE	RECOVERY	VISUAL ESTIMATES		ASSAY	RESUL	. T S		
NUMBER	FROM	то	TOTAL	Sp. Gr	%	AMT. LOST	(% ORE MINERALS)		% Pb	% Zn	% As	g/t Ag	g/t Au
47043	47.76	48.76	1.00		100		tr Po, tr Py		< 0.01	0.01	0.013	0.5	0.2
47044	48.76	49.79	1.03		100		<1% Py, tr Po, tr As, tr	Zns	0.01	0.03	0.105	0.9	0.5
47045	49.79	50.27	0.38		100	actual length 0.48	65% Py, 20% As, 10% Zns		8.65	9.58	5.350	220.1	13.0
47046	50.27	50.43	0.16		100		40% Py, 35% Zns, 15% As	,	7.48	11.50	4.830	178.2	11.0
47047	50.43	50.81	0.48		100		1% Zns, tr Py, tr Pbs		0.47	0.98	0.144	10.3	0.7
47048	50.81	50.88	0.07		100		35% As, 3% Py , 1-2% Zns, tr Pbs		0.66	0.67	14.400	9.3	21.5
47049	50.88	51.58	0.70		94		√3% Zns, 1% As, 1% Py , tr Po		0.97	3.26	1.230	1.8	1.4
47050	51.58	52.06	0.48		94	actual length 0,62	80% As, 5% Zns, 5% Py , tr Pbs, 2% Ser Phyll		5.51	9.20	18.100	86.8	31.8
47051	52.06	52.87	0.81		94	0.102	~1% Py , tr As, tr Po		0.18	0.17	1.160	6.2	2.0
47052	52.87	53.68	0.81		94		1% Zns, 1% Py , tr As, tr Cpy, tr Po		0.39	0.40	0.721	10.7	0.9
47053	53.68	54.49	0.81		94		tr Po, tr Py , tr As, t	r Cpy	0.04	0.04	0.094	1.0	0.4
47054	54.49	55.67	1.18	dropped core	94	actual length 0.81	1% Py , <1% As, tr Zns,	tr Po	0.15	0.13	1.400	3.6	0.5
47055	55.67	56.07	0.40	box	94		80% As, 8% Py , 1% Zns, tr Pbs, 1% felds, 5% Se	tr Cpy,	2.28	2.39	17.100	70.5	23.4
47056	56.07	56.59	0.52		94		tr Py , tr Po, tr As, t	1 1	0.11	0.05	0.457	6.3	0.5
47057	56.59	57.48	0.89		94	actual length 0.65	1-2% Py , tr As, tr Po		0.30	0.06	1.100	14.9	0.9
47058	57.48	57.99	0.51		94		50% Py., 5% As, < 1% Zns	otz gangue	0.71	0.33	4.540	48.3	3.1
47059	57.99	58.71	0.72		100	actual length 0.71	tr Zns. tr Pbs	gen gungu	0.16	0.03	0.534	6.7	2.2
47060	58.71	59.42	0.71		100		1% Zns, 1% Po, 1% Py, tr As, tr Pbs		0.64	0.70	0.593	15.7	0.7
47061	59.42	60.05	0.63		100	actual length 0.75	1% Po, 1% Py , <1% Zns, tr As, tr Pbs		0.30	0.28	0.324	12.0	1.0
47062	60.05	60.82	0.77		100	actual length	tr Po, tr Py , tr As, tr Zns, tr Pbs		0.90	0.06	0.135	5.1	0.4
47063	60.82	61.34	0.52		100	0.00	1% Po, <1% As, tr Py, tr Zns, tr Pbs		0.20	0.09	0.473	8.0	0.9
47064	61.34	62.34	1.00		100		tr Po, tr Py		< 0.01	0.01	0.021	1.1	0.3
47065	62.34	63.28	0.94		100	actual length	41% Po, tr Py		<0.01	0.01	0.006	0.7	< 0.1
47066	63.28	64.25	0.97		100	actual length	tr Po, tr Py, tr Zns,		<0.01	0.04	0.048	0.9	0.5
47067	64.25	65.10	0.85		100	actual length	tr Po, tr Py, tr Zns, tr As		0.05	0.04	0.131	3.8	0.3
47068	65.10	66.08	0.98		100		tr Po, tr As		<0.01	0.01	0.137	0.3	0.4

\$ SE	SELCO EXPLORATION WESTERN CANADA					DA	ILL L	o G		samp	le d	ata	
	SAI	M P L E			CORE	RECOVERY	VISUAL ESTIMATES		ASSAY	RESUL	. T S		
NUMBER	FROM	т 0	TOTAL METRES	Sp. Gr	%	AMT. LOST	(% ORE MINERALS)		% Pb	% Zn	% As	g/t Ag	g/t Au
47069	89.90	90.53	0.63		100		1% Po, 1% Py, <1% Pbs,	<1% Zns	0.37	0.08	0.007	7.8	0.4
47121	25.18	26.18	1.00		100		tr Py		< 0.01	< 0.01	0.006	1.1	0.3
47122	26.18	26.35	0.17		100		tr Py		0.02	0.03	0.013	2.5	0.2
47123	26.35	26.56	0.21		100		5% Zns, 3% Py, <1% As, tr Pbs		3.70	12.70	0.944	55.9	1.6
47124	26.56	27.12	0.56		100		tr Po, tr Zns, tr Py		0.03	0.09	0.008	4.1	0.2
47125	27.12	28.12	1.00		100		tr Po, tr As, tr Zns, tr Py		0.01	0.01	0.005	2.6	0.1
47126	28.12	29.12	1.00		100		tr Po, tr Py, tr Zns		< 0.01	0.03	0.003	2.1	< 0.1
47127	29.12	29.52	0.40		100		1-2% As, tr Po, tr Py		0.02	0.01	0.975	2.3	0.5
47128	29.52	30.52	1.00		100		tr Po, tr Py.		< 0.01	< 0.01	0.008	0.5	0.1
					-								The control of the co
													-
								-				-	
					-			-		-			
					1								-

PAGE __41___ OF __41___

DRILL HOLE NO. _____84-5

CONNORS	LOCATION SKET	CH I				LL		LO	G		HOLE NO84-6
		•	DEPT	н р	TESTS IP ANGLE	AZIMUT	DATE	STARTED:	September 13, 1984	PROJEC	Г: Ј& L
		-1	- COLLA		18.250	220.7	DATE	COMPLETED		N. T. S. :	82M/8E
			30.4		· 18 ⁰	223°		AR ELEV.:	840.506	LOCATIO	N: 10,670E Crosscut
			60.9	96 m +	19 ⁰	224°			9,989.117		
			91.4	44 m +	20 ⁰	225 ⁰			10,669.776	ļ	
									222 ⁰	l	
· · · · · · · · · · · · · · · · · · ·							ı		112.47 m	l	September 18, 1984
D.D.H.			1				CORE	SIZE:	BQ	LOGGED	N.H. & R.P.
VAL	ROCK TYPE			·		-			STRUCTURE		REMARKS
TO CO		COLOUR	G R AIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BE-	DDING,	MINERALIZATION, TYPE, AGE RELATIONS
14.28	chl phyll	dk.grn-gy	f.g.	fotd.	chl +			98%	thinly bndd. The unit		tr po, tr py
	(05)				minor ser		0.00		contains two small bnds	of	- po occurs as thin
									qtz-chl phyll one @ 3.5	56-	flattened dissem grains
									3.78 (which is bounded	@	that are locally smeared
									both contacts by 3 cm k	onds	on toln. planes
									of ser phyll). The oth	ner	- py occurs as f-m.g.
									bnd is @ 13.15 - 13.40,	, which	diss subhedua within qtz
									is tightly folded. The	contac	t veins.
									between the Qtz-chl phy	/11 @ 13	.15
									x-cuts the foln @ a high	gh angle	•
					-				The folm @ 13.15 within	the ch	J.
									phyll is @ 30° whereas	the con	tact
											-
									Folds within the Otz-ch	llyda la	
											11-1
	то	TO ROCK TYPE 14.28 chl phyll	TO ROCK TYPE COLOUR 14.28 chl phyll dk.grn-gy	D.D.H. VAL TO ROCK TYPE COLOUR GRAIN SIZE 14.28 chl phyll dk.grn-gy f.g.	D.D.H. VAL TO ROCK TYPE COLOUR GRAIN SIZE TEXTURE 14.28 chl phyll dk.grn-gy f.g. fotd.	91.44 m	91.44 m	00.96 m + 19 224	91.44 m + 20° 225° EASTING: AZIMUTH: DEPTH: CORE SIZE: VAL TO ROCK TYPE COLOUR GRAIN TEXTURE ALTERATION MINERALS PER METRE Recovery 14.28 chl phyll dk.grn-gy f.g. fotd. chl + po, py fract near 98%	OU.96 m + 19 224 9,899.117	10,669.776

PAGE 1 OF 28

\$\frac{1}{5} = \frac{1}{5} = \	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-6
INTE	RVAL				DESC	RIPTION	N.			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										to the folm.	
										Foln within the unit is	
										highly regular - except in lo	ocal
										areas that have been folded o	or
										veined. Foln ranges from 30)
										36°.	
										The unit contains ~1% qtz	
										veins. The thin veins are	
										feldspar rich. These thin	
										veins roughly parallel the fo	oln.
										The thicker veins contain min	or
										chl + feldspar and conform mo	re
						-				or less to the folm.	
										The first 0.90 m of core	
										is highly fractured and	
										presumably where 2% of the	
										unit was lost.	
14.28	14.68	Qte	lt gy-gri	f.m.g.	fotd				100%	thin to med bndd foln are	tr po as minor smears on
		(06)								mod irregular and locally	foln planes.
										coelesce Foln surfaces have	
										ser+chl concentrated on them.	
										Foln range from 35°-38°	
										plagioclase occurs as f.m.g. dissem subhedra within the gte (up to 20%) contacts are conformable to the foln,	
										qte (up to 20%) contacts are conformable to the folm.	

PAGE 2 OF 28

\$\s	ELCO	EXPLORATIO WESTERN CANA				DR	ILL		LO	G	HOLE NO
INTER	VAL				DESC	RIPTIO	1			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
14.68	19.33	chl phyll	dk grn-gy	f.g.	fotd.	chl+ser	po		100%	thinly-v.thinly bndd	po occurs throughout as
		(05)				+ plag.				regular foln throughout	smears on toln planes
										locally the unit is folded	and locally as irregular, this
										into tight kink folds that	strs locally associated with
										locally have ruptured f.ax.	qtz veins.
										f.ax. of these folds are @ 79°	0
										and an axial plane @ 15°.	
										The unit contains minor inter	· -
										bndd Qte @ 16.36 - 16.43,	
										18.53 - 18.62. The unit is	
								locally sericitic especially			
									near the contact @ 19.33.		
										The unit contains ~1% qtz vein	s
										that locally contain m-c.g.	
										feldspar. Locally the unit	
										contains minor diss m.g.	
-										feldspar which is concentrate	.d
										within the qte units and loca	lly
										associated with qtz veins.	
										Foln ranges from 30°-37°.	
19.33	21.95	Qte	lt. gy	f.m.g.	fotd-mass	ser+plag	ру		100%	thinly bndd - mass massive	- tr py as occurs as
		(06)								sections have a sucrosic	diss euhedra throughout.
										texture. The unit contains	
										minor interbndd ser phyll @ 19.59 - 19.63, 20.30 - 20.51.	
										foln is poorly developed with the qte and has an orientatio	in n of

PAGE ____3 ___ OF ___28

\$\footnote{\sigma} = \footnote{\sigma} = \foot	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO84-6.
INTE	RVAL				DESC	RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
						-				30°-40° ser occurs on	
										foln planes.	
										Locally m.g. plag occurs	
										diss within the qte	
										- unit contains tr qtz veins	
21.95	22.42	qtz-chl phyll	lt grn	f.m.g.	foltd	chl+plag	ру, ро		100%		tr py, tr po
		(06)			speckled					the unit is thinly bndd	- py occurs as f.g. diss
										and speckled with a yellowish	subhedra throughout
										tinge due to ~ 20% diss	- po occurs as smears
										m.g. plagioclas.	on foln planes.
						·				Foln is highly regular	
										and oriented at 27°-32°.	
										The unit contains ~1-2% qtz	
										veins with minor feldspar	
										+ lt grn chl.	
22.42	28.55	chl phyll	dk grn-gy	f.g.	fotd	chl+	ру, ро	locally	91%	thinly bndd - regular foln.	tr py, tr po
		(05)				minor plag+		highly fract		throughout except in highly	- py occurs as c.g.
						minor ser				veined regions.	diss euhedru throughout
										Foln ranges from 31°-38°	and locally concentrated
										locally in regions associated	into thinstrs parallel
										with qtz veins the phyll is	to foln.
										highly sericitic.	- po occurs as flattened
										@ 25.55 - 25.69 there are	diss blebs throughout.
-										thin bnds of qtz-chl phyll	
		<u> </u>								that are complexly folded and	

PAGE 4 0F 28

\$\footnote{S} = \footnote{S} = \foot	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO 84-6
INTER	IVAL				DESC	RIPTION		- AVIII - P. AVIII - P		STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										sheared. The unit contains	
										~2% qtz veins that locally	
										contain lt grn chl + plag.	
										The veins have locally been	
										folded and contain fractures	
										perpendicular to the vein.	
										The core is locally fractured	
										especially @ 24.33 - 24.38,	
										25.84 - 25.91 and @ 27.43 -	
										27.67.	
										Plagioclase occurs locally as	
										m.g. diss grns especially in	
										zones associated with veining	•
28.55	29.12	qtz-chl phyll	med grn	f.m.g.	fotd	chl	po, py		100%	thinly bndd locally tightly	tr py, tr po
		(06)		-		minor plag				folded. An earlier metamorph	ic - py occurs as m.c.g.
										fabric(S2) is folded and disr	upted diss euhedra and
										by the regional folm(S3) - ax	
										planes of the small scale fold	ds
										are parallel to the folm which	h - po occurs as irregular
										is oriented @ 27°-35°.	blebs within qtz-feld-
										The regional foln is best deve	el- spar veins.
										oped in zones with a decreased	d qtz
										component.	
										The unit contains~3% qtz	

\$\sqrt{s}	ELCO	EXPLORATION WESTERN CANADA	Α.			DR	ILL		LO	G	HOLE NO84-6
INTE	RVAL				DESC	RIPTION	٧			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
						-				- feldspar veins.	
										- minor diss m.g. plag	
					•					occurs in zone with an	
										increased qtz component.	•
29.12	38.77	chl+chl-ser phyl	3 32	.	6.11				1000		
29.12	30.77			f.g.	fotd.	chl+ser +minor	po, py		100%	thinly bndd - locally siliced	
		(05)	дУ			plag		-		with interbndd Qte and qtz-ch	
										phyll @ 30.74-30.79, 30.84-30	
							-			31.66-31.82, 34.38-34.48, 36	
										36.38, 36.44-36.60, 37.22-37.	The second secon
								-		37.34-37.39, 37.77-37.79, 37.	-
										38.00, 38.35-38.50, 38.60-38.	.61, @ 36.16 - 36.19
				······································						38.72-38.74.	(~0.3 cm wide).
										Foln is highly regular except	po also occurs as
										in v. local zones associated	flattened diss grns
										with qtz-feldspar veins.	and smears on foln
										Folding occurs locally as	planes.
										mod. assymetrical. open folds	
										that have sharp fold noses th	nat
										are locally disrupted.	- py occurs as m.g.
										A fold @ 29.53 has a f.ax of	88° diss subhedra through-
										and an axial plane at 76°.	out.
										A fold @ 31.77 with qtz-chl p	phyll
										has a f.ax of 78° and an axia	
										plane at 75°.	

PAGE ____ 6 ___ 0F ___ 28 ___

SELCO		EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO 84-6
INTE	RVAL					RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										Foln range from 26°-36°.	
						·				The unit contains ~1%	
										qtz veins which locally	
										contain up to 50% feldspar.	
										Locally the thinner veins	
				·						crudely parallel the folm.	
										The larger qtz-feldspar	
										veins are more irregular.	
										- plagioclase occurs as m.g.	
										diss grains locally within	
										the siliceous zones.	
38.77	38.95	qtz-chl phyll	lt gy-gr	f-m.g.	fotd	chl+plag	ру		100%	thinly bndd - evenly bndd	tr py as sparsely distri-
		(06)								with thin dk bnds of chlorite	buted f_m.g. diss euhedra.
										material separated by qtz	
										rich bands.	
										Foln is fairly regular	
										and oriented @ 27°-29°	
						1		-		these foln are cut by	
										a weakly developed foln	
										that has remobilized	
										chlorite into bands that	
										cross-cut the dominant	
	-									foln. These foln are	
						<u> </u>				oriented @ 38°-40°.	

PAGE ______ OF ____ 28____

\$\sqrt{s}	ELCO	EXPLORATIO WESTERN CANA				DR	LL		LO	G	HOLE NO. 84-6
INTE	RVAL					RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										plagioclase occurs	
										within the qtz rich bnds	
										as m.g. diss grns.	
38.95	39.77	chl-ser phyll	dk grn-gy	f.g.	fotd	chl+ser	py, po		100%	thinly bndd - regular foln	
		(05)				+minor plag				throughout. Folm oriented	
										@ 38°-42°. The unit	
										contains ~1% feldspar-	
										qtz veins which are thin	
		·								and roughly parallel	
										the folm.	
										The unit becomes increasingly	
										sericitic and siliceous towar	ds
										39.77. In the more siliceous	
										zones plag occurs as m.g.	
										diss grains (up to 20%).	
39.77	42.44	Lst	white-	m.g.	bndd	minor ser	py,Zns,		95%	weakly bndd with local	tr Zns, tr py, tr pbs
		(03)	1t gy				pbs			folds. Buding is oriented	
										@ 25 ⁰ -27. Axial planes	- Zns occurs as v.thin
										of the folds parallel	discontinuous strs and
										the bnding.	diss f.g. xtals. Zns
										The unit becomes darker	is red. Stns roughly
										in colour towards 42.44	parallel the folm.
										The unit contains ~ 5%	- py occurs as sparsely
										Ca-qtz veins throughout	diss euhedra throughout.

PAGE 8 OF 28

\$\footnote{5}	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-6
INTER	RVAL				DESC	RIPTION	l			STRUCTURE	REMARKS
FROM	ТО	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										with a large ca-qtz vein	- pbs occurs as m.g.
										@ 41.36 - 41.52. Qtz	diss xtals associated
										occurs within the veins	with Zns stns @ 40.17.
										as a minor component and	
										consists of rounded irregular	
										blocks within Ca.	
42.44	44.87	Lst	med-dk	f-m.g.	bndd-	minor ser	ру		100%	weakly bndd with minor	- tr py as sparsely
		(02)	дĀ		speckled		F 3		1000	interbndd argilliceous bnds.	diss m.g. euhedra.
										The unit has a speckled	uiss m.g. eunedia.
										appearance between 42.83	
										and 43.52. The unit	
										contains ~ 5% c.g. Ca sweats	
										that are locally displaced	
										along minor slip planes	
									÷	that now contain ca veins.	
										The slips are oriented @	
										~10° and show displacement	
										of less than (0.5 cm).	
44.87	45.72	Lst	lt gy	f-m.g.	bndd	minor ser	ny phe		100%	med-thickly bndd.	tr py, tr pbs
		(03)	31		- Diluu		PY, PDS		100%	bnding is oriented @ 20 °-	- py occurs as m.g. diss
		(00)								25°.	euhedra.
										Unit becomes darker towards	- pbs occurs, as m.g. diss
										45.72.	xtals associated with -
										The unit contains ~ 1% Ca-	qtz-feldspar veins-

PAGE 9 OF 28

\$\sqrt{s}	ELCO	EXPLORATIO WESTERN CANA	ADA			DR	LL		LO	G	HOLE NO. 84-6
INTE	RVAL	_			DESC	RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
						-			,	qtz veins that crudely	
										parallel the bnding.	
										The unit also contains	
								·		tr qtz-feldspar veins.	
45.72	52.85	Lst	med dk	f-m.g.	bndd		ру		100%	thinly-thickly bndd-minor	- tr py as f.g. diss
		(02)	9y							interbndd f.g. argilliceous	euhedra within the
										horizons.	argilliceous bnds.
										bnding in orientated @ 18°-	
										30°.	
					,					The unit contains ~20%	
										ca sweat veins.	
-										These ca veins are locally	
										folded into irregular	
· · · · · · · · · · · · · · · · · · ·										ptigmatic folds that have	
										axial planes roughly	
										parallel to the bnding.	
										Ca sweat content increases	
							·			towards 52.85 and locally	
										reaches concentrations	
										of up to 70% over a metre.	
52.85	54.04	Lst	white -	f-m.g.	mass-	qtz+minor	Zns, po		100%	weakly bndd with minor serici	
		(03)	lt g		bndd	ser +plag				bnds. Bnds oriented @ 20°-23	
						, Prag				The unit is locally highly si	lici- f.g. diss grains con-
										fied with increased silicific	ation centrated in strs

PAGE ____10 ___ OF ___28

DRILL HOLE NO. ____84-6

TO	ROCK TYPE	COLOUR	GRAIN SIZE		ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	STRUCTURE (FRACTURES, FAULTS, FOLDING, BEDDING, ETC): towards 54.04. The unit contains ~ 2% ca-qtz veins. Veins REMARKS MINERALIZATION, TYPE, AGE RELATED PARTICLE PRODUCT PRODU
	ROCK TYPE	COLOUR	G R A I N SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	towards 54.04. parallel to bnding. The unit contains ~ 2% - py occurs as f.g. diss
									The unit contains ~2% - py occurs as f.g. diss
									ca-qtz veins. Veins euhedra locally associa
									between 53.96 and 54.04. with diss Zns.
				1	1				The Lst is ultra silicified
									and contains ~30% m.g.
									diss plag.
56.17	Ser-qtz-chl phyll	l med av	f.a.	fotd.	Ser+chl	po, py		100%	thinly bndd. Locally high tr po, tr py
	(04)	† -			+minor				siliceous - the unit contains - po occurs as flattener
					Piag				~ 30% interbndd qte @ 54.23 - diss grains and smean
									54.40, 54.84 - 54.90, 55.13 - on foln planes.
									55.44, 55.53 - 55.60 py occurs as m.g. dis
									foln within the phyll is anhedra.
									fairly irregular throughout
									especially in ser-rich zones
									that have been veined
									foln 25-39°.
									A fold occurs within Qte
									@ 54.35 which has a f.ax
									at 27 and an axial plane
									@ 30°.
									The unit contains, 1% qtz-
									feldspar veins that x-cut
		-							the foln.
56	5.17					+minor	(OA) +minor	(OA) +minor	(OA) +minor

PAGE 11 OF 28

\$\ s	ELCO	EXPLORATION WESTERN CANADA				DR	LL		LO	G	HOLE NO 84-6
INTER	RVAL				DESC	RIPTION	l			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC)	MINERALIZATION, TYPE, AGE RELATIONS
									_	The unit locally contains	
						-				minor m.g. diss plag.	
56.17	60.77	Qte+ser-qtz-chl-	lt dk	f-m.g.	fotd	Ser+chl+	py, po		100%	thin-med bndd interbndd	tr py, tr po
		phyll (06) + (04)	gy-grn			minor plag				unit. Locally thin interbndd	, - py occurs as m.g.
										bnding (foln) is regular	diss anhedra throughout.
										throughout and oriented @ 25	po occurs v.locally as
										28°.	smears on foln. planes.
										The unit is locally folded	
										into open folds with	
										angular fold noses f.ax @	
										56.44 is @ 73° and has	
										an axial plane @ 85°.	
										The unit contains ~2% qtz-	
										feldspar veins that locally	
										x-cut the foln and are locall	У
			-							folded. The unit locally	
										contains minor m.g. diss plag	-
										usually concentrated in thin	
										qte bnds.	
60.77	65.53	Ser-qtz-chl phyll	med gy	f.g.	fotd.	ser+chl+	py, po		100%	thinly bndd - contains minor	tr py, tr po
		(04)	- grn	erroretation and the state of t		minor plag				interbndd qte @ 62.85 - 62.97	- py occurs as m-c.g. diss
						-				and @ 64.09 - 64.14. Foln is	subhedra throughout and
				· · · · · · · · · · · · · · · · · · ·						mod regular throughout and is oriented @ 300-350. The unit contains <1% qtz	locally concentrated into discontinuous thin stns that parallel

PAGE 12 OF 28

\$ s	ELCO	EXPLORATION WESTERN CANADA	Δ.			DR	LL		LO	G	HOLE NO. 84-6
INTER	VAL					RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										veins that locally contain c.	g. the foln.
										feldspar -	- po occurs as m.g. diss.
										- The unit contains minor	irregular blebs.
										m.g. diss plag within	
			-							thin siliceous bnds	
										throughout.	
65.53	66.77	Qtz-ser phyll	med. gy	f-m.g.	fotd.	ser+plag	ру		100%	thin-med bndd, fairly	tr py - as m.g. diss
		(07)	(yellowi:	sh)						regular foln throughout	subhedra.
										oriented @ 30°.	
										The unit contains ~5-10%	
										m.g. diss plagioclase, con-	
				·						centrated within qtz rich	
										bnds. The unit contains tr	
										amts of feldspar-qtz veins	
										that roughly parallel the fol	n.
66.77	67.71	Ser-qtz-chl phyll	med-dk	f.g.	fotd	ser+chl+	py, po		100%	thinly bndd with a minor bnd	tr po, tr py
		(04)	gy			biotite+ plag				of Qte @ 67.39 - 67.43 foln	- po occurs as thin discon-
										are fairly regular throughout	tinuous strs that crudely
										foln is @ 35°-40°. A fold	parallel the folm.
										occurs @ 67.63. The fold is	- py occurs as m-c.g. diss
										open and asymetrical and has	anhedra.
										a f.ax of 78° and an axial	
										plane of 65°.	
									-	m.g. diss plag occurs dominan	tly

PAGE 13 OF 28

DRILL HOLE NO. ____84-6

\$\footnote{S} =	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-6
INTER	RVAL				DESC	RIPTIO	V			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										within siliceous bnds.	
						-				biotite occurs locally	
										as porphyroblasts diss	
										throughout.	
											A CONTRACTOR OF THE CONTRACTOR
67.71	73.65	Qte	lt gy	f-m.g.	fotd.	ser+chl	py, po, X		100%	Thinly bndd mass.	1% X, tr py, tr po
		(06)				+plag				The unit contains several	
										interbndd chloritic units.	X - occurs as f.g.
										Chl-ser phyll occurs @ 70.54-	subhedra diss throughout.
										70.81, and 71.34 - 71.74.	The mineral is black with
										qtz-chl phyll occurs @ 72.21-	a vitreous to metalic
										72.24, and 72.61 - 72.94.	lustre. It has a black
										Foln is not very well develope	d streak, a hardness of ~ 5
										within the qte.	and appears to have one
										Foln is oriented @ 32°-36°.	well developed cleavage
										Folds are present @ 72.90 -	it has a crystal form
										73.27 which are open asymetric	al similar to that of chromite
									-	folds with a f.ax of 86° and	and magnetite. It's
										an axial plane @ 77°.	apparantly non magnetic.
										The unit locally contains	
										minor m.g. diss plagioclase	- py occurs as f-m.g.
										- often associated with zones	diss subhedra throughout.
										of increased chl content.	- po occurs as m.g diss
										- The unit contains ~ 2%	blebs and as thin irreg-
										qtz veins that locally.	ular, discontinuous strs

PAGE 14 OF 28

SELCO		EXPLORATION WESTERN CANAD			DRILL LOG			LO	G	HOLE NO. 84-6	
INTER	VAL				DESC	RIPTION	l			STRUCTURE	REMARKS
FROM	T 0	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE R	Core ecovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										contain minor feldspar	
										+ lt grn chl.	
73.65	75.20	chl-qtz phyll	med dk	f.g.	fotd.	chl+mino	r po		100%	V. thinly bndd locally highly	tr po occurs as diss
		(05)	grn			plag				siliceous - general decrease	flattened blebs and
										in chl away from 73.65.	smears on foln planes.
										- generally highly regular	
										foln throughout.	
										Foln is oriented @ 27°-34°	
										locally within siliceous	
										regions minor m.g.	
										diss plag occurs	
										<pre>< 1% qtz-feldspar veins</pre>	
75.20	75.52	Qte	lt gy	f.g.	fotd.	ser	х		100%	mass-thinly bndd	tr X as f.g. diss
		(06)			folded					poorly developed folm @ 27°-3.	2 ^o subhedra concentrated
										a fold occurs in the centre of	f on foln planes.
										the unit. The fole appears to	0
										be isoclinal and has an axial	
										plane parallel to the folm.	
										~ 2% qtz veins with minor	
										c.g. feldspar.	
75.52	75.92	Qtz-chl phyll	med grn	f.g.	fotd.	chl+ser+	py, po		100%	thinly bndd - unit contains	tr py, tr po
		(06)	- gy			plag				chl-ser phyll bnd @ 75.52 -	- py occurs as m.g.
										75.57. Foln are regular	diss anhedra throughout.

PAGE 15 OF 28

\$ si	ELCO	EXPLORATION WESTERN CANADA								G	HOLE NO. 84-6
INTER	VAL									STRUCTURE	REMARKS
FROM	ΤO	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										within the unit except in	- po occurs locally within
						-				the chl-ser phyll	the chl-ser phyll as m.g.
										foln is oriented @~35°	irregular blebs.
										- unit contains minor m.g.	
										diss plag.	
75.92	76.47	chl-ser-qtz phyll	med dk	f.g.	fotd	chl, ser	, po, py		100%		tr po, tr py
		(05)	grn-qy		veined	plag				- thinly bndd - with highly	- po occurs as irregular
										irregular foln in veined	blebs and thin selvages
										regions. Foln is oriented @	in qtz veins.
										36 ⁰ -40 ⁰ . The unit contains	- py occurs as c.g.
										~10% qtz veins which contain	diss anhedra.
										lt grn chl + m.g. feldspar.	
										The unit contains minor diss	
										m.g. plagioclase concentrated	
										towards 76.47.	
76.47	77.30	Qte	lt gy	f.g.	fotd.	ser, chl	, po, X		100%	thinly bndd - highly irregular	tr po, tr X
		(06)			folded	plag				folms due to local tight folds	s - po occurs as c.g. irr-
										present.	egular blebs locally
										Foln is oriented @ 26-38°	within the unit.
										chl+ser occur on foln planes	- X occurs as f.g. diss
										chl locally occurs as diss	subhedra throughout and
										porphyroblasts.	locally concentrated on
										Locally the unit contains mind	or foln planes.
										m.g. diss plag.	

PAGE 16 OF 28

\$5	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-6
INTER	RVAL				DESC	RIPTION	1			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
77.30	77.56	qtz vein	white	c.g.				med fra		massive qtz vein	1% po, tr cpy
		(13)				-				(99% qtz)	- po occurs as an irregular
		·								vaguely fractured in	mass that locally penetrates
										several directions.	along fracture planes.
											- cpy occurs as thin wisps
											associated with po blebs.
77.56	81.24	Qte	lt dk	f-m.g.	weakly spotted	chl+ser+	As, Po,		100%	thinly bndd - mass	- tr po, tr pbs, tr Zns, tr A
		(06)	grn-gy		fotd.	minor plag	Pbs,Zns			The unit contains interbndd	- po occurs as thin strs
						1				chl-qtz phyll @ 78.14 - 78.24	, associated with qtz veins,
										78.69 - 78.94, 80.79 - 80.87	and as diss flattened grains
										and a chl-ser Qtz phyll @	and smears on foln planes.
										79.50 - 79.97.	- pbs occurs @ 80.36 as m.g.
										The units are locally spotted	xtals within a thin qtz
										with m.g. chl porphyroblasts.	vein, it is associated with
										These porphyroblasts are	Zns+As.
										highly concentrated in the	- Zns occurs as red m.g. xtal
										chloritic phyllites (up to 5%)	associated with pbs+As.
										- earlier metamorphic fabrics	; - As occurs as f.g. xtals
										occur and are disrupted and	associated with pbs-Zns.
										folded to the regional foln	
										which is weakly developed in	the
										Qte.	
										Small isoclinal folds occur w	vith
										axial planes parallel to the The unit locally contains tr	

PAGE 17 OF 28

\$ sı	ELCO	EXPLORATION WESTERN CANADA	1			DR	ILL	L	. O		HOLE NO. 84-6
INTER	VAL					RIPTION			-	STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES CO	ore covery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
81.24	82.28	Qtz-Chl-Ser phyll	med gy	f.g.	fotd.	ser+chl	po, py	1 1	100%	thinly bndd unit grades	tr po, tr py
		(06)	-grn			,				towards 82.31 into a Qtz-	- po occurs in thin strs that
										ser phyll. Foln are fairly	parallel the folm. and as
										regular throughout.	smears on foln planes.
										Foln range from 45 [°] near	- py occurs as m.g. diss
										81.24 - 30° near 82.31.	subhedra sparsely dis-
										The unit contains minor	tributed throughout.
										qtz veins that are sub-	
										parallel to the foln and	
										contain minor feldspar.	
82.28		Qtz-ser phyll	lt grn -	f.g.	fotd.	ser	py, po	1	100%	thinly bndd fairly regular	1% py, tr po
(actu	l length	(07)	дХ							foln throughout.	- py occurs as c.g.
										Foln ranges from 25°-30°.	subhedra concentrated into
										A large qtz vein occurs	irregular strs and blebs
										at 82.86 - 82.94.	within the qtz vein @
										A small fold occurs @ 83.05	82-86 - 82.94.
										with a f.ax of 35°.	- po occurs as thin strs
											parallel to the folm.
		//									locally the strs x-cut the
											foln at a low angle.
83.06	83.28	M.S.	brassy-	c.g.	locally milled	ser	As, py, pbs, Zns	1	100%	60% As	
		(12)	silver		locally Brx					30% py	
										2% Zns	
							L			tr pbs	

PAGE ____18___ OF ____28___

ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-6		
VAL									STRUCTURE	REMARKS		
то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS		
									2% ser phyll frags			
					:				8% Qtz gangue			
									The unit can be broken up			
									into two zones.			
									The first zone is from 83.06-			
									83.14 and consists of a milled			
									zone that contains, 30% rounded py grains in a f.			
									matrix 50% py + 20% As + 25%	red Zns This zone is bounded		
									near 83.06 by a qtz rich band that contains~50% m.			
									subhedral As +~2% m.g. pbs.	The lower contact @ 83.14		
									is a gradational contact into	the next zone which is an As		
									brx. The second zone is As b	reccia consisting of 80%		
									v.c.g. fractured subhedral As	in a qtz gangue which occurs		
									@ 83.14 - 83.28.			
										83.06 which is at an angle of		
									45°.			
									The lower contact @ 83.28 is	@ 60° and is in contact with		
									a quartz vein that contains	5-10% sulphides.		
83.57	qtz vein	white	c.g.	vein	ser	As, Zns,		100%	qtz vein with~5% sulphides	3% As		
	(13)					ру			vein varies from white to gre	y. 2% Zns		
										tr py		
										- As occurs as m-c.g.		
										subhedra in irregular		
										strs and blebs.		
	TO	ROCK TYPE ROCK TYPE ROCK TYPE	TO ROCK TYPE COLOUR COLOUR COLOUR ROCK TYPE COLOUR ROCK TYPE COLOUR White	TO ROCK TYPE COLOUR GRAIN SIZE	TO ROCK TYPE COLOUR GRAIN TEXTURE COLOUR SIZE TEXTURE A SIZE TEXTURE SIZE TEXTURE	ROCK TYPE COLOUR GRAIN SIZE TEXTURE ALTERATION SIZE ROCK TYPE COLOUR SIZE TEXTURE ALTERATION SIZE TEXTURE ALTERATION SIZE TEXTURE SIZE TEXT	TO ROCK TYPE COLOUR GRAIN SIZE TEXTURE ALTERATION MINERALS COLOUR SIZE TEXTURE ALTERATION MINERALS COLOUR SIZE TEXTURE ALTERATION MINERALS ATTRIBUTE ALTERATION MINERALS ORE MINERALS	TO ROCK TYPE COLOUR GRAIN SIZE TEXTURE ALTERATION ORE PERMETRE.	TO ROCK TYPE COLOUR GRAIN TEXTURE ALTERATION MINERALS FRACTURES Recovery COLOUR SIZE TEXTURE ALTERATION MINERALS FRACTURES COPE PER METRE RECOVERY COLOUR SIZE TEXTURE ALTERATION MINERALS FRACTURES COPE PER METRE RECOVERY COLOUR SIZE TEXTURE ALTERATION MINERALS FRACTURES COPE PER METRE RECOVERY COLOUR SIZE TEXTURE ALTERATION MINERALS FRACTURES COPE PER METRE RECOVERY COLOUR SIZE TEXTURE ALTERATION MINERALS FRACTURES COPE PER METRE RECOVERY COLOUR SIZE TEXTURE ALTERATION MINERALS FRACTURES COPE PER METRE RECOVERY COLOUR SIZE TEXTURE ALTERATION MINERALS FRACTURES COPE PER METRE RECOVERY COLOUR SIZE TEXTURE ALTERATION MINERALS FRACTURES COPE PER METRE RECOVERY COLOUR SIZE TEXTURE ALTERATION MINERALS FRACTURES COPE PER METRE RECOVERY COLOUR SIZE TEXTURE SIZE TEXTURE ALTERATION MINERALS FRACTURES COPE PER METRE RECOVERY COLOUR SIZE TEXTURE	TO ROCK TYPE COLOUR GRAIN SIZE TEXTURE ALTERATION COLOUR SIZE The unit can be broken up into two zones. The first zone is from 83.06- 83.14 and consists of a mille zone that contains, 30% round matrix 50% py + 20% hs + 25% near 83.06 by a qtz rich band subhedral As +~2% m.g. pbs. is a gradational contact into brx. The second zone is As b v.c.g. fractured subhedral As @ 83.14 - 83.28. The hole unit has a contact @ 45°. The lower contact @ 83.28 is a quartz vein that contains 83.57 qtz vein white c.g. vein ser As, Zns, 100% qtz vein with~5% sulphides		

PAGE 19 OF 28

\$ si	ELCO	EXPLORATION WESTERN CANA				DR	LL		LO	G	HOLE NO. 84-6
INTER	VAL					RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
							-				- Zns occurs as m.g. red
											xtals in thin irregular
											stns and blebs.
											- py occurs as m.g. subhedra
			-								diss within As + Zns stns.
83.57	83.62	M.S.	brassy	m.g.	milled		py, Zns,		100%	85% py	
		(12)					As			5% Zns	
										5% As	
										5% qtz gangue	
										unit consists of 50% c.g. fra	act and rounded grains within
										a matrix of.~ 40% f.g. py + 5%	k red Zns + 5% f.g. As in a
										qtz gangue.	
										The contact @ 83.57 is abrupt	t and oriented @ 60°.
										The contact @ 83.62 is abrupt	as oriented @ 65°.
										- c.g. pyrite bnds occur @ bo	oth contacts.
83.62	84.11	Qte	lt gy -	f.g.	fotd.	ser	Zns, As,		100%	thinly bndd and folded into	~1% py
		(06)	grn		folded		ру			open folds with a f.ax at 87	. tr Zns
	-									The unit locally grades into	tr As
								·		a qtz-ser phyll.	- py occurs as c.g. subhedra
										Foln ranges from 0°-85°.	in blebs and stns often
										The unit contains~30% qtz	associated with qtz veins.
										veins which crosscut the foli	n Zns occurs as red irregular
											strs associated with py

PAGE 20 OF 28

\$ si	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO 84-6
INTER	VAL					RIPTIO'N		And the second s		STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
											- As occurs as f-m.g.
			-								subhedra diss throughout.
84.11	84.27	M.S.	brassy	f-c.g.	milled	ser	py, As,		100% سر	60% py	
		(12)					Zns, pbs	3		10% As	
										2% Zns	
		•								tr pbs	
										25% qtz-feldspr vei	n
										3% ser phyll frags	
										The unit grades from a zone of	of 90% c.g. fractured pyrite
										with 5-10% f.g. As +~ 5% m.g.	. red Zns at 84.11 - 84.14 to
										a zone @ 84.14 - 84.27 of mil	lled texture M.S. consisting
										of~10% rounded c.g. py + 5%	c.g. rounded As in a f.g.
										matrix of 70% py + 5% As +~	l% Zns (red).
										The milled zone is cut by a	qtz-feldspar vein @ 84.17 -
										84.20 that contains~3% m.g.	remobilized red Zns + tr f.g.
					ļ					pbs frags of ser phyll od	ccur throughout and are
										boudinaged.	
										- contact @ 84.11 is abrupt a	and is oriented @ 80% and
										roughly parallels the foln	
										- contact @ 84.27 is abrupt a	and is oriented @ 30° and
										appears to be on a slip pla	ane.
			-								

PAGE 21 OF 28

\$ si	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-6
INTER	VAL				DESC	RIPTION	١.			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
84.27	85.56	Qtz-ser phyll	lt grn -	f.g.	fotd	ser+	Zns, py		100%	thinly bndd - highly irregular	tr Zns, tr py
(actual	length 1.42 m)	(07)	дУ		folded	minor chl				foln throughout the unit is	- Zns occurs as thin red
										locally chloritic.	irregular strs, subparallel
										The unit contains > 5% qtz vein	s. to the folded folm a
										The unit is locally highly fol	ded larger stringer occurs @
										into open folds with f.ax of	84.31 - 84.32.
										37°, 57°, 67° all within close	- py occurs as m.g. diss
										proximity to each other axial	subhedra and euhedra
										planes _{Of} these folds range	throughout.
										from 50°-57°.	
85.56	85.64	M.S.	dk gy	m.g.	bndd	ser	As, py,		100%	35% As	
		(12)					Zns			15% py	
										tr Zns	
										45% qtz guangue	
										5% Qtz-ser phyll	
										the unit consists of strs of f	.g. and m.g. subhdral py + As
										that parallel the foln and have	e an orientation of $\sim 45^{\circ}$.
										The stringers are hosted with	Qtz-ser phyll and have a
					,					quartz gangue that is mildly c	alcareous.
				-							
					<u> </u>						

PAGE 22 OF 28

\$ si	SELCO INTERVAL	EXPLORATION WESTERN CANA				DR	ILL		LO	HOLE NO 84-6	
INTER	VAL				DESC	RIPTION	V			STRUCTURE REMARKS	_
FROM	T 0	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, MINERALIZATION, TYPE, AGE REL	AT IONS
85.64	85.71	Qtz-ser phyll	lt gy-	f.g.	fotd.	ser	py, As		100%	thinly bndd - irregular tr py, tr As	
		(07)	grn							foln disrupted by Qtz - py occurs as m-c.g.	
										veins that roughly diss subhedra and loc	cally
										parallel the foln. as thin discontinuous	3
										Foln ~45°. strs within qtz vein:	S
										- As occurs as ultra f	g.
										diss grains and in v	. thin
										strs.	
85.71	85.79	Lst	lt med	m.q.	bndd	ser	py, Zns		100%	thinly bndd contact @ 85.71 tr Zns, tr py	
		. (03)	gy							is a gradational contact from - Zns occurs as dk red	thin
										qtz-ser phyll → lst.lower strs parallel to band	ding.
1										contact @ 85.79 is a bnd of - py occurs as m.g. di	ss
										m.g. clean Lst ~0.5 cm wide. euhedra.	
										bnding oriented @ 47°.	
85.79	85.84	M.S.	brassy-	m.g.	bndd		As, py		100%	30% As	
		(12)	silver							30% py	
										40% Lst that is highly silicified	
										sulphides occur in thin bnds that are locally milled	
										especially near 85.79. Py and As occur associated with	-h
										each other both as c.g. subrounded grains and as a f	g.
										matrix	
										contact @ 85.79 is @ 38°.	
										contact @ 85.84 is @ 43°.	

PAGE 23 OF 28

\$ s	ELCO	EXPLORATIO WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-6
INTER	VAL				DESC	RIPTION	l			STRUCTURE	REMARKS
FROM	т 0	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Core Recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
											xtals associated with
											Zns strs.
102.63	110.06	Lst	blk	m.g.	recrysta	1	Py, Zns,		100%	grad. contact.	<pre>1% py grains (f.gm.g.)</pre>
		(02)	to gy				As			Foln 29 ⁰	diss assoc. with carbon
										5% x-cutting ca veinlets	bands.
											tr Zns (honey brown) &
										- at 105.3 - 105.39 m	tr As (m.gf.g.) found at
										gry Lst with abundant	108.55 m with py in narrow
										ca veins and coarse lenses	(1 cm) sil ca.vein.
										- bnds highly contorted with	
										narrow broken carbon bnds.	
										foln 20°	
										106.26 - 106.38 m as above.	
										106.38 - 107.12 m broken core	
										highly contorted with abundan	t
										brecciated ca veins.	
										foln 23°	
										ca veins (max. 2 cm wide)	
		18								(minor sil component)	
110.06	110.15	Lst	lt gy	m.g.	recrysta		py, po		100%	foln 32°	1% f.gm.g. py
		(03)					F1, P3			1 small x-cutting ca veinlet	blebs and aggregs.
		, , , , , , , , , , , , , , , , , , , ,							,		tr po diss
110.15	112.47	Chl Phyll	blk	f.g.	fotd.		ру, ро		100%	foln≈30°	2% diss Po (f.g.)
		(05)			& shrd.					minor carb f.f. increasing	1% diss and blebs py

PAGE 25 OF 28

\$\footnote{5}\$	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LOG		HOLE NO. 84-6
INTER	RVAL				DESC	RIPTION	1			TRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	(FRACTURES,F	AULTS, FOLDING, BEDDING,	MINERALIZATION, TYPE, AGE RELATIONS
									towards t	he Lst	(f.g-m.g.)
						-			qtz lense:	s and veinlets	along foln and within
									≈ 10%-15% v	with minor ca f.f.	qtz lenses.
									- rock app	pears highly shrd	
									and is ve	ry dk with abundant	
									Fe-rich c	hl.	
										END C	F HOLE
							-	-			
			<u> </u>								

PAGE 26 OF 28

\$ SE	LCO		OR ATION RN CANADA			DR	ILL LO	J G		S	amp	le d	ata	
	SAI	APL E			CORE	RECOVERY	VISUAL ESTIMATES		А	SSAY	RESUL	. T S		
NUMBER	FROM	то	TOTAL METRES	Sp. Gr	%	AMT. LOST	(% ORE MINERALS)		% Pb	% Zn	% As	g/t Ag	g/t Au	
47070	81.28	82.28	1.00 m		100		tr po, tr py		< 0.01	0.01	0.019	1.8	0.3	
47071	82.28	83.06	0.78		100	actual length 0.83	1% py, tr po		< 0.01	0.02	0.016	2.5	0.2	
47072	83.06	83.14	0.08		100		75% py, 20% As, 2-5% Zr	s, tr pbs	5.00	9.58	7.670	147.6	9.4	
47073	83.14	83.28	0.14		100		80% c.g. As		0.57	1.28	12.900	31.7	18.4	
47074	83.28	83.57	0.29		100		3% As, 2% Zns, tr py		0.06	0.64	3.410	3.4	2.1	
47075	83.57	83.62	0.05		100		85% py, 5% Zns, 5% As		5.52	11.30	1.500	110.5	5.4	
47076	83.62	84.11	0.49		100		1% py, tr Zns, tr As		0.13	0.06	0.768	7.6	0.6	
47077	84.11	84.27	0.16		100		60% py, 10% As, 2% Zns,	tr pbs	5.00	7.81	2.840	185.1	5.5	
47078	84.27	84.85	0.58		100	actual length	tr Zns, tr py		0.12	0.21	0.069	5.9	0.3	
47079	84.85	85.56	0.71		100		tr py, tr Zns		0.13	0.13	0.174	3.2	0.3	
47080	85.56	85.64	0.08		100		35% As, 15% py, tr Zns		0.68	0.23	9.030	22.2	3.8	
47081	85.64	85.79	0.15		100		tr py, tr Zns, tr As		0.20	0.37	0.787	8.2	0.1	
47082	85.79	85.84	0.05		100		30% As, 30% py		7.91	0.62	8.790	140.9	6.5	
47083	85.84	86.84	1.00		100		⟨1% Zns, tr py, tr As		0.05	0.52	0.107	3.7	0.4	
47084	86.84	87.84	1.00		100		tr py		0.03	0.02	0.006	< 0.3	< 0.1	
47085	87.84	88.84	1.00		100				< 0.01	<0.01	0.004	1.2	0.1	
47086	88.84	89.84	1.00		100		1% As, tr py		< 0.01	0.01	2.780	2.5	4.4	
47087	89.84	90.84	1.00		100		tr As, tr Zns		0.18	0.09	0.560	0.7	0.7	
47088	90.84	91.84	1.00		100		tr py		< 0.01	< 0.01	0.017	2.6	0.1	
47089	91.84	92.84	1.00		100		tr py, tr As, tr Zns		0.07	0.02	0.119	1.9	0.2	
47090	92.84	93.84	1.00		100		<1% As, tr Zns		0.05	0.02	1.180	5.4	2.1	
47091	93.84	94.84	1.00		100		tr py, tr Zns, tr As		0.04	0.06	0.519	0.3	0.4	
47092	94.84	95.84	1.00		100		tr Zns, tr py		0.08	0.07	0.128	3.9	0.2	
47093	95.84	96.84	1.00		100		tr py, tr Zns		0.03	0.03	0.014	1.4	< 0.1	
47094	96.84	97.84	1.00		100		tr Zns, tr py, tr As		< 0.01	0.05	0.115	1.7	0.3	
47095	97.84	98.84	1.00		100		tr As, tr py, tr pbs	<u> </u>	0.01	<0.01	0.006	< 0.3	< 0.1	

PAGE 27 OF 28

DRILL HOLE NO. ____84-6

SSE	LCO	EXPL WESTER	OR ATION RN CANADA			DA	ILL L	OG		S	amp	le d	ata	
	SAI	MPLE			CORE	RECOVERY	VISUAL ESTIMATES		А	SSAY	RESU	LTS		
NUMBER	FROM	TO	TOTAL	Sp. Gr	%	AMT. LOST	(% ORE MINERALS)	% Pb	% Zn	% As	g/t Ag	g/t Au		
47096	98.84	99.84	1.00		100		tr Zns, tr py, tr pbs	0.01	0.01	0.015	< 0.3	< 0.1		
47097	99.84	100.84	1.00		100			0.01	0.01	0.008	0.7	< 0.1		
													Management of the same of the	
		<u> </u>	-	 	-			-						

	ELCO		DRATION N CANADA				DR	ILL			LO	G		HOLE NO84-7
RILLING CO),	LOCATION	SKETCH	Ī	DEPT	н	TESTS DIP ANGLE	AZIMUT	н	DATE	STARTED:	0-1-101001	[PROJEC	.T:
CO	NNORS				COLL		- 44.4°	224		DATE	COMPLETED	October 8, 1984 October 9, 1984	N. T. S.	J&L
•				·	38.	10 m	- 43.5°	227		COLLA	R ELEV.:	838.463	LOCATIO	82M/8E
					68.	58 m	- 44°	226		NORTI	HING :	9,942.830		10,820 x-cut
									Ε	EASTI	NG:	10,819.698	-	
										AZIMU	тн:	2220		
OLE TYPE									0	DEPTH	l :	70.10 m	DATE L	OGGED: October 9 & 10, 198
OLE TIPE	DDH								C	ORE	SIZE:	в.О.	LOGGED	C.O. & R.P.
INTE	RVAL	ROCK TYP) F			DESCR	IPTION					STRUCTURE		REMARKS
FROM	TO		COLO	UR	GRAIN SIZE	TEXTURE	ALTERATION	ORE	FRACTU PER MET	TRES	% core recovery	(FRACTURES, FAULTS, FOLDING, BE	DDING,	MINERALIZATION, TYPE, AGE RELATION
0.00	0.61	Lost core									0			
0.61	0.61 6.29	Chl-qtz phy	11 dk.gy blk	grr-	f.g.	fotd.	chl+minor	Po	highl fract	У	100	Thin-med. bndd., well f	otd.	Tr Po smeared on folm.
		(05)					ser		0.61-0			Local interbndd. qte (0		surfaces and as blebs in
												0.89; 1.53-1.61; 1.75-2		qtz lenses.
											***	2.93-2.96; 3.01-3.04; 3		
												3.51; 3.80-3.85; 4.86-4		
											***************************************	5.79-5.95). Chl phyll		
												minor ser 3.85-4.52. F		
												68° - 79° . S ₂ bndg. fold	led and	
												disrupted by foln. (S ₃)	: 2%	
												qtz lenses.		
6.29	6.91	Chl-ser phyl	ll medd	k. 1	E.g.	fotd.	chl+minor	Ро			100	Thin-med. bndd. well fo	td.	Tr Po smeared on foln.
		(05)	gy-gr	n			ser					Foln. $70^{\circ}-80^{\circ}$. Bands d		surfaces and as blebs in
												rupted by foln. ~3% wh.		qtz lenses.
												lenses, contorted 6.62-		god wended.
			,									.,		

DRILL HOLE NO. ____84-7

\$\frac{1}{5} =	ELCO	EXPLORATION WESTERN CANA		***************************************		DR	ILL		LO	G	HOLE NO84-7
INTER	VA L				DES	CRIPTION	J			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES %	core ecovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
6.91	8.30	Qtz-chl phyll	med. grn-	f.g.	fotd.	chl.	Po		100	-Med. bndd., well fotd. Foln.	- < 1% Po, f.g. in thin strs
		(06)	дУ							70°-78°; bndg. 72°-78°. Bndg.	parallel to foln. and
										truncated by folm. in places	. smeared on foln. surfaces.
8.30	32.67	Chl-qtz phyll	meddk.	f.g.	fotd.	chl + min	or Po,Py		99	-Med. faint bndd., well fotd.	- 1% Po, f.g., in thin strs
		(05)	grn gy			ser				80-85°. ~2% wh. qtz lenses	parallel to foln. and in
										contain 410% feldspar and	qtz lenses and smeared on
										< 1% ser. (8.38-8.49; 13.15-	foln. surfaces.
										13.23; 15.42-15.57; 18.75-	- Tr Py, m.g., scattered cubes
										18.81; 20.81-20.91; 21.13-	$\frac{1}{2}$ -1 mm and smeared on folm.
										21.24; 21.68-21.72; 22.93-	surfaces.
										23.12; 23.40-23.57; 25.75-	
										25.88; 26.50-26.63; 27.68-	
										27.75; 30.43-30.46; 31.21-	
										31.25).	
										-Local bands of qtz-chl phyll	
										(9.03-9.07; 9.84-9.89; 12.00-	
										12.07; 13.15-13.23; 17.06-	
										17.07; 18.52-18.58; 20.02-	
										20.05; 24.42-24.55;25.36-	
										25.54; 26.30-26.38; 27.13-	
										27.26).	
										-Two bands qte (31.86-31.91;	
										31.94-32.03).	
										-Several gouge zones (22.51-	
										22.61; 23.32-23.40; 27.50-27.	57).

PAGE __2 ___ OF ___17__

\$\footnote{\sqrt{5}} = \footnote{\sqrt{5}}	SELCO	EXPLORATION WESTERN CANA				DR	ILL	L	L O	G	HOLE NO. 84-7
INTER	VAL				DESC	RIPTION	V			STRUCTURE	REMARKS
FROM	т 0	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES % PER METRE re	core	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										-Broken core 23.15-24.08;	
										~25 cm lost.	
										-Folds: 29.02-fairly open,	
										slip on foln. has sheared	
										one limb, prob. F3; 30.93-	
										kink, $AP=25^{\circ}$, $FA=80^{\circ}$.	
										-Fractures filled with felds.	
										at 30.39 & 30.43,~65°.	
32.67	33.23	Lst.	lt. med.	f.g.	fotd.	ser	Ру		100	-mod. well fotd. 75-85°	- Tr py; m.g.; diss.
		(03)	gy							-med. bndd., 75 ^o -85 ^o	
										-ser on some foln. surfaces	
										-contact w/carb lst. below	
										is 85°	
						-					
33.23	36.19	Carb 1st.	dk. gy	f.g.	fotd.		Ру		100	-mod. well fotd., 83°-87°	- Tr Py, f-m.g., diss.
		(02)								-f-med. bndd.; 1-15 mm;	
							-			75 [°] -80 [°]	
	-									-cb sweats 1-10 mm; concen.	
										33.23-33.32; 33.83-33.96;	
										34.40-34.41; 34.95-35.70;	
										55°-90°, most 70°-80°;	
										~ 2% of rock.	
										-Some thin carb bands sheared	•
			<u> </u>								

PAGE ___ 3 __ OF __ 17

DRILL HOLE NO. ____84-7

\$\sqrt{s}	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO84-7
INTER	RVAL				DESC	RIPTION	١	•		STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
36.19	36.58	Lst.	ltmed.	f.g.	fotd.	minor se			100	-mod. well fotd., 75 -80 at	- Tr Py, f.g., diss.
		(03)	gy							ends of zone, 65° in centre	
										-med. bndd., bands parallel to	
										foln.	
										-ser on a few foln. surfaces	
										-wh. qtz lens, 36.33-36.34	
										~20% feldspar.	
										-broken core 36.24-36.31.	
36.58	41.88	Carb. 1st.	meddk.	f.g.	fotd.		Py, Zns		100	-mod. well fotd., 70°-85°	- Tr Py, f-m.g., diss.
		(02)	дУ							-f-med. bndd.; bands 12-15 mm,	- two ½ mm thick Zns bands at
										$\frac{1}{2}$ -1 mm most common; 65° -85°;	39.08 , f.g., med. brwn, 90° .
										folding common.	
										-folds: 39.48-tight chevron,	
		-								AP=80°, FA=90°, 40.09-iso.,	
										rounded, AP=85°, FA=85°;	
										40.17-fairly broad, open,	
										AP=80°, FA=90°; 40.42-rounded	1
										hinge, straight limbs, sheari	ing
										along foln. in hinge, AP=90°, FA=90°; 40.56-chevron, AP=85°	,
											,
										FA=85°; many other less well	
										def. folds; folds are basical	lly
										similar, fold bndg., dom. fol	ln.
										is AP.	
	<u> </u>									-cb. sweats fairly common; 1-8	3 mm;

PAGE 4 OF 17

\$\footnote{5} =	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-7
INTER	RVAL				DESC	RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
	•									70°-80°; fairly evenly dist.	
										through unit; < 1% of rock	
										-slip along foln. planes appear	cs
										to be common	
										-broken core 38.88-39.00	
41.88	42.25	Lst.	gy	m.g.	fotd.	sil.	ZnS,PbS,		100	becoming darker and more sil.	7-10% ZnS strs & diss.
		(02)			shrd.		Ру			downwards	(80% red, 20% honey)
										foln. 72°	2-3% v.f.g. PbS str. grains
										ZnS strs foln. 90°-75°	tr f.g. Py blebs
									1		7% white ca. veins & lenses
42.25	42.48	M.S.		f.gm.g			ZnS,PbS		100	lst, sil matrix	60% honey ZnS lacework
		(12)								minor partially open fracts	3% PbS (m.gf.g.) mostly
										(irreg. ≈14°)	at bottom of unit
											3-5% clear to translucent
											qtz veinlets and rounded to
											subrounded lenses
											5% ca. lenses and strs
42.48	43.95	Lst.	gy	m.g.	fotd.	sil.	ZnS,PbS,			20% ca. bnds & lenses &	15% ZnS strs & diss. & blebs
		(02)			fract.		Py,Po			tension gashes; at 42.56-	(60% red, 40% honey)
										42.58 m ca. bnd.	honey mostly concen. down to
										w. foln. 53°	42.78 m.
										at,43.475-43.495 m ca. bnd.	2% PbS, f.g. blebs mostly
-										w. foln. 73°-80° (minor 1st.	at 43.31 m & assoc.

PAGE _ 5 OF _ 17

\$ si	ELCO	EXPLORATION WESTERN CANAC				DR	LL		LO	G	HOLE NO. 84-7
INTER	VAL					RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
				_						frags)	with qtz lenses/strs.
						-				10% sil. patches (white)	1% Py, rounded to subrounded
										w. interstitial ca.	grains
										minor open fracts (some	tr Po str with Py
										ca. healed) (most at ≈ 009°)	
										-at 43.85-43.92 Lst. is bk. &	
										sil.	
43.95	45.05	Lst	gy	m.g.	fotd.		ZnS,Py		100	minor carbonaceous bnds.	3% ZnS strs & diss.
		(02)			rexystal					at 44.53-44.58 m,	(red to honey to creamy white)
										44.70-44.72 m &	1% f.g. Py blebs
										44.88-44.91 m	sulphides mostly parallel to
										foln. 88 ⁰	foln.
										v. vague ptygmatic folding	
										minor gy qtz blebs	
										10% ca. strs & lenses,	
										irreg. & along foln.	
										unit is lighter colour than	
										above unit	
45.05	45.23	Lst	gy	m.q.	rexystal	ser	ZnS, Py		100	foln. 90° (minor slip & gouge	2) 2% ZnS strs & diss. (red)
.5.05	-13.23	(03)	- 31		2					ser bnds. (thin)	<1% f.g. Py blebs
										5% ca. bnds & lenses	
										assoc. with ser bnds.	
										(mostly near top of unit)	
										Open fract. parallel to ca.	

PAGE ___6__ OF ___17___

\$ si	ELCO	EXPLORATION WESTERN CANAC				DR	LL		LO	G	HOLE NO. 84-7
INTER	VAL					RIPTION				STRUCTURE	REMARKS
FROM	T 0	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC)	MINERALIZATION, TYPE, AGE RELATIONS
45.23	45.72	Qte	dirty	f.g.	fract.		ZnS,PbS		98	minor cb. f.f. (mostly at f/w) 15% ZnS strs & lacework
		(06)	white							minor slips at 80°	(concen.; honey lacework at
										(mostly at top of unit)	45.48-45.67 m)
											<1% PbS f.g. blebs mostly
											within bottom 4 cm
											tr Py, f.g. blebs
45.72	46.24	M.S.		f.g.	shrd.		Zns, Pbs		100	shrd qtz + sulph. with	30% ZnS (mass. & strs)
		(12)					As, Py,			cb f.f. (broken core) from	20% f.gv.f.g. PbS
							Сру			45.72-45.88 m	(M.S. bnd is hi in PbS)
		-					•			(contains the Cpy & Py);	l% As; f.g.
										first 16 cm is qtz-rich, then	<1% Cpy blebs
										14 cm of M.S. & then 22 cm	tr Py f.g. cubes
										with qtz-ser	
										10% irreg. white qtz blebs &	
										lenses	
										5% translucent dk. qtz lenses	&
										patches (mostly within M.S. b	nd.)
					`					qtz up to 1 cm across	
										10% ser & qtz-ser patches	
46.24	46.48	Ser-Qtz Phyl	grn-gy	f.g.	fotd.		Zns, As,		100	foln. 80°-90°	3-5% ZnS (red) strs & diss.
		(04)			shrd.		Ру, Сру,			cb. f.f. & patches	1-2% As (f.gm.g.) rounded
							Pbs			minor slips at	to subrounded, brecc.,
										46.25 m, 46.42 m, 46.50 m,	mostly at 46.67-70 m & at
										46.56 m, 46.64 m, 46.78 m,	46.805 m.

PAGE _____7.___ OF ____17

\$\footnote{5}	ELCO	EXPLORATION WESTERN CANAL				DR	ILL		LO	G	HOLE NO. 84-7
INTER	RVAL				DESC	RIPTION	1			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										46.83 m & 46.89 m.	<1% Cpy patches; at 46.77 m
										folded f/w contact	<1% Py f.gm.g.
										(F.A. perpend. to c.a.)	<1% Po strs & diss.
											tr PbS, f.g.
46.84	46.96	M.S.					PbS,ZnS		100	5% white cb lenses	50% f.g. PbS
		(12)								(medcoarse)	20% f.g. ZnS (red)
										15% dk. translucent qtz	narrow lt. red
										lenses (irreg.)	ZnS str. at f/w
										5% white qtz lenses	
										5% ser. lenses	
46.96	47.24	Ser-Qtz Phyll	grn-gy	f.g.	fotd.		ZnS,Py,		100	decr. in sil to f/w	5% ZnS (red to brn.) strs,
		(04)			shrd.		As,Meneg			minor cb. f.f. (mostly	mostly at h/w, middle & f/w
										at h/w)	(irreg.)
										minor qtz strs & lenses	1-2% Py, f.gm.g. (mostly
											at 47.08 & 47.12 m)
											l% As f.g.
											- appears at one local that
											Py is replacing As (?)
											tr Meneg. (v.f.g.) at 47.04 m
											- visible Py is brecc.
47.24	47.93	M.S.		f.gc.g	. shrd.		Py,ZnS,		100	minor cb. f.f.	40% Py (f.gc.g.) brecc.
		(12)					As			mostly a sil matrix	20% As (f.gc.g.) brecc.
										+ minor ser. (incr. to f/w)	concen. at 47.36 m, 47.44 m;

PAGE 8 OF 17

DRILL HOLE NO. _____84-7

		EXPLORATIO WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-7
INTER	VAL				DESC	RIPTIO	V			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										more sil. sections	47.50 m, 47.56 m & 47.58-
										contain more As	47.72
											10% ZnS (red to brn.) lace-
											work & diss. (seems to over-
											print the Py & As).
											most As & Py is rounded to
											subrounded (up to 1 cm across
											small As concen. at f/w
47.93	48.36	Qtz-Ser Phyl	grn-gy	f.g.	fotd.		Py,As,		100	more sil to f/w	7% Py (f.gm.g.) blebs &
		(07)			shrd.		ZnS			with ser. lenses	cubes & concen. in bnds; at
										bnds. at 80°	48.13 m, 48.28 m
										minor qtz (-feld) veinlets	5% As (f.gc.g.) blebs,
											brecc. concen. at 48.095-
											48.125 m & 48.18 m.
						-					1-2% ZnS strs (brn. to red)
											appears to be replacement of
											As by Py (?)
48.36	48.60	M.S.					Py,As,		100	sil matrix + cb f.f.	40% Py (f.gc.g.) rounded
		(12)		,			ZnS,PbS				to subrounded, brecc.
											10% As (f.gc.g.) rounded
											to subrounded, brecc.
											12% ZnS (red to lt. brn.)

PAGE 9 OF 17

\$ s	ELCO	EXPLORATIO WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-7
INTER	RVAL				DESC	RIPTION	V			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
											strs up to 0.75 cm wide
											1-2% PbS (f.g.) scattered
											grains concen. at 48.57 m
48.60	49.10	Ser-Qtz Phyll	grn gy	f.g.	shrd.		ZnS,Py,		100	foln. 80°-90°	10-15% ZnS (red to brn.) strs
		+ Qtz					As, PbS				
		(04 + 13)									2% Py (f.gm.g.) scattered
											blebs
											2% As (v.f.gm.g.) concen.
											at top of unit; m.g. bnd.
											underlain by v.f.g. As bnd.
											(3 mm wide) with abundant
											ZnS and Minor m.g. As
										last 12 cm is a qtz	tr PbS
										vein with (f/w contact	
										at 85 ⁰) narrow ser bnds	
										(up to 1 cm wide)	
										which contain Py-As-ZnS	
										& a tr. of PbS	
49.10	49.67	M.S.		v.f.g.to	shrd.		ZnS,Py,		100	10% white qtz; coarse	30% ZnS (red to lt. brn.)
Profesional Control of the Control o		(12)		m.g.			As			lense at 49.35-49.39 m	f.gv.f.g. strs
										ser-qtz matrix	17% As v.f.g. bnds with m.g.
										(lenses & irreg. bnds.)	As + Py; brecc. (bnds. to
										qtz is well fract.	3 cm)
										-irreg. drag folding	8% Py (v.f.gm.g.)

PAGE 10 OF 17

SELCO		EXPLORATION WESTERN CANAD	A			DR	ILL		LO	G	HOLE NO 84-7
INTER	VAL					RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
-										AP=60°	- sulphides are rounded to
											subrounded
											- concen. of ZnS at h/w
											- appears to be an overprint
~					-						of Py on some As bnds.
49.67	50.62	M.S.		v.f.g	milled		As,ZnS,		100	10% ser-qtz + sulphs	50% As (v.f.gm.g.) rounded
		(12)		m.g.			Ру			highly folded + refolded at	to subrounded, brecc.
										50.36-50.46 m	10% ZnS (red to brn.) f.f. $\&$
										(AP parallel to c.a.)	strs. v.f.g. to f.g.
										slip at 50.01 m at 350	10% Py (v.f.gm.g.) mostly
										-sil.matrix	at h/w and f/w
											- appears to be an overprint
											of ZnS & Py on the As
50.62	51.23	Ser-Qtz Phyll +	grn-gy	f.g.	shrd.		As,ZnS,		79	-cb. f.f. (minor) throughout	5% As (v.f.gm.g.) rounded
		M.S.					Ру,Сру			-concen. of white qtz at h/w	to subrounded, brecc.
		(04 + 12)								-M.S. bnds. at 650	2-3% ZnS (red to brn.) strs
										-minor white qtz veinlets	1-2% Py (f.gm.g.) blebs
											tr Cpy f.f. at h/w
											As + Zns concen. in M.S.
											bnds. at 50.72-50.77 m &
											50.93-50.97 m bnds. have
											sil. matrix
	l	l	<u> </u>	J	L	L	L				

PAGE ____11___ OF ____17___

DRILL HOLE NO. ____84-7

TO 51.38	ROCK TYPE M.S. (12) Qte+Qtz-Ser Phyl	COLOUR GY	GRAIN SIZE v.f.g m.g.		ALTERATION		FRACTURES PER METRE	% core ecovery 100	STRUCTURE (FRACTURES, FAULTS, FOLDING, BEDDING, ETC): sil. matrix (incr. to f/w) minor rounded white qtz blebs <minor ca.="" lenses<="" th=""><th>REMARKS MINERALIZATION, TYPE, AGE RELATIONS 60% As (v.f.gm.g.) matrix & blebs 7% Py (f.gm.g.) blebs</th></minor>	REMARKS MINERALIZATION, TYPE, AGE RELATIONS 60% As (v.f.gm.g.) matrix & blebs 7% Py (f.gm.g.) blebs
51.38	M.S. (12)	gy	v.f.g		ALTERATION	As,Py,	FRACTURES PER METRE Y		sil. matrix (incr. to f/w) minor rounded white qtz blebs	60% As (v.f.gm.g.) matrix & blebs 7% Py (f.gm.g.) blebs
	(12)			milled		ļ		100	minor rounded white qtz	& blebs 7% Py (f.gm.g.) blebs
51.68			m.g.			Сру			blebs	7% Py (f.gm.g.) blebs
51.68	Qte+Qtz-Ser Phyl									
51.68	Qte+Qtz-Ser Phyl								(minom an longon	
51.68	Qte+Qtz-Ser Phyl								CHILITOT Ca. Tenses	rounded to subrounded
51.68	Qte+Qtz-Ser Phyl					i	1		minor ser. lenses	tr Cpy f.f.
		l dirty	f.g.	fract.		Py,As,		100	-ser. at h/w & above	5% Py (f.gm.g.) blebs
	+ M.S.	white		shrd.		ZnS,Cpy			M.S. bnd. (at 90°)	mostly in the Qte & Phyll
	(06 + 07 + 12)									2% As (v.f.gm.g.) rounded
										to subrounded & brecc.
										<1% ZnS (v.f.g. & brn.)
										tr Cpy f.f.
										As, Ans & Cpy in M.S. bnd.
		•								at 51.63-51.68 m
54.08	Qte	white	f.g.	fract.		As,ZnS,		100	minor cb. f.f.	2% Py (f.gc.g.) f.f.,
	(06)			shrd.		Py,Po,			-at 53.19 m narrow	brecc.
						PbS			bnd. of dol. (?) after feld.	tr As (m.g.) & tr PbS (m.g.)
				,					-ser. f.f. throughout	at 52.22 m & 53.91 m
									(incr. to f/w)	tr Po f.f.
										tr ZnS (red str) at 52.58 m
										- c.g. Py at 52.99 m with
										tr As
	54.08	54.08 Qte	54.08 Qte white (06)	54.08 Qte white f.g. (06)	54.08 Qte white f.g. fract. (06) shrd.	54.08 Qte white f.g. fract. (06) shrd.	54.08 Qte white f.g. fract. As,ZnS, (06) shrd. Py,Po, PbS	54.08 Qte white f.g. fract. As,ZnS, (06) Shrd. Py,Po, PbS	54.08 Qte white f.g. fract. As,ZnS, 100 (06) shrd. Py,Po, PbS	54.08 Qte white f.g. fract. As,ZnS, 100 minor cb. f.f. (06) shrd. Py,Po, -at 53.19 m narrow PbS bnd. of dol. (?) after feld. -ser. f.f. throughout (incr. to f/w)

PAGE 12 OF 17

ELCO	EXPLORATION WESTERN CANA			DRILL LOG		G	HOLE NO. 84-7			
VAL									STRUCTURE	REMARKS
то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
54.95	Qtz-Ser Phyl	grn-gy	f.g.	shrd.		Py, Po,		100	>minor sil. lenses	1% ZnS str (in top 6 cm)
	(07)					Zns,Cpy			foln. 88°	3% Py (f.gc.g.) subrounded
			-							to rounded, brecc.
										1-2% f.f. & strs along foln.
										tr Cpy (f.f.)
60.81	Qte	white	f.g.	fotd.		Py, As,		100	minor ser. bnds.	1-2% Py (f.gm.g.) blebs &
	(06)			fract.		Po,PbS,			at 60 ⁰	f.f.
						Meneg.				< 1% As (f.gc.g.) at 56.60 m
									tr fuschite at 55.82 m	
									at 57.83 m small slip (70°)	tr PbS at 55.45 m
									at 58.09 m small slip (78°)	tr Meneg. at 55.98 m
									open cavities at 58.90 m	<1% Po f.f.
									(minute qtz crystals)	
64.11	Qte+Ser-Chl-	dirty wh	f.g.	fotd.		Py & Po		100	Qte: Phyll≈ 60:40	1% Py (f.gm.g.) blebs
	Qtz Phyll	to grn.				•			at 62.10-62.50 Qte	>tr Po f.f. & along foln.
	(06 + 04)								-more phyll towards f/w & h/w	
									getting more chl near f/w	
									foln. 65 [°] -70 [°]	
									qtz-dol healed fold A.P.	
									parallel to c.a.	
									-broken core 62.99-63.13 m	
									minor qtz (⁺ dol) veins & str	S.
=	T 0 54.95	### WESTERN CANA WAL TO ### ROCK TYPE 54.95 Qtz-Ser Phyl (07) 60.81 Qte (06) 64.11 Qte+Ser-Chl- Qtz Phyl1	WESTERN CANADA VAL TO ROCK TYPE COLOUR 54.95 Qtz-Ser Phyl grn-gy (07) 60.81 Qte white (06) 64.11 Qte+Ser-Chl- dirty wh. Qtz Phyll to grn.	VAL	NAL	VAL	DESCRIPTION		NAL	COLOUR STRUCTURE TEXTURE ALTERATION MINERALS FRACTURES \$ COPE FRACTURES, FAULTS, FOLDING, BEDOING, BEDOING, FEER \$ COLOUR STRUCTURE \$ COLOUR \$ COLOUR STRUCTURE \$ COLOUR \$ COL

PAGE 13 OF 17

\$ si	ELCO	TEO LIN CAPACA			G	HOLE NO 84-7					
INTER	VAL				DESC	RIPTION	٧			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
64.11	66.04	Chl-Ser-Qtz Phyl	gy-grn	f.g.	fotd.		Py, Po		100	foln. 68°	l% Po along foln.
		(05)								minor narrow Qte bnds.	>tr Py (f.g.) blebs
										minor qtz (+dol/barite)	tr As f.gm.g. in narrow
		·								lenses	bnd. at 65.19 m
										minor partially healed	
										fracts (30°)	
66.04	68.48	Qte	wh-lt.gy	v.f.g.	fotd.	ser	As,Po,Py		100	-fairly massive, some foln.	- tr As: m.g., 1 cm thick
		(06)								surfaces, foln. 70°-80°,	irreg. band at 66.60, looks
										foln. planes spaced 2-10 mm	brecciated, 70°; also f-m.g.
										-bands ser in foln. planes,	As in thin (£1/2 mm) disc.
										1 ₂ -2 mm	bands (66.51, 66.53,66.59,
			,							-fairly massive sections	66.63, 66.67, 66.73, 66.79,
										diffusely banded	66.96)
										-slip surface at 67.04	- tr Po, f-m.g., smeared on
										-2 feld. bands: 66.08-5 mm,	foln. planes & as thin bands
										85°; 67.10-3 mm, 85°; both	1 ₂ -1 mm esp. 66.04-66.39
										fractured	- tr Py, f-m.g., diss. and
						-					slightly smeared on foln.
											planes
68.48	68.88	Chl-ser-qtz	med. grn	f.g.	fotd.	chl & se	r Po, Py		100	-well fotd., 70°-75°	- tr Po, f.g., smeared on folm.
		phyll (05)	дУ							-med. bndd., 75°-85°	planes
										-f.g. wh. qtz bands at 68.74 (5 mm, 80°) & 68.82 (5 mm, 80°, discont.)	- tr Py, f.g., diss.
										(5 mm, 80 , discont.) -more chloritic towards f/w	

PAGE 14 OF 17

\$\s	ELCO	EXPLORATION WESTERN CANAI				DR	LL		LO	G	HOLE NO. 84-7
INTER	VA L				DESC	RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
68.88	69.86	Qte	lt. gy	f.g.		chl & se			100	-mod. well fotd., 70 -80	- tr Po, f.g., smeared on
		(06)								-med. bndd., 65°-90°, some-	foln. planes
										what irreg. in places	
										-faint suggestion of folds	
										69.47-69.72, chevron?	
										-tr felds. at 69.43 & 69.85	
										-chl & ser in foln.	
69.86	70.10	Chl-qtz phyll	dk. grn	f.g.	fotd.	chl	Po, Py		100	-well fotd., 80°	- tr Po, f.g., smeared on foln.
		(05)	gy							-fine bndd., 90°, also	planes.
										faint bands, 30° (S ₁ ?)	- tr Py, f.g., in v. thin
										(70.02-70.10)	(<1/4 mm) lenses
										-f.g. wh. qtz lens,	
										69.87-69.90	
										·	
		- END OF CORE -								- END OF CORE -	
			-								
			-			-		-			
	L	1	L	<u> </u>	L	1					

PAGE _____15___ OF ____17___

\$ SE	LCO		OR ATION RN CANADA			DA	ILL LO) G		S	amp	le da	ata
	SAI	MPLE			CORE	RECOVERY	VISUAL ESTIMATES		А	SSAY	RESU	LTS	and the second s
NUMBER	FROM	ТО	TOTAL	Sp. Gr	%	AMT. LOST	(% ORE MINERALS)	% Pb	% Zn	% As	g/t Ag	g/t Au	
47129	39.08	39.88	0.80		99	0.01	1% ZnS	0.01	0.01	0.002	2.1	< 0.1	
47130	39.88	40.88	1.00		100			< 0.01	< 0.01	0.001	0.7	< 0.1	
47131	40.88	41.88	1.00		98	0.02		< 0.01	0.03	0.001	1.4	< 0.1	
47132	41.88	42.25	0.37		100		7-10% ZnS, 2-3% PbS	1.14	4.11	0.002	25.1	0.3	
47133	42.25	42.48	0.23		100		60% ZnS, 3% PbS	0.84	36.50	< 0.001	13.2	0.5	
47134	42.48	43.31	0.83		100		20% ZnS, 3% PbS	0.33	7.16	0.004	9.8	0.5	
47135	43.31	43.95	0.64		100		10% ZnS, 1% PbS	0.18	2.92	0.001	4.8	< 0.1	
47136	43.95	44.50	0.55		100		3% ZnS	0.04	0.33	0.004	3.4	< 0.1	
47137	44.50	45.05	0.55		96	0.02	3% ZnS	0.01	0.26	0.006	0.3	0.4	
47138	45.05	45.23	0.18		100		2% ZnS	0.03	0.29	0.016	1.5	1.9	
47139	45.23	45.72	0.49		98	0.01	15% ZnS, <1% PbS	0.72	14.40	0.017	12.7	0.3	
47140	45.72	46.24	0.52		96	0.02	30% ZnS, 20% PbS, 1% As, <1% Cpy	13.70	16.80	0.050	193.9	0.4	
47141	46.24	46.84	0.60		100		3-5% ZnS, 1-2% As, <1% Cpy, tr PbS	1.03	1.03	0.571	14.8	0.3	
47142	46.84	46.96	0.12		100		50% PbS, 20% ZnS	32.50	11.10	0.066	393.0	1.9	
47143	46:96	47.24	0.28		100		5% ZnS, 1% As	0.86	5.64	0.256	15.6	0.2	
47144	47.24	47.93	0.69		100		20% As, 10% ZnS	2.24	9.03	9.080	40.1	11.3	
47145	47.93	48.36	0.43		100		5% As, 1-2% ZnS	0.40	0.86	5.040	14.3	4.2	
47146	48.36	48.60	0.24		100		10% As, 12% ZnS, 1-2% P	bs 2.96	11.70	6.840	120.7	22.6	
47147	48.60	49.10	0.50		98	0.02	10-15% ZnS, 2% As, tr PbS	0.66	6.94	0.781	13.3	1.1	
47148	49.10	49.67	0.57		100		30% ZnS, 17% As	1.22	6.20	8.300	34.9	9.0	
47149	49.67	50.62	0.95		99	0.01	50% As, 10% ZnS	2.42	3.58	17.700	78.7	11.1	
47150	50.62	51.23	0.61		80	0.12	5% As, 2-3% ZnS, tr Cpy	0.65	1.43	5.270	44.5	3.5	
47151	51.23	51.38	0.15		100		60% As, tr Cpy	2.74	2.13	11.500	131.3	14.7	
47152	51.38	51.68	0.30		100		2% As, <1% ZnS, tr Cpy	1.25	0.93	4.720	39.0	4.9	
47153	51.68	52.68	1.00		92	0.08	tr As, ZnS & PbS	0.10	0.09	0.388	6.8	< 0.1	
47154	52.68	53.68	1.00		100		tr As, ZnS & Pbs	0.04	0.03	0.309	3.9	0.2	

PAGE ____16__ OF ___17__

DRILL HOLE NO. ____84-7

\$ SE	LCO	EXPL WESTER	OR ATION RN CANADA			DF	RILL L	OG		S	amp	le d	ata	
	SAI	MPLE			CORE	RECOVERY	VISUAL ESTIMATES		А	SSAY	RESUI	LTS		
NUMBER	FROM	то	TOTAL METRES	Sp. Gr	%	AMT. LOST	(% ORE MINERALS)	% Pb	% Zn	% As	g/t Ag	g/t Au		
47155	53.68	54.08	0.40		100			0.08	0.07	0.205	6.5	0.3		
47156	54.08	54.95	0.87		95	0.04	1% ZnS, tr Cpy	0.05	1.18	0.060	6.8	< 0.1		
47157	54.95	55.95	1.00		98	0.02		0.02	0.05	0.378	6.8	< 0.1		
47158	55.95	56.60	0.65		100		<1% As	0.01	0.05	0.785	3.4	0.7		
													-	
· · · · · · · · · · · · · · · · · · ·														A STATE OF THE STA
		1				:								
										-				
					1									
					1									

PAGE _______ OF _______

\$\S	ELCO	EXPLORATION CAN				DR	ILL		LO	G		HOLE NO84-8
DRILLING CO	CONNORS	S LOCATION SKE	тсн	DEP	тн с	TESTS DIP ANGLE	AZIMUT	H DATE	E STARTED:	October 10, 1984	PROJEC	T: J&L
			-1	- COLI		- 87.3°	244.	60 DATE	E COMPLETED		N. T. S. :	82M/8E
				29	.87 m	- 85.5°	241°	COLL	LAR ELEV.:	838.473	LOCATIO	
				60	.35 m	- 82°	2320	NOR	THING:	9,943.711		
				90	.83 m	- 80°	234°		TING:	10,819.697		
				107	.59 m	- 79.5°	005		MUTH:	222 ⁰		
								DEP	TH:	109.12 m	DATE L	OGGED: October 10, 1984
HOLE TYPE	DDH							CORE	E SIZE:	B.Q.	LOGGED	OBY: C.O. & R.P.
INTE	RVAL				DESCR	IPTION				STRUCTURE		REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BE	EDDING,	MINERALIZATION, TYPE, AGE RELATIONS
0.00	0.68	Lost Core							0			
0.68	1.52	Qtz-chl phyll	dk. grn-	f.g.	fotd.	chl	Ро		100	-mod. well fotd., 40°-4	5 ⁰	- tr Po, f.g. smeared on fold
		(06)	дħ							-med. bndd., bands~para	allel	planes
										to folm., somewhat dis	rupted	
										by foln.		
										-several f.g. wh. qtz l	enses,	
				-						2-5 mm containing 5-10	%	
										felds. (1.40-1.46)		
1.52	24.46	Chl-qtz phyll	meddk.	f.g.	fotd.	chl+mino	Po,Py		100	-well fotd., 35°-45°		
		(05)	grn-gy			ser.				-fine-med. bndd., bands	~	- tr Po, f.g. smeared on foli
										parallel to folm.; ban	ds	planes
										sheared by folm. in pl	aces	- tr Py, f.g., diss. &
										-small folds common in	quartz	smeared on foln. planes
										rich sections. At 21.	80	
										folded qtz-felds bands		
										$(\frac{1}{2}-2 \text{ mm})$, AP=43 $^{\circ}$ (=fol	n.),	

PAGE _____ OF ____ 29___

\$ s	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G HOLE NO84-	HOLE NO 84-8
INTER	VAL					RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
						-				FA=75°, hinges sharp, simple	
										shear along foln.	
										-local qtz-chl phyll zones	
										(1.65-1.76; 2.86-3.20; 3.23-	
										3.35; 3.92-4.33; 4.94-5.16;	
										5.20-5.25; 5.39-5.51; 5.86-	
										6.17; 6.87-6.91; 7.96-8.01;	
					-					8.09-8.26; 9.53-10.17; 11.09-	
										11.63; 12.43-12.53; 13.60-	
										13.72; 16.44-16.49; 18.85-	
										18.87; 20.24-20.31; 21.04-	
										21.23; 21.34-21.52; 24.15-	
										24.37)	
										-wh. qtz lenses/bands common;	
										contain up to 10% feldspar;	
										sm. amt. ser. on foln. planes	
										adjacent to qtz lenses; Po	
										concen. in qtz; (2.00-2.08;	
										2.32-2.33; 2.67-2.68; 2.80-	
										2.83; 4.55-4.66; 7.70-7.73;	
										8.47-8.56; 8.92-9.02; 9.45-	
										9.50; 10.23-10.32; 10.48-	
										10.62; 12.30-12.31; 14.13-	
										14.21; 18.13-18.23; 20.00-	
										20.04; 20.91-20.93; 21.19-	
										21.22; 21.57-21.58; 23.16-	

PAGE ____ OF ___ 29

\$ s	ELCO	EXPLORATION WESTERN CANAD	Δ			DR	ILL		LO	G	HOLE NO 84-8
INTER	VAL				DESC	RIPTION	l			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										-23.17; 24.33-24.34; 24.45-	
										24.47).	
		**								-at 24.41 m open fract. 40°	
										-at 24.46 isoclinal fold	
										parallel with c.a.	
24.46	31.18	Chl-ser-qtz phyll	meddk.	f.g.	fotd.	chl+ser	Po, Py		100	-well fotd., 40°-50°	- tr Po, f.g. as thin (5 1, mm)
		(05)	grn gy							-fine-med. bndd., bands ~	bands parallel to foln.;
										parallel to foln.; kinked	in thin (12-2 mm) qtz-felds
										foln.	bands; in thin (£½ m)
177										-qte bands w. ≤ 10° felds.	fractures x-cutting foln.;
										common; most ½-2 mm,	smeared on foln. planes
										parallel to folm.;	- tr Py, f.g., diss. & as
				, , , , , , , , , , , , , , , , , , , ,						a few thicker (25.58-	thin (± ½ mm) lenses
										25.59; 26.45-26.46; 26.82-	
										26.84; 27.51-27.54; 27.89-	
										27.94; 29.69-29.70); < 1%	
										of rock	
										* -gouge zone 30.48-30.58	- at 28.92-29.00 m broken
										-small kink at 30.86;	core
										AP=0°; FA=65°	
										-incr. in chl at 25.59-	
										25.74 m; 29.00-29.29 m	
		<u> </u>									

PAGE ____3 ___ OF ____29

\$ s	ELCO	EXPLORATION WESTERN CANAD	Δ			DR	ILL		LO	G	HOLE NO. 84-8
INTER	VAL				DESC	RIPTIO	١			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core ecovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
31.18	31.71	Qte	ltmed.	f.g.	fotd.	chl	Ро		100	-mod. well fotd.,~60°	- tr Po, f.g., smeared on
		(06)	grn gy							-med. bndd, 55°	foln. planes
										-wh. qtz lens 31.60-31.65;	
										10% felds; disrupts foln.	
										& bndg.	
	•									-core broken 31.46-31.60	
31.71	44.03	Chl-ser-qtz phyll	meddk.	f.g.	fotd.	chl+ser	Po, Py		100	-well fotd., 45° - 60° , foln.	- tr Py, f.g., in thin bands
		(05)	grn gy							distorted in many places	(½-1 mm) parallel to folm.
										-fine-med. bndd., bands	- Py rich section 39.10-
										roughly parallel to folm.	39.20; Py f.g., patchy
										-foln. & bndg. commonly wavy	(1-10 mm), over prints
										-folds: 32.75-cren., AP=15°,	bndg.; ~ 30% Py, and <1% Fo
										FA=80°; 36.90-cren., AP=25°,	within qtz-feld. shrd.
										FA=80°; 40.31-cren., AP=25°,	section
										FA=85°; all fold both bndg.	- tr Po, f.g., thin bands
										& foln.	$(<\frac{1}{2}$ mm) parallel to foln.;
										-local bands qtz-chl-ser phyll	Po concen. in qtz lenses,
										(32.76-32.94; 33.03-33.20;	esp. thicker ones (33.50-
										35.43-35.46; 36.16-36.21;	33.76; 37.52-37.58; 41.20-
	* .									36.88-37.14; 37.25-37.35;	41.28; 42.65-42.81), tends
										39.21-39.35)	to occur near margins; also
										-thin bands qtz-felds common,	occurs smeared on folm.
		. "								1-5 mm, parallel to foln.	planes
										thicker bands/lenses also	
		<u></u>								occur (31.43-31.46; 31.91-	

PAGE 4 OF 29

DRILL HOLE NO. ____84-8

\$ s	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-8
INTER	VAL					RIPTIO				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE	PER METRE	% core ecovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
				-						-31.94; 33.50-33.76; 34.42-	
										34.46; 34.71-34.92; 36.63-	
										36.68; 37.52-37.58; 38.18-	
										38.22; 38.64-38.68; 41.20-	
										41.28; 41.80-41.82; 41.91-	
										41.96; 42.04-42.07; 42.11-	
										42.13; 42.17-42.20; 42.65-	
										42.81); total ~ 3% of rock;	
										felds 410% of lenses	
										-at 35.80-35.84 m broken core	
44.03	47.50	Qte	med. gy &	f.g.	fotd.	chl+ser	Po, Py		100	-mod. well fotd., 45° -52°	- tr Po, f.g., thin bands
		(06)	grn gy							-faint fine-med. bndd.,	(-1 mm) many discont.,
										bndg. roughly parallel to	concen. at 44.90-45.03 &
										foln., disrupted by foln.	46.16-46.19; also smeared
									-	in places	on foln. planes.
										-folds: 44.25-44.40, chevron,	- tr Py, f.g., diss. &
										AP=25°, FA=25°	smeared on foln. planes,
					·					-ser on folm. planes	less smeared than Po
	,									throughout section, chl only	
										in top & bottom 50 cm	
										-sm. amt. felds. in scattered	
										discont. qtz bands 1-3 mm	
										(44.98-45.01 m)	

PAGE 5 OF 29

\$\$s	ELCO	EXPLORATION WESTERN CANAD	Δ			DR	ILL		LO	G	HOLE NO 84-8
INTE	RVAL				DES	RIPTION	1			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
47.50	50.01	Chl-ser-qtz phyll	meddk.	f.g.	fotd.	chl+ser	Po, Py		100	-well fotd., 45°-50°	- tr Po, f.g., thin bands
		(05)	gy grn		shrd.					-med. bndd., bands roughly	$(c^{\frac{1}{2}} \text{ mm}) \text{ esp. } 48.58-48.65;$
						-				parallel to folm.	and
										-several qtz-chl phyll	concen. in qtz-felds bands;
										sections (49.45-49.55;	also smeared on folm.
										49.76-49.89)	planes
											- tr Py, f.g., diss. &
										-qtz bands 1-5 mm with	smeared on foln. planes
										up to 30% felds. common	· ·
										throughout; felds. grains	
										12-2 mm; ~ parallel to folm.	
										-several thicker qtz lenses	
										with ≤10% felds. (49.33-49.4)	
										-minute chl clots throughout	
										-bndng. shrd. along foln. & no	
										def. folding	
50.01	53.64	Ser-Chl-Qtz Phyll	grn-gy	f.g.	fotd.		Ро		100	foln. 45°-50°	-<1% Po strs
		(04)			shrd.					-qtz lenses: 50.74-50.84 m,	(50.37-50.48; 52.37 m)
										(≤10% feld.) 51.46-51.53 m	concen. in qtz-feld.
										-chl-ser-qtz phyl at 50.68-	bnds. & smeared along
										50.75 m & at 51.63-52.24 m	foln.
										-chl clots throughout (minute)	
										-slips at 50.41, 50.51, 53.17	&
										53.59 m	
			<u> </u>							-slip at 1st contact	

PAGE 6 OF 29

\$ s	ELCO	EXPLORATIO WESTERN CAN				DR	ILL		LO	G	HOLE NO 84-8
INTE	RVAL				DES	RIPTIO	V			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										-top 25 cm is more ser & at	
										this section there is long	
										open fract. (≈15°)	
53.64	54.32	Lst.	meddk.	f.g.	fotd.	ser	Po, Py		100	-mod. well fotd., 45° - 50°	- tr Po, f.g., smeared on
		(03)	дХ		shrd.					-med. bndd, 45°-55°	foln. planes
										-ser in folm. planes	- tr Py, f.g., diss. &
										-two brecciated(?) bands	slightly smeared on folm.
										1t. gy transl. qtz (53.78-	planes
										53.83; 54.00-54.04),	- Po & Py concen. in two
										fragments 1-10 mm	qtz bands
										-contact w/ f/w carb. 1st.	
										gradational	
54.32	63.70	Lst.	dkgy-	f.g.	fotd.		Py, ZnS		100	-mod. well fotd. 50°-55°	- tr Py, f.g., diss.
		(02)	bk.							-med. bndd., 45°-55°	<1% ZnS (red to honey)
										-wh. cb. sweats 4-20 mm	narrow strs.
										common throughout, ~parallel	
										to folm.	
										-at 54.49-54.63 m Lst. (03)	
										-banding folded in many place	s:
										55.10-rounded, AP=50°, FA=60	,
										simple shear along foln.	
										56.77-sharp hinge, straight	
										limbs, AP=55°, limbs sheared	
										by foln.	

DRILL HOLE NO. _____84-8

\$5	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-8
INTER	RVAL				DESC	RIPTIO	N			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE	FRACTURES PER METRE	% core	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										57.87-rounded hinge straight	
										limbs, AP=45°, sheared by	
										foln.	
										58.52-58.76-numerous small	
		,								sheared folds, sharp hinges,	
										straight limbs, AP=50°	
										59.46-sharp hinge, straight	
										limbs, sheared, AP=55°,	
										FA=60°	
										60.77-rounded hinge,	
										straight limbs, sheared,	
										AP=43°, FA=45°	
							-			61.46-rounded hinge, straight	
										limbs, AP=45°, FA=60°	
63.70	64.14	Lst.	meddk.	m.q.	fotd.		Zns		100	-mod. well fotd., 45°	- tr ZnS, f.g., red-brown,
		(03)	gy				25			-med. bndd., 45°-50°	several 1/4-1/2 mm thick
			1 31							-qtz breccia. (?) 63.88-	bands, parallel to &
										63.93, qtz fragments 1-10 mm	crossing foln., 63.76-
										-grad. lower contact	63.86
64.14	65.48	Lst.	med. gy-	m.g.	fotd.		Zns, Py		100	-mod. well fotd., 50°-55°	- tr Py, f.g., diss.
		(02)	bk.							-med. bndd., 45 ^o -55 ^o	- tr red ZnS at 64.36 m &
										-bndg. folded & sheared	64.52 m
										by foln.	
		7.7.								-folds: 64.86-sharp hinge	
										straight limbs, AP=50°, FA=55°, sheared by foln.	

PAGE ___ 8 __ 0F ___ 29 ___

⊘ e	ELCO	EXPLORATIO				DR			LO		HOLE NO. 84-8
<u> </u>		WESTERN CANA	IDA							·	7
INTER	,I	ROCK TYPE				RIPTION		I EDACTUDE C	0. 50 00	STRUCTURE	REMARKS
FROM	TO		COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	MINERALS	FRACTURES PER METRE	recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
65.48	65.67	Lst.	lt. gy	m.g.	fotd.	· .	Ру			-narrow minor, carbon. bnds.	- tr Py (f.g.)
		(03)								(up to 1 cm)	
										-at 65.57 m rounded hinge,	
										straight limbs (AP=15 ^O)	
										-sharp upper & lower contacts	
65.67	65.88	M.S.	brass	f.g.	massive	ser	Py,As,Po		100	-faint fine bndg., 45°	50% Py, 1-2% As, <1% Fo
		(12)								-v. minor calc. f.f. near	m.gc.g. Py above & below
										upper contact	bnd. of f.g. Py; Po & As
											with the coarser Py
											- 65.67-65.78: 20% m.g. Py
											in vague bands in qtz ser
											phy11
											- 65.78-65.79: 20% f.g. Py,
											10% f.g.: As in qtz ser
								,			phyll; sulp. in blebs 1 mm
											subrounded; ser in bands,
											sulp. unbndd.
											- 65.79-65.875 - 95% f.g. Py
											5% qtz; qtz in v. thin
											discont. bands
											- 65.875-65.88 - 10% f.g. Py,
											5% f.g. As, both in blebs
						,					≤2 mm; 1% f.g. Po, rest
											is qtz.
	l				1		1				

\$ si	ELCO	EXPLORATION WESTERN CANA									HOLE NO. 84-8
INTER	VAL				DESC	RIPTION	١			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE	FRACTURES PER METRE	% core	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC)	MINERALIZATION, TYPE, AGE RELATIONS
											minor red ZnS, f.gc.g.
											PbS & tr As which appear
											as f.f. (19 cm), back to
	·										red ZnS-rich section with
											lesser f.gm.g. Py, incr.
		-									As towards f/w, minor f.g
								ar .			m.g. PbS at f/w & appears
											to be a tr of Meneg.
											- grains at f/w & h/w & more
											f.gm.g., rounded to sub-
											rounded
											- grains are mostly brecc.
											- sil matrix (gy) is concen
											at h/w & f/w to mass. f.g
											c.g. Py
68.39	69.06	Qtz-ser phyll	med. gy	f.g.	fotd.	ser	Py, Po,		100	-mod. well fotd., minor	- ~5% f.g. Py, blebs ½-4 mm
		(07)	grn				As			calc. f.f.	in discont. bands w/ qtz;
									,	-med. bndd.; ser bands,	bands fairly evenly distr.
										45°-55°; sulp. bands,	over section
										~parallel to bndg.	- tr Po, f.g. in bands w/ Py
										-lt. gy transl. qtz band+calc.	tr As (f.gm.g.) in 2
										f.f. (+feld.) at 68.47-68.49	m narrow bnds at h/w
										qtz (-feld.) lenses throughou	ıt
										(m.gc.g.)	
69,06	69.37	Qtz-ser Phyll	med. gy	f.g.	fotd.	ser	Py, As,		100	-poorly fotd., ser in	- 15% f.gm.g. As, 5% f.g
		(07)	grn			<u></u>	ZnS			wispy bands	m.g. Py in vague brecciate

PAGE ______ OF _________

DRILL HOLE NO. _____84-8

\$\frac{1}{5} =	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO
INTER	RVAL				DESC	RIPTION	V			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
											bands, frags ½-4 mm
											- 1% f.g. lt. brown to red-
											brown ZnS, thin wispy band
											14-1 mm grains are rounded
											to angular
						¥,					- at 69.06-69.12 m Py +
											lesser As
											- at 69.12-69.18 m As +
											minor red ZnS at f/w
											incr. in f.gm.g. As at f/w & minor Zns strs
69.37	69.88	M.S.	red-brwn.	f.g.	massive		ZnS,As,		100	-vaguely bndd.,~40°	40% ZnS strs & lacework
		(12)	& yellow				PbS, Py,			-large white qtz lenses	15% PbS (v.f.gf.g.)
							Meneg.			& frags	5% As (f.gm.g.)
										-minor calc. f.f.	tr Meneg.
										-minor qtz (-feld.) bnds.	tr Py (rounded, v.f.g.)
										-sil matrix	
										Zns:	brn (69.37-69.43), dk. brwn.
											(69.43-69.48), red-brwn.
V-5-7											(69.48-69.67), yellow
											(69.67-69.75), lt. brwn.
											(69.75-69.85)
											- ZnS has lacework texture,
											overprints As in places
											- As found mostly within
											sil-rich areas - v.f.g. PbS+ZnS at 69.44- 69.49 m

PAGE ______ OF _________

DRILL HOLE NO. ____84-8

\$\frac{1}{5} = \frac{1}{5} = \	ELCO	EXPLORATION WESTERN CANAL				DR	ILL		LO	G	HOLE NO. 84-8
INTER	IVAL				DESC	RIPTION	V			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
											- f.g. PbS scattered through-
						-					out
										Sulphide Zonation= 3 cm As+Zr	nS (red), 0.5 cm brn. ZnS+PbS,
										3 cm lt. brn. ZnS+PbS, 5 cm v	.f.g. PbS+red ZnS, 17 cm red
										ZnS+PbS+As, 2 cm lt. brn. ZnS	S+PbS, 7 cm honey ZnS+PbS,
										11 cm 1t. brn. ZnS+PbS, 4 cm	of red ZnS+PbS+ser & qtz with
										As at the f/w.	
											- As grains are well brecc.
											- As at 69.40 m, 69.55 m,
						٠,,					69.61 m
69.88	70.27	Qtz-Ser Phyll	lt. grn-	f.g.	fotd.		Py,As,		100	-abundant qtz lenses &	5% Py (f.gm.g.)
		(07)	gy		shrd.		ZnS			bnds.	3% ZnS (red) strs.
										-centre of unit is	1-2% As (f.gm.g.)
										very ser	- sulphs. mostly within or at
										foln. 57 ⁰ -42 ⁰	edge of qtz-rich bnds.
											- minor lt. brn. ZnS with
											the As-Py
											- minor infilling of Py into
											brecc. As
	-										- red ZnS strs. at 70.09-
											70.10 m, 70.25-70.26 m
											- tr red ZnS intersitial to
											Py grains
					1			-			

PAGE _______ OF _______________________

\$\frac{1}{5} =	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-8
INTE	RVAL				DES	CRIPTIO	٧			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
70.27	71.37	Qte	dirty	f.g.	fotd.		Py, As,		100	minor ser bnds	5% Py (f.gc.g.)
		(06)	white		fract.		ZnS,Mene	g •		-ser slip at 71.32 m	5% As (f.gc.g.)
							Сру			foln. 25 ⁰ -50 ⁰	1% ZnS (red) patches & str
										minor calc. f.f.	tr Cpy & Meneg.
										irreg. gy patches	- As & Py concen. at 70.49-
											70.51 m, 70.76-70.93 m,
											71.24-71.26 m
											- ZnS below 71.09 m; minor
											lt. brwn. ZnS with the
											Аз-Ру
											- sulph. bands. 50°-70°
											- most sulphs. are f.f. &
											brecc.
										Note: M.S. (12) at 70.76-70.9	93 m
71.37	71.97	M.S.		f.gc.g	brecc.		Py, ZnS,		100	dirty white sil matrix	30% Py (f.gm.g.) rounded
		(12)					As,Meneg			minor calc. f.f.	to angular
							Сру				30% As (f.gc.g.) well
											brecc.
•											7% ZnS red to brn. strs.
											& f.f.
											tr Meneg.(?) & Cpy
											- sulphs. are very well
											brecc. espec. the As at
											71.48-71.51 m
			-			ļ	ļ			Sulph. Zonation 71.37-71.44 r	n f.gm.g. As+ZnS, 71.44-71.48
	1			<u> </u>			<u> </u>			f.gc.g. As+ZnS, 71.48-71.53	l m highly brecc. As, 71.51-

PAGE ____14___ OF ____29___

\$ 5	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-8
INTER	RVAL					RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										1	4-71.61 m milled As+Py (m.g.)
										with ZnS & Py (f.g.), 71.61-	71.82 m f.gc.g. Py+As+ZnS
										with As c.g. towards bottom;	71.82-71.89 m f.gc.g.
										brecc. As, 71.89-71.94 m Py+	-ZnS+As, 71.94-71.97 m As→Py→
										ZnS As	
										f/w contact with As	- brecc. fragments up to
											10 mm
											- sulp. vaguely bndd in
											places, ~ 45°
71.97 74	74.25	Qtz-ser phyll	medgrn	f.g.	fotd.	ser	As,Py,		100	-weakly fotd.	- 5% f.g. Py, 4% f.g. As,
		(07)	gy				ZnS,PbS			-med. bndd, 40°-60°	1% f.g., red-brwn ZnS, tr
										-ser in vague wispy bands	PbS
										-qtz rich 73.92-74.25	- sulp. in nearly monomin.
											vague discont. bands 1-5 m
											fairly evenly dist. over
											section
											- As Py brecciated, fragment
											≤5 mm
											- ZnS bands wispy, red to
											brn.
											- Py rich band 73.27-73.33;
											60% f.g. Py, 30% f.g. As,
											10% lt. gy transl. qtz,
											tr f.g. red-brwn. ZnS;
										· ·	sulp. brecc., fragments 8 m

PAGE 15 OF 29

\$ 5	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-8
INTER	RVAL				DES	CRIPTION	1			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
											- lt. gy qtz lens w/ f.g.
											sulp. along margins, 73.33
											73.39; sulp. f.g. As,
											brecciated, & sm. amt. f.g.
											red-brwn. ZnS
											- PbS at 73.95-74.05 m
74.25	74.60	M.S.	brassy &	f.g.	massive		ZnS,Py,		100	-30% qtz, lt. gy transl.	- 35% f.g. red-brwn. ZnS,
		(12)	red-brwn.				As,PbS				20% f.g. As, 15% f.g. Py, 5
											PbS
											- As, Py brecciated frag-
											ments ≤8 mm; ZnS+qtz fill
											fractures
										Zonation: ZnS-Py-As-PbS	- Py overprints As(?)
										21 cm, 5 cm As-Py, 9 cm As+	- sulp. vaguely bndd., $\sim 50^\circ$
										qtz+minor Py & ZnS	- ZnS predom. 74.25-74.44; Fy
											predom. 74.44-74.50; ZnS &
											As predom. 74.50-74.60
:											- PbS is (v.f.gf.g.) found
											with ZnS
74.60	75.32	Qte	ltmed	f.g.	massive		Py,As,		100	-80% ltmed gy transl. qtz,	10% Py (f.gm.g.), 3-5%
		(06)	gy				ZnS,PbS			20% sulp.	As (f.gm.g.) & <1% ZnS
										-med. bndd., 55 ^o -60 ^o	(red to lt. brwn.) strs.
										f/w contact at 50°	& <1% PbS (f.g.)
											- sulp. concen. 2 bands:

PAGE 16 OF 29

\$\frac{1}{5} = \frac{1}{5} = \	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-8
INTER	RVAL				DESC	RIPTIO	V			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
											74.85-74.90 m; 74.95-75.06m
											- As, Py brecciated, frag-
											ments ≤6 mm; qtz & ZnS
											fill fractures
											- ZnS in thin (≤1 mm) wispy
											bands; Py, As in vague
											discont. bands 1-5 mm
											sulp. bands ~parallel to
											bndg.
											- PbS at 74.95-75.06 m
75.32	76.14	M.S.	red-brwn.	f.g.	massive	minor se	ZnS,As,		100	-20% lt. gy transl. qtz,	- 40% f.gc.g. As, 20% f.g
		(12)	silver,		brecc.		Py,PbS,			tr ser.	c.g. Py, 20% red to lt.brn.
			brass				Сру			-ser. thin (51, mm) wispy	ZnS, 1% PbS (v.f.g.)
										bands 75.42-75.47 m	tr Cpy
		****									- As & Py brecciated, frag-
											ments < 1 mm-10 mm, qtz &
									-		ZnS fill fractures
				,						sulph grains rounded to	- sulp. in vague bands. $\sim 50^{\circ}$ -
		-								angular	60°
											- ZnS, As predom. 75.32-75.59
											m, all three 75.59-75.83 m,
											As predom. 75.83-75.92 m;
											ZnS+As predom. 75.92-
											76.00 m; Py predom. 76.00-
											76.14 m - PbS in irreg. patches w/ 216

PAGE 17 OF 29

\$\footnote{5} =	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO 84-8
INTER	VAL				DES	RIPTION	1			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE T	% core ecovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
76.14	77.64	Qte	ltmed.	f.g.	shrd.	minor se			100	-med. bndd., 60°-80°	7% As (f.gm.g.), 5% Py
		(06)	gy		fract.		Zns			-70% ltmed. gy transl.	(f.gm.g.);
							Meneg(?)			qtz overall, 30-40% qtz	7% ZnS (red to honey),
·										in sulp. rich bands	1-2% PbS (v.f.g.), 1%
										-tr ser in thin wispy bands	Meneg.(?)
										-minor calc. f.f.	- sulp.: 76.35-76.43; 76.54-
											76.66; 76.69-76.77; 76.81-
											76.90; 77.04-77.14; 77.20-
											77.27; 77.41-77.57
											- As+Py brecciated, frag-
											ments (4 mm - 5 mm; qtz &
											ZnS fill fractures
											- ZnS in thin wispy bands &
											thicker (5-20 mm) lacework
											texture bands
											- As+Py in vague bands 5-10
											60°-75°
77.64	78.21	Qtz-ser phyll	red-brwn.	f.g.	fotd.	ser	ZnS,Py,		100	-weakly fotd.	15% ZnS, 2% Py, 1% As,
		(07)	lt. gy				As,PbS			-fold 77.80-77.85:	<1% PbS (v.f.g.)
	,		grn				·			fairly sharp hinge,	- grades 50% sulp. (77.64-
										straight limbs, AP=0°,	77.81) - 30% sulp. (77.81-
										FA=70°, folds ZnS+ser	77.91) ~20% sulp. (77.91-
										bands	78.18)
										-incr. in ser at f/w	- sulp.: 85% f.g. red-brown
										& minor calc. f.f.	to honey ZnS, 10% f.g. Py

PAGE 18 OF 29

\$\$	SELCO	EXPLORATION WESTERN CANA				DR			LO	G	HOLE NO. 84-8
INTER	RVAL		1		DES	RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
		*									15% f.g. As
						-					- ZnS in thin ($\frac{1}{4}$ -1 mm) wisp:
											bands & thicker (5-20 mm)
											lacework textured bands;
											ser bands intermixed with
											wispy ZnS bands
											- Py & As brecciated, frag-
											ments $\frac{1}{4}$ -3 mm, in vague
											discont. bands 3-8 mm.
											- sulp. bands 75° (77.65),
											55° (78.00), 45° (78.15)
78.21	78.43	M.S.	red-brwn.	f.g.	massive	minor ser	ZnS,As,		100	-78.21-78.23 m: lt. gy qtz	25% ZnS, 15% As, 7% Py,
		(12)			milled		Py,Po,			lens with calc. f.f.	3-10% PbS, tr Cpy
							PbS,Cpy				PbS is f.g. & possibly
											v.f.g. with the ZnS.
						,					- 78.20-78.33: 35% f.g.,
											red-brwn. ZnS, 40% f.g.
				,							As, 15% f.g. Py, 10% qtz;
											Py & As occur both mixed
											with ZnS and as subangula
											fragments (breccia?) 14-
											3 mm; several rounded &
											irregular wh. qtz blebs
					-						2-10 mm
	<u> </u>									-78.33-78.43: wh. qtz lenses	- 78.33-78.43: 40% f.g. As,

PAGE 19 OF 29

\$\footnote{5} =	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-8
INTER	RVAL				DES	RIPTION	V			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										1-3 cm, contain ~5% felds.,	30% f.g. Py, 5% f.g. red-
										Po along margins	brwn. ZnS, 5% Po, 15% qtz,
											5% ser; Py & As f.g.
											massive & sub-angular
											fragments $\frac{1}{4}$ -4 mm; Po on
											margins of qtz lenses
											1-3 mm; ZnS f.g. massive
											& in thin wispy bands with
											ser; bands contorted
78.43	78.75	Qtz-ser phyll	med. gy-	f.g.	fotd.	ser	ZnS, Py,		10%	-med. bndd., 50°	2% Po, 2% ZnS, 1% Py
		(07)	grn		shrd.		Po, As			-wh. qtz lenses 1-3 cm,	<1% As
										contain ~ 5% felds.,	- 15% sulp: 40% f.g. red-brwn
										Po in fractures	ZnS, 40% f.g. Po, 10% f.g.
										incr. in ser at h/w & f/w	Py, 10% f.g. As
										v. minor calc. f.f.	- ZnS & Po together in wispy
											contorted bands
											- Py & As fragments ≤1 mm,
											dicont. vague bands
											- qtz-felds lenses common,
											contain Po in fractures
											- ZnS bands 60° (78.43-
											78.63), contorted (78.63-
											78.80)

PAGE 20 OF 29

\$\footnote{5} =	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO 84-8
INTER	VA L				DESC	RIPTION	4			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
78.75	79.29	M.S.	red-brwn.	f.g.	massive	ser	ZnS,As,		100	-wh. qtz eyes 1-10 mm, round	- 40% f.g., red to lt. brwn.
		(12)			milled		Py,Po,			& irregular	to honey ZnS, 5% f.g. As,
							Cpy,PbS			-vague bndg.,~45°	20% f.g. Py, 5-7% Pbs
										10% lt. gy transl. qtz	(f.gv.f.g.) within ZnS
										5% ser frags,	matrix, 2% f.g. Po, <1%
										5-7% white qtz eyes	Cpy (f.g.)
										(-feld) (rounded to sub-	- As f.g. massive & rounded
										rounded)	to subangular fragments
										minor calc. f.f.	up to 10 mm; Py f.g.
											massive & rounded to
											subangular fragments up
											to 3 mm
79.29	79.55	Ser-qtz phyll	med. gy-	f.g.	shrd.	ser	As,Py,	i	100	-ser in thin (½-1 mm) wavy	2-3% As (v.f.gm.g.),
		(04)	grn				ZnS,Cpy			bands ≈ 20°-35°	2% Py (f.gm.g.)
										-~5% wh. opague qtz, blebs	<pre><1% ZnS (red to honey),</pre>
										& lenses cutting bndg.,	tr Cpy
					,					1-10 mm	- sulp. brecciated, frag-
											ments $< \frac{1}{4} - 3$ mm; in vague
	-										wavy bands $\frac{1}{2}$ -5 mm which
											are sil
79.55	79.73	M.S.	brassy	f.g.	massive	ser	As,ZnS,		100	-minor calc. f.f.	30% ZnS (red to lt. brn.),
		(12)			milled		Py,PbS,				7% PbS (v.f.gf.g.), 10%
							Сру				As, 10% Py, tr Cpy
											- 79.55-79.62 m 10% f.g. Py,
		<u> </u>		L	L	l			· · · · · · · · · · · · · · · · · · ·	<u> </u>	15% PbS, 20% f.gm.g. As,

PAGE 21 OF 29

\$ s	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO84-8.
INTER	RVAL				DESC	RIPTION	1			STRUCTURE	REMARKS
FROM	ТО	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
											40% f.g. red-brwn.
											ZnS, 5% qtz; Py & As f.g.
										·	to m.g.; rounded to sub-
											rounded 43 mm; ZnS in local
											patches
										-79.62-79.73 - wh. qtz lens	- 79.62-79.73 m
										contains ~5% ser; c.g.	40% fc.g. As, 20% f.g.
										calcite crystals at 79.73,	Py, 10% f.g. PbS, 10% f.g.
										start of small cavity?	red-brwn. ZnS; 20% qtz,
											тг Сру
											- sulphs are well brecc.
79.73	80.16	Ser-qtz phyll	lt. gy-	f.g.	fotd.	ser	Ру		15 سر	-one 2 cm piece & some rubble	, - tr f.g. Py, diss.
		(04)	grn							the large piece has calcite	
		SHEAR (?)								crystals on one surface	
										-shear zone?	
80.16	81.25	Ser-qtz phyll	med. gy	f.q.	fotd.	ser	Py,As,Po)	100	-mod. well fotd., 45° - 50°	- 5% f.gm.g. Py, <1% f.g.
		(04)	grn		shrd.					-med. bndd., 50°-55°	As, tr f.g. Po strs.
										-qtz bands contain up to 10%	- As & Py fragments 14-5 mm,
	-									felds.	in qtz bands 1-5 mm thick
										-wh. qtz lens 80.16-80.22	- sulphs. brecc.
										-slip surface w/gouge at 81.0	2
										-calc. f.f. near f/w	
· · · · · · · · · · · · · · · · · · ·		<u> </u>			<u> </u>						·

PAGE _____22___ OF ____29___

\$ s	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-8
INTER	VAL	_			DESC	RIPTIO	N			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
81.25	81.37	M.S.	red-brwn.	f.g.	massive	ser	ZnS,PbS		100	-ser in bands 1-5 mm	- 50% f.g. red to lt. brwn.
		(12)			to str.		As,Cpy,			-30% lt. gy transl qtz, 10%	ZnS; vaguely bndd; lace-
							Ру			ser	work texture
										-qtz in irregular discont.	- 5-10% PbS (f.gv.f.g.)
										bands 1-10 mm	tr As, Py & Cpy (f.g.)
81.37	83.68	Ser-qtz phyll	med. gy-	f.g.	fotd.	ser	Py,ZnS,		100	-mod. well fotd. 45°-53°	- 5% f.g. Py, 2% f.g. As,
		(04)	grn				As,Po,			-med. bndd., 55 ^o -70 ^o	2% f.g. dk. red-brwn. ZnS,
							Cpy,PbS			-lt. gy qtz lenses common	1% f.g. Po, tr Cpy & PbS
										(81.67-81.72; 82.11-82.12;	- As & Py fragments 4-5 mm
										82.39-82.40; 82.46-82.48;	in qtz bands, often with
										82.56-82.59; 83.34-83.35	Ро
										-several slip surfaces with	- ZnS in thin wispy bands
									-	gouge (81.01, 82.54,*82.70,	concen. 81.37-81.52;
										83.03, 83.35, 83.36,*83.57)	83.42 & 83.50
											- As concen. 83.33-83.57
											- 82.35-82.49: 10% Py, 10%
											ZnS, 5% As, 5% Po, tr Cpy
											in thin bands & more
											massive with lacework
											texture
83.68	89.99	Qtz-chl phyll	med. grn	f.g.	fotd.	chl	Po, Py		100	-mod. well fotd., 45° - 50° ;	- 1% Po, f.g., in thin
		(06)	gy							55° from 83.60	(14-1 mm) discont. bands
										_med. bndd., 45°-50°, ~	parallel & slightly x-
										parallel to folm.	cutting foln., & smeared

PAGE 23 OF 29

\$ 5	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-8
INTER	RVAL				DESC	RIPTIO				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										-wh. qtz lenses 1-10 cm	on folm. planes; concem.
										common (84.06-84.07; 84.43-	on margins of qtz lenses
										84.44; 84.80-84.83; 85.68-	& bands; more common in
-										85.72; 86.04-86.05; 86.43-86-	-46; qtz rich sections
										86.56-86.59; 86.64-86.74;	- tr Py, fm.g., diss.,
										87.23-87.24; 88.91-88.93;	slightly smeared on foln.
										89.16-89.17; 89.26-89.27;	planes
										89.83-89.84); up to 10%	- qtz lens at 86.64-86.74
										felds.; also many qtz-	√10% Po in patches &
										felds. bands 1-4 mm, ~	tr Py; in fractures(?)
										parallel to folm.	
										-locally qtz rich (83.68-	
										84.02; 86.15-86.32; 87.42-	
										88.18; 88.61-88.73); sections	5
										are lighter green coloured,	
										contain some chl	
										-a few gouged slip surfaces	
										(85.06, 85.18, 87.66)	
										-some of qtz-felds. bands	
										boudinaged	
										-bndg. distorted 88.21-	
										88.29	
										0 - 0	
89.99	101.11	Chl-qtz phyll	meddk.	f.g.	fotd.	chl	Po, PbS,		100	-well fotd., 45°-50°	- < 1% Po , f.g., concen. nea
		(05)	gy-grn				As, ZnS			-med. bndd., 50°-55°	margins of qtz bands/
	<u> </u>	<u> </u>			<u> </u>	L		L		-rocar que-chi phyri zones	lenses; also smeared on fo

PAGE 24 OF 29

\$5	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO84-8
INTER	R V A L			-	DESC	RIPTION	٧			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										(90.53-90.60; 91.04-91.31;	planes
						-				92.24-92.49; 92.77-92.87;	- tr PbS, As, red-brwn. ZnS,
					*					93.25-93.37; 96.20-96.27;	all f.g., in qtz band
										96.32-96.36; 97.66-97.96;	at 93.86-93.90; As at
										100.00-100.26); qte band	99.82 in qtz band.
						5 .				99.25-99.32	
										-wh. transl. qtz bands 1-10 m	n
										with up to 30% felds. common	;
										fairly evenly distrib.	
										-thicker wh. qtz lenses	
										1-3 cm with up to 10% felds.	
										also common (90.01-90.02;	
										90.26-90.27; 90.72-90.74;	
										91.76-91.79; 92.51-92.52;	
										92.96-92.97; 93.03-93.04;	
					***					93.86-93.94; 94.12-94.17;	
										98.10-98.15; 98.60-98.67;	
										98.97-99.00; 100.94-100.97)	
										-qtz bands/lenses ~ 10% of	
										rock	
										-a few slip surfaces with gou	ge
										(91.04, 91.12)	
										-folds: 100.03 - sharp hinge,	
										straight limbs, AP=50°,	
										FA=50° (F ₃)	
			_i							<u> </u>	

\$ s	ELCO	EXPLORATION WESTERN CANA		***************************************		DR	ILL	l	LO	G	HOLE NO
INTER	VAL				DES	CRIPTION				STRUCTURE	REMARKS
FROM	τo	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES %	core	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
101.11	102.65	Qtz-chl phyll	med. gy	f.g.	fotd.	chl	Ру		100	-mod. well fotd., 53°-58°	- tr f.g. Py; slightly
		(06)	grn							-fine-med. bndd., 48°-60°	smeared on foln. plane
										-one band med. gy qte	
										102.18-102.35	
										-several thin (12-2 mm)	
										discont. qtz bands, ≤30%	
										felds., shallower dip	
										than bndg.; bndg. 48°-60°,	
										qtz-felds bands 40°-48°	
102.65	109.12	Chl-qtz phyll	dkmed.	f.g.	fotd.	chl	Po, Py		100	-well fotd., 48°-60°	- tr f.g. Po, concen. along
		(05)	gy grn							-med. bndd. 50° - 60°	some qtz/felds. bands &
										-wh. qtz bands ½-30 mm	smeared on foln. planes
										common up to 40% felds.,	- tr f.g. Py, diss. &
										shallower dip than bndg.	slightly smeared on foln.
										(40°-53°); qtz/felds.	planes
	MARIN TO MARINE									bands cut off by bndg.	
										& foln.; ~5% of rock	
										-local qtz-chl phyll zones	
										(103.61-103.68; 104.83-	
										104.96; 105.00-105.15;	
-										105.27-105.36; 106.05-	
										106.35)	
										-one chl phyll section	
										107.70-108.51	
			1	-		<u> </u>		<u> </u>		-folds: 103.47-103.50 -	

\$\footnote{5} =	ELCO	EXPLORATION WESTERN CANAI				DR	ILL		LO	G	HOLE NO. 84-8
INTER	IVAL					CRIPTIO				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE	FRACTURES PER METRE	% core	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										isoclinal, tight, fairly	
										rounded hinges, straight	,
,										limbs; dom. foln.	
										AP=50°; FA=53°; folds	
										bndg. (F ₃ fold)	
										105.78: sharp hinge,	
										straight limbs, AP=dom.	
										foln.=53°, FA=57°, folds	
										bndg.	
										104.92: isoclined, tight,	
										round hinges, straight	
	·									limbs, AP= dom. foln. =	
										55°, FA=62°; folds bndg.	
										(F ₃ fold); limbs sheared	
										by foln.	
										105.03: isoclinal, tight,	
										fairly rounded hinge,	
										straight limbs, AP=dom	
										foln. = 59°, FA=63°;	
										folds bndg. (F ₃ fold);	
										one limb truncated by qtz/	
										felds band.	
										-broken core: 107.41-107.97,	
										108.82-109.12	
				- END O	CORE	<u> </u>				- END OF CORE -	

PAGE _____ 27 ___ 0F ____ 29 ___

\$ SE	rco		OR ATION RN CANADA			DF	HLL LO	o G		S	amp	le d	lata
	SAM	A P L E			CORE	RECOVERY	VISUAL ESTIMATES		Α	SSAY	RESU	LTS	
NUMBER	FROM	то	TOTAL	Sp. Gr	%	AMT. LOST	(% ORE MINERALS)	% Pb	% Zn	% As	g/t Ag	g/t Au	
47160	62.25	63.06	0.81		99	0.01	<1% ZnS & Py	0.01	0.19	0.002	2.7	<0.1	
47161	63.06	63.70	0.62		100		<1% ZnS, tr Py	< 0.01	0.57	0.012	3.4	0.4	
47162	63.70	64.14	0.46		100		tr ZnS	0.01	0.12	0.016	2.1	< 0.1	
47163	64.14	64.82	0.68		97	0.02	tr ZnS & Py	< 0.01	0.12	0.009	5.5	< 0.1	
47164	64.82	65.48	0.66		100		tr ZnS & Py	< 0.01	0.01	0.010	2.7	< 0.1	
47165	65.48	65.67	0.19		100		tr Py	0.01	0.01	0.015	6.9	0.6	
47166	65.67	65.88	0.21		100		50% Py, 1-2% As, ∠1% Po	0.16	0.02	2.290	24.4	1.0	
47167	65.88	66.63	0.75		92	0.06	5% Py, < 1% As, 1% Po, tr ZnS	0.10	0.01	1.710	14.6	0.5	
47168	66.63	67.38	0.75		100		5% Py, < 1% As, 1% Po, tr ZnS	0.15	0.09	0.340	18.5	0.7	
47169	67.38	68.12	0.74		100		5% Py, < 1% As, 1% Po, tr ZnS	0.04	0.01	0.386	4.3	1.2	
47170	68.12	68.39	0.27		100		65% Py, 10% ZnS, 5% As, 1% PbS	6.04	12.00	4.260	152.0	9.1	
47171	68.39	69.06	0.67		100		5% Py, tr Po & As	0.08	0.05	0.416	3.8	1.0	
47172	69.06	69.37	0.31		100		15% As, 5% Py, 1% ZnS	0.48	0.90	8.450	17.3	3.2	
47173	69.37	69.88	0.51		100		40% ZnS, 15% PbS, 5% As	3.68	26.60	2.210	81.4	5.6	
47174	69.88	70.27	0.39		100		5% Py, 3% ZnS, 1-2% As	0.23	4.60	1.780	7.8	1.1	
47175	70.27	71.37	1.10		95	0.06	5% Py, 5% As, 1% ZnS, tr Cpy	0.13	1.06	7.690	10.7	7.1	
47176	71.37	71.97	0.60		100		30% Py & As, 7% ZnS, tr Cpy	0.27	9.13	13.700	23.8	24.9	
47177	71.97	72.73	0.76		100		5% Py, 4% As, 1% ZnS, tr PbS	0.05	0.34	1.840	5.3	2.2	
47178	72.73	73.49	0.76		100		5% Py, 4% As, 1% ZnS, tr PbS	0.13	0.17	2.210	11.3	3.1	
47179	73.49	74.25	0.76		83	0.13	5% Py, 4% As, 1% ZnS, tr PbS	0.95	2.74	1.440	37.8	2.0	
47180	74.25	74.60	0.35		100		35% ZnS, 20% As, 15% Py, 5% PbS	1.90	9.60	5.130	71.8	7.1	
47181	74.60	75.32	0.72		86	0.10	10% Py, 3-5% As, <1% ZnS & PbS	1.60	0.92	4.540	52.7	3.6	
47182	75.32	76.14	0.82		100		40% As, 20% Py & ZnS, 1% PbS	0.93	12.70	11.600	35.0	7.5	
47183	76.14	76.89	0.75		100		7% As, 5% Py, 7% ZnS, 1-2% PbS	1.17	3.05	6.750	27.6	4.0	
47184	76.89	77.64	0.75		100		7% As ph 5% Py, 7% ZnS,	1.31	6.30	5.170	26.5	4.4	
47185	77.64	78.21	0.57		100		15% ZnS, 2% Py, 1% As,	0.27	6.52	0.797	7.7	0.5	

PAGE _____28___ OF ___29____

SSE	LCO		ORATION RN CANADA			DF	IILL LO) G		٤	amp	le da	ta
	SAI	MPLE			CORE	RECOVERY	VISUAL ESTIMATES		Α	SSAY	RESUL	. Т S	-
NUMBER	FROM	то	TOTAL	Sp. Gr	%	AMT. LOST	(% ORE MINERALS)	% Pb	% Zn	% As	g/t Ag	g/t Au	
47186	78.21	78.43	0.22		100		25% ZnS, 15% As, 7% Py, 3-10% PbS	5.43	9.93	7.600	140.9	10.6	
47187	78.43	78.75	0.32		100		2% Po, 2% ZnS, 1% Py,	0.25	0.89	0.505	10.4	0.5	
47188	78.75	79.29	0.54		100		40% ZnS, 20% Py, 5% As,	5.15	15.30	1.790	120.8	2.6	
47189	79.29	79.55	0.26		100		2-3% As, 2% Py, <1% ZnS	0.30	0.78	3.840	4.7	1.5	
47190	79.55	79.73	0.18		100	-	30% ZnS, 7% PbS, 10% As & Py, tr Cpy	10.80	9.60	5.000	271.6	10.8	
47191	79.73	80.16	0.43		14	0.37	tr Py	1.45	1.22	0.777	26.3	1.1	
47192	80.16	80.67	0.51		100	manufur reproductive and the second	5% Py, <1% As, tr Po	0.21	0.26	0.195	9.4	0.2	
47193	80.67	81.25	0.58		100		5% Py, < 1% As, tr Po	0.12	0.10	0.249	9.4	0.2	
47194	81.25	81.37	0.12		100		50% ZnS, 5-10% PbS, tr As.Pv.Cpv	1.12	30.00	0.070	42.6	0.5	
47195	81.37	82.37	1.00		99	0.01	tr As, Py, Cpy 5% Py, 2% As & ZnS, 1% Po, tr Pbs, Cpy	0.06	1.08	0.125	1.5	0.2	
47196	82.37	83.37	1.00		100		"	0.32	0.50	0.198	18.7	0.5	
47197	83.37	83.68	0.31		100			0.24	0.30	4.230	9.3	2.3	
													and the second beautiful to the second secon
			1		1								

\$ si	ELCO		EXPLORATION WESTERN CANAL				DR	LL			LO	G		HOLE NO84-9
DRILLING CO.	CONNORS	, [LOCATION SKET	сн	DEF	тн	TESTS DIP ANGLE	AZIMUT	7		STARTED:	October 13, 1984	PROJEC	T: J&L
				-1	- COL	LAR	+ 17.97°	224.	03		COMPLETED	October 14, 1984	N. T. S. :	82M/8E
		ļ			29.	87 m	+ 17.5°	224.	5		R ELEV.:	841.381	LOCATIO	0N: 10,820 E x-cut
					60.	35 m	+ 16°	224.	5° N	ORTH		9,942.453		
					90.	83 m	+ 16 ⁰	223.	5	ASTI		10,819.762		
					107.	59 m	+ 16.5°	225°		ZIMU		222 ⁰	ļ	
							****		- 1	EPTH		109.12	DATE LO	October 14, 1964
HOLE TYPE	DDH				1				C	ORE:	SIZE:	B.Q.	LOGGED	BY: C.O. & R.P.
INTER	VAL	BOC	K TYPE				RIPTION					STRUCTURE		REMARKS
FROM	то			COLOUR	GRAIN SIZE	TEXTUR	E ALTERATION	ORE MINERALS	PER MET	RES RE	% core recovery	(FRACTURES, FAULTS, FOLDING, BE ETC):	DDING,	MINERALIZATION, TYPE, AGE RELATIONS
0.00	2.20	Los	st Core								0	Lost core		
2.20	2.76	Chl-c	qt z phyll	dk. gy-	f.g.	fotd	. chl	Po			100	-mod. well fotd., 25 ^o -35		- tr f.g. Po, smeared on
		(05))	grn								-faint fine bndd., 29°-3	2°	foln. planes
												-thin (1-5 mm) wh. trans	1.	·
												qtz bands; up to 20% fe	lds.;	
											-	30°-32° (steeper than b	ndg.);	
												~l% of rock		
												-several thicker wh. tra	nsl.	
												qtz lenses; 1-5 cm (~1.	40;	
												~1.70; 2.23-2.29; 2.40-2	.49)	
												-broken core 1.20-1.79;	2.22-	
												2.50		
2.76	4.35	Qtz-	chl phyll	dkmed.	f.g.	fotd	. chl	Ро			100	-mod. well fotd., 32°-37	,0	- tr f.g. Po, smeared on
		(06))	grn gy						•		-faint fine bndd., ~ para	illel	foln. planes
												to folm.		
												-thin wh. transl. qtz ba	ınds	

PAGE 1 OF 32

\$ s	ELCO	EXPLORATIO WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-9
INTE	RVAL				DESC	RIPTION	1			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										common; 4-1 mm thick bands	
										up to 50% felds, 1-6 mm	
										thick bands up to 20%	
										felds.; dip generally	
										shallower than bndg.; dip	
										$28^{\circ}-35^{\circ}$; some thin $(\sim \frac{1}{4}$ mm)	
										discont. bands may be	
										sheared remnants of bands.	
										-qtz rich bands: 2.75-2.99;	
										3.83-3.87	
4.35	5.13	Qte	med. grn	f.g.	fotd.	chl	Ро		100	-mod. well fotd.; 39°-45°	- tr f.g. Po, smeared on
		(06)	-gy							-fine-med. bndd.; 25°-32°;	foln. planes
										bndg. has been sheared off	
										by foln.	
										-chl in folm. planes	
										-several bands whlt. gy	
										transl. qtz with up to	
	ļ				ļ					30% felds. (grains ½-2 mm);	
										36°-40°	
					<u> </u>					-banding is wavy at 4.41-4.44	1
***************************************			_							AP≈ dom. foln. (40°)	
5.13	6.59	Qtz-chl phyll	dkmed.	f.g.	fotd.	chl	Ру		100	-poorly dev. foln.; ~40°	
		(06)	grn-gy							-fine bndd.; 28°-33°	- tr m.g. Py, diss.
										-thin $(\frac{1}{2}-5 \text{ mm})$ bands of wh.	

PAGE 2 OF 32

\$\foots	ELCO	EXPLORATION WESTERN CANAL				DR	ILL		LO	G	HOLE NO 84-9
INTER	RVAL					RIPTION				STRUCTURE	REMARKS
FROM	ТО	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										transl. qtz fairly common;	
										up to 40% felds.; 27°-40°;	
										∠1% of rock	
										-slightly more silicic	
										section 5.49-5.92; med. gy,	
										f.g., qte band 6.27-6.34	
										-several calcite filled	
										fractures; 45° - 60° , opposite	
										dir. to foln. (6.17, 6.37,	
										6.55)	
6.59	7.47	Chl-qtz phyll	v.dk	f.g.	fotd.	chl	Py, Po		100	-mod. well fotd., foln.	- tr f.g. Po, on foln.
		(05)	dk. grn							parallel to bndg.	planes
										-med. bndd.; 27°-28°	- tr f.g. Py, diss.
										-a few thin (14-15 mm)	
										discont. bands wh. transl.	
										qtz with up to 50% felds.;	
										35°-45°; discont., appears	
										result of shearing on foln.;	
										steeper than bndg.	
										-1t. gy-grn bndg. 6.85-6.96;	
										7.00-7.10, 7.20-7.25; these	
										are S ₂ bands; ½-5 mm thick	
											4.4
			<u> </u>								

PAGE ____3___ OF ____32___

\$\footnote{\Sigma} = \footnote{\Sigma} = \foot	ELCO	EXPLORATION WESTERN CANA				DR	ILL	L	0	G	HOLE NO. 84-9
INTER	VAL					RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES % C	core	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
7.47	8.86	Qtz-chl phyll	med. grn	f.g.	fotd.	chl	Ру	10	00	-poorly fotd.; 30°-35°	- tr Py, f.g., diss.
		(06)	-gy							-fine-med. bndd.; 30°-33°	
										-two transl. wh. qtz lenses	
										7.85-7.89 & 8.20-8.28;	
										\sim 10% felds.; chl & Po	
										concen. along margins,	
										some chl within lens; bndg.	
										disturbed around lens	
										-bands wh. transl. qtz	
										with 40% felds. common;	
										1-8 mm thick; 25°-35°;	
										many are discont. because	
										of shearing on folm.; \sim 1%	
										of rock	
										-numerous small indistinct	
										folds.7.90-8.21; AP=25°-30°≈	
										dom. foln.; hinges round to	
				·						sharp, limbs straight;	
										appear to have formed by	
										shearing of bndg. along	
										foln.	
										-slip surfaces with gouge:	
										8.10, 8.20	

									***	·	

PAGE ___4__ OF ___32

\$5	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-9
INTER	RVAL				DESC	RIPTION	١			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
8.86	10.05	Chl-qtz phyll	meddk.	f.g.	fotd.	chl	Py, Po		100	-mod. well fotd., 25°-30°	- tr f.g. Po, smeared on
		(05)	grn-gy							-med. bndd.; 32 ^o -35 ^o	foln planes
						-				-qtz-chl phyll band 9.22-9.44	- tr f.g. Py, on foln. planes
										-transl. wh. qtz band 9.09-9.1	3;
										~15% felds.; chl concen.	
										along margines, sm. amt. Po	
										within qtz; band sheared off	
For any section of the section of th										by foln.	
										-sheared remnants of thin	
										(14-1 mm) transl. wh. qtz/	
										felds. bands throughout; a	
										few discont. bands, dip	
										√30°-35°; tr amounts only	
										-rock becomes darker gy-grn	
										towards f/w	
10.05	11.32	Chl-qtz phyll	bkdk.	f.g.	fotd.	chl	Ру		100	-well fotd.; 30°	- tr f.g. Py, on foln. planes
		(05)	gy-grn							-fine-med. bndd.; 25°-30°	
										-transl. wh. qtz bands with	
										up to 30% felds. common;	
										bands 4-5 mm thick; thinner	
										bands (41 mm) generally	
										discont.; 33°-50° dip; cut	
										bndg., are sheared by foln.	
										-qtz-chl phyll bands: 10.73-	
										10.78; 11.20-11.24	

PAGE 5 OF 32

\$ s	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-9
INTER	VAL					RIPTION				STRUCTURE	REMARKS
FROM	ΤO	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES %	core	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										-colour varies bk. at h/w to	
										dk. gy-grn at f/w	
11.32	12.90	Qtz-chl phyll	med. gy	f.g.	fotd.	chl	Ру		90	-mod. well fotd.; 30°-35°	- tr Py, fm.g., on foln.
		(06)	-grn							-fine bndd.; 30°-35°	planes
										-transl. wh. qtz, bands with	
										up to 20% felds. common;	
										12-5 mm thick; bands ≤1mm	
										generally discont.; steeper	
										dipping than bndg.; dip	
										35°-45°	
										-local qtz-chl phyll sections:	
										11.58-11.63; 11.70-11.37	
										-faint crenulations 11.32-11.3	
										AP=35 com. foln.; hinges sh	arp,
										limbs straight	
										-core broken 11.69-11.80	
12.90	15.24	Qtz-chl phyll	med. gy	f.g.	fotd.	ch1	Py, Po		93	-poorly fotd.; ~30°-35°	- tr Py, f.g., in foln.
		(06)	-grn							-faint fine bndg.; 30°-40°	planes
										-transl. wh. qtz bands with	- <1% Po, f.g., in v. thin
										up to 30% felds. common;	$(\frac{2}{4} \text{ mm})$ bands along folm.
										bands $\frac{1}{4}$ -10 mm, most $\frac{1}{2}$ -1 mm;	planes & smeared on foln.
										20 ^o -40 ^o dip:	planes
										-several chl-qtz phyll	
										sections: 13.00-13.28;	

PAGE ___6__ OF ___32___

\$ s	ELCO	EXPLORATION WESTERN CANAL				DR	ILL		LO	G	HOLE NO 84-9
INTER	RVAL					RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										13.52-13.66;	
										-folded qtz/felds bands	
										at 14.03-14.20; chevron	
										w/long slightly wavy limbs;	
										AP≈ 90°, FA=65°; broad open	
										fold in h/w limb has AP=70°	
										in dir. opp. to foln.,	
										FA=65°; h/w limb has 4 mm off	;-
										set on fracture ∥ to	
										AP	
										-several 1-2 cm transl. wh.	
										qtz bands in broken core	
										from 14.63-15.24; up to 20%	
										felds; chl & sm. amt. Po in	
										fractures & along margins	
										-broken core 14.63-15.24;	
										∠15 cm core lost	
15.24	18.16	Chl-qtz phyll	med. grn	f.g.	fotd.	chl	Po,Py,		100	-mod. well fotd.; 25-35°	- tr f.g. Po, v. thin
		(05)	- gy	· · · · · · · · · · · · · · · · · · ·			PbS			-faint fine bndd.; ~30°	bands along qtz/feld
										-thin dicont. bands wh.	band margins; on foln.
										transl. qtz with up to	planes
										40% felds. fairly common;	- tr fm.g. Py; scattered
										bands 1/4-1 mm thick; 20-30°;	grains at qtz/feld
										tr amounts in rock; thicker	band margins & Qn foln.
					L	L		L		bands at 17.44, 18.15	planes

PAGE ____7 ___ OF ____32

\$si	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-9
INTER	VAL					RIPTION				STRUCTURE	REMARKS
FROM	ΤO	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										(~5 mm thick)	- tr PbS, one grain in qtz
										-locally larger amts. chl:	lens at 18.06
										15.24-15.42 & 15.51-15.69;	
										several transl. wh. qtz	
										lenses 4-8 mm in each	
										section; chl & thin bands	
										Po (?) concen. at margins;	
										rock appears to be sheared	
										-thin (1/4 mm) qtz/felds filled	
										fractures at 16.27, 17.32,	
										17.39, 17.41; ~45° in opp.	
										dir. of foln.	
										-two irreg. wh. transl. qtz	
										lenses 1 cm & 1½ cm across	
										at 18.06; chl; Po, Py concen.	
										along margins; one grain PbS	
										-folded qtz/felds band 18.15-	
										18.16; fairly sharp hinge,	
						-			,	straight limbs; AP=28°=	
										dom. foln., FA=28°	
18.16	23.28	Qtz-chl phyll	med. grn	f.g.	fotd.	chl	Po, Py		100	-mod. well fotd., 28°-35°	- tr Po, f.g., in thin bands
		(06)	- gy							-faint fine-med. bndd.; 28°-	on qtz/felds margins &
										32°	on foln. planes
										-thin $(\frac{1}{4}-5 \text{ mm})$ bands wh.	- tr Py, f.g., on foln.
										transl. qtz. with up to 60%	planes & scattered xtals

PAGE 8 OF 32

\$ s	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO84-9
INTER	RVAL					RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										felds common; 30°-40°;	on qtz/felds margins
										generally slightly steeper	
										than bndg. & foln.; thinner	
										bands (41 mm) often discont.,	
										prob. sheared off; several	
										thicker bands (~1 cm) at	
										19.56, 21.33, 21.54	
	·									-several wh. transl. qtz	
										lenses (20.98-21.06; 21.10-	
										21.13; 21.57-21.65); thin	
										discont. bands Po & chl	
***************************************										along margins & in fractures	
										(?); sm. amt. pyrite near	
										margins; up to 5% felds;	
										lenses ~ parallel to folm.	
										-folds: 18.30-18.36, rounded	
										hinges, straight limbs, qtz/	
										felds bands folded, AP=25°,	
										limbs sheared by foln.	
										22.68-22.75; possible remnant	S
										of sheared folds, sheared alo	ng
										foln.; rounded hinges(?);	
										qtz/felds band at 22.65 shows	
										small sharp hinged folds with	
										Ap≈0° -chl-qtz phyll section 22.89- 23.16	

PAGE 9 OF 32

\$ s	ELCO	EXPLORATIO WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-9
INTER	VAL					RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
23.28	23.73	Qte	med. gy	f.g.	fotd.	chl	Py, Po		100	-mod. well fotd.; 28°-30°	- tr Po, f.g., in foln.
		(06)								-med. bndd.; 23°-28°	planes
										-several wh. transl. qtz	- tr Py, f.g., diss.
										bands; up to 30% felds;	
										12-5 mm; most discont.;	
										25 ⁰ -48 ⁰ ; thin bands (4 1mm)	
										have more felds than thicker	
										ones;	
										-qtz/felds bands vaguely folde	ed
										at 23.53 & 23.72; sharp &	
										rounded hinges, short limbs;	
										$\mathtt{AP} \hspace{-0.5em} -0.5em$	
										been sheared along foln.	
										-faint suggestion of folds	
										in bndg. 23.31-23.58; sheared	3
										remnants of folds; hinges(?)	
										sharp to rounded, straight	
					t					parts may be limbs; $AP \approx dom$.	
										foln.	
										0 0	
23.73	41.53	Chl-qtz phyll	med. grn	f.g.	fotd.	chl	Py, Po		95	-well fotd.; 30°-35°	- tr Po, f.g., in qtz/felds
		(05)	- gy							-fine-med. bndd.; 30°-36°;	bands, along qtz lens
										45° at 39.48	margins, smeared on foln.
										-thin (½-5 mm) transl. wh.	planes.
					-					qtz bands common; 28°-38°;	- tr Py, fm.g., in qtz/
	L	<u> </u>			L		<u></u>			up to 50% felds in thinner	felds bands, along qtz lens

PAGE 10 OF 32

\$ s	ELCO	EXPLORATION WESTERN CANA				DR	ILL	· · · · · · · · · · · · · · · · · · ·	LO	G	HOLE NO 84-9
INTER	VAL				DESC	RIPTION	٧			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										(≤1 mm) bands; thinner bands	margins, on foln. planes;
										generally discont.; only	slight increas in amt.
										trace amts. overall	40.54-41.53, occurs in
										-several wh. transl. qtz	thin $(\frac{1}{4}-\frac{1}{2}$ mm) lenses
										lenses (26.60-26.80; 30.47-	parallel to foln.
										30.54; 35.47-35.49; 36.77-	
										36.79; 37.39-37.43); sm. amts	•
										Py, Po along margins; chl	
								1		concen. on margins & in	
										fractures; < 1% felds; lenses	
										~parallel to folm.	
										-local qtz-chl phyll sections	
										(24.95-25.49; 35.41-35.47;	
										37.67-37.71; 39.98-40.06;	
										40.86-40.87)	
										-qte band 24.69-24.80, med. gy	
										-more chl rich sections 26.53-	
										26.94, 30.54-30.78 & 35.47-	
						į				35.56; chl "clots" 25.33-25.3	9
										& 25.72-26.53	
		-								-folds: 24.28 - remnants of sm	•
										folds; round hinges, straight	
										limbs; AP=foln.=30°; folds bn	dg.
										27.26-isolclinal, sharp hinge	,
										straight limbs; AP=foln.=32°,	
										FA=35°; remnants of folds 27.	22

PAGE ______ OF _____ 32____

\$5	ELCO	EXPLORATION WESTERN CANAD	Δ			DR			LO	G	HOLE NO 84-9
INTER	VAL				DESC	RIPTION	l			S,TRUCTURE	REMARKS
FROM	т о	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										-27.26; folds bndg.	
						·				32.80 - rounded hinge,	
										fairly straight limbs, h/w	
										limb sheared off; AP= 30° \approx	
										foln.; folds qtz/felds band	
										33.56-34.20 - foln. & bndg.	
										wavy; AP=50°, FA=85°	
		**								39.06-39.10 - rounded hinge,	
										wavy limbs; AP=85°; folds	
										bndg. 39.14-39.16 - sharp	
										hinge, wavy limbs; AP=70°;	
										folds qtz/felds band 39.48-	
										kink; AP=10°, FA=80°; folds	
										bndg.	
										40.04 - wavy bndg; AP=45°,	
										FA≈90°	
										40.37 - wavy bndg.; AP=45°,	
										FA∕×90 [°]	
										40.58-kink; $AP=80^{\circ}$; $FA\approx85^{\circ}$;	
										folds qtz/felds/Py band	
										40.86-chevron; AP=50°, FA/2 66	o°
										folds bndg.	
										-kink band at 30.92, 50°,	
										folds bndq.	
										-kink band at 30.92, 50°,	
										folds bndg.	

PAGE 12 OF 32

\$\footnote{5}	ELCO	EXPLORATIO WESTERN CANA				DR	ILL		LO	G	HOLE NO
INTER	RVAL				DES	RIPTION	ı			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										-several slip surfaces with	
						-				gouge: 34.09, 35.02, 35.24,	
										39.04	
									-	-broken core 27.73, 29.26,	
										37.27-37.50, 37.75-38.48,	
										39.56-39.84, 40.10-40.23,	
										41.00-41.11	
41.53	41.84	Qtz-chl phyll	med. gy	f.g.	fotd.	chl	Po, Py		100	-mod. well fotd.	- tr Po, f.g., near qtz lens
		(06)	-grn							-fine-med. bndd.	margins and smeared on
										-bndg. parallel to foln.,	foln. planes
										both wavy, 10° -30°, AP $\approx 65^{\circ}$,	- tr Py, f.g., near qtz lens
										FA≈90°	margins and on foln.
										-many transl. wh. qtz	planes
-										lenses, 4-10 mm thick,	
										parallel to folm.	
41.84	50.90	Chl-qtz phyll	dkmed.	f.g.	fotd.	chl	Po, Py		97	-mod. well fotd.	- tr Po, f.g., near margin
		(05)	gy-grn							-faint fine med. bndd.	of qtz lenses, in qtz/
										-foln. & bndg. generally	felds bands, smeared on
										wavy, 20°-35°	foln. planes
										-transl. wh. qtz lenses	- tr Py, f.g., near margins
										1-4 mm thick (43.81-	of qtz lenses, in qtz/
										43.82; 43.86-43.88;	felds bands, thin $\binom{1}{4}-\frac{1}{2}$ mm)
			_							44.56-44.60; 45.00-	lenses parallel to folm.
										45.05; 45.10-45.20;	

PAGE 13 OF 32

EXPLORATION SELCO DRILL LOG HOLE NO. 84-9 WESTERN CANADA INTERVAL DESCRIPTION REMARKS STRUCTURE ROCK TYPE TEXTURE ALTERATION ORE FRACTURES & COYE (FRACTURES, FAULTS, FOLDING, BEDDING, MINERALS PER METRE recovery ETC): MINERALIZATION, TYPE, AGE RELATIONS FROM COLOUR 46.49-46.50; 49.76-49.81); approx. parallel to foln., up to 1% felds; chl concen. along margins -thin $(\frac{1}{4}-5 \text{ mm})$ transl. wh. qtz bands common; 30°-40°; thin bands (4 1 mm) up to 50% felds, generally discont.; thicker bands up to 30% felds, most continuous -local qtz-chl phyll sections: 45.88-46.27; 46.38-46.44; 47.03-47.08; 47.26-47.31 folds: 41.92-42.00 - wavy bndg.; AP=50° 44.46 - isoclinal, round hinge, straight limbs; AP=40° foln., FA=50°; folds qtz/felds band 46.00 - broad, open, round hinge, straight limbs; AP=80°, FA=70°; folds bndg. 46.54-46.81 - wavy bndg. & qtz/felds bands; AP=30° 46.68-46.77 - wavy bndg.; $AP=80^{\circ}$, $FA=40^{\circ}$ 50.16 - 50.29 - wavy bndg.;

PAGE 14 OF 32

\$ s	ELCO	EXPLORATION WESTERN CANA		***		DR	ILL		LO	G	HOLE NO
INTER	VAL				DESC	RIPTION	1			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										AP=80°, FA=60°	
										-slip surfaces: 49.33, 50.32-	
										50.34 (4 surfaces)	
										-broken core: 46.02-46.18,	
										47.35, 49.38	
50.90	54.16	Qte	med. gy	f.g.	poorly	ser,chl	As,Po,Py	•	100	-poorly fotd.: 20°-27°	- tr Po, f.g., concen. in
		(06)			fotd.					(50.90-52.45); 38 ^o -44 ^o	thin strs. in ser-rich
and the board of the same and an arrangement										(52.45-55.87)	section (51.34-51.60);
										-faint fine-med. bndd.,	also in qtz/felds bands &
										~ parallel to folm.	smeared on foln. plane
										-qtz/felds bands less common	- tr Py, fm.g., thin strs.
										than above; bands 1/2-4 mm; up	in ser-rich section, diss.
										to 30% felds; bands∼parallel	grains and on foln. planes
										to foln.; qtz is lt. gy	- tr As, m.g., scattered
										transl.	grains, concen. in ser-
										-ser-rich section 51.34-51.60	rich section
										-wh. opaque qtz lens 52.75-52.	99;
										chl in fractures; 15 x 30 mm	
										lens qte in centre has felds	
·										(12-1 mm) along margins	
										-ser in foln.	
										-several lt. gy transl. qtz	
			_							bands 5-10 mm, 52.43-52.55;	
										∼ parallel to folm.	
					<u> </u>	<u> </u>		<u> </u>		-slip surfaces with gouge	

PAGE ______ OF _____ 32____

\$\frac{1}{5} = \frac{1}{5} = \	ELCO	EXPLORATIO WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-9
INTE	RVAL				DES	CRIPTION	٧			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										common: 50.97, 51.26, 52.20,	
										53.78	
										-broken core 53.71-53.94	
54.16	54.91	Qtz-chl phyll	dk. grn	f.g.	fotd.	chl	Po,Py		100	-mod. well fotd., varies	- tr Po, f.g.; thin strs.
		(06)	-g∳							27 ^o -50 ^o from 54.16-54.91	& lenses parallel to foln.;
										-faint med. bndd.; parallel	in qtz/felds bands; along
										to folm.	margin of qtz lens
										-wh. transl. qtz lens 54.73-	- tr Py, f.g.; thin $(\frac{1}{4}-\frac{1}{2}$ mm)
										54.74; parallel to foln.;	lenses parallel to foln.;
										chl concen. along margins	in qtz/felds bands; along
										-a few qtz/felds bands; up	margin of qtz lens
										to 40% felds; qtz lt. gy	
			·				•			transl.; bands 12-2 mm;	
										~ parallel to folm.	
										-kink band at 54.45 ; AP= 90° ,	
										FA 70 ⁰	
										-broken core 54.16	
54.91	69.15	Chl-qtz phyll	dkmed.	f.g.	fotd.	ch1	Py,Po,		95	-well fotd.; foln. wavy	- <1% Py, fm.g., lenses
		(05)	gy-grn				PbS			20°-40°, 0°-10° from 61.80-	& strs. $\frac{1}{4}$ -2 mm thick, \sim
										61.99 faint med. bndd.,	parallel to foln.; concen.
										bands ~parallel to folm.	near margins of qtz lenses
										-lt. gy transl. qtz bands	- tr Po, f.g., thin strs.
										with up to 50% felds	parallel to foln., concen.
		<u> </u>					<u></u>			common, 12-5 mm thick;	near margins of qtz lenses

PAGE ____16___0F____32____

\$ sı	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-9
INTER	VAL					RIPTION				STRUCTURE	REMARKS
FROM	т 0	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										thinner bands (1 mm)	- tr PbS, m.g., one grain
										generally discont., contain	in qtz/felds band at
										more felds than thicker bands	62.85
										~parallel to folm.	
										-wh. transl. qtz lenses common	
									The second secon	(55.05-55.06; 55.85-55.87;	
										57.50-57.51; 57.76-57.84;	
										60.96-60.99; 61.47-61.53;	
										62.19-62.26; 63.24-63.29;	
										63.50-63.52; 64.80-64.84;	
										65.04-65.07; 65.30-65.32;	
										65.80-65.87; 66.22-66.26;	•
										66.36-66.38; 66.84-66.87;	
										69.87-69.89); chl concen.	
										on margins & in fractures;	
										Po & Py near margins & in	
										fractures	
										-several qtz-chl phyll	
										sections: 58.29-58.53;	
										58.74-58.79; 65.34-65.61;	
										67.40-67.58; 67.75-67.78;	
										68.06-68.07	
										-folds: 56.41-56.42 -	
										isoclinal, round hinge,	
										straight limbs, AP=90°,	
										folds qtz/felds band	

PAGE _____17___ OF ____32____

\$\frac{1}{5} = \frac{1}{5} = \	ELCO	EXPLORATION WESTERN CANAL				DR	ILL		LO	G	HOLE NO 84-9
INTER	IVAL				DESC	RIPTION	l			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										56.45 - wavy bndg., AP=65°,	
										FA=75 ^O	
										57.50 - kinks, AP=35° opp.	
										foln., FA=80°, folds bndg.	
										58.33 - wavy bndg., AP=45°,	
										FA=65 ^O	
										59.78 - wavy bndg., AP=35°,	
						*				FA=70°	
										61.71 - kinks, AP=90°, folds	
										bndg. & qtz/felds bands	
										62.69 - broad chevron, AP=88	0
										FA=86 ⁰ , folds bndg. & qtz/	
										felds bands	
										63.85 - wavy bndg., AP=60°,	
										FA=65 ^O	
										65.34 - wavy bndg., AP=40°,	
										FA=80°	
										67.13 - sharp hinges,	
										straight limbs, AP=35°,	
										f/w limb sheared off,	
										folds qtz/felds band	
										67.32 - broad, open chevron,	
										AP=85°, FA=75°, folds bndg.	
										68.18 - fairly sharp hinges,	
**************************************										wavy limbs; sheared along	
										foln. in several places,	

PAGE 18 OF 32

\$\frac{\$}{5}\$	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO 84-9
INTER	VAL				DESC	RIPTIO	٧			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE T	% core ecovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										AP=25 c foln., folds bndg.	
										69.07 open warped bndg.,	
										$AP=70^{\circ}$, $FA=80^{\circ}$	
										-broken core 57.00, 58.82,	
										64.00, 64.30	
-										-felds. blebs 41 mm, parallel	
										to folm. 63.36-63.56	
69.15	70.71	Qtz-chl phyll	med. grn	f.g.	fotd.	chl	Py,ZnS,		100	-mod. well fotd., wavy	- tr ZnS, fm.g., red brwn,
		(06)	-gy	-			PbS			30°-45°	lenses & strs in & near
										-med. bndd., bndg. ~ parallel	qtz bands, concen. 69.47-
										to folm.	69.56
										-bands lt gy transl. qtz	- tr PbS, f.g., scattered
										with up to 50% felds	grains in qtz bands 69.47-
										fairly common, 12-3 mm,	69.56
										generally discont.	- tr Py, fm.g.; strs &
										-several bands wh. lt. gy	thin lenses $(\frac{1}{2}-1 \text{ mm})$,
										transl. qtz; chl concen.	concen. along margins qtz
										along margins, \sim parallel	bands
										to foln. & bndg.;	- tr Po, f.g., thin strs.,
										-folds: 69.25-kinks; AP=90°,	concen. near qtz bands
										FA=90°, folds bndg.	
										69.90 - wavy bndg, AP=25°,	
										-more chloritic towards f/w	
						1					

PAGE 19 OF 32

\$ s	ELCO	EXPLORATION WESTERN CANA				DR	ILL	·····	LO	G	HOLE NO. 84-9
INTER	RVAL				DESC	RIPTION	٧			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
70.71	74.91	Chl-qtz phyll	med. gy	f.g.	fotd.	chl	Po,Py		100	-well fotd., 28°-38°, foln.	- tr Po, f.g., strs.
		(05)	-grn							wavy	parallel to foln.; concen.
										-med. bndd., bands~parallel	near qtz lenses & qtz/
										to folm.	felds bands; also smeared
										-lt. gy transl. qtz bands	on foln. planes
										common; 1/2-4 mm; up to 50%	- tr Py, fm.g., thin strs
										felds; thinner bands (≤1 mm)	& lenses parallel to folm.,
										discont., higher % felds.	concen. near qtz lenses &
										-transl. whlt. gy qtz lenses	qtz/felds bands; also diss.
										fairly common; 5-15 mm; chl	
										concen. along margins & in	
										fractures (70.87-70.88;	
										71.31-71.33; 71.53-71.54;	
										71.60-71.63; 71.86-71.89;	
								-	-	72.03-72.10; 73.30-73.32)	
										-local qtz-chl phyll sections:	
										72.12-72.24; 73.44-73.60	
										-folds: 71.18 - wavy bndg.,	
										AP=60°	
		-								72.63 - wavy bndg., AP=65°,	
										FA=85 ^o	
										73.21 - wavy bndg., AP=65°,	
										FA=45 ^O	
										74.24 - wavy bndg., AP=85°	
										74.68-74.90 wavy bndg., AP=70	
										-broken core 72.24, 72.35-72.48	3

\$ s	ELCO	EXPLORATIO WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-9
INTER	VAL					RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
74.91	75.66	Qte	med. gy	f.g.	fotd.	chl	Py, Po		87	-mod. well fotd., 30° - 40° ,	- tr Po, f.g., thin (mm)
		(06)			sheared					wavy	discont. bands parallel
										-fine-medbndd., bands \sim	to foln. & smeared on
										parallel to foln.	foln. planes
										-a few thin $(\frac{1}{2}-1 \text{ mm}) \text{ qtz/}$	- tr Py, fm.g., thin
										felds bands, 50% felds, qtz	(≤1 mm) lenses & diss.
										lt. gy transl., parallel to	
										bndg.	
										-many shear surfaces with	
		**								gouge (75.03-75.14; 75.21-	
										75.29)	
										-wavy bndg. throughout,	
										$AP \approx 45^{\circ}$, $FA \approx 60^{\circ}$	
										-broken core 75.02-75.46;	
										~ 10 cm missing	
										-slight increase chl f/w	
										half	
75.66	77.54	Qtz-chl phyll	meddk.	f.g.	fotd.	ch1	ZnS,Py,		100	-mod. well fotd., wavy,	- tr ZnS, f.g., red-brwn.,
		(06)	grn-gy				Po			30°-45°	v. thin strs. parallel to
										-fine-med. bndd., bands~	foln., some along margins
				***************************************						parallel to folm.	of qtz/felds bands; concen.
on printing of the same of the										-qtz/felds bands 4-4 mm	76.41-76.57
										common; qtz lt. gy transl.;	- tr Po, f.g., thin strs.
										up to 50% felds, bands \sim	parallel to foln., concen.
										parallel to bndg., generally	near qtz/felds. bands

PAGE 21 OF 32

\$ s	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-9
INTER	RVAL				DESC	RIPTION	ı			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										discont.	- tr Py, fm.g., thin strs.
										-wh. transl. qtz lens; 77.43-	& lenses (<1 mm) parallel
										77.46; chl concen. along	to foln.; concen. along
										margins & in fractures	qtz/felds bands
										-folds: 75.71-75.75 - wavy	
										bndg., AP=70°, folds bndg.	
										& qtz/felds bands	
										76.19 - wavy bndg., AP=75°,	
										FA=85 ^O	
***************************************										77.29 - kinks, AP=75°, FA=70°	1
			folds bndg. & qtz/felds bands								
										-broken core 75.66-75.90	
77.54	80.34	Qtz-ser phyll	med. grn	f.g.	fotd.	ser	ZnS,PbS,		100	-mod. well fotd., wavy,	- <1% ZnS, f.g., orange-
		(07)	-gy				Cpy, As,			30°-45°	brwn. to red-brwn.; strs.
							Po,Py			-fine-med. bndd, bands ~	12-5 mm thick; concen.
										parallel to folm.	78.56, 79.10-79.20, 79.59,
										-ltmed. gy transl. qtz	79.91, 80.13-80.38
										bands with up to 50% felds	- tr PbS, f.g., diss. along
										common; bands ½-3 mm, many	some ZnS stringers, concen.
,										discont.	79.10-79.20, 80.13-80.38
										-several whlt. gy transl.	- tr Cpy, f.g. thin strs
										qtz lenses (78.33-78.36;	with PbS & ZnS at 79.10-
										78.40-78.50; 78.55-78.58;	79.20
										79.79-79.82; 79.86-79.91;	- tr As, fm.g., brecciated,
										80.28-80.29); -1% felds;	fragment subangular to

PAGE 22 OF 32

SELCO		EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-9
INTER	VA L				DESC	RIPTION	1			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										~parallel to folm.	subrounded, concen. 80.13-
										-local more silicic sections:	80.16
										77.54-77.71; 77.95-78.11;	- tr Po, f.g., thin strs.,
										78.66-78.85; 79.06-79.09;	concen. 80.13-80.38
										79.20-79.39	- tr Py, fm.g., diss.,
										-folds: 77.96 - wavy bndg.,	concen. 80.13-80.38
										$AP=70^{\circ}$, $FA=90^{\circ}$	
										78.46 - wavy bndg., AP=70°,	
										folds bndg. & ZnS stringer	
80.34	80.66	Ser-qtz phyll	med. gy	f.g.	sheared	ser	ZnS,Py,		100	-~60% wh. & med. gry opaque	- tr ZnS, f.g. red-brwn.,
		& qtz lens	-grn				PbS			qtz in ser-qtz phyll; bands	several strs. near margins
		(04 + 13)								& lenses of ser-qtz phyll	of qtz
										& ser within qtz	- tr Py, m.g., diss., &
										-5% feld-, fractured masses	short strs.
										up to 15 mm, along margins	- tr PbS, f.g., a few grains
										and within qtz	in fracture in felds
80.66	80.83	M.S.	brwn.	f.g.	sheared	ser	ZnS,PbS,	,	100	-20% ser qtz phyll, wispy	- 50% ZnS, f.g., brown to
		(12)					Ру,Сру			bands intercalated with	red-brwn., strs. ½-10 mm;
										ZnS strs., bands locally	in ser-qtz phyll, along
										contorted	qtz lens margins & in
										-30% wh. & lt. gy qtz	fractures; strs. locally
										lenses, 1-2 cm thick	contorted, overall roughly parallel to foln.; ZnS
											concen. 80.64-80.75

PAGE _______ OF _____ 32

\$ s	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-9
INTER	VAL				DESC	RIPTION	١			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
											2-5% PbS, f.g., in
											fractures in ZnS & in qtz
				-	1						lenses, esp. along margins
											- tr Py, m.g., diss.
											- tr Cpy diss.
80.83	83.66	Ser-qtz phyll	med. gy	f.g.	fotd.	ser	ZnS,As,		100	-wh. & medgy qtz lenses	- 1% ZnS, f.g., red-brwn.,
		(04)	-grn		sheared		Py, PbS,	•		common; 5 mm - 6 cm;	strs. ½-5 mm, fairly
							Po			~ 50°-60°; 80.86, 81.20,	evenly distrib. through
										81.25-81.27, 81.33-81.34,	section
										82.30-82.39	- tr Py, fm.g.; brecciated,
										-bndg. in ser-qtz phyll	fragments ≤3 mm, subangular
										1/2-5 mm, very contorted,	to rounded; fairly evenly
										numerous remnants of folds	distrib with ZnS
										-folds: 81.07 - rounded hinges	, - tr As, fm.g.; brecciated,
										short straight limbs, AP=70°	fragments ≤3 mm, subangular
										81.61 - chevron, AP=70°,	to rounded, concen. in a
										FA ≈ 70°	few places (81.63, 81.94,
										81.72 - rounded hinges,	82.93-83.04, 83.51-83.66)
										straight limbs, AP=90°,	- tr PbS, f.g., diss. few
										FA=90°	grains
										82.89 - rounded hinges,	- tr Po, f.g., dist. with
										short wavy limbs, AP=70°, FA=65°; numerous other	ZnS
······			 						·····	folds; folds generally	
			1							ptygmatic; bndq. & sulp.	

PAGE __24___ OF ___32___

\$\footnote{5}	SELCO	EXPLORATIO WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-9
INTER	RVAL	·		35 V - J - Oli - O	DES	RIPTION	٧			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										strs. are folded, qtz lenses	
										are not; many folds have been	
										fragmented by shearing	
										-broken core 32.30	
83.66	84.20	M.S.	red-brwn.	f.g.	milled		ZnS,PbS,		100	200 con ota phull ui anu con	250 G.G. 150 Dl.C. 50 A-
83.00	04.20	(12)	& med.	1.9.	milied	ser			100	-30% ser-qtz phyll, wispy ser	25% ZnS, 15% PbS, 5% As,
		(12)			ļ		As, Py			bands, contorted bndg.	5% Py
			grn-gy								- ZnS, f.g., red-brwn., strs.
										lens (84.00-84.04)	1 ₂ -5 mm & more massive with
										-5% wh. qtz eyes 2-5 mm	lacework texture
			_								- PbS f.g., in with ZnS in
	<u> </u>										more massive sections
	ļ		_								- As & Py, fm.g., sub-
~											rounded to rounded frag-
									·		ments up to 2 mm, fairly
											diss.
											83.82-83.91 : 50% sulp.:
											25% ZnS, 15% PbS, 5% As,
										·	5% Py
											83.91-84.00 : 15% sulp
			-								10% ZnS, 3% As, 1% Py,
											1% PbS
											84.00-84.04 : 5% sulp
											2% As, 1% Py, 1% ZnS,
											1% PbS 84.04-84.09 : 15% sulp
	L	L			<u> </u>	J	L				84.04-84.09 : 15% Sulp

PAGE ____25___ OF ___32___

\$ s	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-9
INTER	VAL					RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
											- 10% ZnS, 3% As, 1% Py,
											1% PbS
											84.09-84.20 : 70% sulp
											35% ZnS, 20% PbS, 10% As,
		1.4									5% Py
84.20	88.80	Qtz-ser phyll	med. grn	f.g.	fotd.	ser	Py,As,		97	-well fotd., 35°-50°	2% Py, 1% As, 1% Zns, - 1% Po, tr Cpy
		(07)	- gy				ZnS,Po,			-med. bndd., bands	2% Py, fm.g.; brecciated fragments up to 8 mm sub-
							Сру			generally contorted	angular to rounded; fairly
										-lt. med. gy transl. qtz	evenly dist. over section
										bands within qtz ser phyll	- 1% As, fm.g.; brecciated
										1 ₂ -10 mm	fragments up to 2 mm, sub-
										-folds: 84.73 - isoclinal,	angular to rounded; concen
										round hinges, AP=50°	85.09-85.10, 85.52-85.53,
	·									84.99 - fairly sharp hinge,	86.19-86.28, 86.43-86.48,
										straight limbs AP=60°,	86.50-86.54, 86.64-86.68,
										FA=50 ^o	86.95-87.03
										85.67 - rounded hinges	- 1% ZnS, f.g., red-brwn.,
										straight limbs; AP≈70°,	strs. ½-4 mm; fairly
										curved, FA=50°	evenly dist. over section
										88.01 - chevron, AP=70°,	- 1% Po, f.g., fairly evenly
										FA=80 [°]	dist. over section
										88.31-88.37 - round & sharp	- tr Cpy, f.g., concen.
										hinges, straight limbs,	86.43-86.48, 86.50-86.54

PAGE _____ 26 ___ 0F ____ 32

\$ s	ELCO	EXPLORATION WESTERN CANAL			-	DR	ILL		LO	G	HOLE NO84-9
INTER	VAL				DESC	RIPTION	١			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										$AP=80^{\circ}$, $FA \approx 60^{\circ}$;	- M.S. 86.38-86.46 : 86.38-
					* -					overall folding complex,	86.42, 35% As, 15% Py;
										AP's variable & curved,	86.42-86.46, 40% ZnS,
										FA's vary, many remnants	15% As, 15% Py
										of sheared folds	- Cpy at 86.50-86.54 over-
										-section becoming chloritic	prints Py, As
										towards end (88.80)	
88.80	93.03	Qtz-chl phyll	dk. grn	f.g.	fotd.	chl	Po,Py,As	,	96	-mod. well fotd., 30°-45°	- 2% Po, f.g., strs. ¹ 4-2 mm,
		(06)	-gy				PbS,ZnS			-med. bndd.,~parallel to	evenly distrib. through
										foln.	section
										-several wh.& med. gy	- tr Py & As fm.g.,
									·	transl. qtz lenses:	brecciated, fragments up
		·								89.59-89.60, 90.51-90.52,	to 2 mm, angular to sub-
										91.03, 92.20-92.23,	rounded
										92.34-92.36, 92.89-92.91	- tr PbS, f.g. diss
										-broken core: 89.55, 89.92,	- tr ZnS, f.g., strs $\frac{1}{4}$ -2 mm
										90.27-90.40, 91.85-92.13	- As concen. 90.27, 90.51-
											90.52, 91.76
				-							- ZnS concen. 88.98, 89.10,
											91.76
93.03	98.45	Qtz-Ser (<u>+</u> Chl)	med. grn	f.g.	fotd.	ser+chl	Po,As,Py	,	100	-mod. well fotd. 35°-45°	- 4% Po, f.g., strs. ½-3 mm,
		phyll (07)	-gy				ZnS,Cpy,			-med. bndd.~parallel to foln.	fairly evenly distrib.
							PbS	•		-wh. transl qtz lenses	over section
										common, 1-6 cm	- tr As & Py, fm.g.;

PAGE ______ OF ____ 32____

\$\sqrt{5}\$	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-9
INTE	RVAL				DES	RIPTION	4			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										(93.64-93.65, 93.72-93.73,	brecciated, fragments up
										94.28-94.32, 94.38-94.39,	to 2 mm, angular to rounde
										94.59-94.61, 94.87-94.99,	concen. 93.35, 94.27,
										95.22-95.23, 95.26-95.27,	94.59, 94.87-95.15, 96.07-
										95.63-95.64, 95.72-95.74,	96.13, 97.58-97.62
										95.85-95.91, 96.11-96.16,	- tr ZnS, f.g., red-brwn.,
										96.24, 96.87-96.93, 97.00-	strs. ½-5 mm; concen.
										97.11, 97.24-97.30, 97.44-	94.87-95.15, 95.47, 96.07,
										97.46, 97.56-97.58, 97.92-	96.84-97.06
										98.00, 98.23-98.33, 98.40-	- tr Cpy, f.g., in fracture
										98.41	at 93.35
										-several silicic sections:	- tr PbS, f.g., a few grains
										93.03-93.28, 93.75-93.88,	94.59, 94.87-95.15, 96.07-
										96.40-96.52, 96.69-96.84,	96.13, 96.84-97.06
										97.78-97.82	
										-several chloritic sections:	
										94.15-94.64, 95.55-96.10,	
										98.33-98.45	
										-ser on folm.	
										-broken core 96.67 & 96.93	
98.45	106.91	Qtz-chl phyll	med. gy	f.g.	fotd.	chl	Po,Py,As		100	-well fotd.	- 2% Po, f.g., thin strs
		(06)								-med. bndd.	parallel to foln. (98.45-
										-lt. gy qte bands common:	100.34) & along margins
										100.64-100.75, 101.12-101.17,	
										101.88-101.91, 101.97-102.06,	ures (100.34-106.91)

PAGE ____28___ OF __32____

\$ s	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-9
INTER	VAL					RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core ecovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										102.31-102.38, 102.55-102.81,	- tr Py, fm.g., thin strs.
										102.83-102.87, 103.10-103.17,	(≤ 2 mm) 99.52-99.56 , 99.58-
										103.28-103.39, 103.80-103.82,	99.64, 101.29-101.31 and
										103.86-103.88, 104.11-104.15,	f.g. diss. throughout
										104.92-104.98, 105.36-105.39,	section
										105.40-105.50, 105.58-105.65,	- tr As, f.m.g., brecciated,
										105.72-105.75, 105.77-105.85,	fragments 42 mm, 101.29-
										106.33-106.69	101.31, 106.5
										-transl. wh. qtz lenses common	:
								·		98.63-98.67, 98.77-98.80,	
										99.09-99.14, 99.19-99.20,	
										99.37-99.41, 99.71-99.73,	
										99.82-99.84, 100.15-100.19,	
										100.31-100.32, 101.15-101.68,	
										(many qtz lenses & bands)	
							-			101.76-101.80, 101.82-101.85,	
										102.55-102.85 (several bands	
										at low angle to core axis)	
		-							22-422-	103.10-103.13, 103.24-103.26,	
										103.63-103.67, 103.89-103.92,	
										103.98-104.01, 104.04-104.11,	
										104.22-104.32, 104.39-104.45,	
										104.65-104.66, 105.25-105.26,	
										105.52-105.58, 105.61-105.62,	
										105.79-105.87, 106.07-106.08,	
			1							106.19-106.24, 106.30-106.33,	

PAGE 29 OF 32

\$ si	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO 84-9
INTER	VAL					RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										106.73-106.74, 106.89-106.91;	
										chl concen. along margins	
										-lt. gy transl. qtz bands with	1
										up to 50% felds common, $\frac{1}{2}$ -2 m	ım,
										35°-40°	
										-folds: 101.66-101.67 - broad,	
										open, crenulated limbs & hing	e,
										$AP=45^{\circ}$, $FA=40^{\circ}$	
							102.00 - isoclinal, sharp				
										hinge, straight limbs,	
										AP=30°	
										104.92 - rounded hinge &	
										limbs, AP=30°, FA=40°	
										-clots of chlorite up to ½ mm	
										common 103.02-106.07	
										-broken core 99.00, 103.02,	
										103.48	
106.91	109.12	Chl-qtz phyll	bkdk.	f.g.	fotd.	chl	Po		100	-well fotd., 30°-35°	- tr Po, f.g., smeared on
		(05)	gy-grn							-med. bndd., 30 ^o -40 ^o	foln. planes & along
										-several silicic sections:	margins of qtz lenses
										106.98-106.99, 107.67-107.82,	
										108.08-108.11,	
										-transl. wh. qtz lenses common	
							-	ļ		106.94-106.95, 107.21-107.23,	
										107.34-107.40 (several),	

PAGE 30 OF 32

\$ s	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-9
INTER	VAL					RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										107.53-107.66, 108.02-108.06,	
										108.87-108.90; chl concen.	
										along margins	
										-qtz/felds band at 108.92;	
										70% felds, 25°, discont.	
			- END OF	CORE -						- END OF CORE -	
				00.0						HID OF COLU	
			-								
•											

PAGE 31 OF 32

\$ SE	rco		OR ATION RN CANADA			DA	ILL LO	o G		s	amp	le da	ta
	SAI	MPLE			CORE	RECOVERY	VISUAL ESTIMATES		А	SSAY	RESUI	_ T S	
NUMBER	FROM	т 0	TOTAL	Sp. Gr	%	AMT. LOST	(% ORE MINERALS)	% Pb	% Zn	% As	g/t Ag	g/t Au	
47233	78.38	79.38	1.00		100		<1% ZnS, tr PbS & Cpy	0.22	0.45	0.033	2.4	0.3	
47234	79.38	80.34	0.95		100		<pre><1% Zns, tr PbS,Cpy,As,</pre>	0.31	1.43	0.200	3.6	0.5	
47235	80.34	80.66	0.32		100		tr ZnS, Py, PbS	0.05	0.14	0.014	0.9	0.5	
47236	80.66	80.83	0.17		100		50% ZnS, 2-5% PbS	2.26	8.52	0.039	42.2	1.0	
47237	80.83	81.80	0.97		88	0.12	1% ZnS, tr Py,As & PbS & Po	0.07	0.29	0.117	2.4	0.3	
47238	81.80	82.80	1.00		100			0.21	1.30	0.225	3.8	0.3	
47239	82.80	83.66	0.86		100		11 11 11	0.16	1.00	0.360	3.9	0.2	
47240	83.66	84.20	0.54		98	0.01	25% ZnS, 15% PbS, 5% As + Py	2.78	9.03	0.319	30.5	3.8	
47241	84.20	85.20	1.00		93	0.07	2% Py, 1% ZnS, Po, 1% As	0.33	1.11	0.307	4.9	0.5	
47242	85.20	86.20	1.00		100		n 11 11	0.11	0.23	0.214	5.3	0.2	
47243	86.20	87.20	1.00		100		" " tr Cpy	0.31	0.48	4.430	15.4	1.7	
47244	87.20	88.20	1.00		88	0.12	11 11	0.08	0.11	0.501	5.5	0.7	
							×						
		<u></u>		<u> </u>	1	<u></u>		<u></u>	1	<u></u>			

PAGE 32 OF 32

\$ si	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G		HOLE NO 84-10
DRILLING CO	CONNORS	LOCATION SKET	сн	DEPT	н р	TESTS IP ANGLE	AZIMUT	DAT	E STARTED:	October 15, 1984	PROJECT	J&L
			-1	- COLLA	A R	- 0.4°	222.3	6 ^O DAT	TE COMPLETED:	October 15, 1984	N. T. S. :	82M/8E
									LAR ELEV.:	839.401	LOCATION	N: 830m drift
						·			RTHING:	9,880.312		
								EAS	TING:	10,822.448		
									MUTH:	222 ⁰		
								1	ΥН: 	10.06	DATE LO	0000001 137 1304
HOLE TYPE	J.V.							COR	E SIZE:	B.Q.	LOGGED	BY: R. Pegg
INTER	RVAL	ROCK TYPE			DESCR	IPTION				STRUCTURE		REMARKS
FROM	то	ROCK TIPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURE PER METRE	s % core recovery	(FRACTURES, FAULTS, FOLDING, BE	DDING,	MINERALIZATION, TYPE, AGE RELATIONS
0.00	5.84	Qtz-Ser Phyll	lt. grn-	f.g.	fotd.		As, Py,		98	- minor qtz lenses & vei	.ns	1-2% Py (f.g.)
		(07)	gy		shrd.		ZnS,PbS,			(-feld) at 1.25-1.34 m	١,	<1% As (f.g.) rounded to
							Po,Cpy			1.37-1.51 m, 2.23-2.27	m	subrounded
										v. thin interbndd. lt.		<1% ZnS (red to v. lt. brn.)
						Sulp. bno	g.: 0.29	, 70° (F	Py); 1.58-	Qte at 3.46-3.49 m,		strs.
						1.61, 55	(ZnS); 1	.89, 50	(ZnS str	, 4.37-4.42 m, 5.03-5.26	m	1-2% Po strs & f.f.
							(ZnS st			decr. ser. towards f/w	,	tr PbS & Cpy
						(Po str)	5.07, 5	O (ZnS,	,As band);	foln. 50°-60°		PbS at 1.25 m, 1.50 m
						5.72, 54	(ZnS st	r)		- tight isoclinal foldin	ıg	Po-Py bnds. (narrow) at
										(F.A. 80°, AP 90°), fo	lds	0.29 m, 1.51 m
										ser bands & Po strs		ZnS concen. at 1.55-1.59 m,
										- minor calc. f.f.		2.14-2.15 m
										throughout (esp. in th	e veins)	Po appears more concen. in
												first 1.15 m
5.84	7.94	Qtz-Chl (+Ser)	lt. gy	f.g.	fotd.		Po,ZnS,		100	at 5.84-5.92 Qtz & Ser		2-3% Po strs. & f.f.
		Phy11	grn		shrd.		As, Py			foln. 43 ^o -58 ^o		tr ZnS (red) strs. & f.f.
		(06)								incr. chl towards f/w		tr As (f.g.) scattered grain

PAGE _____ OF ____3

\$ s	ELCO	EXPLORATION WESTERN CANAL				DR	LL	ininining and a second	LO	G	HOLE NO. 84-10
INTER	RVAL		T		DESC	RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										qtz (-feld) lenses & vein-	tr Py (f.g.) blebs & strs.
										lets, minor	
										- at 6.78-6.89 m Qte bnd.	
										with minor thin Qtz-chl	
										bnds. (x-cutting v. narrow	
							2000 TT 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			qtz +ZnS)	
										- minor calc. f.f.	
7.94	10.06	Chl-Qtz Phyll	grn	f.g.	fotd.		Po,Py		100	minor chl-rich zones	2-3% Po f.f. & along foln.
*		(05)								at 8.31-8.34 m & 9.74-	1-2% Py (f.gm.g.) f.f.
								·		9.89 m	
										minor qtz lenses & veins	
										(-feld) at 8.34-8.35 m,	
										8.69-8.70 m, 9.62 m	- sulp. bndg.: 8.11, 50°
										foln. 50°-52°	(Po,Py str.); 8.43, 45°
											(Po,Py str.)
										- END OF HOLE -	
		, i						1			
		<u> </u>									

PAGE 2 OF 3

\$ SE	LCO	EXPL WESTE	LOR ATION TRN CANADA			DA	ILL L	OG		S	amp	le d	ata	
	SA	MPLE			CORE	RECOVERY	VISUAL ESTIMATES		Д	SSAY	RESU	_ T S		
NUMBER	FROM	TO	TOTAL	Sp. Gr	%	AMT. LOST	(% ORE MINERALS)	% Pb	% Zn	% As	g/t Ag	g/t Au		
47199	0.00	1.00	1.00		100		tr ZnS & As	0.03	0.03	0.125	5.2	0.3		
47200	1.00	2.00	1.00		100		1% ZnS, <1% As	0.54	0.45	0.541	17.1	0.8		
	-						-							
	<u> </u>													
								1						
	<u> </u>								-					
								-	<u> </u>					
									-					

E NO 84-11
J&L
82M/8E
830 m drift
822.26E Section
October 15, 1984
R. Pegg & T. Garrow
REMARKS
ATION, TYPE, AGE RELATIONS
ZnS (red to honey)
work
PbS (f.gv.f.g.)
ly as part of matrix
. bndg. 60° at h/w
ZnS (red to honey)
. & f.f.
bS (f.g.) found with
ZnS
y (f.gc.g.)
oncens.at 0.50-0.53 m,
-0.75 m
concens. at 0.55-0.59 m
18 m
. bndg. 47 ⁰ -50 ⁰ near

PAGE ____1 ___ OF ___6

\$si	ELCO	EXPLORATION WESTERN CANA				DR			LO	G	HOLE NO. 84-11
INTER	VAL				DES	RIPTION	1			STRUCTURE	REMARKS
FROM	ТО	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
											f/w; 50°-60° near h/w
						,					(ZnS strs); 48° f/w contact
											of Py rich zone
0.75	3.37	Qtz-Ser Phyll	lt. grn-	f.g.	fotd.		ZnS,Py,		100	minor qtz (+feld)	< 1% ZnS (red to lt. brn.)
		(07)	gy				As, Po,			lenses and veins	strs.
							PbS			minor calc. f.f.	< 1% Po f.f. in qtz @ 1.40 &
											smeared on foln.
										75-1.15 open fold,	tr Py (m.g.) diss. & in
										wavy bndg., AP=90°,	f.f. & Po
			,							FA=85°, folds Po strs.	<1% As (f.gm.g.) thin
										- 1.15-1.20 qtz vein & red	strs .75-1.15
										ZnS str + tr PbS; 50°	tr PbS (v.f.g.)
										- 2 mm ZnS str @ 1.44 &	
										1.80 & 2.35 & 2.63 &	- sulphs. assoc. with sil.
										6 mm @ 3.22 all slightly	bnds.
										x-cutting foln. @ 50°	- sulp. bndg.: 1.80, 52°
										- thin Po & As str. parallel	(ZnS str.); 2.63, 62°
										foln?	(ZnS str.); 3.22, 50°
										- foln. @ 2.63 = 56 ⁰	(ZnS band)
3.37	4.21	Qtz-Chl Phyll	lt. gy-	f.g.	fotd.		Po, Py		100	- foln. @ 3.60 = 46°	1% Po f.f. & along foln.
		(-Ser)	gry							- sec. qtz vein 4.03-4.11	<1% Py (f.g.) blebs
		(06)								minor f.g. Po & Py str.	
										minor chlorite & ser frag?	
										- minor qtz	
										-	

PAGE 2 OF 6

\$\frac{1}{5} =	ELCO	EXPLORATION WESTERN CANAL				DR	LL		LO	G	HOLE NO. 84-11
INTE	RVAL				DESC	RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
4.21	4.70	Qte	lt. gy	f.g.	fotd.		-		88	- minor ser on foln.	
		(06)								- foln. $4.60 = 44^{\circ}$ (S2) &	
										36 [°] (S3?)	
				·							
4.70	6.23	Qtz-Chl Phyll	gy-grn	f.g.	fotd.		ZnS, Po,		100	- locally well fotd.	
		(- Ser)					Ру			- minor sec. qtz veins	<pre><1% ZnS str. (red to honey)</pre>
		(06)								+ c.g. feld xtals along	41% Po str.
										foln.	tr Py m.g. diss.
		,								- low angle calc f.f. &	- sulp. bndg.: 5.04, 50°
										slip @ 5.6 = 15 ⁰	(ZnS str.); 5.29, 60°
										- foln. @ 4.88 = 46(S ₃)	(ZnS str.)
										- foln. @ 5.80 = 43(S ₃)	
										- vague tight folding @	more chl locally
										5.70-5.80	
										* fault gouge 5.13-5.20 @	
										52° + tr ZnS & minor sec.	
										qtz	
										- ZnS & Po str. @ 50°	
										slightly x-cutting	
										S ₃ foln.	
6.23	6.55	Qtz-Ser Phyll	lt. grn	f.g.	fotd.		ZnS, Py		100	- numerous slips (47°)	1% red ZnS strs, tr Py
		(07)	-gy								
6.55	7.30	Lst (sil)	med. gy	f.gm.g	fotd.		ZnS, Py		100	- weakly fotd.	5% red & yellow f.g. ZnS
		(02)								- locally vague folding	in 1-3 mm wispy irreg.
										- vague <1 mm round dk. gy	x-cutting str.
										qtz grains	l% (v.f.g.) Py diss.

PAGE ___ 3 ___ 0F ___ 6

\$\footnote{5}	ELCO	EXPLORATION WESTERN CANADA	Α			DR	ILL		LO	G	HOLE NO. 84-11
INTER	VAL				DES	CRIPTION	V			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										- minor x-cutting sec. qtz	tr As
										veins + m.g. feld. xtals.	- sulp. bndg.: $6.60, 40^{\circ};$
										- bottom contact gradational	6.66, 30°; 6.75, 47°;
										with increased calc. f.f.	6.90, 44 ⁰ (all ZnS strs.)
										- ZnS str in sec. qtz @ 7.30	
										- abundant calc. f.f.	
7.30	11.50	Argl. Lst.	lt.&dk.	f.gm.g	fotd.		ZnS		98	- well fotd.	tr ZnS 1-1 mm str. @ 7.44
		(02)	дУ							- lt. & dk. gy bndg.	
		+ calc. sweat								+ white thin c.g. calc.	
		outs								bndg. x-cutting foln.	
										- bndg.: 7.37, 65°, 9.24,	
										50° (cb sweats)	
										- no graph; v. calcareous	
										- 10% c.g. calc. irreg.	
										x-cutting sweat-outs	
										- foln. $@ 7.60 = 40^{\circ}$	
										(bndg. S ₂ ?)	
										- foln. @ 10.97 = 46°	
										(bndg. S ₂ ?)	
										- foln. @ 10.40 = 45°	
										white calc.	
										- no c.g. calc. bands or	
										sweat-outs at end of	
										unit 10.76-11.50	

PAGE 4 OF 6

\$\footnote{\sqrt{5}} = \footnote{\sqrt{5}}	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-11
INTER	VAL					RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
11.50	11.89	Lst.	white	f.g.	fotd.	ser?	_		100	- very clean Lst.	no sulphides
		(03)	lt. gy							- minor ser on foln.	
										- sharp contacts	:
										- foln. @ 11.74 = 42 [°]	
										- no cross cutting calc. f.f.	
										- v. uniform appearance	
										- upper & lower contacts @ 43°	
11.89	12.49	Qtz-Ser Phyll	lt. grn-	f.g.	fotd.		Po		100	- well fotd., v. sericitic	<1% Po smeared on folm.
		(07)	lt. gy							- minor sec. qtz lenses &	+ thin str. slightly
										small qtz str. + feld.	x-cutting foln. @ 11.95
										xtals	
										- minor chlorite spots	
										- thin calc. f.f. or slip	
										@ 13 [°]	
										- foln. @ 12.06 = 42 ⁰	
										- foln. @ 12.49 = 54 ⁰	
Е.О.Н.											
						<u> </u>					

PAGE _____5 ___ 0F ___6

\$ SE	LCO		LOR ATION RN CANADA			DF	RILL L	QG		s	amp	le da	ta
	S A	MPLE			CORE	RECOVERY	. VISUAL ESTIMATES		А	SSAY	RESUI	. T S	
NUMBER	FROM	TO	TOTAL METRES	Sp. Gr	%	AMT. LOST	(% ORE MINERALS)	% Pb	% Zn	% As	g/t Ag	g/t Au	
47201	0.00	0.18	0.18		89	0.02	50% ZnS, 10% PbS	13.70	15.80	0.046	108.3	2.1	
47202	0.18	0.75	0.57		100		10% ZnS, 3% PbS, 5% Py	3.47	9.03	0.491	53.3	0.8	
47203	0.75	1.62	0.87		100		1% ZnS, 1% As	0.25	0.43	0.604	6.4	0.5	
47204	1.62	2.49	0.87		98	0.02	<1% ZnS, <1% As & Po	0.04	0.14	0.026	1.4	0.7	
47205	2.49	3.37	0.88		98	0.02	<pre><1% ZnS, <1% As, tr Py & Pbs</pre>	0.06	0.39	0.010	6.9	<0.1	
47206	3.37	4.21	0.84		100		1% Po, <1% Py	0.01	0.02	0.011	1.4	< 0.1	
47207	4.21	4.70	0.49		88	0.06		<0.01	0.02	0.003	3.4	<0.1	
47208	4.70	5.70	1.00		100		<1% ZnS & Po, tr Py	0.03	0.13	0.017	0.3	0.4	
47209	5.70	6.23	0.53		100		<1% ZnS & Py .	< 0.01	0.01	0.016	2.3	0.5	
47210	6.23	6.55	0.32		100		1% ZnS, tr Py	0.01	0.08	0.005	6.9	< 0.1	
47211	6.55	7.30	0.75		100		5% ZnS, 1% Py, tr As	0.03	1.34	0.059	2.7	< 0.1	
47212	7.30	8.30	1.00		100			0.02	0.06	0.004	4.1	∠ 0.1	
													and the first desiration of the second
													-

					1								

PAGE 6 OF 6

SSE	ELCO	EXPLORATION WESTERN CANAD	Δ			DR	ILL		LO	G		HOLE NO84-12
ORILLING CO.	CONNORS	LOCATION SKETC	ЭН	DEPT	н р	TESTS IP ANGLE	AZIMUTH	DATE	STARTED:	October 15, 1984	PROJECT:	J&L
			-1	- COLL		0.4	224.4	DATE	COMPLETED	October 15, 1984	N. T. S. :	82M/8E
								COLL	R ELEV.:	839.531	LOCATION:	830M drift
						-		NORT	HING :	9,983.273		799.48 E section
								EASTI	NG:	10,799.788		
								AZIMU	TH:	222 ⁰		
								DEPT		10.06 m	DATE LOGGI	October 15, 1984
OLE TYPE	J.V.							CORE	SIZE:	в.Q.	LOGGED BY	: T. Garrow & R. Pegg
INTER	VAL	DOG# TVD5			DESCR	IPTION				STRUCTURE		REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE F MINERALS P	RACTURES ER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEG ETC):	DDING, MIN	ERALIZATION, TYPE, AGE RELATIONS
0.0	0.28	Core Lost										-
0.28	0.69	Qtz-Chl-Ser Phyl	llt. grn-	f.g.	fotd.		Po,As,Py		100	- ser/qtz (60/40)		1% Po in thin str. along
		(06)	lt. gy					·		- well fotd.		folm. & smeared on folm.
										- tr sec. qtz lenses + f	eld	tr f.g. As blebs
										xtals		tr f.g. Py blebs
										- locally abdn. chl		
										- foln. @ 0.30 = 42° S ₂		
										- foln. @ $0.68 = 47^{\circ} S_3$		
										- foln. @ $0.30 = 42^{\circ} \text{ s}_{3}$ - foln. @ $0.68 = 47^{\circ} \text{ s}_{3}$ - med. bndd., 40° - 50°		
0.69	1.57	Qtz-Chl Phyll	dk. grn	f.g.	fotd.		Po, As,		99	- wavy-lensy foln.		2-3% Po in thin str. along
		(06)					Py, ZnS			- 10% white sec. qtz		folm. & smeared on folm.
										lenses		tr f.g. As blebs
										- minor qtz & feld xtals		tr ZnS red str.
										along foln.		tr f.g. Py
										- minor more chl bnds.		ZnS & As found at 1.17 m
										- folm. @ 1.10 = $42^{\circ}(s_3)$		
										- bottom contact sharp		
										- grd. core at 0.90 m med. bndd., 420-520		

PAGE ____1 ___ OF ____4

\$\footnote{5} =	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-12
INTER	RVAL				DESC	RIPTION	١			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core ecovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
1.57	2.85	Qte	lt. gy	f.g.	weakly		Po,		100	- very clean qte	tr Po smeared on foln.
		(06)	to		fotd.		As,Py,Zn	S		- minor ser on foln.	tr As, Py & ZnS (v.f.g.)
			dirty wh							- several v. minor slips	
										& dislocation @ 38°	
										- foln. @ 1.85 = 53°	
										- foln. @ 1.94 = 40°	
										- bottom contact gradational	
										increasing ser	
										- med. bndd., 40°-50°	
										- 5% sec. white qtz lenses	
										Qtz-Ser bnds. at 2.15-2.31 m	, 2.52-2.55 m, 2.59-2.61 m
2.85	6.59	Qtz-Ser	lt. gy	f.g.	fotd.		Po,ZnS		100	- Alternating clean qte	- 2-3% Po str. along
		Phyll+Qte	lt. grn				PbS,Py,			& qtz-ser phyll sections	foln. + smeared on foln.
		(07+06)					Сру			- 5% sec. qte lenses	throughout
										- well fotd.	- <1% ZnS f.g. red 1 mm str.
										- locally possible tight	@ 3.14 & 5.58 & 5.78
										isoclinal folding @ 5.29	- tr f.g. As 1-2 mm str. f.g.
										$AP \approx 50^{\circ}$, $FA \approx 60^{\circ}$	As + Po @ 4.90 & 5.68
										- very calcareous 3.20-3.21	- tr PbS + Po str. @ 5.82
										- beige colour @ 3.19 &	-< 1% Py m.g. diss. & small
										v. thin beige str sporad-	discontinuous str. often
		-								ically	with Po
										- gradational contacts	- more abn. Py str. 5.60-
										- foln. @ 3.14= 45°	6.00
										- foln. @ 3.19= 48° colour bnd	g. tr Cpy
										& ser on foln.	

PAGE ____ OF ___ 4____

\$s	ELCO					DR	ILL		LO	G	HOLE NO. 84-12
SSELCO EXPLORATION WESTERN CANADA INTERVAL FROM TO ROCK TYPE				DES	CRIPTION	V			STRUCTURE	REMARKS	
FROM	ТО	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										- foln. @ 3.84= 48° ZnS str.	- sulp. bndg.: 3.17 m, 58°
										- foln. @6.34 = 47° Ser	(ZnS, As, vague); 3.48,
										abund. Qte bnds. at	56° (Po str.); 4.56, 60°
										3.19-3.23 m, 3.58-3.60 m,	(Po str.); 5.57, 50 ⁰
		3*								3.80-3.83 m, 3.91-4.03 m,	(ZnS str.)
										4.38-4.42 m, 4.43-4.50 m,	
										4.67-4.73 m, 6.04-6.07 m,	
										6.14-6.19 m, 6.44-6.52 m.	
6.59	8.55	Ote	lt. gy	f.q.	weakly		Po,ZnS,		100	- v. uniform clean gte with	- ⟨l% Po in v. thin str.
		(06)			fotd.		As			minor sections of qtz-ser	along folm. & smeared on
		-								phy1	foln. several 1 mm Po
										- <5% sec. qtz lenses assoc.	str. @ 7.20 & 8.33
										with more phyllitic areas	one 5 mm str. Po @ 7.31
										- sulphides assoc. more with	folded (isoclinal), AP=45°
										phyllitic areas	FA=50 ^O
										- increased qtz-ser phyl	- tr c.g. As in Po str.
										towards bottom	@ 7.20 & 7.31
										- gradational contacts	- tr c.g. Py @ 7.31
										- foln. @ 7.01 = 50° ser	- tr f.g. red ZnS @ 7.31
										- foln. @ $7.20 = 50^{\circ}$ Po on S_2	As str. along S ₂ surface
										- foln. @ 7.80 = 52° Ser	of small isoclinal fold.
										qtz ser (-chl) bnds at	- sulp. bndg.: 8.01 m, 36°
 										7.17-7.33 m, 7.41-7.45 m,	(Po str.)
				ļ						7.88-7.93 m, 7.99-8.04 m,	
	<u> </u>			<u> </u>	1	<u> </u>		<u> </u>		8.15-8.32 m	

PAGE ___3 ___ OF __4____

\$\s	ELCO	EXPLORATION WESTERN CANADA	Α			DR	ILL		LO	G	HOLE NO. 84-12
INTER	RVAL					RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
8.55	10.06	Qtz-Chl-Ser Phyll	lt. gy-	f.g.	fotd.		Ро		100	- wavy-lensy foln.	1% Po str. & along foln.
		(06)	dk. gy							- locally minor clean qte	
										- locally moderately chloritic	
										- <5% white sec. qtz lenses	
										- tr small feld. xtals in	
										sec. qtz	
										- possible small refolded fold	
								•		@ 9.03 with sec. qtz in nose	
										qte at 8.74-8.75 m, 8.82-8.8	4,
										8.93-9.06 m, 9.95-9.99 m	
										- concen. of qtz lenses &	
										veins at 8.80-8.93 m	
										•	
		·									

PAGE 4 OF 4

\$\sqrt{5}\$	ELCO	EXPLORATION WESTERN CANAD				DR	ILL		LO	G		HOLE NO84-13
DRILLING CO	CONNOR	LOCATION SKET	СН	DEPT	н р	TESTS IP ANGLE	AZIMUT	DAT	E STARTED:	October 15, 1984	PROJEC	T: J&L
			-1	- COLL	A R	- 0.5°	042.5	1 ^O DAT	E COMPLETED	October 15, 1984	N. T. S. :	82M/8E
								COLI	AR ELEV.:	839.493	LOCATIO	N: 830M drift
								NOR	THING:	9,886.505		799.48E section
								EAS	TING:	10,799.477		hanging wall
		·						AZIN	MUTH:	042 ⁰		
								DEP		10.05 m	DATE LO	October 15, 1984
HOLE TYPE	J.V.							COR	E SIZE:	B.Q.	LOGGED	BY: T. Garrow & R. Pegg
INTE	RVAL	DOG# TYPE			DESCR	IPTION				STRUCTURE		REMARKS
FROM	т 0	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEL	DDING,	MINERALIZATION, TYPE, AGE RELATIONS
0.0	0.24	Core Lost							0			
0.24	0.46	Qtz-Ser Phyl	lt. gy-	f.g.	fotd.		Po, As	,	100	- qtz/ser(60/40)		tr Po along foln.
		(07)	lt. grn							- gradational contact		& thin Po str.
										- wavy foln.		tr f.g. As
0.46	3.86	Qte	lt. gy	f.g.	weakly		As,ZnS,		99	- clean qte with minor		- <1% m.gf.g. As in 1-2 cm
		(06)			fotd.		Py,Po			ser on foln.		bnd. @ 1.50 with tr ZnS
										- no sec. qtz		sec. qtz & feld xtals, 60°
									1	- minor x-cutting calc.		to core axis & 1 cm bnd.
										fractures @ 0.66 = 30°)	@ 1.70 with tr ZnS
										$01.92 = 37^{\circ} & 73^{\circ}$		- <1% m.gf.g. Py bnds.
										- minor f.g. felds xtals		1.70-1.80 also tr Po
										with sec. qtz		- tr Po on foln.(S ₂ ?)
										- folm. @ $1.08 = 60^{\circ}$ ser	(S ₂ ?)	
										- foln. @ 1.82 = 45° Py		
										- folding @ 3.70-3.86(F)	
										v. minor calc. f.f.		
										- grd. core at 1.98 m		
· · · · · · · · · · · · · · · · · · ·			<u> </u>		L	L	l		 	L		04.12

PAGE _____ OF _____5

\$ s	ELCO	EXPLORATION WESTERN CANADA	4			DR	ILL		LO	G	HOLE NO. 84-13
INTER	RVAL				DESC	RIPTION	١			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
3.86	4.16	M.S.			fracture	đ	ZnS, Po,		100	v. folded & fractured qtz	- 50% red to lt. brn. to
		(12)					Ру, Сру			ser phyl, 50% f.f. with	honey ZnS in v. thin
							& Meneg.			sulps.	irregular splaying fract-
							As, PbS			- 5% sec. qtz	ures (lacework) resembling
										- 1% calc. f.f. & Bx frags.	pseudo. breccia.
										- minor feld? xtals	- tr m.g. Py diss.
										- f/w contact 62 ⁰	- tr Po f.g. diss.
											- tr As? v.f.g.
											tr Cpy & Meneg. (v.f.g.)
											- 3% PbS (v.f.g.)
4.16	5.25	Qtz-Ser Phyll	lt. gy-	f.g.	weakly		ZnS, As		100	- similar to M.S. unit	- 2-3% red to lt. brn. to
		(07)	lt. grn		fotd.		Py, Po			above with much less	honey f.g. ZnS in v. thin
							PbS,Cpy			sulphs.	x-cutting fractures approx.
										- v. folded & contorted	40°
							-			- 10% white sec. qtz	- tr Po in v.f.g. & thin str.
										- sulphides in x-cutting	parallel to ZnS str. @
										fracts & around sec. qtz	4.18
										in fold noses	- tr Po smeared on foln.
										- minor f.g. feld? xtals in	l% f.g. Py along foln.
										sec. qtz & ZnS str.	4.90-5.00
										- slips @ 4.80 = 60°	- tr As, tr Cpy, Pbs
										- x-cutting qtz at 4.80-	4.50-4.57
										4.82 m, 5.05-5.13 m	

PAGE 2 OF 5

\$\footnote{\sigma} \sigma}	ELCO	EXPLORATION WESTERN CANA				DRI	LL		LO	G	HOLE NO. 84-13
INTE	RVAL				DESC	RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
5.25	5.30	M.S.			fracture	1	ZnS,PbS,		100	- breccia? abn. fractures	60% red to lt. brn. ZnS
		(12)					Py, As			- 20% sec. white qtz	f.f. almost a breccia.
										- 10% qtz-ser frags.	5% v.f.g. PbS
										- minor v.f.g. diss. carb.	tr As & Py
										f.f.	
							,			- minor f.g. feld xtals	
										- sulphides str @ 58 ⁰	
										- f/w contact 54°, h/w	
										contact 60°	
										- sil matrix	
5.30	5.74	Qtz-Ser Phyll	lt.gy_	f.g.	fotd.	1	Po, As,		100	- wavy lensy foln.	- 1% Po along foln.
		(07)	lt. grn				Сру			- 5% white sec. qtz folded?	tr As & Cpy (f.g.) at
										lenses	5.68 m
										- fractured qtz lens+feld (c.q	J.)
										5.69 m with chl & Po f.f.	
										- moderately sericitic	
		•			-					- foln. @ 5.45 = 50°	
5.74	6.40	Chl-Ser-Qtz	lt. gy-	f.g.	fotd.		Po,Py,As		100	- moderately chloritic	- 1% v.f.g. Po str along
		Phyll	med. grn							- wavy lensy foln.	foln.
		(05)								-<2% white sec. qtz	- 1% m.g., Py diss.
										- minor v.f.g. feld xtals	- tr f.gm.g. As grains
										along foln.	
										- several chevron folds F	
										- several chevron folds F ₄ - foln. @ 6.10 = 52° S ₃	
			-								
	1					ll					

PAGE ___3 __ 0F __5

\$\footnote{5} =	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-13
INTE	RVAL				DESC	RIPTION	V			STRUCTURE	REMARKS
FROM	ТО	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
6.40	7.24	Ser-Qtz (-Chl)	lt. gy-	f.g.	fotd.		Po,ZnS,		100	- very foliated	- 1% Po along foln.
		Phyl	dk. gy				Ру			- ser/qtz (60/40)	- tr red to brn. f.g. ZnS -
		(04)								- straight folm.	one 1 mm ZnS str @ 6.43;
										- tr sec. qtz	53 ⁰
										- tr f.g. feld xtals along	tr f.g. Py grains
										folm.	
										- foln. @ 6.68 = 50°	
										- minor gouge - 1 mm in	
										several places along foln.	
										@ 6.58-6.60	
										- minor calc. f.f.	
7.24	10.05	Chl-Ser-Qtz	lt. grn	f.g.	fotd.		Po, Py		100	- wavy foln.	1% Po along foln.
		Phy1								- 45% sec. qtz lenses & veins	1% Py f.gm.g. diss.
		(05)								- minor feld. in qtz along	
										foln. (52°)	
										- 1 cm qtz vein @ 8.90 with	
										minor m.g. Py + fuschite @	
										75° to F ₃ foln.	
										- several small chevron	
										folds (F4)	
										- @ 8.00-8.12 several lenses	
		·								of sec. qtz + chl, Py & dk.	
										grn needle-like xtals	
										- fold at 8.95: kinks,	
	-		-							slightly round hinges, AP=80	0°, FA=80°
		1	L				<u> </u>			- END OF HOLE -	

PAGE __4___ OF ___5___

\$ SE	LCO		LORATION ERN CANADA			DF	IILL LO) G		S	amp	le (data	
	S A	MPLE			CORE	RECOVERY	VISUAL ESTIMATES		А	SSAY	RESUI	LTS		
NUMBER	FROM	то	TOTAL	Sp. Gr	%	AMT. LOST	(% ORE MINERALS)	% Pb	% Zn	% As	g/t Ag	g/t Au		
47213	0.24	0.46	0.22		100		tr Po & As	<0.01	0.02	0.023	2.7	< 0.1		
47214	0.46	1.46	1.00		100		tr ZnS & Py	<0.01	0.01	0.026	1.0	0.4		
47215	1.46	2.46	1.00		86	0.14 m	<pre><1% As, tr ZnS, Py & Po</pre>	0.04	0.04	1.470	2.1	0.7		
47216	2.46	3.46	1.00		100		<1% Py, tr Po	<0.01	< 0.01	0.009	3.6	0.5		
47217	3.46	3.86	0.40		100		<1% Py, tr Po	0.06	0.07	0.006	5.5	< 0.1		
47218	3.86	4.16	0.30		100		50% ZnS, 3% PbS, tr As, Py, Po 1-2% ZnS, < 1% Py, tr Po	0.86	6.72	0.087	16.0	0.5		
47219	4.16	4.73	0.57		100		1-2% ZnS, < 1% Py, tr Po	0.22	1.15	0.468	7.3	0.3		
47220	4.73	5.30	0.57		100		2-3% ZnS, 1-2% Py, tr As, Cpy	0.26	3.21	0.014	7.9	0.3		
					1									
					-							-		1
						ķ								

\$ si	ELCO	EXPLORATION WESTERN CANAI				DR	ILL		LO	G		HOLE NO84-14
RILLING CO.	CONNORS	LOCATION SKET	СН	DE	РТН (TESTS DIP ANGLE	AZIMUTH	1	E STARTED:	October 16, 1984	PROJEC	T: J&L
			-	w- co	LLAR	- 0.1°	222.4	DATE	E COMPLETED	October 16, 1984	N. T. S. :	82M/8E
		1						COLL	AR ELEV.:	839.392	LOCATIO	N: 830m drift
								NOR.	THING:	9,891.049		774.81E section
								EAST	ring:	10,775.245		footwall
								AZIM	IUTH:	222°		
								DEPT	гн:	9.75 m	DATE LO	October 16, 1984
OLE TYPE	J.V.							CORE	SIZE:	B.Q.	LOGGED	
INTER	IVAL				DESCR	IPTION				STRUCTURE		REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAI	N TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BE	DDING,	MINERALIZATION, TYPE, AGE RELATIONS
0.00	1.17	Qtz-Ser Phyll	lt. grn-	f.g.			Po,Py,As		85	narrow ser bnds.		3-5% Po f.f. & along foln.
		(07)	gy							minor qtz (+feld) lens	ses	1% Py (f.gm.g.)
										(at 0.10-0.12 m)		tr As (f.gm.g.)
										minor chl incr. to f/w	1	
										foln. 40°-45°		
1.17	9.75	Qtz-Chl Phyll	lt. gy-	f.g.	fotd.		Po, ZnS,		100	minor more chl bnds.		5% Po f.f. & along foln.
		(06)	grn		shrd.		As, Py,			abundant qtz (-feld)		tr ZnS (red) f.f.
							PbS			lenses & veinlets & ve	eins	tr As (f.g.) in qtz
										(at 1.75-1.79 m, 3.19-	-3.24 m,	Po concen. within the qtz
			•							3.30-3.36 m, 3.61-3.70) m,	tr Py (f.g.)
										5.22-5.25 m, 5.84-5.90) m,	tr PbS (f.g.) with As &
										5.94-6.05 m)		ZnS at 6.85 m & 7.60 m
										narrow qte bnds. at 4.	.18-	
										4.27 m, 4.81-4.86 m, 5	5.01-	
										5.03 m, 5.07-5.14 m, 5	5.44-	
										5.48 m, 5.56-5.59 m		
										foln. 40°-45°		
										tr calc. f.f.		

PAGE ______ OF _____2

\$ si	ELCO	EXPLORATION WESTERN CANAD				DR	ILL		LO	G	HOLE NO. 84-14
INTER	VAL				DESC	RIPTION	V			STRUCTURE	REMARKS
FROM	ТО	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										folds: 4.68 m, tight chevron	,
										$\Lambda P=35^{\circ}$, $FA=50^{\circ}$, folds bndg.	
										7.85 m, isoclinal, AP=47°,	
										FA=47 ⁰ , folds bndg.	
										8.43 m, isoclinal, AP=43°,	
		The state of the s								FA=55°, folds bndg.	
										- END OF HOLE -	
											and an extensive successive and the second successive s
-											
											and the second s
		,									The state of the s

\$\square\$	ELCO	EXPLORATION WESTERN CANAC				DR	ILL		LO	G		HOLE NO 84-15
DRILLING CO	CONNOR	S LOCATION SKET	ЭН	DEPT	н р	TESTS IP ANGLE	AZIMUTH	DATE	STARTED:	October 15, 1984	PROJEC	T: J&L
			-	- COLL	AR	- 0.2°	040.9	O DATE	COMPLETED	October 16, 1984	N. T. S. :	82M/8E
									AR ELEV.:	839.370	LOCATIO	N: 830 m drift
								NORT	HING :	9,893.644		
								EAST	NG:	10,774.875		
								AZIMU	TH:	042 ⁰		
								DEPT	H:	10.06 m	DATE LO	OGGED: October 16, 1984
OLE TYPE	J.V.							CORE	SIZE:	B.Q.	LOGGED	BY: R. Pegg
INTE	RVAL				DESCR	IPTION				STRUCTURE		REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core	(FRACTURES, FAULTS, FOLDING, BE ETC):	DDING,	MINERALIZATION, TYPE, AGE RELATIONS
0.00	0.34								0	Lost core		
0.34	0.78	Ser-Qtz Phyll	lt. grn-	f.g.	fotd.		Py, ZnS,		100	minor narrow (1 mm)		2-3% Py (f.g.)
		(04)	gy		shrd.		Po,As			qtz (+feld) veins & st	rs.	l% Po f.f.
										folm. 50°		<1% ZnS (red) f.f.
										minor calc. f.f.		sulphs. mostly found in
										broken & grd. core 0.0	00-	qtz str. veins
										0.41 m (L.C.)		tr As (v.f.g.)
0.78	4.29	Ser-Qtz Phyll	lt. grn-	f.g.	fotd.		ZnS,Py,		100	minor qtz (+feld) lens	ses	1% ZnS (red to lt. brn.)
		(04)	gy		shrd.		Po,As,			& veins (1.81-1.89 m 8	<u> </u>	strs.
							PbS			2.68-2.73 m)		1-2% Py (f.gm.g.)
										- more sil than above		∠1% Po strs & f.f.
										unit, locally		- best ZnS at 0.47-0.51 m
										folm. 50°		but scattered throughout
										- minor tight isoclinal		- tr As (f.g.)
										folds (A.P. 005°)		- tr PbS (v.f.g.) with the
												ZnS
												
					 							
	L	L	<u> </u>			I	L		L	L		

PAGE ___ 1 __ OF __ 4

\$\frac{1}{5} =	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-15
INTER	VAL				DESC	RIPTION	l			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
4.29	4.52	M.S.			shrd.		ZnS,PbS,		100	25% wh. qtz lenses &	M.S. to semi-M.S.
		(12)			fract.		Py,Po,			patches (espec. 4.48-4.52 m)	40% ZnS (red to lt. brn.)
							Сру			ser gangue at f/w	strs. & patches
										calc. & sil gangue dominates	5-7% PbS (f.g.) f.f.
										minor chl gangue	tr Po f.f.; tr Cpy diss.
										- f/w contact 55° several 5 mm	at f/w
										bands, ZnS with thin orient-	<1% Py (f.g.) blebs
										ation	
										- bndg. at 4.44 m, 50°	
4.52 5.09	5.09	Qtz-Ser Phyll	lt. grn-	f.g.	fotd.		Po,ZnS,		100	minor wh. qtz eyes at f/w	1% ZnS (red to honey) f.f.
		(07)	gy		shrd.		As,Cpy,			* Gouge at 4.80-4.84 m	& strs.
							PbS			minor qtz (-feld) veinlets	1% Po f.f. & patches
										~ slip (42°) at 4.87 m	(concen. at 4.52-4.62 m)
										foln. 48°; minor calc. f.f.	with PbS & Cpy
											tr As (f.gm.g.)
											- Po band at 4.65, 60°
											tr Cpy & PbS (f.g.)
5.09	5.41	Chl-Ser-Qtz	lt. grn	f.g.	fotd.		Po		100	minor white to transl.	
		Phyll			shrd.					qtz lenses	
		(05)							,	(up to 1.5 cm across)	1% Po f.f.
5.41	7.39	Qte+Ser(-chl)	dirty wh.	f.g.	fotd.		Po,As,		93	foln. 48 ⁰ -55 ⁰ ; bndg.	3-5% Po f.f. & patches
		Phyll	to lt.	***************************************	shrd.		Сру, Ру			parallel to folm.	< 1% As (f.gm.g.)
		(06+04)	grn-gy							qtz veinlets & lenses	tr Cpy & PbS
										(-feld)	<1% Py (f.g.)

PAGE ____ OF ___ 4

\$ 5	ELCO	EXPLORATION WESTERN CANA				DR	LL		LO	G	HOLE NO. 84-15
INTER	RVAL					RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										alternating bnds. of Qte	- concen. fo Po at 5.83-
										& Phyll	5.96 m with minor As;
										Ser Phyll at 5.75-5.82 m,	50 [°]
										5.96-6.01 m, 6.14-6.32 m,	
										6.42-6.48 m, 6.60-6.66 m	
										a no. of smaller ser bnds.	
										Qte:Phyll, 1:1	
										minor calc. f.f.	
7.39	8.21	Qtz-Chl Phyll	lt. grn	f.g.	fotd.		Po,Py		100	minor qtz (-feld) veinlets	2-3% Po strs. & f.f.
		(- ser)			shrd.					& lenses	<1% Py (f.g.)
		(06)								at 7.78-7.87 m fotd. Qte	
										with minor qtz lenses &	
										v. minor chl	
										- concen. of qtz lenses at	
										7.92-8.20 m	
										- foln. 48°-55°; bndg.	
										parallel or slightly	
										shallower than foln.	
8.21	10.06	Chl-Qtz Phyll	grn	f.g.	fotd.		Py,Po,		100	minor qtz (+feld)veinlets	1% Py (f.g.) blebs
		(05)					PbS			& lenses	1% Po f.f.
		,			-					foln. 50°·	Py is rounded to angular
										a few narrow more sil section	ns
										- wavy bndg. at 9.62: AP=50°, FA=80°, opp. to foln.	tr PþS in qtz veinlet
										- END OF HOLE -	

PAGE 3 OF 4

\$ SE	LCO		OR ATION RN CANADA	allelenge gengen en en de general (1866 and 1866 and		DF	IILL LO) G		S	amp	le da	ata	
	S A	MPLE			CORE	RECOVERY	VISUAL ESTIMATES		А	SSAY	RESUI	LTS		
NUMBER	FROM	то	TOTAL	Sp. Gr	%	AMT. LOST	(% ORE MINERALS)	% Pb	% Zn	% As	g/t Ag	g/t Au		
47221	0.34	0.78	0.44		100		2-3% Py, <1% ZnS, tr As	0.06	0.21	0.076	1.4	<0.1		
47222	0.78	1.78	1.00		99	0.01	1-2% Py, 1-2% ZnS, tr As & PbS	0.08	0.77	0.020	5.5	۷٠.1		
47223	1.78	2.78	1.00		99	0.01	1-2% Py, <1% ZnS, tr As & PbS	0.04	0.10	0.002	4.1	<0.1		
47224	2.78	3.78	1.00		99	0.01	1-2% Py, 1% ZnS, tr As & PbS	0.03	0.13	0.006	3.4	<0.1		
47225	3.78	4.29	0.51		100		" " "	0.13	0.44	0.005	4.8	< 0.1		
47226	4.29	4.52	0.23		100		40% ZnS, 5-7% PbS, tr Po & Cpy	2.68	10.70	0.033	48.5	0.2		
47227	4.52	5.09	0.57		100		1% ZnS & Po, tr As, Cpy & PbS	0.11	0.45	0.203	4.8	< 0.1		
					<u> </u>									
												ļ		
					 					-				
T		<u> </u>												
**************************************									-					
			-		 					-				
					-									
			-			·						-		
					-									
		ļ			 									
					-									
					-					-				an anaerine met m
					-					-				Let Johnson V
					-									
			-		-				_			+		

PAGE ____4 ___ OF ___4

\$\frac{1}{2} \sigma_1	ELCO	EXPLORATION WESTERN CANAI				DR	LL		LO	G		HOLE NO84-16
RILLING CO.	CONNORS	LOCATION SKET	СН	DEP	гн р	TESTS IP ANGLE	AZIMUT	DAT	E STARTED:	October 16, 1984	PROJEC	T: J&L
			- 1	- COLL		- 0.2°	222.	O DAT	E COMPLETED:	October 16, 1984	N. T. S. :	82M/8E
									LAR ELEV.:	839.304	LOCATIO	ON: 830M drift
								NOR	RTHING:	9,899.329		
									TING:	10,749.764		footwall
									MUTH:	222°		
								DEP		10.06 m	DATE L	OCTOBEL 10, 1984
OLE TYPE	J.V.			<u> </u>				COR	E SIZE:	B.Q.	LOGGED	T. Garrow & C.O.
INTER	RVAL	ROCK TYPE			DESCR	IPTION				STRUCTURE		REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURE PER METRE	s % core recovery	(FRACTURES, FAULTS, FOLDING, BEI	DDING,	MINERALIZATION, TYPE, AGE RELATIONS
0.0	0.82	Qtz-ser phyll	med. grn	f.g.	weakly	ser	P.o		91	- v. uniform, moderately	•	5% f.g. Po in <1 mm
		(07)	-gy		fotd.					clean qte (0.00-0.39)		str. along foln.
										minor ser on foln.		
										gradational contact		
										increased ser towards		
										bottom		·
										- tr sec. qtz; wh. trans	1.	
										qtz lens 0.78-0.80		
										- foln. @ 0.20 = 32° Po		
							V			- foln. @ $0.40 = 34^{\circ}$ Ser		
0.82	1.70	Qtz-chl phyl	lt.& dk.	f.g.	fotd.	chl+mino	Po		100	- qtz/chl 55/45		2% f.g. Po in v. thin str.
		(06)	gy			ser				- wavy foln.		along several folns. &
										- 5% white sec. qtz		around sec. qtz lenses
										- @ 1.64-1.68 sec. qtz		
										+ v. large felds xtals	5	
										possibly brecciated		
										- foln @ 1.08 = 44° ser		

PAGE 1 OF 4

\$s	ELCO	EXPLORATION WESTERN CANAD	ρ			DR	ILL		LO	G	HOLE NO. 84-16
INTE	RVAL				DESC	RIPTION	١			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
				.,						- med. bndd.; 35°-40°	
										- no ser below 1.23 m	
1.70	5.82	Qtz-chl phyl	lt. gy-	f.g.	fotd.	chl	Po,Py,		97	- moderately chloritic	- <1% f.g. Po str. along
		+Chl-Qtz Phyll	dk. grn				ZnS,As			- well foliated	foln.
		+minor Qte					PbS			- chloritic bnds. spaced	- tr Py f.g. diss.
		(06+05)								sporadically through unit	- tr ZnS m.g. red plus
										- 5-10% white sec. qtz	tr c.g. As + tr Po in
										lenses along foln.	sec.qtz vein @ 2.04; 53°
										- 1% thin str. of feld.	- thin ZnS str. & individual
										xtals+qtz along foln.	xtals along several folms.
										- several qte sections:	& tr PbS f.f. @ 4.80-4.98
										2.91-3.05, 3.76-3.99,	an area of tight isoclinal
										5.06-5.10	folding FA ≈40°
										- several chl-qtz phyl	- 3.90-3.96 - ZnS strs (red)
						<u> </u>				sections: 2.20-2.30,	with PbS; strs x-cut bndg.
										2.59-2.70, 3.59-3.64,	slightly; 55°; isoclinal
										4.00-4.22, 5.10-5.24 m	fold, AP=40°, FA=40°,
										- foln.@ $2.50 = 40^{\circ}$ chl S ₃	folds bndg., cut by strs.
										- foln.@ 2.90 = 63° qtz+	
										felds, slip?	
5.82	6.40	Qtz-ser phyl	lt. gy -	f.g.	fotd.		Po,As,Py	,	100	- minor sericite	5% f.g. Po in thin str.
		(07)	lt. grn				ZnS,PbS			- minor sec. qtz	along foln.
										- 5% m,g. feld xtals	tr dk. brn. f.g. ZnS
										in frags. along &	str. + tr f.g. PbS along

PAGE ___ 2 __ 0F ___ 4

\$\footnote{5}	ELCO	EXPLORATION WESTERN CANAD	Δ			DR	ILL	L	0	G	HOLE NO. 84-16
INTER	RVAL				DESC	RIPTION	٧			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES % CO	ore very	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										x-cutting foln.	foln. @ 5.90 & @ 6.35
						-				- poorly foliated, 45°-50°	- tr As, fm.g., brecciated
											at 6.27-6.28, 6.39-6.42
											- tr Py, fm.g., in foln.
											planes
6.40	10.06	Chl-qtz phyl	med. gy	f.g.	fotd.	chl	Po,As,Py	, 100	0	- mod. well fotd., 38°-50°,	- 2% Po, f.g., thin strs.
		(05)					ZnS,PbS			wavy	throughout section, also
										- med. bndd., bands~parallel	along margins of qtz
										to folm.	lenses
										- several qtz-chl phyl/qte	- tr ZnS, fm.g., red-brn.
										sections: 6.49-6.58,	strs. ½ m - 1 mm at 7.91,
										6.93-7.09, 8.17-8.20,	7.93, 9.58, 9.93; 5 mm
										8.27-8.45, 8.48-8.54,	band at 7.65; 55 ⁰
										8.74-9.00, 9.96-10.06,	- tr As & Py, fm.g.,
										- 5% wh. trans. qtz lenses:	brecciated, fragments
										6.60-6.63, 6.67-6.69, 6.73-	≤4 mm, subrounded to
										6.74, 6.76-6.77, 6.85-6.90,	subangular; 7.65, 9.58,
										7.05-7.07, 7.25-7.27, 7.43-	9.90, 9.93; occur as vague
										7.44, 7.67-7.74, 8.07-8.08,	bands
										8.32-8.34, 8.50-8.52, 8.79-	- tr PbS, f.g., ½ mm strs.
										8.82, 9.16-9.18, 9.44-9.55,	at 9.93
										9.58-9.68; up to 1% felds;	
										chl in fractures	
										- folds: 7.51 - round hinge	
			1				l			mod. open, straight limbs;	

PAGE ____3 ___ OF ___4

\$ s	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-16	
INTER	VAL					RIPTION				STRUCTURE	REMARKS	
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS	
										AP=85°, FA=75°; folds bndg.		
						-				& Po strs		
		,								9.96 - round hinge one side		
										sharp the other, straight		
										limbs; AP=65°, FA=55°;		
										folds bndg. & As band		
			- END	OF CORE	-					- END OF CORE -		
•												
-												

\$\si	ELCO	EXPLORATION WESTERN CANAL				DR	ILL		LO	G		HOLE NO. 84-17
ORILLING CO.	CONNORS	LOCATION SKET	СН	DE	ртн с	TESTS OIP ANGLE	AZIMUTH	DATE	STARTED:	October 16, 1984	PROJEC	J&L
			-	- coi	LAR	1.60	042.5	O DATE	COMPLETED	October 16, 1984	N. T. S. :	82M/8E
								COLL	AR ELEV.:	839.352	LOCATIO	N: 830M drift
		·				•		NORT	HING :	9,902.742		749.64E section
								EAST	NG:	10,749.427		hanging wall
								AZIM	JTH:	042 ⁰		
								DEPT	H:	10.06 m	DATE LO	GGED: October 16, 1984
OLE TYPE	J.V.							CORE	SIZE:	B.Q.	LOGGED	T. Garrow & R. Pegg
INTEF	RVAL	ROCK TYPE				IPTION				STRUCTURE		REMARKS
FROM	то	ROCK TIPE	COLOUR	GRAII SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BE ETC)	DDING,	MINERALIZATION, TYPE, AGE RELATIONS
0.0	0.50	Core Lost							0			·
0.50	0.80	Ser-Qtz Phyl	lt.gy-	f.g.	fotd.		Po,Py,		83	- core v. fissile & brok	cen	- 1% Po smeared on folm.
		(04)	lt. grn				As,Cpy			(poor recovery)		& in sec qtz
								1		- minor sec. qtz		- 2% m.g. Py in several
										- 2 cm white sec. qtz		bnds. @ end of unit
										@ bottom contact		- tr Cpy f.f. in sec. qtz
										- v. small f.f. of cpy 8	v Po	at end of unit
										at right angles to M.S	S.,	- tr As f.gm.g.)
										contact below		
										- note top of sec. qtz		
										ground core, therefore	•	
										exact thickness unknow	vn	
										- foln.=40°		
0.80	0.95	M.S.			milled		Po,As,		100	- massive Po with subang	gular	- 80% f.g. Po
		(12)					ZnS,PbS,			frags. of c.g. red ZnS	5 < 3 cm	- tr As - several 1 mm
							Ру			along vague folm.		subround As xtals in Po
						1	-			- thin scattered 2-5 mm	gy gtz	5% ZnS; 1% PbS (v.f.g.)
										frags. along vague fold milled texture	n.	

PAGE 1 OF 5

\$\footnote{5} =	ELCO	EXPLORATIO WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-17
INTER	RVAL					CRIPTIO				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core ecoverv	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										- <1% m.g. feld & tr sec. qtz	- 1% subround Py xtals
		·								along foln.	diss.
								-		- bottom contact cuts across	- tr Cpy, Po As, in f.f.
										foln.; irreg.	with sec. qtz @ bottom
										- minor sulphide f.f.	contact
										@ lower contact	
0.95	1.36	Qte	lt. gy	f.g.	fotd.	ser	As,Cpy,		98	- minor sericite bnds.	- tr Cpy str along folm.
		(06)	51				PbS, Po,			- 20% sec. qtz lenses	with As @ 1.01
		(00)					Py			poorly fotd., 45°	- 2% f.g. As str. along
										- abn. fracturing, core	foln.
		and the Area of the Area of the Palaceton of the Area								broken,	- 2% m.g. As f.f. in sec.
										- As along foln.& m.g.	qtz
										As in sec. qtz with	- tr PbS with the Cpy sulphs
										minor feld xtals	are brecc.
										- minor m.g. As xtals	- tr Po f.f.
										@ bottom contact diss.	- tr Py (f.g.) blebs
										along foln.	
										- minor calc. f.f.	
1.36	1.83	M.S.					As,Po,		100	- massive sulph. & transl.	- 80% c.g. & f.g. As 1.36-
		(12)					Py,Cpy,			gy qtz bnd.	1.47
		· · · · · · · · · · · · · · · · · · ·					ZnS			- f/w sulph. contact parallel	- tr Cpy f.f. in qtz & As
										sericite foliation; 38°	- tr Po f.f. @ bottom of
										- minor white sec. qtz	massive As; Pomatrix 1.47-
										- massive As 1.36-1.47	1.83

PAGE _____ OF ____ 5

\$\footnote{5} =	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-17
INTE	RVAL				DESC	RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										- massive Po 1.47-1.80	- 2% red c.g. ZnS in one
										- massive As 1.80-1.83	10 mm str. cross cutting
									•	- milled texture	vague foln. of qtz @ 1.54
										- 1% white subround sec.	in massive Po section
										qtz & stretched gy qtz	- 1% v.c.g. Py xtals, sub-
											round diss. in massive Po
											- 10% f.g. As in 2 cm &
											irreg. shapes in massive P
											* Overall Po 45%, As 35%,
											Py 7%, ZnS 1%
											- 5% v.f.g. Py diss. in
										·	massive Po section
					1					- minor qtz-ser phyl	
										1.76-1.78,(frag?)	
										- massive As section	
										1.80-1.83 is v.	
										fractured & crosscuts	
										foln?	
1.83	2.49	Qtz-Ser Phyll	lt. gy	f.g.	fotd.		Po,Py		92	- minor sericite	- 2% f.g. Po str along
		(07)								- minor sec. qtz @ 1.88	folm. & smeared on folm.
		,,								- foln. @ 2.30 = 63°, 2.10 =	1-2% f.gm.g. Py diss.
										60° ser & Po	along foln.
										- tr chlorite smeared on folm.	
										broken core 2.37-2.49 m	

PAGE ____3 ___ OF ___5___

\$\footnote{\sigma} \sigma}	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-17
INTER	RVAL				DESC	RIPTION	N			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
2.49	10.06	Chl-Ser Qtz	lt. grn	f.g.	fotd.		Po, Py,		100	- v. uniform, moderately	- 1% Po in v. thin str.
		Phyll					As			chloritic	along foln., & smeared on
		(05)								- well foliated	foln.
										- straight foln.	l% f.gm.g. Py diss.
										- v. minor calc. f.f.	along foln. & in blebs
										- <5% white sec. qtz	tr. f.g. As
										(largest at 6.81-6.87 m)	
										- minor 1 mm feld? veins +	
										qtz @ 65 ⁰	
										- foln. @ $4.57 = 57^{\circ} S_3$	
										- foln. @ $6.10 = 53^{\circ} S_3$	
										- folm. @ $7.32 = 55^{\circ} S_3$	
										- foln. @ $8.80 = 42^{\circ} S_3$	
										* Gouge along folm. planes	
										6.46-6.52	
		•								abun. chevron folding @	
										7.47 @ 7.74 @ 9.00 @ 9.30	
									-	AP=77°, FA=85° (7.47)	
										folds bndg.	
										- minor Qtz-Chl Phyll bnds. at	Ė
										2.98-3.30 m, 5.12-5.15 m, 5.	. 44 –
										5.55 m	
										- gy coloured phyll (possibly	
										more Fe-rich chl) at 5.78-6.	.81 m
										- END OF HOLE -	

PAGE ___4 __ OF ___5___

\$ SE	LCO		LORATION ERN CANADA			DA	ILL LO) G		S	amp	le da	ta
	S A	MPLE			CORE	RECOVERY	VISUAL ESTIMATES		А	SSAY	RESUI	_ T S	-
NUMBER	FROM	то	TOTAL METRES	Sp. Gr	%	AMT. LOST	(% ORE MINERALS)	% Pb	% Zn	% As	g/t Ag	g/t Au	
47228	0.50	0.80	0.30		83	0.05	2% Py, 1% Po, tr As	0.35	0.16	0.313	21.3	0.7	
47229	0.80	0.95	0.15		100	-	80% Po, 5% ZnS, 1% PbS, + Py, tr As & Cpy	1.93	7.56	2.420	60.7	3.0	
47230	0.95	1.36	0.41		98	0.01	4% As, tr PbS,Po,Py	0.10	0.18	4.840	6.4	1.9	
47231	1.36	1.83	0.47		100		45% Po, 35% As, 7% Py, 1% ZnS	1.10	4.92	9.930	35.7	8.2	
47232	1.83	2.49	0.66		92	0.05	2% Po, 1-2% Py	0.03	0.04	0.114	2.3	0.5	
										ļ			

	<u> </u>												
	ļ				<u> </u>								
					-								
					-								
		-			 				į.				
					-	,							
					-								
· · · · · · · · · · · · · · · · · · ·					1								
		+	-	<u> </u>	-								
		1			-								
					1								

PAGE _____5 ___ OF ____5

DRILL HOLE NO. ____84-17____

\$ s	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G		HOLE NO 84-18
DRILLING CO	CONNORS	LOCATION SKET	СН	DEPT	н р	TESTS IP ANGLE	AZIMUTH	1	STARTED:	October 16, 1984	PROJEC	T: J&L
			-1	- COLLA	\R	+ 0.6	044.1	DATE	COMPLETED	October 16, 1984	N. T. S. :	82M/8E
								COLL	AR ELEV.:	839.020	LOCATIO	N: 830M drift
		•				-		NORT	THING :	9,912.719		10,718.44E Section
								EAST		10,718.235		hanging wall
								AZIM		042 ⁰		
								DEPT		9.75 m	DATE LO	October 19, 1984
HOLE TYPE	J.V.							CORE	SIZE:	B.Q.	LOGGED	BY: T. Garrow
INTE	RVAL	ROCK TYPE			DESCR	IPTION				STRUCTURE		REMARKS
FROM	то	HOCK TIPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BE ETC):	DDING,	MINERALIZATION, TYPE, AGE RELATIONS
										core ground @ 0.34 = 3	33 cm	
0.00	3.59	Ser-Qtz Phyll	lt. gy-	f.g.	fotd.		As,Py,		85	- Ser/Qtz - 50/50		- 10% As m.g. milled?
		(04)	lt. grn		folded		ZnS,Po			- foln. is extremely		over the whole unit
										contorted into small		(40% As 0.0-0.34)
										ptygmatic folds		- 2% f.g. Py diss. along
										- 0.0-0.67 almost M.S.		foln.
										40-45% sulphs. in		- tr Po along foln.
										Ser-Qtz Phyll		- tr red f.g. ZnS
	The state of the s									- 3.51-3.60 sec. white o	ıtz	f.f. x-cutting & along
										+ v.c.g. feld xtals		foln. 0.80-0.93
										- chevron folds 0.80-0.9	93:	
										$AP=90^{\circ}$, $FA=90^{\circ}$, folds		
		The state of the s		***************************************						ser. bands; ZnS x-cuts		
										bndg. in places		
										,		
									 			
		L			L	L	Ll		<u> </u>	1		

PAGE _____ OF ____ 5

\$ 5	ELCO	EXPLORATION WESTERN CANAC				DR	LL		LO	G	HOLE NO. 84-18
INTER	RVAL				DESC	RIPTION	l			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
3.59	3.82	M.S.			milled		As, Py,		100	- top contact below c.g. qtz	- tr PbS in FF in sec. qtz
		(12)					ZnS,			+ feldspar xtals, still	@ top contact
							PbS,Po			some qtz+felds x-cutting	- tr f.g. Po @ 3.68
										into unit @ top	- 40% f.g. As matrix with
										- 10% sec. qtz top & bottom	minor c.g. As @ 3.76
										of unit	- 40% f.g. & c.g. Py
										- v. milled texture abn.	diss. throughout with
										round Py	abn. round milled xtals
										- coarser grained & less	- 10% red f.g. ZnS in sec.
										milled - vaguely bndd.	qtz & F.F. slightly x-
										towards bottom	cutting foln.
										- h/w contact slightly irreg.;	
										~ 50°	
3.82	4.19	Ser-Qtz Phyll	lt. gy-	f.g.	fotd.		Po, ZnS,		100	- Ser/Qtz - 50/50	- tr Po f.g. diss. along
		(04)	lt. grn				As			- wavy foln.	foln.
										- minor sec. qtz	- tr red ZnS f.g. str. in
										- minor c.g. feldspar xtals	sec. qtz along foln.
										along foln.	- 1% c.g. As mostly in 1 cm
										- foln. @ 4.00 = 54°	bnd. @ 4.13 with sec. qtz;
-											65 [°]
4.19	6.38	Chl-Ser-Qtz	dk. grn	f.g.	fotd.		Py, Po		97	- v. chloritic	- tr Py c.g. diss. along
		Phyll	-1t. gy							- minor sec. qtz lenses	foln.
		(05)								- v. uniform unit	- tr Po in a few thin str.
										- foln. @ 5.22 = 55°	@ 6.20

PAGE ____ OF ___ 5

\$s	ELCO	EXPLORATIO WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-18
INTE	RVAL				DES	RIPTION	ı			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
6.38	7.35	Qtz-Chl-Ser	lt. gy	f.g.	fotd.		Po,Py		100	- minor sericite	- 1% f.g. Po in thin str.
		Phy11	med. grn		folded					- moderate amount of chlroite	along foln.
		(06)								- long gentle open fold	- tr Py diss. along folm.
										in core	
										- minor sec. qtz	
										- bottom contact x-cutting	
										sec. qtz + v.c.g. feld xtals	
										- foln. @ 6.58 = 45°	
										- foln. @ 6.98 = 0°	
	0.11	chi can ol	1		6.13		-				Lu De de attendad de Cala
7.35	8.11	Chl-Ser-Qtz	lt. gy -	f.g.	fotd.		Ро		93	- moderately siliceous	- tr Po in str. along foln.
		Phy11	dk. grn		folded					much like unit above	
		(05)]							but more chloritic	
					l					- open fold?	
										- minor sec. qtz & c.o. feld	
										@ top contact	
T-1-10										- foln. @ 7.90 = 30°	
					ļ					- wavy bndg. @ 8.00 : AP= 60° ,	
										FA≈90°	
8.11	9.21	Chl-Ser-Qtz	lt. gy -	f.g.	fotd.				100	- locally quite chloritic	- <1% c.g. Py diss. along
		Phyll	lt. grn	-						- v. wavy foln.	foln.
		(05)								- abn. sec. qtz 8.82-9.06	- 1% f.g. Po in siliceous
-,										also abn. chl & v. folded	bnds. along foln.
										- foln. @ 8.87 = 42°	

PAGE ___3 __ OF ___5

\$\s	ELCO	EXPLORATION WESTERN CANAI				DR	ILL		LO	G	HOLE NO
INTER	RVAL				DESC	RIPTION	1			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
9.21	9.75	Qte	lt. gy	f.g.	weakly		Ро		100	- dirty qte	- tr Po in thin str.
		(06)			fotd.					- sericite along foln.	along several folms.
										- foln. @ 9.60 = 49°	
		-1-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-									
		The second of th									
											
			-								
		•									
									+2. 1 . MA		
										·	

PAGE 4 OF 5

\$ SE	rco		LORATION ERN CANADA			DF	ILL LO) G		S	amp	le d	ata	
	S A	MPLE			CORE	RECOVERY	VISUAL ESTIMATES		А	SSAY	RESUL	_ T S		and the second
NUMBER	FROM	то	TOTAL	Sp. Gr	%	AMT. LOST	(% ORE MINERALS)	% Pb	% Zn	% As	g/t Ag	g/t Au		
47273	0.00	0.67	0.67		51	0.33	40% As	0.74	0.28	12.700	19.1	6.2		
47274	0.67	0.93	0.26		100	0	5% ZnS, 2% Py	0.05	0.92	0.106	5.8	0.4		
47275	0.93	1.93	1.00		100	0	2% Py	0.03	0.03	0.713	7.3	0.3		
47276	1.93	2.93	1.00		90	0.10	2% Py	0.01	0.01	0.452	5.3	0.2		
47277	2.93	3.59	0.66		92	0.05	5% Py	0.06	0.43	0.499	7.0	0.5		r tilletian
47278	3.59	3.82	0.23		100	0	40% As, 40% Py, 10% ZnS tr Po, tr PbS	7.23	9.93	6.380	213.6	20.2		
47279	3.82	4.19	0.37		100	0	1% As, tr Po, tr ZnS	0.23	0.52	1.160	10.6	1.7		
47280	4.19	4.82	0.63		100	0	tr Py, tr Po	0.02	0.04	0.154	3.0	0.4		
												,		
						,								

							•							
~														

S s	ELCO	EXPLORATION WESTERN CANAD				DR	ILL.		LO	G		HOLE NO84-19
DRILLING C	O. CONNORS	LOCATION SKET	сн	DEPT	н р	TESTS IP ANGLE	AZIMUTH	1	E STARTED:	October 16, 1984	PROJEC	78F
			- 1	- COLLA	R	- 0.3°	222.	ODATI	E COMPLETED	October 16, 1984	N. T. S. :	82M/8E
								COLI	LAR ELEV.:	838.850	LOCATIO	ON: 830M drift
								NOR	THING:	9,923.643		
								EAST	TING:	10,694.394		
								AZIN	MUTH:	222 ⁰		
								DEP	тн:	10.06 m	DATE L	OGGED: October 17, 1984
HOLE TYPE	J.V.							CORE	E SIZE:	B.Q.	LOGGED	BY: R. Pegg & C.O
INTE	RVAL				DESCR	IPTION				STRUCTURE		REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BE ETC):	DDING,	MINERALIZATION, TYPE, AGE RELATIONS
0.00	0.43	Ser-Qtz Phyll	lt. grn	f.g.	fotd.	ser.	Po,Py		89	- foln. wavy, 30°-80°		2% Po f.f. & along foln.
		(04)	-gy		shrd.					- at 0.04-0.05 qtz+feld	vein	1% Py (f.g.)
										narrow ser. bnds. (to	3 mm)	
										- fold: 0.22 m - cren.,		
-										AP=28° (opp. foln.)		
										FA=40°, folds bndg. &	Po	
										strs.		
0.43	0.58	Lst.	lt. gy	m.g.	shrd.		ZnS, Py,		100	med. bndd., bndg.~30	5	5% ZnS (red to lt. brn.)
		(03)					PbS, As			at 0.42-0.49		3-5% PbS (f.gv.f.g.)
										- bndg. truncated by M.S	5.	5% Py (f.g.) blebs
					-					below; several sulp.	filled	1-2% As (f.g.) blebs
										fractures at contact,	off-	- visible sulphs. appear
										set bndg. up to 5 mm		rounded to sub-angular;
												≤2 mm
											1-	- sulphs. concen. at 0.35-
												0.39 m

PAGE ____ 0F ___ 5

\$ s	ELCO	EXPLORATION WESTERN CANAI				DR	ILL		LO	G	HOLE NO. 84-19
INTER	RVAL				DES	RIPTIO	V			STRUCTURE	REMARKS
FROM	ΤO	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
0.58	0.83	M.S.			shrd.	ser.	Py, ZnS,		100	- qtz & ser. grdmass.	20% Py (f.gm.g.)
		(12)					As, PbS,			- fold at 0.70 - rounded	20% ZnS (red to 1t. brn.)
							Сру, Ро			hinge, wavy limbs,	5% As (f.gm.g.)
										$AP=70^{\circ}$, $FA \approx 55^{\circ}$, folds	5-7% PbS (v.f.g.)
										bndg. & ZnS strs.	- sulphs. rounded to angular
										- med. bndd., \sim 50°	& brecc.
											tr Cpy
-											tr Po, f.g., along h/w
											contact
											- sulp. bndg: 0.49-0.53,
											Py rich; 0.53-0.58, ZnS,
											As; 0.58-0.60, Py, As;
											0.60-0.66, Py; 0.66-0.68,
											Py, As, ZnS; 0.68-0.72, Py
0.83	1.43	Qtz-Ser Phyll	lt. grn-	f.q.	fotd.,	ser.	ZnS, Py,		58	minor open fracts, off-	5% Py (f.gm.g.)
		(07)	gy		shrd.		As, Po			set sulp.	2% ZnS (red to lt. brn.)
					& fract.					bndg. up to 2 mm	patches & strs.
										- v. thin ser. bnds.	3-5% As (f.gv.f.g.)
										- bndg. wavy, 30°-50°	mostly concen. in bnds.
										grd. core at 1.00-1.29 m,	in h/w
										1.39-1.60 m	<1% Po f.f.
											- Py & As brecciated, frag-
											ments ≤3 mm, sub-angular
											to rounded

PAGE 2 OF 5

\$\frac{1}{5} =	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-19
INTE	RVAL				DESC	RIPTION	N			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
1.43	3.68	M.S.	red-brn.,	fm.g.	milled		ZnS, Py,		100	- 1st. frags. & qtz gangue	15% ZnS (red to lt. brn.)
		(12)	brass &				As, PbS			- mostly white & dk. qtz	20% As (f.gc.g.)
			silver								35% Py (f.gc.g.)
											2-3% PbS (v.f.g.)
											- a few coarse aggregates
											of Py (up to 2 cm across)
										- grd. core at 1.60-	- incr. in Py & decr. in
										1.85 m (minor), 2.22-	As at f/w
										2.30 m, 2.44-2.55 m	- sulphs. (As & Py) mostly
											rounded to subrounded &
											brecc.
											- Py rich section 2.03-2.17,
											ZnS rich section ~2.60-
											2.67
3.68	4.24	Lst.	gy	m.g.	fract.		ZnS, Py		100	whole unit is broken core	<1% ZnS (red to brwn.) strs.
		(02)								- med. bndd.,~60°	tr Py (f.g.) blebs
4.24	10.06	Otz-Ser Phyll	lt. grn-	f.g.	fotd.	ser.	Po, Py,		100	- numerous qtz (-feld)	- 2% Po, f.g., f.f. & strs.
		(07)	gy		shrd.		As, ZnS,			lenses & veins	along foln.
		/	31				Сру			- mod. well fotd., 45°-55°,	- <1% Py, fm.g., brecc.,
							1			wavy	fragments ≤2 mm, sub-
										- med. bndd., parallel to	angular to rounded; in
										foln.	vaque bands
										- folds: 4.53 - chevron,	- tr As, fm.g., brecc.,
										$AP=90^{\circ}$, $FA\approx60^{\circ}$, folds	with Py

PAGE ___ 3 __ OF ___ 5

\$ si	ELCO		EXPLORATION STERN CANAL				DR	ILL		LO	G	HOLE NO. 84-19
INTER	VAL					DESC	RIPTIO	٧	•		STRUCTURE	REMARKS
FROM	то	ROCK	TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE	FRACTURES PER METRE Y	% core ecovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
											bndg. & Po/Py strs.	- tr ZnS, f.g., red-brn.,
											5.41 - chevron, f/w limbs	a few thin strs.
											long, AP=90°, FA=85°,	- tr Cpy, f.g., a few grains
											folds bndg. & Po strs.	(4.27-4.38)
											5.87 - round hinge wavy	
											limbs, mod. open AP=90°,	
											FA=90°, folds bndg. & Po	
											6.79-6.89 - chevron, AP=70°,	
											FA=70°, fold bndg.	
											8.21 - wavy bndg., AP=60°	
											(opp. to foln.) FA=70°	
											8.84 - round & sharp hinges,	
											wavy limbs; AP=75°, FA=70°;	
											folds bndg. & Py/Po strs.	
											- broken core 5.03-5.06, 5.36-	
											5.39	
											- END OF HOLE -	

PAGE 4 OF 5

\$ SE	LCO		LOR ATION ERN CANADA			DA	IILL LO) G		E	amp	le da	ta
	S A	MPLE			CORE	RECOVERY	VISUAL ESTIMATES		А	SSAY	RESU	LTS	
NUMBER	FROM	то	TOTAL	Sp. Gr	%	AMT. LOST	(% ORE MINERALS)	% Pb	% Zn	% As	g/t Ag	g/t Au	
47252	0.00	0.43	0.43		74	0.11	2% Po, 1% Py	0.02	0.02	0.098	4.0	0.1	
47253	0.43	0.58	0.15		100		5% ZnS, 3-5% PbS, 5% Py, 1-2% As	1.75	1.62	7.620	69.6	7.2	
47254	0.58	0.83	0.25		100		20% Py, 20% Zns, 5% As, 5-7% Pbs	2.40	5.54	8.680	79.2	14.7	
47255	0.83	1.43	0.60		80	0.12	5% Py, 3-5% As, 2% ZnS, <1% Po	0.57	1.43	3.330	23.5	2.5	
47256	1.43	2.18	0.75		72	0.21	15% ZnS, 25% As, 30% Py	2.17	4.43	7.750	72.2	10.8	
47257	2.18	2.93	0.75		87	0.10	20% ZnS, 20% As, 35% Py	7.17	18.60	9.290	161.7	17.2	
47258	2.93	3.68	0.75		100		10% ZnS, 15% As, 35% Py	3.14	13.70	7.880	69.5	13.5	
47259	3.68	4.24	0.56		100		<1% ZnS, tr Py	0.21	0.89	0.367	5.5	0.7	
47260	4.24	5.24	1.00		91	0.09	2% Po, ≺1% Py, tr As, ZnS, Cpy	0.04	0.10	0.118	4.4	0.4	
							102 (10) 010) 017						
						·							
	1				1								

\$ si	Erco	EXPLORATION WESTERN CANAC				DR	ILL		LO	G		HOLE NO84-20
DRILLING CO	CONNORS	LOCATION SKET	сн	DEPT	н р	TESTS IP ANGLE	AZIMUTI	DAT	E STARTED:	October 16, 1984	PROJECT	J&L
			, -1	- COLLA	\ R	- 0.3°	043.7	DAT	E COMPLETED:	October 16, 1984	N. T. S. :	82M/8E
								COLI	LAR ELEV.:	838.856	LOCATIO	N: 830M drift
									THING:	9,926.490		
								EAS	TING:	10,694.106		hanging wall
									MUTH:	042 ⁰		
								DEP		10.06 m	DATE LO	October 16, 1984
HOLE TYPE	J.V.			1				CORI	E SIZE:	B.Q.	LOGGED	T. Garrow & C.O.
INTER	RVAL	ROCK TYPE			DESCR	IPTION				STRUCTURE		REMARKS
FROM	то	NUCK ITPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEI	DDING,	MINERALIZATION, TYPE, AGE RELATIONS
0.0	1.08	Qte	lt. gy	f.g.	weakly	ser+chl	Ру		92	- clean qte		- tr m.g. Py diss. along
		(06)			fotd.					- minor ser. on foln.		foln.
										- trace chlorite on folm	١.	
										- increase chlorite towa	ırds	
										bottom contact		
										- gradational contact		
										- foln. @ 0.73 = 53° S ₂		
										- med. banded, bands par	allel	
										to foln.		
										- broken core 0.00-0.59		
1.08	6.16	Chl-Ser-Otz	med. grn	f.q.	fotd.	chl+ser.	Pv. Po		100	- v. chloritic		- tr m.q. Py diss. along
		Phyll	92.11		100.1	CHI I BOLL	11/10		100	- wavy bndg., ~parallel	±0	foln.
		(05)								foln.		- tr Po smeared on folm.
		(03)								- mottled appearance		planes
			 						-			pranco
•										- 10% white sec. qtz ler		
										some appear to be fold		F.O.
			<u> </u>		L			<u> </u>		- abn. small qtz lenses	1.20-3.	50

\$5	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-20
INTER	VAL				DESC	RIPTIO	V			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										- mod. well fotd., 37°-53°	
										- broken core 1.14-1.29,	
										1.44-1.56	
6.16	6.79	Qte	lt. gy	f.g.	mass.	minor			100	- v. clean qte	
		(06)				ser+chl				- tr ser & chl on foln.	
										- tr sec. white qtz & tr	
										feld xtals @ 6.20	
										- moderately sharp contacts	
6.79	7.77	Chl-Ser-Qtz	lt	f.g.	fotd.	chl+ser	Po,Py,As		100	- v. chloritic	
		Phyll	med. grn							- uniform mottled appearance	- tr Po in thin str. along
		(05)								- v. thin qtz f.f. @ 7.60 @	foln. & smeared on foln.
					-					90° to S ₃	- tr m.g. Py diss. along
										- foln. @ 7.01 = 48° S ₃ , chl	foln.
···										- foln. @ 7.60 = 42° S ₃ , chl	- tr As, m.g., several sub-
										- med. bndd., 7.51-7.77;	angular grains at 7.41 m
										47 ^o -50 ^o	
										- thin $(\frac{1}{2}-2 \text{ mm})$ bands lt. gy	
										transl. qtz with 450% felds	
										fairly common; $40^{\circ}-50^{\circ}$;	
										steeper than bndg.; one	
										6 mm thick band at 7.66	
			-							- minor feld xtals along foln	•
										- gradational contact with increased gtz, towards bottom (7.31-7.77)	

PAGE ____ OF ___ 3

\$\footnote{5} =	ELCO	EXPLORATION WESTERN CANADA	1			DR	ILL		LO	G	HOLE NO. 84-20
INTER	VAL					RIPTION				STRUCTURE	REMARKS
FROM	ΤO	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
7.77	8.00	Qte	lt. gy	f.g.	mass.	minor	PbS		100	- v. clean qte	- tr PbS, f.g., a few
		(06)				chl+ser				- tr ser. & tr chl on foln.	grains in felds/qtz bands
										- faint folm., ~50°	
										- minor discont. felds/qtz	
										bands, ≤70% felds; 60°-70°	
8.00	10.06	Chl-Ser-Qtz	lt. gy-	f.g.	fotd.	chl+mino	rPo,Py,As	,	100	- 15% white sec. qtz	- tr Po, f.g., thin strs.
		Phyll	lt. grn			ser	PbS			lenses, many appear	along foln.
		(05)								slightly folded	- tr Py, fm.g., diss.
										- moderately chloritic	along foln.
										- tr feld xtals in sec. qtz	- tr As, f.g., in fractures
										- several more silicic	in qtz lenses & near
										sections: 8.00-8.19, 8.53-	margins
										8.59	- tr PbS, f.g., a few grains
										- folds: 8.29 isoclinal,	along margins of qtz
										rounded hinge, straight	lenses & in fractures
										limbs, AP=60°, FA=70°;	- Po & Py also along margins
										h/w limb sheared off	of qtz lenses & in frac-
										along foln.	tures
										- chl concen. along margins	
										of qtz lenses	
										- broken core: 8.58-8.62	
										- foln.~50°	
		- END OF HOLE	-							- END OF HOLE -	

PAGE _ 3 _ OF _ 3

	ELCO	EXPLORATION WESTERN CANA	DA				ILL		LO	G		HOLE NO. 84-21
RILLING CO	CONNORS	LOCATION SKET	СН	DEPT		TESTS OIP ANGLE	AZIMUT		STARTED:	October 17, 1984	PROJEC	J&L
				COLL	18	- 1.1°	223.5		COMPLETED	October 17, 1984	N. T. S. :	82M/8E
									AR ELEV.:	838.763	LOCATIO	ON: 830M drift
									THING:	9,926.334		
								EAST		10,671.630		
								AZIM		222 ⁰		
LE TYPE								DEPT		9.75 m	DATE LO	OGGED: October 17, 1984
	J.V.		Ţ					CORE	SIZE:	B.Q.	LOGGED	BY: R. Pegg
INTE		ROCK TYPE		T	DESCR	IPTION				STRUCTURE		REMARKS
FROM	ТО		COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BE	DDING,	MINERALIZATION, TYPE, AGE RELATIO
0.00	0.17	Qtz-Ser Phyll	lt. grn-	f.g.	shrd.		ZnS, Py		100	minor qtz (+feld) lens	ses	3% ZnS (red to 1t. brn.)
		(07)	gy				As, Cpy			ser-rich patches		strs.
										minor calc. f.f.		3-5% As (f.g.) blebs
												10% Py (f.gm.g.)
												euhedral to subhedral
												- As concen. at h/w
				-								- sulphs. rounded to angul
0.17	0.97	M.S.		f.gm.g.	shrd.		Der Ac		100			tr diss. Cpy (f.g.)
		(12)		g.	Sili d.		Py, As,		100	incr. lst. matrix		25% Py (f.gc.g.)
		()					ZnS,PbS			towards f/w		40% As (f.gm.g.)
										- gy sil. matrix but		3-5% ZnS (red to honey)
										highly calc.		1% PbS (v.f.g.)
												- ZnS concen. in first 34
												- sulphs. rounded to angula
												& brecc.
												- Py concen. at 0.67-0.91 r
												- bnd. of ZnS-As-Py at h/w
	GE									irreg. f/w contact		contact, 60°

\$\$s	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-21
INTE	RVAL				DESC	RIPTIO	V			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES % PER METRE re	core	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
0.97	1.30	Lst.	gy	m.g.	shrd.		ZnS, Py,		100	wh. qtz vein at 1.18 m	3% As (f.gm.g.)
		(02)			bndd.	-	As,			qtz-cal. vein at 1.10-1.13 m	1% Py (f.g.)
							Meneg.			bnd. at 56°	1% ZnS (lt. brn. to honey)
										gentle open folds	tr Meneg.
		,								above As bnd.	As concen. at 1.08-1.10 m
1.30	1.54	Lst. (sil.)	дУ	f.g.	shrd.	sil.	ZnS, Py,		100	dk. grey & sil. matrix	5% ZnS (red-brn. to lt.
		(02)					As, Cpy,			minor qtz lenses	brn.) strs.
							PbS			- less calc. to f/w	5% Py (f.gm.g.) blebs;
		-									>1% PbS (f.g.)
											l% As (f.g.) blebs; tr
											diss. Cpy
											- sulphs. concen. at 1.43-
											1.54
											- sulph. bnd at h/w contact,
											60 ⁰
1.54	1.71	M.S.	дУ		shrd.		Py,As,		100	qtz & ser. gangue	50% Py (f.gm.g.) rounded
		(12)					ZnS			qtz mostly gy &	to subrounded & brecc.
										translucent	1% As (f.g.) at 1.63 m &
										abundant calc. f.f.	1.65 m
										f/w contact at 70°;	tr ZnS (lt. brn.) diss.
										h/w contact 60°	
1.71	1.71 2.60	Qtz-Ser Phyll	lt. grn-	f.g.	shrd.		Py,As,		100	minor wh. qtz veins &	7% Py (f.gm.g.) blebs
		(07)	gy		fotd.		ZnS,Po,			1enses	& diss.
							Сру			minor qy qtz (-feld)	>1% As (f.gm.g.) blebs

PAGE 2 OF 5

\$\frac{1}{5} =	ELCO	EXPLORATION WESTERN CANAC				DR	ILL		LO	G	HOLE NO. 84-21
INTE	RVAL				DES	CRIPTION	1			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										veins & lenses	tr ZnS (red to lt. brn.)
										foln. (contorted) 35°-70°	strs.
										minor calc. f.f.	- As & ZnS & Cpy concen. at
_											2.55-2.60 m sulphs.
											mostly rounded to sub-
											rounded espec. to f/w;
											sulphs. brecc.
											<1% diss. Po f.f.; tr diss
											Сру
2.60 4.12	Lst.	lt. gy	m.g.	shrd.		ZnS, Py,		100	abund. calcite	tr ZnS (lt. brn.) strs. &	
		(02+sweatouts)			fract.		As			veins & lenses (20%)	diss.
										abund. fine carbon.	1% Py (f.gm.g.) blebs
										f.f. & patches	tr As (f.gm.g.) blebs
										- at 3.24 folding (A.P. 7005°)	- As & ZnS concen. at 2.60-
										open fracts. at 3.17 m &	2.71 m
										3.78 m; abundant calcite	
				-						tension gashes	
										- broken core at 3.84-3.89 m	
										bndd.	
										- unit is well folded but tens	sion gashes highly disruptive
4.12	5.38	Lst.	dk. gy	m.g.	fract.		Py,ZnS,		100	minor calcite (-qtz)	1% Py (f.gm.g.) blebs
		(02)	to bk.				As			veins & sweatouts	tr ZnS (red-brn. to lt.
										minor carbon f.f.	brn.) diss.
										abundant disrupted	tr f.g. As at 4.35 m
										isoclinal folding	znS at 4.73 m

PAGE ____ 3 ___ OF ___ 5

\$\footnote{5}	ELCO	EXPLORATION WESTERN CANA				DR			LO	G	HOLE NO. 84-21
INTER	VAL				DESC	RIPTION	1			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core ecovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										(A.P. at≈85°)	
										broken core at 4.09-4.27 m,	
										4.27-4.30 m, 4.66-4.72 m &	
										at 5.38 m	
5.38	5.99	Ser-Chl-Qtz	lt. grn-	f.g.	fotd.		Po, Py,		82	foln. 55°	2% Po f.f.
		Phyll	ду		shrd.		As			slips at 5.81 & 5.87 m	tr Py (f.g.) & blebs
		(04)								minor calc. f.f.	tr As (f.g.) f.f. & blebs
Г 00	0.75	011 0	-		6					foln. 55° (irreg.)	
5.99	9.75	Chl-Ser-Qtz	grn	f.g.	fotd.		Po, Py,		100	foln. 55 (irreg.)	2-3% Po f.f. & along foln.
		Phy11			shrd.		As				1% Py (f.gm.g.)
		(05)	_							grd. core at 8.23 m	tr As (f.gm.g.) concen.
										abundant qtz (-feld)	7.55 m with qtz-feld vein
			_							lenses and veins	& at 8.79 m, 9.01 m
										(largest at 7.42-7.46 m,	
										7.52-7.55 m)	
			_							v. minor calc. f.f.	
***************************************		***************************************									
										- END OF HOLE -	
								 -			

PAGE 4 OF 5

\$ SE	LCO		OR ATION RN CANADA			DЯ	ILL L	OG		S	amp	le da	ata	
	SAI	MPLE			CORE	RECOVERY	VISUAL ESTIMATES		А	SSAY	RESUL	_ T S		
NUMBER	FROM	то	TOTAL	Sp. Gr	%	AMT. LOST	(% ORE MINERALS)	% Pb	% Zn	% As	g/t Ag	g/t Au		
47246	0.00	0.17	0.17		100		3% ZnS, 3-5% As, 10% P	y 0.33	0.10	3.670	10.7	1.6		
47247	0.17	0.97	0.80		100		25% Py, 40% As, 3-5% ZnS, 1% PbS	0.71	1.59	11.900	25.1	7.8		
47248	0.97	1.30	0.33		100		3% As, 1% Py & ZnS, tr Meneg.	0.48	0.31	4.360	14.4	8.2		
47249	1.30	1.54	0.24		100		5% ZnS & Py, 1% As	1.20	1.64	2.580	24.2	3.2		
47250	1.54	1.71	0.17		100		50% Py, 1% As, tr ZnS	0.77	0.55	3.530	24.5	3.6		
47251	1.71	2.60	0.89		100	•	7% Py, >1% As, tr ZnS, <1% Po	0.36	0.63	2.450	9.0	3.4		
										-				
												-		
		ļ												
		1												
***									ļ					
		<u> </u>												
														maconomicos en sec 1 to 2
									-					
	ļ	 			-					-		-		
	1	<u> </u>		l	1		<u> </u>	J	1			1		

PAGE _____ OF ____ 5____

S si	≅LCO	EXPLORATION WESTERN CANAD	A			DR	ILL		LO	G		HOLE NO84-22
DRILLING CO.	CONNORS	LOCATION SKET	Н	DEPT	н ы	TESTS P ANGLE	AZIMUTH	DATE	STARTED:	October 17, 1984	PROJEC	T: J&L
			-1	- COLLA	\R	+ 0.3	043.4	DATE	COMPLETED	October 17, 1984	N. T. S. :	82M/8E
								COLL	AR ELEV.:	838.794	LOCATIO	N: 830M drift
		-						NORT	HING :	9,929.151		
								EAST	NG:	10,671.356		
								AZIMU		042 ⁰		
								DEPT		9.14 m	DATE L	October 17, 1984
OLE TYPE	J.V.		+					CORE	SIZE:	B.Q.	LOGGED	R. Pegg
INTER	VAL	ROCK TYPE			DESCR	PTION				STRUCTURE		REMARKS
FROM	то	NOCK TIPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	recovery	(FRACTURES, FAULTS, FOLDING, BE ETC):	DDING,	MINERALIZATION, TYPE, AGE RELATIONS
0.00	0.67	M.S.			shrd.		As, Py,		94	lst. frags. & lenses	15%	10% Py (f.gm.g.)
		(12)					ZnS,Po,			ser. frags. & lenses	30%	euhedral to subhedral
							PbS,Cpy			minor wh. qtz lenses		30% As (f.gv.f.g.)
										ser. bnds. at 90°		euhedral to subhedral
										at h/w		10% ZnS (red to lt. brn.);
										- calc. f.f.		tr PbS & Cpy (v.f.g.)
										- folds 0.47-0.55: round	ded	- sulphs. at low angle to
										hinges, AP=85°, FA=65°	,	c.a.
										sheared		- sulphs. rounded to angular
												& brecc.
												tr Po blebs& f.f.
0.67	1.16	Ser-Qtz Phyll	lt. grn-	f.g.	fotd.		Py, ZnS,		100	minor qtz lenses &		- tr ZnS (red to brn.) with
		(04)	gy		shrd.		Cpy,Po,			veins at 0.93 m, 1.08	m	qtz
							PbS			(up to 6 mm wide)		5% Py (f.gm.g.) blebs
										foln. 65°		l% Po f.f. & blebs
										minor calc. f.f.		>tr Cpy (in qtz veins)
												tr PbS (in qtz veins)
	•	The state of the s										

PAGE __1 ___ OF __4

\$ 5	ELCO	EXPLORATION WESTERN CANADA	1			DR	ILL		LO	G	HOLE NO. 84-22
INTER	RVAL				DESC	RIPTION	ı			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
1.16	1.38	M.S.			milled		As, Py,		100	white qtz lenses (5-7%)	20% ZnS (red to honey)
		(12)				-	ZnS,Cpy			which are irreg.	40% As (f.gm.g.)
										minor calc. f.f.	10% Py (f.g.);
										- f.g. to > f.g. sulph. matrix	1-2% PbS (v.f.g.)
											<1% Cpy (f.g.) diss.
										- f/w contact 60°	- decr. in grain size to h/w
										well milled 1.33-1.40 m	- sulphs. mostly rounded
										- bndg. 60 ⁰	to subrounded & brecc.
											- a few ZnS-PbS rich narrow
											bnds. (espec. 1.33-1.40 m)
1.38	1.71	Qtz-Ser Phyll	lt. grn-	f.g.	shrd.		Po, Py,		91	minor qtz veins &	3-5% Po f.f. & along foln.
		(07)	дУ		fotd.		PbS,As			lenses	1-2% Py (f.gm.g.) blebs
										grd. f/w contact	tr PbS (in qtz lenses)
										foln. 50 ⁰	≺1% As (f.g.)
										grad. h/w contact	
										minor calc. f.f.	
1.71	2.46	Chl-Ser-Qtz	lt. gy-	f.g.	fotd.		Po,Py,		100	foln. 45 ⁰	3-5% Po f.f. & along
		Phyll	grn		shrd.		As,Cpy			slips at 1.90 m & 2.15 m	foln.
		(05)								slight grd. core at 1.96 m	1% Py (f.g.) blebs
										broken core at 2.22-2.29 m	tr As (f.g.) blebs
										wh. qtz veins & lenses at	tr Cpy (v.f.g.) diss.
										1.80 m, 2.32 m, 2.35 m, 2.40 m	
-										- minor ser.	

PAGE ____ OF ___ 4

\$\footnote{5}	ELCO	EXPLORATION WESTERN CANA				DR	LL		LO	G	HOLE NO. 84-22
INTER	R V A L					RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core ecovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
2.46	3.16	Qte	dirty wh.	f.g.	fotd.		Po,Py		100	minor ser. along foln.	2-3% Po f.f. & along foln
		(06)								foln. 45°-55°	2% Py (f.gm.g.) mostly
										minor qtz veins	in narrow bnds./strs.
										minor slips at 2.93 m, 3.01 m	along foln. (euhedral to
										minor ch1 along some folns.	subhedral)
										(incr. towards h/w)	
										grad. h/w contact	
3.16	9.14	Chl-Ser-Qtz to	grn.	f.g.	fotd.		Po, Py,		98	foln. 42°-47° (slips)	
		Qtz-Chl Phyll					As,ZnS,			minor Qte bnds. at 3.94-	
		(05 - 06)					PbS			4.04 m, 4.20-4.24 m, 8.03-	
										8.07 m	
										number of qtz (-feld)	
										lenses & veins at 3.39-3.44 m	n ,
									***************	3.74-3.77 m, 4.86 m, 4.91 m,	
										6.20-6.23 m, 7.65 m, 8.03 m	
										- a few more chl-rich, irreg.,	
					ļ					narrow sections	
										* at 8.07-9.14 phyll appears so	omewhat porph with white 3-5%
										f.g. subrounded to angular gr	ains (corroded feld?)
										(decr. towards end of hole; p	prominent at 8.07-8.23 m)
										- broken core 8.70-8.96 m	
										- END OF HOLE -	
		<u> </u>									

PAGE ___3 ___ OF __4

SELCO EXPLORATION WESTERN CANADA S A M P L E					DR		OG		S	amp	le da	ta
S A	MPLE			CORE	RECOVERY	VICILAL ESTIMATES		А	SSAY	RESU	LTS	
FROM	то	TOTAL	Sp. Gr	%	AMT. LOST	(% ORE MINERALS)	% Pb	% Zn	% As	g/t Ag	g/t Au	
0.00	0.67	0.67		94	0.04	30% As, 10% Py + ZnS,	0.74	1.63	6.780	27.8	9.9	
0.67	1.16	0.49		100	-	5% Py, 1% Po, tr Cpy, ZnS & PbS	0.08	0.09	0.136	8.6	0.3	
1.16	1.38	0.22		100		40% As, 20% ZnS, 10% Pv, <1% Cpv	8.85	9.20	13.200	269.2	19.5	
1.38	1.71	0.33		91	0.03	3-5% Po, 1-2% Py, <1% As, tr PbS	0.30	0.30	0.475	11.5	0.8	
1.71	2.46	0.75		100		3-5% Po, 1% Py, tr As, Cpy	0.06	0.06	0.106	4.0	0.1	
										-		
							ļ					
	-	.			· · · · · · · · · · · · · · · · · · ·							
	 			 					_			
	s A FROM 0.00 0.67 1.16 1.38	S A M P L E FROM T 0 0.00 0.67 0.67 1.16 1.16 1.38 1.38 1.71	S A M P L E FROM T O TOTAL METRES 0.00 0.67 0.67 0.67 1.16 0.49 1.16 1.38 0.22 1.38 1.71 0.33	S A M P L E FROM T 0 TOTAL METRES METRES Sp. Gr 0.00 0.67 0.67 0.67 0.67 1.16 0.49 1.16 1.38 0.22 1.38 1.71 0.33	S A M P L E CORE FROM T O TOTAL METRES Sp. Gr % 0.00 0.67 0.67 94 0.67 1.16 0.49 100 1.16 1.38 0.22 100 1.38 1.71 0.33 91	S A M P L E CORE RECOVERY FROM T O TOTAL METRES Sp. Gr % AMT. LOST 0.00 0.67 0.67 94 0.04 0.67 1.16 0.49 100 1.16 1.38 0.22 100 1.38 1.71 0.33 91 0.03	SAMPLE	S A M P L E	S A M P L E	S A M P L E	S A M P L E	S A M P L E

PAGE __4___ OF __4___

S s	ELCO	EXPLORATION WESTERN CANAI				DR			LO	G		HOLE NO84-23
RILLING CO	CONNORS	LOCATION SKET	сн	DEPT	н р	TESTS IP ANGLE	AZIMUTH	DATE	STARTED:	October 17, 1984	PROJEC	T: J&L
			-1	- COLL		+ 0.2°	222.3	DATE	COMPLETED		N. T. S. :	82M/8E
									AR ELEV.:	838.675	LOCATIO	ON: 830M drift
						-		NORT	HING:	9,935.580		
								EAST	ING:	10,637.788		footwall
		,						AZIM	JTH:	222 ⁰		
								DEPT		13.11 m	DATE L	OGGED: October 17, 1984
LE TYPE	J.V.							CORE	SIZE:	B.Q.	LOGGED	BY: T. Garrow
INTE	RVAL				DESCR	IPTION				STRUCTURE		REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BI	EDDING,	MINERALIZATION, TYPE, AGE RELATION
0.0	1.52	Lst.	lt. gy	f.g.	fotd.		ZnS, As,		70	- moderately dirty lst.		- tr honey ZnS in str.
		(03)					Ру			- poorly fotd.		@ 0.98
										- minor argl. material		- tr f.g. As in 5 mm bnd.
										increasing towards		with qtz & 1st. @ 1.28
										bottom		- tr Py (f.gm.g.) blebs
										- locally abn. subround	l	
										dk. gy qtz frags. alo	ng	
										foln. example @ 1.28		
										- foln. @ 1.36 = 39°		
										- core ground @ 1.06 =	50 cm	
1.52	1.98	M.S.					Py, As,		100	- h/w contact conformab	ole	- 50% c.g. & f.g. Py with a
		(12)					ZnS			@ 43 [°]		minor number of rounded
								and the state of t		- top 10 cm mod. calcar	eous	milled Py xtals top 10 cm
				Addition of the second second				Marin 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		- milled texture top 10) cm	- 35% f.g. & c.g. As diss.
												top 10 cm f.g. As, remair
												c.g. As
										- f/w contact conformat	ole @ 46	- 10% f.g. red ZnS from 1.6

PAGE _____ OF ____4

\$\footnote{5}	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G HOLE NO 84-23
INTER	IVAL					RIPTION				S T R U C T U R E M A R K S
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core ecovery	(FRACTURES, FAULTS, FOLDING, BEDDING, MINERALIZATION, TYPE, AGE RELATIO
									•	- 1.52-1.62 5% Lst1.98 as v. thin str.
						-				- 1.62-1.98 5% qtz(lt. gy or f.f. shot throughout
										interstitial)
1.98	10.33	Lst.	lt. gy	m.g.	fotd.		ZnS,As,		100	- gy bndd. uniform Lst <1% red & yellow f.g. Zi
		(03)					Ру			- sheared isoclinal folds small str @ 2.04 & seven
										3.60-5.20, AP=65°, FA=60° c.g. Py xtals
		B								- pure white c.g. calc. 5.70 <1% c.g. As xtals diss.
		- Control of the Cont								5.85 with yellow ZnS str. along folm. @ 3.06-3.35
										@ bottom
										- 10% thin bnds. argl tr c.g. Py same as As
										Lst.(vaguely like styolites) - yellow ZnS str @ 5.85 m.
										- sporadic thin limy bnds.
										with As & Py xtals &
										subround dk. gy qtz frags.
										- 5% white sec. calc. along
										foln. & x-cutting
										- folm. @ $7.95 = 53^{\circ}$ v. barren of sulphides
										- x-cutting gash veins after 6.80 m
										of calc. @ 7.80 = 40°
										to core @ 90° to folm.
										- gradually increasing
										argl. material towards
			-							bottom
										- small S fold @ 7.95

PAGE ____ OF ___4___

\$ si	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-23
INTER	VAL				DESC	RIPTION	١			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										- foln. @ 8.53 = 42°	
										- more abn. x-cutting calc.	
										f.f. 7.70-8.30 & 9.70-	
										10.06 m.	
10.33	11.39	Argl-Gr-Lst	bk	f.q.	fotd.		Py,ZnS,		100	- v. argillaceous Lst.	- 5% c.g. Py in fracture
20.00	22102	(02)					As			- tr graphite	Zone 10.33-10.48
										- folm. v. contorted	& tr Py along foln. 11.37-
										- 5% white sec. calc. along	11.48
										foln.	- <1% red f.g. ZnS @ 10.33-
										- 2% gy sec. qtz towards	10.48 & 11.37-11.48
										bottom of unit	- <1% f.g. As 11.37-11.48
										- whole unit v. calcareous	
										* gouge 10.48-10.60 abn. calc.	
										·	
11.39	13.11	Chl-Ser-Qtz	dk. grn	f.g.	fotd.		Py,As,		100	- qtz-ser phyll + minor bk.	- 3% c.g. Py diss. along
		Phy11					ZnS			argillaceous material	foln.
		(05)								- non calcareous	- 2% .c.g. & f.g. As diss.
										- v. lensy foln with abn.	along foln.
										stretched gy qtz lenses	- tr red ZnS in thin str.
										- top 20 cm mod. siliceous	along foln.
										- rest of unit v. chloritic	
										- v. wavy foln.	
			-							- <5% sec. qtz	
				······						- END OF HOLE -	

PAGE ___3___ OF __4___

\$ SE	LCO		ORATION RN CANADA			DF	IILL LO) G		s	amp	le d	ata	
	S A	MPLE			CORE	RECOVERY	VISUAL ESTIMATES		А	SSAY	RESUI	LTS		
NUMBER	FROM	то	TOTAL METRES	Sp. Gr	%	AMT. LOST	(% ORE MINERALS)	% Pb	% Zn	% As	g/t Ag	g/t Au		
47292	0.52	1.52	1.00		52	0.48	tr ZnS, tr As	0.37	0.17	0.611	9.5	0.8		
47293	1.52	1.98	0.46		100		50% Py, 35% As, 10% Zns	10.30	15.00	5.320	249.0	11.5		
47294	1.98	2.98	1.00		99.5	0.05	<1% ZnS, <1% As, tr Py	0.39	0.40	0.318	1.6	0.5		
47295	0.00	0.52	0.52		88	0.06	tr As & Py	0.07	0.08	0.044	2.5	0.3		
						-								
													AND AND ADDRESS OF THE PARTY OF	
	 	 				****		 				 		1

\$\frac{1}{5} = \frac{1}{5} = \	ELCO	EXPLORATION WESTERN CANAD				DR	ILL		LO	G		HOLE NO84-24
RILLING CO	CONNORS	LOCATION SKET	СН	DEP	тн р	TESTS DIP ANGLE	AZIMUTI	H DAT	TE STARTED	October 17, 1984	PROJEC	T: J&L
			-	- COLL		+ 0.80	042.0	DAT	TE COMPLETED:	October 17, 1984	N. T. S. :	
								COL	LLAR ELEV.:	838.691	LOCATIO	
								NOF	RTHING:	9,938.012		10637.73E section
									STING:	10,637.790		hanging wall
									IMUTH:	042°		
								l	PTH:	9.75 m	DATE LO	OCCOBEL 17, 1304
OLE TYPE	J.V.			<u> </u>				COR	RE SIZE:	B.Q.	LOGGED	T. Garrow & C. Oke
INTE	r	ROCK TYPE		004111		IPTION	T 055	Tentories	-01 9 govs	STRUCTURE		REMARKS
FROM	ТО		COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	MINERALS	PER METRE	s % core E recovery	(FRACTURES, FAULTS, FOLDING, BE ETC):	DDING,	MINERALIZATION, TYPE, AGE RELATIONS
										- core ground @ 0.30		
										approx. 0.18 cm		
			-			-		ļ		- core ground @ 0.78		
										approx. @ 18 cm		
										- core ground @ 1.11		
						ļ				approx. 18 cm		
0.00	0.68	Qte	lt. gy	f.g.	mass.	minor ser	Po, Py		71	- core ground @ 1.81		- tr v.f.g. Po diss. along
		(06)			weakly					approx. 18 cm		foln.
			ļ		fotd.					- v. clean qte		- tr euhedral c.g. Py
										- minor ser on foln.		
			 	····						- increase darker colou	<u> </u>	
										towards bottom		
										- foln. @ 0.60 = 40°		
								ļ				
0.68	2.05	Qtz-Chl-Ser	lt. gy	f.g.	fotd.	chl+ser	Po, Py		60	- v. siliceous		- <1% Po in thin str. along
		Phyll	lt. grn							- tr chl on folm.		foln. & on margins of
		(06)								- minor ser		qtz lenses
										- med. bndd. 40 ⁰ -45 ⁰		- tr f.g. Py diss.

PAGE 1 OF 5

\$ s	ELCO	EXPLORATION WESTERN CANAC				DR	ILL		LO	G	HOLE NO. 84-24
INTER	VAL					RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										- tr sec. qtz	
										- minor m.g. feld xtals along	
										foln.	
										- foln. @ 1.60 = 42 ⁰	
2.05	3.21	Qte	lt. gy	f.g.	mass.		ZnS,Py,		100	- v. clean qte	
		(06)			weakly		Ро			- minor ser. on foln.	- tr Po smeared on folm.
					fotd.					- minor sec. qtz	- tr Py m.g. xtals along
										- abn. feldspar xtals @	foln.
										3.20 along foln.	- tr red f.g. ZnS in thin
										- foln. @ 3.00 = 42°	stringers @ 2.40
										- faint med. bndd., 50°-60°	
3.21	3.92	Qtz-Chl Phyll	lt. gy-	f.g.	fotd.	chl	Po,Py		83	- v. siliceous	- tr Po along foln.
		(06)	lt. grn							- minor chl	- tr f.g. Py along folm.
										- minor feld? on foln.	& diss. blebs 42 mm
										- foln. @ 3.80 = 55°	
										- med. bndd.,~50°	
3.92	4.65	Qte	lt. gy	f.g.	fotd.	minor	Po,ZnS		100	- dirty qte	- tr Po along foln.
		(06)		J		chl+ser				- minor sericite on foln.	- tr ZnS, f.g., red-brwn.,
									-	- minor chl on foln.	along margins of qtz/felds
		**************************************								- minor sec. qtz	bands at 4.02-4.05; v.
										- minor feld xtals in thin	thin strs. at 4.24
										(½-2 mm) bands; up to 30%	
										qtz; / parallel to folm.	

PAGE ____ OF ___ 5

\$\footnote{\sigma} = \footnote{\sigma} = \foot	ELCO	EXPLORATION WESTERN CANAD				DR	LL		LO	G	HOLE NO. 84-24
INTER	VAL					RIPTION				STRUCTURE	REMARKS
FROM	ТО	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										- foln. @ 4.30 = 49°	
						-				- gradational contacts	
										- fine-med. bndd.; ~ 50°,	
										dip dir. ~5° from foln.	
4.65	5.14	Qtz-Chl Phyll	med. gy	f.g.	fotd.	ch1	Po,ZnS		100	- similar to unit above	- tr f.g. Po in thin str.
		(06)								but more chl	along foln.
										- v. gradational contacts	- tr red f.g. ZnS in thin
										- abn. qtz & feld @ top	str. along foln. @ 4.90
										contact	
										- foln. @ 4.87 = 50°	
										- foln. @ 4.90 = 53°	
										- med. bndd., $\sim 50^{\circ}$	
5.14	5.64	Qte	lt. gy	f.g.	weakly	minor chl	Ру		100	- moderately clean qte	- tr f.g. Py, diss. along
		(06)			fotd.	& ser				- minor ser. on foln.	foln.
										- minor chl on foln.	
										- abn. c.g. feld @ bottom	:
										contact beside	
										sec. qtz lens	
										- foln. 50°-53°	
										- med. bndd.; 40 -45; dip	
										dir.~15° from foln. dip	
										dir.	

PAGE ___ 3 __ 0F __ 5

\$ s	ELCO	EXPLORATION WESTERN CANAL				DR	ILL		LO	G	HOLE NO. 84-24
INTE	RVAL					RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
5.64	6.47	Qtz-Chl Phyll	med. grn	f.g.	fotd.	chl	Ру		100	- foln. 50°-55°	- tr Py, f.g., diss. blebs
		(06)	-gy							- faint-med. bndd., ∼parallel	≤2 mm
										to folm.	
										- minor sec. qtz	
										- abn. v. small chl spots	
6.47	7.80	Qte	lt. gy	f.g.	fotd.	chl	Po,Py,As		100	- dirty qte	- tr Po, f.g., on foln.
		(06)		Annual Control of the						- mod. well fotd., 45°-60°	planes & a few strs.
										- med. bndd., 60 ⁰ -65 ⁰	- tr Py & As, m.g., in qtz
										- transl. wh. qtz lenses:	lens 6.47-6.57
										6.47-6.57, 6.92-6.96,	
										7.33-7.37	
										- qtz/felds bnad with up	
										to 50% felds common	
										- minor chl on foln.	
										- f/w contact grad.	
7.80	8.45	Qtz-Chl Phyll	med. grn	f.g.	fotd.	chl	Po,Py		100	- moderately chloritic	- tr Po, f.g., thin strs.
		(06)	-gy							- mod. well fotd., 50°-60°	along foln. & smeared on
		······································								- med. bndd., 45°	foln. planes
										- qtz bands with up to	- tr Py, f.g., a few thin
										50% felds fairly common;	strs parallel to folm.
										¹ ₂ -10 mm	
										- fold at 8.07-8.08; rounded	
										hinges mod. open straight limbs; AP=foln = 570, FA=600; folds bndg.	

PAGE 4 OF 5

\$\footnote{5}	ELCO	EXPLORATION WESTERN CANA				DR	ILL	ı	_ 0	G	HOLE NO 84-24
INTER	RVAL					CRIPTIO				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE	FRACTURES % PER METRE re	core	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
8.45	9.43	Qte	lt. gy	f.g.	mass.,		Po, Py		100	- clean qte	- tr Po, f.g., on foln.
		(06)			weakly	ser&chl				- tr ser. tr chl on folm.	planes
					fotd.					- weakly fotd., 45° -50	- tr Py, f.g., on folm.
										- med. bndd., bands folded &	planes
										sheared; AP ← foln.	
9.43	9.75	Qtz-Chl Phyll	med. grr	f.g.	fotd.	chl	Po		100	- mod. well fotd., 55°-60°	- tr Po, f.g., thin strs.
		(06)	-gy							- faint med. bndd., bands	parallel to folm. & diss.
										~parallel to folm.	in folm. planes.
										- small chl blebs common	
									· · · · · · · · · · · · · · · · · · ·	(¹ 4- ¹ 2 mm)	
			- END C	F HOLE	-					- END OF HOLE -	

PAGE 5 OF 5

S s	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G		HOLE NO 84-25
RILLING CO	. CONNOR	S LOCATION SKET	СН	DEPT	Н р	TESTS IP ANGLE	AZIMUTH	DATE	STARTED:	October 17, 1984	PROJEC	T: J&L
			-	- COLL		+ 0.3°	223.4°	DATE	COMPLETED	October 17, 1984	N. T. S. :	82M/8E
								COLL	AR ELEV.:	838.543	LOCATIO	N: 830M drift
								NORT	THING:	9,941.401		10,607.92E section
								EAST	ING:	10,607.987		footwall
								AZIM	UTH:	222 ⁰		
								DEPT		11.58	DATE LO	October 17, 1984
DLE TYPE	J.V.							CORE	SIZE:	B.Q.	LOGGED	BY: T. Garrow & C. Oke
INTE	RVAL				DESCR	IPTION				STRUCTURE		REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN	TEXTURE	ALTERATION	ORE FR MINERALS PE	ACTURES R METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BE ETC):	DDING,	MINERALIZATION, TYPE, AGE RELATIONS
										ground core @ 0.40 = 2	25 cm	
								-		ground core @ 0.97 = 2	25 cm	
										ground core @ 1.43 = 2	25 cm	
										ground core @ 1.94 = 2	25 cm	
										, , , , , , , , , , , , , , , , , , ,		
0.00	1.91	Lst.	bk & med.	f.g.	fotd.		As,Po,Py		55	- mod. well fotd.,		- 1% c.g. As in 3 cm bnd.
		(02)	gy							- med. bndd., 60°-70°		@ 0 . 65
										- x-cutting calc. f.f. @	,	- tr Po - several v. small
										1.79-1.85 @ 47° to cor	e	specks
										90° to folm.		- tr Py, m.g. with As
										- gradation contact @ bo	ttom	
										- foln. @ 1.43 = 62°		
										- Lst. (03) band 1.65-1.	80	
1.91	3.60	Lst.	lt. gy	f.g.	weakly		ZnS,Py,		86	- weakly fotd., parallel	. to	- <1% honey ZnS, f.g., strs
		(03)			fotd.		As, PbS			bndg.		2.49, 2.54, 2.89
				***************************************						faint-med. bndd., 50°-	-55 ⁰	- <1%, fm.g. Py, 2.62-
										minor white sec. calc.		2.63, 2.68, 3.05, 3.24,
		4					· · · · · · · · · · · · · · · · · · ·					84-25

PAGE _____ OF ____ 4

DRILL HOLE NO. ____84-25

\$\footnote{5} =	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-25
INTER	RVAL	,			DESC	RIPTION	٧			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										- x-cutting calc. f.f. 3.40-	brecc., fragments sub-
						•				3.50	angular to sub-rounded; 55°
										- at 3.24 1 cm bnd. of	- 41% As, fm.g.; at 2.62-
										dk. gy 1 mm qtz frags.	2.63, 2.68, 2.89, 3.15,
										along folm.	3.19; brecc., frag. sub-
										- foln. @ 2.90 = 52 ⁰	angular to sub-rounded
										- foln. @ 3.54 = 53 ⁰	- tr PbS, f.g., in As/Py
										- broken core 2.29-2.44	bands
											- As & Py in brecc. bands,
											\sim 50°, 5-10 mm thick
3.60	6.68	Lst.	lt. gy	f.g.	fotd.,		ZnS,Py,		100	- mod. well fotd., 35°-60°	- tr honey f.g. ZnS @ 4.32-
		(02)	& bk		shrd.		As,PbS			- med. bndd., bndg. folded	4.38, 5.11, 5.40, 5.45,
			-							- 20% cb. sweatouts, bands	5.81
										≤3 cm, folded & x-cutting	- < 1% f.gm.g. Py diss.
										foln.	along foln. throughout
										- complex folds: 4.02-4.40;	greater concentration of
										$AP \approx foln. = 50^{\circ}, FA = 50^{\circ};$	Py @ 6.44-6.50
										sharp & rounded hinges,	- tr As, fm.g.; at 5.20,
										sheared; 5.45-5.49 - chevron	1, 5.99-6.01, 6.36
-										AP=50°, FA=55°	- tr PbS, f.g., at 5.40
										6.37 - chevron, AP=40°,	
										FA=80°;	
										bndg. folded througout	
-										section	
			1								

PAGE _____ OF ___ 4

\$ 5	ELCO	EXPLORATION WESTERN CANAD	Λ			DR	ILL		LO	G	HOLE NO. 84-25
INTER	VAL					RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
6.68	11.58	Lst.	med. gy	m.g.	fotd.		Py,As,		100	- well fotd., parallel to	- < 1% fm.g. Py, brecc.,
		(03)					ZnS,PbS			bndg.	frag. sub-angular to sub-
										- med. bndd., bndg. folded	rounded, ≤6 mm; concen.
										6.68-7.95; fairly constant	7.66, 8.44 (60 ⁰), 8.60,
										7.95-11.58, 40 ^o -45 ^o	9.88, 10.00, 1.24, 10.48-
										-~10% bk argl. bands	10.50, 11.30
			•							- minor x-cutting calc. f.f.	- tr As, fm.g., brecc.,
										6.65-7.01	frag. sub-angular to sub-
										- cb. sweats fairly common	rounded, ≤4 mm; concen.
										(<1%), 3-10 mm,~ parallel	7.17-7.20, 7.28, 7.66,
										to folm.	9.88, 10.24, 10.48-10.50,
										- broad open fold 7.26-7.62;	11.30
										$AP=90^{\circ}$, $FA=90^{\circ}$	- tr ZnS, f.g.; thin strs.;
										- folds: 6.74 - round hinges,	honey yellow & red-brwn.;
										straight limbs mod. open;	concen. 7.35, 8.97, 9.26,
										AP=80°, FA=60°; many	9.88, 11.30 (52 ⁰ , along
										other complex folds,	fracture)
										generally sheared	- tr PbS, f.g., concen. 9.88
										- broken core 7.68-7.74,	10.00, 10.24
										8.84, 10.36	- As & Py generally occur
											in vague bands
		- END OF HOLE	_							- END OF HOLE -	

PAGE ____3 ___ OF ___4

SEI	LCO	EXPL WESTE	OR ATION RN CANADA			DR	ILL L	OG		S	amp	le d	ata	
	SAI	MPLE			CORE	RECOVERY	VISUAL ESTIMATES		А	SSAY	RESU	LTS		
NUMBER	FROM	T-O	TOTAL METRES	Sp. Gr	%	AMT. LOST	(% ORE MINERALS)	% Pb	% Zn	% As	g/t Ag	g/t Au		
47285	0.00	1.00	1.00		55	0.45 m	·1% As	0.03	0.10	2.870	4.7	5.6		
*****							A							
										1				
														1
			-											
								 						1
					1									1
		1												

\$\$s	ELCO	EXPLORATION WESTERN CANAL				DR	ILL		LO	G		HOLE NO 84-26
DRILLING CO	CONNORS	LOCATION SKET	СН	DEP	тн р	TESTS IP ANGLE	AZIMUTH	1]	TE STARTED:	October 17, 1984	PROJEC	T: J&L
			-1	- COL	LAR	+ 0.3°	044.1		TE COMPLETED:	October 17, 1984	N. T. S. :	82M/8E
									LAR ELEV.:	838.551	LOCATIO	ON: 820M drift
						-			RTHING:	9,944.448		10,607.92E section
								ı	STING:	10,607.720		hanging wall
						~~~~			MUTH:	042°		
								1	PTH:	12.50 m	DATE L	OCCODEL 17, 1964
HOLE TYPE	J.V.							COR	RE SIZE:	в.Q.	LOGGED	BY: T. Garrow
INTE	RVAL	ROCK TYPE			DESCR	IPTION				STRUCTURE		REMARKS
FROM	то	RUCK TIPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURE PER METRE	S % core recovery	(FRACTURES, FAULTS, FOLDING, BE ETC):	DDING,	MINERALIZATION, TYPE, AGE RELATIONS
										ground 25 cm core @ 2.	13	- 40% v.f.g. & subround
0.00	0.09	M.S.			milled		Py,ZnS,		100	- 95% sulphs. 5% gy qtz		c.g. As
		(12)					As,PbS			- good milled texture		- 30% v.f.g. red ZnS in
										with 2 mm subround As		v. thin irreg. str. around
										xtals		As
										- bottom contact v. brok	en	- 20% f.g. Py diss.
										but appear to be abn.	•	- 5% f.g. PbS f.f. in the
										str. of ZnS into unit		top 3 cm
										below		
0.09	0.47	Qtz-Ser Phyll	lt. gy	f.g.	fotd.		ZnS,As,		92	- moderately sericitic		- tr m.g. Py along foln.
		(07)	lt. grn				Ру			- well fotd. & open fold	ling	- <1% red ZnS in thin str.
										- lensy foln.		along foln.
										•		- 5% m.gc.g. As in wedge
												@ 0.30
										a spinoradorial como reconstruir de la como		

PAGE _____1 ___ OF ____4

DRILL HOLE NO. ____84-26 .

\$\s	ELCO	EXPLORATION WESTERN CANAG				DR	LL		LO	G	HOLE NO. 84-26
INTER	R V A L				DESC	RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
0.47	0.66	M.S.			bndd.		Py, As		100	- 80% sulphs. & 20% qtz-ser.	- 40% m.g. & c.g. Py
		(12)				-				phyll	
										- conformable contacts	- 40% m.g. & c.g. As mixed
										- no obvious shearing	with Py
										- sulphides appear to	
										have grown in or replaced	
										phyll along folm.	
										- f/w contact 66°; h/w	
										contact 55°	
0.66	0.76	Qtz-Ser Phyll	lt. gy -	f.g.	fotd.		Py, As		100	- lensy foln.	- 2% c.g. & f.g. Py along
		(07)	lt. grn							- no sec. qtz	foln.
											- 2% f.g. & m.g. As along
											foln.
0.76	1.23	M.S.			milled		As,ZnS,		94	- sulphides x-cut a qtz-	- 60% f.g. & v.c.g. As
		(12)					Py,PbS			ser unit that is tightly	some v. round
										folded on one half of	- 20% red f.g. ZnS
										core(lengthwise)	As f.f. around As xtals
										- 5% white sec. qtz with	- 15% v.f.g. Py 0.97-1.06
										f.f. of c.g. red ZnS,	
										PbS, tr Cpy	
										- f/w contact 70°	

PAGE ____ OF ___ 4

<u>\$</u> 5	ELCO	EXPLORATION WESTERN CANAD	A			DR	LL		LO	G	HOLE NO. 84-26
INTER	VAL					RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
1.23	1.72	Qte	lt. gy	f.g.	weakly		Ру		100	- minor sericite along	- tr f.g. Py diss. along
		(06)			fotd.	-				foln.	foln.
										- dirty qte	
										- core broken	
										- foln. @ $1.40 = 60^{\circ}$	
										- locally calcareous	
										- straight but weak	
										folm.	
1.72	12,50	Argl. Lst.	dk. gy-	f.g.	fotd.		Py, ZnS		100	- v. dark gy 1st.	- tr m.g. Py in sec. calc.
1.72	12.50	(02)	bk	1.9.	Toca.		FY, 2113			- 20-30% bk argl. bnds.	- tr ZnS, f.g., red, str.
		(02)	DK -							but abn. bk argl. diss.	@ 4.94 (50°)
										- 20-30% white sec. calc.	
										often folded? in tight	
										isoclinal folds & re-	
										folded example @ 11.20	
										- v. uniform unit	
										- minor x-cutting v. thin	
										calc. str. @ 32° almost	
										perpendicular to folm.	
					<b> </b>					- foln. @ 5.08 = 57°	
										- foln. @ 9.45 = 48°	
										- foln. @ 12.50 = 48°	
										- med. bndd., 50°-60°	
										med. Diad., 50 00	
		- END OF HOLE	_							- END OF HOLE -	

PAGE ___ 3 ___ OF __ 4 ____

<b>\$</b> SE	rco		LOR ATION TRN CANADA			DF	ILL LO	D G		s	amp	le d	ata	
	SAI	MPLE			CORE	RECOVERY	VISUAL ESTIMATES		А	SSAY	RESUL	. T S		
NUMBER	FROM	TO	TOTAL	Sp. Gr	%	AMT. LOST	(% ORE MINERALS)	% Pb	% Zn	% As	g/t Ag	g/t Au		
47286	0.00	0.09	0.09		100		40% As, 30% ZnS, 20% Py, 5% PbS	7.49	8.52	10.200	204.7	18.9		
47287	0.09	0.47	0.38		92	0.03	tr Py, < 1% ZnS, 5% As	1.78	0.76	2.390	34.6	1.7		
47288	0.47	0.76	0.29		100		40% Py, 40% As +10 cm Qtz-Ser Phyll	0.16	0.11	9.040	8.1	24.1		
47289	0.76	1.23	0.47		94	0.03	60% As, 20% ZnS, 15% Py	4.56	10.50	14.400	103.0	36.9		
47290	1.23	1.72	0.49		100		tr Py	0.38	0.57	1.090	12.0	1.7		
47291	1.72	2.23	0.51		50	0.25	tr Py	0.29	0.12	0.176	7.7	0.5		
	-													
		-		ļ		***								
		-												
			<u> </u>											
		-			ļ								A. C.	
	ļ												dada Militara da antica de Militar de Militar de Parte, el	
		1												
		-			<u> </u>						-			
			_		<b>!</b>				-					
	ļ	-		ļ								-		
		-			<b></b>									
	<del></del>	-			-									
	-				-					-				
		-			-			ļ			ļ			Andrea from the concession of the
	-	-			-									
		J			ــــــــــــــــــــــــــــــــــــــ	<u> </u>		J		J		4	94-26	1

PAGE ____4 OF ___4

\$\sqrt{\$}s	ELCO	EXPLORATION WESTERN CANAI				DR	LL		LO	G		HOLE NO84-27
DRILLING CO	O. CONNORS	LOCATION SKET	СН	DEPT	н р	TESTS IP ANGLE	AZIMUTH	DATE	STARTED:	October 18, 1984	PROJEC	T: J&L
			-	COLLA	R	- 0.3°	222.0	DATE	COMPLETED:	October 18, 1984	N. T. S. :	82M/8E
								COLL	AR ELEV.:	838.272	LOCATIO	N: 830M drift
						*		NORT	HING :	9,948.551		
								EAST	NG:	10,574.467		
								AZIM	ITH:	222 ⁰		
								DEPT		17.68 m	DATE L	OCCODET 18, 1984
OLE TYPE	J.V.							CORE	SIZE:	B.Q.	LOGGED	BY: R. Pegg & C.O
INTE	RVAL	5004 7455			DESCR	IPTION				STRUCTURE		REMARKS
FROM	TO	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEETC):	DDING,	MINERALIZATION, TYPE, AGE RELATIONS
0.00	0.09	Lost Core										
0.09	0.56	Qte	white	f.g.	weakly	ser.	Py, As		100	foln. 50°-60°		10% Py (f.gm.g.)
		(06)			fotd.					ser. in areas of sulph	ıs.	5% As (f.gm.g.)
										& from 0.50-0.56 m		most sulphs. concen. at
												0.25-0.31 m & 0.45-0.50 m
												(ser. concen.)
												- grains are rounded to
												angular & brecc.
												- sulp. bands 60 ⁰ -62 ⁰
0.56	0.92	Lst.	gy	m.g.	bndd.		Ру		92	wavy bndg.,~45°		tr f.g. Py
		(03)										
0.92	4.17	Lst.	dk. gy	m.gf.g	bndd.	sil.	Py,ZnS,			foln. 55°-65°		l% Py (f.g.) blebs & f.f.
		(02)					As,PbS			minor bnd. of qtz-ser		tr ZnS (v. lt. brn.) strs
										phyll (1.37-1.52 m)		& diss.
										minor calcite bnds. &		- Py throughout & sulph.
										lenses		concen. 0.92-1.02 m
		,			·	<del></del>			·	· · · · · · · · · · · · · · · · · · ·		04.27

PAGE 1 0F 5

DRILL HOLE NO _____84-27

\$ si	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-27
INTER	VAL					RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										- ser. bnds. with sulphs.	- tr As, fm.g., brecc.,
							-			- grad. f/w contact & decr.	at 3.69
										in carb. sweatouts	- tr PbS, fm.g., at 3.69
										- bndg. generally contorted	& 3.77 (band 74 ⁰ )
										- broken core: 0.92-1.35,	- ZnS at 3.69 is orange brwn.
- Name of the Property of the						.'				1.83-1.89	band 52°
4.17	4.81	Lst.	lt. gy to	m.g.	faintly		ZnS,Py,		91	- fairly sharp f/w contact	- tr f.g. Py blebs
		(03)	dirty		bndd.		PbS			- bndg. 60°	- tr ZnS (honey) diss.
			white								- tr PbS, f.g., in fracture
											at 4.47 & a few grains at
									100		4.76
4.81	5.83	Lst.	dk. gy	m.g.	shrd.		Ру		100	- carb. sweatouts;	- tr f.g. Py blebs
		(02)								large one at 5.22-5.42 m &	
										5.50-5.71 m	
									_	- bndg. 50°	
									,	fold at 5.70: fairly sharp	
										hinge, mod. open, straight	
										limbs, AP=60°, FA=55°	
5.83	6.40	Lst.	lt. gy to	m.g.	bndd.		Ру		100	- med. bndd., 45 ^o -50 ^o	- tr f.g. Py, diss.
		(03)	dirty								
			white								

\$ s	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-27
INTE	RVAL				DESC	RIPTION	1			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
6.40	7.36	Lst.	dk. gy	m.g.	shrd.		Ру		100	- fine-med. bndd., 45°-60°	- tr f.g. Py, diss. grains
		(02)				-				- carb. sweatout 6.51-6.68	& blebs
										- thin carbon bands contorted	
7.36	7.92	Lst.	med. gy	m.g.	bndd.		Рy		100	- fine-med. bndd., 40 ⁰ -45 ⁰	- tr f.g. Py, diss.; fm.g.,
		(03)								- f/w contact grad.	brecc. concen. 8.50-8.60
7.92	9.42	Lst.	dk. gy	m.q.	bndd.		Py		100	- med. bndd., 40°-45°	
		(02)			shrd.					- complex sheared folds	
										8.04-8.23; AP≈ 70°,	
										FA≈80°; numerous	
										small folds	
										- cb. sweatouts common,	
										1-10 cm; cut & offset	
										bndg. in many places	
										- f/w contact grad.	
9.42	16.25	Lst.	med. gy	m.g.	bndd.		Py,As,		100	- fine-med. bndd.; 50 ^o -60 ^o	- tr Py, fm.g., diss. &
		(03)					ZnS,PbS			- mod. well der. foln.,	in brecc. bands with As
									.,,	parallel to bndg.	- tr As, fm.g., brecc.,
										- bndg. distorted & sheared	fragments ≤2 m, sub-angular
										15.68-16.25	to subrounded; in bands
										- a few cb. sweats 3-6 mm	with Py at 9.59, 9.67,
										thick	10.13, 10.38, 10.42
										- f/w contact sharp	- tr ZnS, f.g. yellow, str.
										- broken core: 9.98-10.03,	at 10.42 (60°); f.g., brown

PAGE 3 OF 5

\$ si	ELCO	EXPLORATION WESTERN CANAD	Λ			DR	ILL		LO	G	HOLE NO. 84-27
INTER	VAL					RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
										10.62, 10.86-11.00, 11.24-	in cb. sweats(?) at
						-				11.40, 11.80-11.94, 12.50,	12.85 & 13.39 (60°)
										14.94, 16.00-16.25	- tr PbS, f.g., at 10.42
										- folds at 15.87-15.94:	& 12.62
										rounded hinges & limbs,	
										$AP = 85^{\circ}$ , $FA = 80^{\circ}$	
16.25	17.68	Chl-qtz phyll	dk. grn-	f.g.	fotd.	chl	Py,Po,As			- well fotd., 60°	- tr Py, fm.g. diss. grains
		(05)	gy							- med. bndd., bands parallel	& blebs & f.f. in qtz
		(03)								to folm.	lenses
										- transl. lt. gy-wh qtz	- tr Po, f.g., thin strs. on
										lenses common; 5 mm to	foln. planes
										3 cm; ~ parallel to foln.;	- tr As, fm.g., brecc.,
									***************************************	up to 5% felds.	one band at 16.62
		- END OF HOLE								- END OF HOLE -	
					,						
							ļ				
		<u> </u>	L			L		l		L	

PAGE ___4 ___ OF ___5

DRILL HOLE NO _____84-27

\$ SE	rco	EXP( WESTE	LOR ATION ERN CANADA			DA	ILL L	OG		S	amp	le d	ata	
	S A	MPLE			CORE	RECOVERY	VISUAL ESTIMATES		А	SSAY	RESUL	LTS		
NUMBER	FROM	TO	TOTAL	Sp. Gr	%	AMT. LOST	(% ORE MINERALS)	% Pb	% Zn	% As	g/t Ag	g/t Au		
47261	0.00	0.56	0.56		84	0.09	10% Py, 5% As	0.50	0.10	4.180	67.6	2.3		
47262	0.56	0.92	0.36		92	0.03	tr Py	0.04	0.03	0.115	2.6	0.1		
47263	0.92	1.92	1.00		98	0.02	2% Py	0.55	0.82	1.290	13.8	1.9		
													and the second s	
		-			1									
					1							-		
														CONTRACTOR OF THE PERSON OF TH
					1									
		1											The same of the sa	er commentent der er

<b>\$</b> 5	ELCO	E XPLORATION WESTERN CANA				DR	ILL		LO	G		HOLE NO84-28
DRILLING CO	O. CONNORS	LOCATION SKET	СН	DEP	тн р	TESTS IP ANGLE	AZIMUTI	1	STARTED:	October 18, 1984	PROJECT:	J&L
			-1	- COLL	. A R	0.00	042.	2	COMPLETED	October 18, 1984	N. T. S. :	82M/8E
								COLL	AR ELEV.:	838.255	LOCATION	830M drift
								NORT	HING:	9,951.418		
		ļ						EAST	ING:	10,574.140		
								AZIM		042 ⁰		
								DEPT		9.60 m	DATE LOG	GED: October 18, 1984
HOLE TYPE	J.V.							CORE	SIZE:	в.Q.	LOGGED B	Y: R. Pegg
INTE	RVAL				DESCR	IPTION				STRUCTURE		REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEL	DDING, M	INERALIZATION, TYPE, AGE RELATIONS
0.00	0.30	M.S.					As, Py		97	wh. calc. matrix		35% As (f.gm.g.)
		(12)								abund. calc. f.f.		25% Py (f.gc.g. aggre-
										- h/w contact 55°,		gates)
										(slightly irreg.)		- sulphs. rounded to
												angular & brecc.
												first 16 cm is As, 3 cm
												of lst., rest is mainly
												Py with 1st. & minor As
0.30	1.15	Lst.	wh.	f.q.	bndd.	ser.	As, Py,		100	grad. h/w contact		1% As (f.g.)
	1.13	(03)	1				PbS			incr. in ser. to h/w		1-2% Py (f.gc.g. aggre-
										mostly clean wh. 1st.	+	gates)
										minor v. thin carbon b		sulphs. found in bnds.
										folm. 50°		(~50°)
						<b> </b>						(0.47 m, 0.55 m, 0.74 m,
												1.03 m)
												tr PbS (v.f.g.)
***************************************												

PAGE ____ OF ___4

NO. 84-28		G	LO		LL	DR				EXPLORATION WESTERN CANA	ELCO	\$s
REMARKS	TRUCTURE	1				RIPTION					RVAL	INTE
ATION, TYPE, AGE RELATIONS	AULTS, FOLDING, BEDDING,	(FRACTURES	% core recovery	FRACTURES PER METRE	ORE MINERALS	ALTERATION	TEXTURE	G R AIN SIZ E	COLOUR	ROCK TYPE	ΤO	FROM
Po f.f.	)	foln. 5	100		Po,Py		fotd.	f.g.	lt. grn-	Qtz-Ser Phyll	1.45	1.15
y f.g.	ken	core br					shrd.		gy	(07)		
	l (incr. to f/w)	minor c										
	e at 1.33 m	- grd. co	- Francisco - Constituto - Cons									
/ (f.g.)	·	- minor s	96		Py,Po,As		fotd.	f.g.	grn	Chll-Ser-Qtz	4.22	1.45
s (f.g.)	z-Chl bnds.	- minor Q								Phyll		
o f.f.	72 m, 3.78-3.80,	(2.45-2								(05)		
mm) bnd. of Po-Py-As	3 m)	3.81-3.										
.42 m (52°)	c (-feld) lenses	minor q										
		& veins										
	-50°	foln. 4										
	lc. f.f.	minor c										
	qtz-feld veins at	abundan										
	7 m	3.40-4.										
Po f.f. & along foln.	254°	- foln. 4	100		Po,Py,As		fotd.	f.g.	lt. grn	Qtz-Chl-Ser	5.81	4.22
/ (f.g.)	c ( ⁺ feld) lenses &	- minor q					shrd.			Phyll		
s (f.g.) blebs	·	veins								(06)		
A second	act Qte (+chl)	minor f										
ow (2 mm) bnd. of Fo	1.80 m	at 4.65										
.44 m (48 [°] )	l-Ser-Qtz Phyll	- minor C										
	1.65 m	at 4.50										
	lc. f.f.	minor_c										····
											-	
_	1.65 m	at 4.50										

PAGE _____ OF ____4____

\$\footnote{5} =	ELCO	EXPLORATION WESTERN CANAD	Λ			DR	ILL		LO	G	HOLE NO. 84-28
INTER	VAL					RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recoverv	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
5.81	7.02	Chl-Ser-Qtz	lt. gy-	f.g.	fotd.		Po,As,		87	foln. 50°-55°	1-2% Po f.f. & along foln.
		Phy11	grn		shrd.	-	Cpy,PbS,			minor Qtz-Chl Phyll	(1 bnd. is 5 mm wide at
		(05)					Ру			at 6.07-6.23 m (calc. f.f.)	6.15; 53 ⁰ )
											tr As (c.g. at 6.15 m)
										lost core between 5.79-	tr Cpy & PbS (v.f.g.) at
										6.55 m (lost 15 cm)	6.15 m
										minor calc. f.f.	tr Py at 6.15 m (c.g.)
W-10-1										folded & shrd.	
										(A.P. 85°, F.A. 70° @ 6.91)	
										refolded with A.P. parallel	
										to c.a.	
7.02	7.36	Qtz-Chl Phyll	lt. gy-	f.g.	fotd.		Ру		100	minor qtz + feld veins	tr Py (v.f.g.)
		(06)	grn	WANTED TO THE TOTAL CONTROL OF THE TOTAL CONTROL OT THE TOTAL CONTROL OF THE TOTAL CONTROL OT THE TOTAL CONTROL OF THE TOTAL CONTROL OF THE TOTAL CONTROL OT THE TOTAL CONTROL OF THE TOTAL CONTROL OF THE TOTAL CONTROL OT						foln. 50°-55°	
7.36	9.60	Chl-Ser-Qtz	lt. gy-	f.g.	fotd.		Py,Po,		100	grd. core at 8.08 m	1% Po f.f. & along foln.
		Phyll	grn				Сру			foln. 52°	l% Py (f.g.) diss. & blebs
		(05)								minor qtz (-feld)	- tr Cpy (f.g.) diss. at
										lenses & veinlets	8.05 m
		A LANGUAGE AND A STATE OF THE S									- Po-Py bnds. at 8.05 m
											(57°) & 8.85 m (63°;
											steeper than foln.)
		- END OF HOLE	-							- END OF HOLE -	

PAGE ___3 __ OF ___4

\$ SE	LCO		LORATION ERN CANADA			DF	RILL LO	) G		S	amp	le c	data	
	S A	MPLE			CORE	RECOVERY	VISUAL ESTIMATES		А	SSAY	RESU	LTS		
NUMBER	FROM	то	TOTAL METRES	Sp. Gr	%	AMT. LOST	(% ORE MINERALS)	% Pb	% Zn	% As	g/t Ag	g/t Au		
47281	0.00	0.30	0.30		97	0.01	35% As, 25% Py	0.05	0.02	15.100	16.2	1.6		
47282	0.30	1.15	0.85		100		1% As, 1-2% Py, tr PbS	0.02	0.02	1.220	8.6	0.3		
47283	1.15	1.45	0.30		100		<1% Po, tr Py	0.01	0.01	0.096	2.5	0.2		
47284	1.45	2.45	1.00		100		1% Py, tr As, 1% Po	40.01	0.01	0.094	4.1	<0.1		
														-
														-
	-									-				
100000000000000000000000000000000000000														_
	-													
							·							
	-													
		-		ļ							1			
				J	Ш	l		l			_L			

PAGE __4___ OF __4___

DRILL HOLE NO. ____84-28

Ssi	ELCO	EXPLORATION WESTERN CANA					DR	ILL		LO	G		HOLE NO84-28
ORILLING CO	CONNORS	LOCATION SKET	СН		EPTH	DI	TESTS IP ANGLE	AZIMUTI	DATE	STARTED:	October 18, 1984	PROJEC	T: J&L
			-	M- C	OLLAR		0.00	042.	2 DATE	COMPLETED		N. T. S. :	82M/8E
									COLL	AR ELEV.	838.255	LOCATIO	
									NORT	HING:	9,951.418		
									EAST	ING:	10,574.140		
	•								AZIM	UTH:	042 ⁰		
									DEPT	н:	9.60 m	DATE LO	October 18, 1984
OLE TYPE	J.V.								CORE	SIZE:	B.Q.	LOGGED	BY: R. Pegg
INTE	RVAL					DESCR	IPTION				STRUCTURE		REMARKS
FROM	ΤO	ROCK TYPE	COLOUR	GRA SIZ	IN T	EXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEC	DDING,	MINERALIZATION, TYPE, AGE RELATION
0.00	0.30	M.S.						As, Py		97	wh. calc. matrix		35% As (f.gm.g.)
		(12)		-							abund. calc. f.f.		25% Py (f.gc.g. aggre-
											- h/w contact 55°,		gates)
											(slightly irreg.)		- sulphs. rounded to
													angular & brecc.
													- first 16 cm is As, 3 cm
							· 4.				The second secon		of lst., rest is mainly
													Py with last. & minor As
				·									
0.30	1.15	Lst.	wh.	f.g		bndd.	ser.	As, Py,		100	grad. h/w contact		1% As (f.g.)
		(03)						PbS			incr. in ser. to h/w		1-2% Py (f.gc.g. aggre-
											mostly clean wh. 1st.	+	gates)
											minor v. thin carbon b	nds.	sulphs. found in bnds.
											folm. 50°		(~50°)
													(0.47 m, 0.55 m, 0.74 m,
													1.03 m)
		······											tr PbS (v.f.g.)

PAGE 1 OF 4

\$\s	ELCO	EXPLORATION WESTERN CANA				DR	ILL		LO	G	HOLE NO. 84-28
INTER	RVAL					RIPTION				STRUCTURE	REMARKS
FROM	Т О	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
1.15	1.45	Qtz-Ser Phyll	lt. grn-	f.g.	fotd.		Po,Py		100	foln. 53°	<la f.f.<="" po="" td=""></la>
		(07)	gy		shrd.					core broken	tr Py f.g.
										minor chl (incr. to f/w)	
										- grd. core at 1.33 m	
1.45	4.22	Chll-Ser-Qtz	grn	f.g.	fotd.		Py,Po,As		96	- minor ser.	1% Py (f.g.)
		Phyll								- minor Qtz-Chl bnds.	tr As (f.g.)
		(05)								(2.45-2.72 m, 3.78-3.80,	
										3.81-3.83 m)	1 (3 mm) bnd. of Po-Py-As
										minor qtz (+feld) lenses	at 3.42 m (52°)
										& veins	
										foln. 45°-50°	
										minor calc. f.f.	
										abundant qtz-feld veins at	
										3.40-4.17 m	
4.22	5.81	Qtz-Chl-Ser	lt. grn	f.g.	fotd.		Po,Py,As		100	- foln. 49 ⁰ 54 ⁰	1-2% Po f.f. & along folm.
		Phyll	}		shrd.					- minor qtz (+feld) lenses &	tr Py (f.g.)
		(06)								veins	tr As (f.g.) blebs
										minor fract Qte (+chl)	
										at 4.65-4.80 m	narrow (2 mm) bnd. of Po
										- minor Chl-Ser-Qtz Phyll	at 5.44 m $(48^{\circ})$
										at 4.50-4.65 m	
			-							minor calc. f.f.	
			-								

PAGE _____ OF ____4____

DRILL HOLE NO. _____84-28

\$\$	ELCO	EXPLORATION WESTERN CANAD	A			DR	ILL		LO	G	HOLE NO. 84-28
INTER	VAL					CRIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
5.81	7.02	Chl-Ser-Qtz	lt. gy-	f.g.	fotd.		Po,As,		87	foln. 50°-55°	> 1-2% \f.f. & along foln.
		Phyll	grn		shrd.		Cpy,PbS,			minor Qtz-Chl Phyll	(1 bnd. is 5 mm wide at
		(05)					Ру			at 6.07-6.23 m (calc. f.f.)	6.15; 53 ⁰ )
											tr As (c.g. at 6.15 m)
										lost core between 5.79-	tr Cpy & PbS (v.f.g.) at
										6.55 m (lost 15 cm)	6.15 m
										minor calc. f.f.	tr Py at 6.15 m (c.g.)
										folded & shrd.	
										(A.P. 85°, F.A. 70° @ 6.91)	
										refolded with A.P. parallel	
										to c.a.	
7.02	7.36	Qtz-Chl Phyll	lt. gy-	f.g.	fotd.		Py		100	minor qtz + feld veins	tr Py (v.f.g.)
		(06)	grn							foln. 50°-55°	
7.36	9.60	Chl-Ser-Qtz	lt. gy-	f.g.	fotd.		Py,Po,		100	grd. core at 8.08 m	1% Po f.f. & along foln.
		Phyll	grn				Сру			foln. 52°	1% Py (f.g.) diss. & blebs
		(05)								minor qtz (-feld)	- tr Cpy (f.g.) diss. at
										lenses & veinlets	8.05 m
											De Du hade of 0.05 m
				 		<del> </del>					- Po-Py bnds. at 8.05 m (57°) & 8.85 m (63°;
											steeper than foln.)
		- END OF HOLE	_							- END OF HOLE -	

PAGE ___ 3 __ 0F ___ 4

LCO					DA	ILL L	OG		s	amp	le d	ata	
SA	MPLE			CORE	RECOVERY	VISHAL ESTIMATES		А	SSAY	RESUL	. T S		
FROM	то	TOTAL	Sp. Gr	%	AMT. LOST	(% ORE MINERALS)	% Pb	% Zn	% As	g/t Ag	g/t Au		
0.00	0.30	0.30		97	0.01	35% As, 25% Py	0.05	0.02	15.100	16.2	1.6		
0.30	1.15	0.85		100		1% As, 1-2% Py, tr PbS	1				1 1		
1.15	1.45	0.30		100		(1% Po, tr Py	7.	0.01	0.096	2,5			
1.45	2.45	1.00		100		1% Py, tr As, 1% Po	< 0.01	0.01	0.094	4.1	<0.1		
•													
				-					ļ				
	S A FROM 0.00 0.30 1.15	S A M P L E FROM T 0 0.00 0.30 0.30 1.15 1.15 1.45 1.45 2.45	S A M P L E           FROM         TO         TOTAL METRES           0.00         0.30         0.30           0.30         1.15         0.85           1.15         1.45         0.30           1.45         2.45         1.00	S A M P L E           FROM         T O         TOTAL METRES METRES         Sp. Gr           0.00         0.30         0.30         0.30           0.30         1.15         0.85         0.30           1.15         1.45         0.30         0.30           1.45         2.45         1.00	S A M P L E         CORE           FROM         T O         TOTAL METRES         Sp. Gr         %           0.00         0.30         0.30         97           0.30         1.15         0.85         100           1.15         1.45         0.30         100           1.45         2.45         1.00         100	SAMPLE         CORE RECOVERY           FROM         TO         TOTAL METRES         Sp. Gr         %         AMT. LOST           0.00         0.30         0.30         97         0.01           0.30         1.15         0.85         100           1.15         1.45         0.30         100           1.45         2.45         1.00         100	S A M P L E	S A M P L E	S AMPLE	S AMPLE	S A M P L E	S A M P L E	S A M P L E

PAGE __4___ OF __4___

DRILL HOLE NO. ____84-28

CONNORS	LOCATION SKET	сн	DEPT				HOLE NO84-29				
		1		H D	TESTS IP ANGLE	AZIMUT	H DAT	E STARTED:	October 18, 1984	PROJEC	J&L
		-1	- COLL	AR	+ 0.4	221.70	DAT	E COMPLETED	October 18, 1984	N. T. S. :	82M/8E
							COL	LAR ELEV.:	838.268	LOCATIO	N: 830M drift
					*		NOR	THING:	9,949.332		
								TING:	10,550.615		footwall
							1		222 ⁰		
							i		15.85 m		OCCODEL 18, 1984
OLE TYPE J.V.						CORE SIZE:			в.О.	LOGGED	BY: T. Garrow
VAL	DOCK TYPE	TYPE		DESCR	IPTION				STRUCTURE		REMARKS
то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURE PER METRE	<pre>\$ % core recovery</pre>	(FRACTURES, FAULTS, FOLDING, BE ETC):	DDING,	MINERALIZATION, TYPE, AGE RELATIONS
						· ·			3 cm of core ground @		
									each of locations @ 0.	.40	
									@ 0.80 @ 1.05 @ 1.16 @	1.27	
0.56	Lst.	m.g.	fotd.		ZnS,Py,		100	- lt. & dk. gy lst. with	n 30%	- tr honey ZnS f.g. in	
	(02)	& bk			As				bk thin bnds. of argl.	. &	several thin bnds. along
									traces of graphite on		foln. @ 0.51-0.52
									foln. planes		- tr m.g. Py & tr m.g. As
									- 2% white sec. calc.		with honey ZnS @ 0.51-
									- unit v. calcareous		0.52
			- All Managers						- lt. gy lst. appears to	)	- tr PbS, f.g., thin str.
									have coarser recrystal	llized	at 0.08
									texture		
									- foln. @ 0.26 = 59 ⁰		
	***************************************										
									med. bliddi, 05 -05		
	· <del>************************************</del>			<del> </del>							
	TO	TO ROCK TYPE  0.56 Lst.	TO ROCK TYPE COLOUR  0.56 Lst. lt.gy	TO ROCK TYPE COLOUR GRAIN SIZE  0.56 Lst. lt. gy m.g.	TO ROCK TYPE COLOUR GRAIN TEXTURE  COLOUR GRAIN SIZE  TEXTURE  O.56 Lst. lt. gy m.g. fotd.	TO ROCK TYPE COLOUR GRAIN TEXTURE ALTERATION  COLOUR SIZE TEXTURE ALTERATION  O.56 Lst. lt. gy m.g. fotd.	TO ROCK TYPE COLOUR GRAIN TEXTURE ALTERATION MINERALS  O.56 Lst. lt. gy m.g. fotd. ZnS,Py,	J.V.  VAL  TO  ROCK TYPE  COLOUR  GRAIN SIZE  TEXTURE ALTERATION MINERALS PERMETRE  O.56  Lst.  1t. gy m.g. fotd.  Zns,py,	J.V.  DESCRIPTION  TO CORESIZE  CORESIZE  DESCRIPTION  COLOUR GRAIN SIZE TEXTURE ALTERATION ORE MINERALS PRACTURES recovery  0.56 Lst. lt. gy m.g. fotd. ZnS,Py, 100	AZIMUTH: 2220	AZIMUTH   222°   DATE LOCATION   DATE LOCATI

PAGE ____1 ___ OF ___4____

\$\sqrt{s}	ELCO	EXPLORATION WESTERN CANAL				DR	ILL		LO	G	HOLE NO 84-29		
INTE	RVAL				DESC	RIPTION	l			STRUCTURE	REMARKS		
FROM	то	ROCK TYPE	COLOUR	G R A I N SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS		
0.56	7.28	Lst.	lt. gy	m.g.	mass.		ZnS,Py		100	- v. uniform medium-coarse	- tr honey f.g. ZnS		
		(03)			weakly					recrystallized texture	- tr f.g. Py in bnd. along		
					fotd.					- v. barren of sulphides	foln. @ 0.72 between two		
										- minor thin argl. bnds.	thin argl. bnds.		
						٠,				@ 0.70 @ 1.64-1.80 @	- tr m.g. Py @ 0.78 @ 0.95		
										1.05-1.13 @ 3.62-3.78	- tr As, f.g. in band at		
										@ 4.72-4.84 @ 6.65-6.82	0.72		
										- core badly broken @	- tr PbS, f.g., at 0.77,		
										4.37-4.49 @ 4.97-5.02	0.95		
										@ 5.26-5.37 @ 5.70-5.75			
										@ 5.86-5.94			
										- folds: 3.79 - isoclinal,			
,										hinge rounded; AP=65°,			
										FA=60°			
7.28	9.20	ArglGr. Lst.	lt. gy	f.g.	fotd.				100	60% bk argl. bnds.	- tr Py @ 8.30 @ along foln.		
		(02)	& bk							with tr graphite on	& @ 8.93 in sec. calc.		
										foln.planes			
										- straight foln. with only			
										v. minor folding			
										- 5% c.g. white x-cutting calc	•		
										f.f. @ approx. 90° to foln.			
										- foln. @ 7.47 = 45°			
										- f/w contact sharp			
				<u> </u>									

PAGE ____ OF ___ 4

\$\sqrt{s}	ELCO	EXPLORATION WESTERN CANAC			G	HOLE NO 84-29					
INTE	RVAL				DES	CRIPTIO	V			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
9.20	14.85	Gy. Bndd. Lst.	lt. & dk.	m.g.	fotd.		ZnS,Py,		100	- v. uniform gy bndd. 1st.	- tr yellow f.g. ZnS str.
		(03)	gy				As			with very minor bk argl.	along foln. @ 9.51 @
										interbnds.	9.65 @ 9.85
										- 1t. gy bnds. appear to	- tr m.gc.g. Py along
										have a coarser recrystallize	d foln. @ 9.51 @ 9.65 @
										texture	9.85 @ 10.50 @ 10.67 @
										- v. minor calc.	11.90
										f.f. @ 90° to foln.	- tr c.g. As along foln. @
										- 12.68-12.85 c.g. white	9.30 @ 9.74
										calc. vein x-cutting	
										minor Py	
										- @ 12.93 possible styolites	
										- increasing argl. bnds. towar	ds
					·					f/w - 14.85	
										- @ 14.12-14.48 & 14.63-14.74	
										v.c.g. calc. veins	
										approx. conformable with	
										abn. argl. material (styolit	es)
										above & below - gy mottled	
										appearance - tr Py	
										- foln. @ 14.00 = 34 [°]	
W											
					L						

PAGE ___ 3 ___ OF ___ 4 ____

\$\footnote{5}	ELCO	EXPLORATION WESTERN CANADA	A	Market Market Agency		DR	ILL		LO	G	HOLE NO. 84-29
INTER	RVAL	_				RIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	G R AIN SIZ E	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
14.85	15.85	Chl-Ser Phyll	lt	f.g.	fotd.		Po,Py		100	v. chloritic	- tr Py diss. along foln.
		(05)	dk. grn							- abn. slip plane v. closely	- tr Po smeared on folm.
										spaced, v. shrd.	planes
										- little or no siliceous	
							-			material	
										- minor sec. qtz. along foln.	
									- foln. @ 15.85 = 46°		
			·								
		- END OF HOLE	-							- END OF HOLE -	
						1					

PAGE ____4 OF ___4

\$ si	ELCO	EXPLORATION WESTERN CANAI				DR	ILL		LO	G		HOLE NO84-30	
DRILLING CO	CONNORS	LOCATION SKET	СН	DEF	тн с	TESTS IP ANGLE	AZIMUTI	DATE	E STARTED:	October 18, 1984	PROJEC	T: J&L	
			-1	- COL	LAR	- 0.1	043.2	DATE	E COMPLETED:	October 18, 1984	N. T. S. :	82M/8E	
								COLL	LAR ELEV.:	838.257	LOCATIO	N: 820M drift	
								NOR	THING:	9,952.544	10,550.6 E section hanging wall		
								EAST	TING:	10,550.291			
								AZIM	NUTH:	042 ⁰			
								DEP		9.75 m	DATE LO	OCCODEL 10, 1964	
HOLE TYPE	J.V.							CORE	E SIZE:	в.Q.	LOGGED	BY: T. Garrow	
INTE	RVAL				DESCR	IPTION				STRUCTURE		REMARKS	
FROM	т о	ROCK TYPE	COLOUR	GRAIN	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEI	DDING,	MINERALIZATION, TYPE, AGE RELATIONS	
										core ground @ 0.58 = 2	24 cm		
										core ground @ 1.20 = 2	24 cm		
										core ground @ 1.60 = 2	24 cm		
										core ground @ 2.13 = 1	cm		
										core ground @ 6.75 = 2	22 cm		
										core ground @ 8.53 = 2	22 cm		
0.00	0.25	M.S.			milled		As,ZnS,		100	- 95% sulphides - 5% gy	qtz	- 50% f.g. & c.g. as more	
		(12)	1				Py,PbS		1	- h/w contact conformabl	Le 47 ⁰	abn. in centre of unit -	
										- non calcareous		minor m.g. As is milled	
										- mass. c.g. As appears	to be	& diss.	
			1							cracked or fractured		- 25% f.g. red ZnS As x-	
										- milled 1 mm Py & As		cutting f.f. through other	
												sulphs.	
			1									- 20% f.gm.g. Py diss	
												most is milled	
												- tr PbS in f.f.	

PAGE ____ OF ___ 5

\$\footnote{\sigma} \sigma}	ELCO	EXPLORATION WESTERN CANAC				DR	ILL		LO	G	HOLE NO. 84-30
INTE	RVAL			***************************************	DES	RIPTION	۷			STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS
0.25	0.51	Qtz-Ser Phyl	lt. gy-	f.g.	fotd.		As,Py		100	- moderately sericitic	- 1% m.g. Py diss. along
		(07)	lt. grn							- wavy foln.	foln.
										- 2% sec. white qtz	- 2% m.gc.g. As diss. in
											siliceous bnds. along foln
0.51	0.82	M.S.			milled		As,ZnS,		23	- milled texture	- 50% Py c.g., about half
		(12)					Ру			- f.g. As + ZnS + milled	f.g. milled
										Py top portion & c.g. Py	- 30% f.g. As
										+ f.g. As + tr PbS bottom	- 20% f.g. red ZnS str.
										portion	along foln.
										- ZnS str. along foln. @	- tr PbS with Py
										h/w, 63°	
										- irregular contacts	
										- qtz-ser phyll centre of	
			·							unit	
0.82	1.56	Qtz-Ser Phyl	lt. gy -	f.g.	fotd.		As,Py,Po		65	- weakly sericitic	- <1% m.gc.g. Py along
		(07)	lt. grn							- h/w contact gradational	foln.
										with increased chl	- <1% f.g. Po in thin str.
										- more sulphides towards	along foln.
										top of unit	- <1% c.g. As along folm.
										- foln.@ 1.50 = 58°	
1.56	6.50	Chl-Ser-Qtz	dk. grn	f.g.	fotd.				100	- top 40 cm moderately	- tr Py m.g. along foln.
		Phyll								siliceous - gradational	
		(05)								contact - rest v. chloritic	

PAGE 2 OF 5

DRILL HOLE NO. ____84-30

\$5	ELCO	EXPLORATION WESTERN CANAL				DR	LL		LO	G	HOLE NO 84-30	
INTE	RVAL					RIPTION				STRUCTURE	REMARKS	
FROM	то	ROCK TYPE	COLOUR	OUR GRAIN TEXTURE		ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core recovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC):	MINERALIZATION, TYPE, AGE RELATIONS	
										- cg. feld xtals in qtz		
						-				@ 2.70		
										- no sec. qtz		
										- minor gouge along foln.		
										between 3.70-3.85		
										- slightly more diss. Py		
										from 6.40-6.50 also core		
										v. broken	•	
										- foln. @ $3.00 = 49^{\circ}$		
										- foln.@ 4.88 = 47 ^o		
										- wavy bndg. @ 2.79, AP=65 ⁰		
										(opp. foln.), FA=80°		
6.50	8.75	Qtz-Ser Phyll	lt. gy-	f.g.	fotd.		Py, Po		97	- top contact gradational	- 1% Py f.g. diss. along	
		(07)	dk. gy-	***************************************						- varying proportions of	foln. & v.c.g. @ 6.71-	
			med. brr							sericite throughout unit	7.10 in sec. qtz & str.	
										- 7.30-7.90 definite med.	of c.g. @ 7.91 & 8.21	
										brn colour to sericite?	- 1% f.g. Po str. along foli	
										still v. siliceous	with Py 7.90-8.30	
		,								- minor sec. qtz along		
										foln. except @ 6.71-		
										7.10 60% sec. qtz x-		
										cutting - abn. c.g.		
		1								feld xtals		
										foln.@ 7.42 = 49 ^o		

PAGE __3 __ OF __5

DRILL HOLE NO. ____84-30

\$ s	ELCO	EXPLORATION WESTERN CANADA	4			DR	LL		G	HOLE NO. 84-30		
INTER	VAL	_	DESCRIPTION						STRUCTURE	REMARKS		
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% core ecovery	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC)	MINERALIZATION, TYPE, AGE RELATIONS	
8.75	9.34	Ser-Qtz Phyll	med. gy	f.g.	fotd.		Po,Py		100	- uniform sericitic unit	- <1% Po smeared on foln.	
		(04)	brn.							- minor chl on foln.	planes	
										- minor feld xtals in	- tr Py smeared on folm.	
										qtz along foln.	planes	
										- foln. @ 9.26 = 48°		
9.34	9.66	Qtz-Ser Phyll	lt	f.g.	fotd.		Po,Py		100	- moderate sericite	- <1% f.g. Po along folm.	
		(07)	dk. gy							- minor c.g. feld along	- <1% f.g. Py along foln.	
										foln.		
										- tr sec. qtz		
										- v. uniform		
										- foln. @ 9.42 = 52 ⁰		
										- gradational contacts		
9.66	9.75	Chl-Ser-Qtz	dk. grn	f.g.	fotd.		Po		100	- uniform weakly fotd.	- tr Po	
		Phyll								- moderately siliceous		
		(05)								- moderately chloritic		
										- tr Po & feld xtals		
										@ top contact		
										- foln. @ 9.75 = 45 [°]		
		- END OF HOLE								- END OF HOLE -		

PAGE ____4 ___ OF ___5

\$ SE	LCO	EXPL WESTE	OR ATION RN CANADA			DA	ILL LO	o G	)G sample data							
	SAI	MPLE			CORE	RECOVERY	VISUAL ESTIMATES		А	SSAY	RESUL	RESULTS				
NUMBER	FROM	то	TOTAL METRES	Sp. Gr	%	AMT. LOST	(% ORE MINERALS)	% Pb	% Zn	% As	g/t Ag	g/t Au				
47264	0.00	0.25	0.25		100	0	50% As, 25% ZnS, 20% Py	6.14	11.10	11.900	203.6	29.5				
47265	0.25	0.82	0.57		58	0.24	20% Py, 15% As, 10% ZnS	1.93	5.54	2.870	54.6	4.4				
47266	0.82	1.56	0.74		65	0.24	<1% Py, <1% Po, <1% As	0.12	0.22	0.686	3.5	0.6				
			-													
					ļ											
		ļ			-											
									-							
					<b> </b>											
					-				-					and the second s		
		ļ	<del> </del>		-											
												-				
					-					-						
		-		-	-				-		1	-				
			<b></b>		-				-	-	-					
					-									-		
		-			-				-	-	-	-				
					-											