REPORT V2572

674599

ALWIN MINING COMPANY LTD.

HIGHLAND VALLEY

BRITISH COLUMBIA

FEASIBILITY REPORT

FOR

500 TON PER DAY

MINING & CONCENTRATING PLANT

WITH

RELATED SERVICES AND FACILITIES

BY

JOINT VENTURE

BACON & CROWHURST LTD.

AND

SANDWELL AND COMPANY LIMITED

CONSULTING ENGINEERS

December 16th, 1970.

Mr. H.E. Jacques, President, Alwin Mining Company Ltd., 807 - 409 Granville St., Vancouver, 2, B.C.

Dear Sir:

Re: Highland Valley Property

Pursuant to your recent request, please note that the following constitutes a summary of our feasibility study, dated May 1970, which envisaged the construction of a 500 T.P.D. copper mining and concentrating plant. The subsequent agreement between the Alwin Mining Company and Furukawa Mining Co. Ltd. was based on the results and economics contained in this report.

The ore to be extracted will be derived from the OK and IOU Crown Grant mineral claims owned by the Alwin Mining Company in the Highland Valley area of B.C.

GENERAL

The feasibility report included economic studies concerning:

- (1) A vertical shaft and horizontal levels.
- (2) A decline with trackless haulage.
- (3) A horizontal adit driven from a portal area to be selected but situated on the Valley Copper mineral claim properties.

The feasibility study recommended that the decline with trackless haulage method be utilized.

ORE RESERVES

Ore reserves as re-estimated during March 1970 by Mr. W.W. Cummings, P.Eng., Chief Geologist for the Alwin Mining Company, and Mr. T.E. Swanson, P.Eng., Consulting Engineer, acting for Bacon & Crowhurst Ltd., amount to 1,051,949 tons assaying 2.51% copper and 0.375 ounces of silver per ton of material in place, and 1,138,910 tons assaying 2.33% copper and 0.346 ounces of silver per ton after allowance for mining dilution.

It is conservatively estimated that a minimum of 250,000 tons of similar material will be found by future exploration.

CAPITAL & OPERATING COSTS

100 82

It is estimated that a total investment of \$4,766,586 will be required to prepare the underground workings for production and to construct the 500 ton concentrator with related facilities. This includes an allowance for inventory of supplies and 2 months operating costs for working capital.

During the first 4 years total operating costs are estimated to be \$11.829 per ton of ore milled which will increase to \$12.451 per ton milled later.

METALLURGICAL PERFORMANCE

The results submitted (a) in April 1969 by the Department of Energy, Mines and Resources, Ottawa, Ontario, (b) those contained in a January 1970 report by Lakefield Research of Canada Limited, Lakefield, Ontario and (c) those given in April 1970 by Allis Chalmers Manufacturing, Process, Test and Research Centre, Oak Creek, Wisconsin, all concerning grinding and copper flotation test work have been studied. Concentrator flow-sheet and design has been based on this information and on a report submitted by Mr. D.A. Livingstone, P.Eng., Metallurgical Consultant.

WATER SUPPLY AND FOLLUTION CONTROL

Discussions have been held with various British Columbia government officials, and applications have been formally submitted by the Alwin Mining Company relative to the construction of a five-foot dam at the outlet of Island Lake, the use of the extra water secured thereby, and the use of Little O.K. Lake as a tailings pond and water reclamation area.

The report considers that these applications will be favourably received and that permission will be granted as required.

POWER

It is assumed that the Alwin Mining Company will build a connecting transmission line between the main Highland Valley British Columbia Hydro and Power Authority high voltage line and the Alwin plant site and purchase power from the Authority. Preliminary discussions with the Authority indicates that this will be possible. It is contemplated that delivery can be effected by the commencement of milling operations; rental diesel-electric units will be used in the interim period.

PRICE OF COPPER

The economic analyses in the report were calculated using metal prices per pound of 50¢, 55¢, 60¢, 65¢ and 70¢ U.S. for copper, and \$1.90 U.S. per troy ounce for silver.

MARKETING

Fre to

It was assumed for the purpose of the report that the concentrates will be sold, loaded, trimmed and stowed, FOB ship at Vancouver, British Columbia, under the terms of typical copper smelter contracts recently negotiated with Japanese companies.

Yours very truly.

BACON & CROWHURST LTD.

J.J. Crowhurst, P.Eng.

JJC/ic

cc: Mr. B.D. Speton

December 14th, 1970.

Mr. H.E. Jacques, President, Alwin Mining Company Ltd., 807 - 409 Granville St., Vancouver, 2, B.C.

Dear Sir:

Pursuant to your inquiry, this is to advise you that we consider the feasibility report for a 500 ton per day milling and concentrating plant, as submitted on May 15th, 1970, to be complete in all respects.

We recommend therefore that the property be placed in production as outlined and that no further work is anticipated prior to production plans with the exception of a minimal amount of diamond drilling required to investigate the mineralized occurrences situated underneath the proposed plant site. It should be noted that these appear to be small in extent but may prove to be larger than anticipated.

Yours truly,

BACON & CROWHURST LTD.

J.J. Crowhurst, P.Eng.

JJC/ic

cc: Mr. B.D. Speton

1720-1055 West Hastings Street Vancouver 1, B.C.

BACON & CROWHURST LTD. CONSULTING ENGINEERS

May 15th, 1970.

Alwin Mining Company Ltd., 807 - 409 Granville St., Vancouver 2, B.C.

Attention: Mr. H.E. Jacques, President

Dear Sir:

We are pleased to submit herewith a final feasibility report concerning placing your Highland Valley, British Columbia, copper property into production at the rate of 500 tons of ore per day, or 175,000 tons of ore per year.

As a results of this study it is recommended that production be achieved by underground methods using trackless diesel-powered equipment. Access would be by means of a decline roadway system.

As detailed in this report, it will be noted that the property is viable at an average price of 50ϕ U.S. per lb. for copper. At the average price of copper effective during the past year, it is considered that the economics are extremely attractive.

Respectfully submitted; BACON & CROWHURST LITD J.J. Crowhurst, P. Eng.

TABLE OF CONTENTS

Page

Covering LetterTerms of Reference1Scope of the Report3Acknowledgements6

Table of Contents

CHAPTER I - SUMMARY & FINANCIAL

General 1 2 Trackless Method - Summary - Estimated Capital Costs Shaft Method - Summary - Estimated Capital Costs 3 4 6 Estimated Net Smelter Returns Trackless Method - Estimated Operating Cost 7 Shaft Method - Estimated Operating Cost 8 Estimated Tons of Concentrates Produced Trackless Method - Estimated Operating Profits -Price of Copper 50ϕ , 55ϕ 9 60¢, 65¢ and 70¢ US to 13 incl. Shaft Method - Estimated Operating Profits -Price of Copper 50ϕ , 55ϕ 14 to 13 incl. 60¢, 65¢ and 70¢ US Trackless Method - Estimated Cash Flow -Price of Copper 50¢ US 19 Trackless Method - Estimated Cash Flow -Price of Copper 60ϕ US 20 Funds Required - by Months 21

CHAPTER II - PROPERTY, HISTORY, GEOLOGY & ORE RESERVES

Property & Location	I
History	1
Buildings & Plant	l
Geology & Mineralization	2
Ore Reserves - Summary	2
- General	2
- Calculations	3
- Estimates	5

- 1 -

CHAPTER III - MINE

General 1 Comparison of Shaft Method & Trackless Method 1 2 Selection of Stoping Methods 2 Stope Preparation 33444 Shrinkage Stoping Cut & Fill Stoping Stope Fill Plant Mine Servicing Ventilation 4 Source of Ore & Grade of Copper Table No. 5 6 1 - Proposed Stope Locations - First 3 Years 2 - Estimated Preproduction Stockpile 3 - Estimated Tons Developed, Mined & Drawn -First Year 7 4 - Estimated Tons Developed, Mined & Drawn -8 Second Year 5 - Estimated Tons Developed, Mined & Drawn -Third Year 10 6 - Estimated Grade of Ore Milled 11 7 - Initial Three Year Production Summary -12 Tons & Grade Preproduction Requirements & Estimated Costs 13

SHAFT METHOD

Table No.	
8a - Preproduction Mine Development	14
8b - Estimated Direct Costs - Preproduction -	
Mine	19
8c - Estimated Indirect Costs - Preproduction -	
Mine	22
8d - Estimated Capital Costs - Preproduction -	
Mine (Supplementary)	23
8e - Estimated Capital Costs - Preproduction -	
Mine	27
8f - Summary - Estimated Preproduction Mine	-
Development Costs	29
8g - Production - Estimated Operating Cost	30

Page

31

-	3	-	

Table No. 9a - Preproduction Mine Development 9b - Estimated Direct Costs - Preproduction -Mine

TRACKLESS METHOD

/~				Mine	36
9c	-	Estimated Indirect Costs	-	-	-
~ 1				Mine	38
9d	-	Estimated Capital Costs	-	Preproduction -	~~
~				Mine (Supplementary)	39
9e	-	Estimated Capital Costs	-	Preproduction	۱
				Mine	41
9f	-	Summary			
		-		n Mine Development Costs	42
9g	-	Production - Estimated Og	per	rating Cost	43

CHAPTER IV - METALLURGY, CRUSHING PLANT & CONCENTRATOR

1
1
1
6
6
6
7
7
7 7 8
8
9
10
11
13
-
14
16
17
,
19

¥

Concentrator Operating Cost		
Labour		20
Supplies & Other	,	21
Summary		23

CHAPTER V - FRESH WATER SUPPLY & TAILINGS DISPOSAL

Introduction	1
Water Requirements	1
Mater Supply - "Island Lake Scheme"	1
Licenses & Permits	2
Alternative Sources	2
Frackless Method - Estimated Cost	3

CHAPTER VI - POWER

Requirements & Availability	1
Estimated Costs - Trackless Method	1
Estimated Costs - Shaft Method	2
Estimated Costs - Trackless & Shaft Method	3

CHAPTER VII - PLANT SERVICES ADMINISTRATION & MANPOWER

General	1
Camp Buildings & Housing	1
Shaft Method	
Estimated Capital Costs - Plant Services, Camp & Housing Estimated Administration Costs - Preproduction Estimated Preproduction Manpower Requirements Production - Operating Cost Estimated Vancouver Head Office Costs Trackless Method	2 34 56
Estimated Capital Costs - Plant Services, Camp & Housing Estimated Administration Costs - Preproduction Estimated Preproduction Manpower Requirements Production Operating Cost Estimated Vancouver Head Office Costs	7 8 9 10 11
Manpower Summary	12

- 4 -

-

Page

CHAPTER VIII - LIST OF ILLUSTRATIONS

- E2572-1 Highland Valley Property 500 Ton per Day Mill Site General Arrangement
- E2572-2 Highland Valley Property Trackless Method Development & Preparation 5340 Level to 5130 Level
- E2572-3 Highland Valley Property Trackless Method Development & Preparation 5130 Level
- E2572-4 Highland Valley Property Trackless Method Development & Preparation 5130 Level to 4900 Level
- E2572-5 Highland Valley Property Trackless Method Location of Drifts on Section Lines 50 & 56
- E2572-6 Highland Valley Property Shaft Method Development & Preparation 5280 Level
- E2572-7 Highland Valley Property Shaft Method Development & Preparation 5130 Level
- E2572-8 Highland Valley Property Shaft Method Development & Preparation 4980 Level
- E2572-9 Highland Valley Property 500 Ton per Day Mill Crushing & Concentrator Plant Flow Diagram

E2572-10 Highland Valley Property 500 Ton per Day Mill Crushing & Concentrator Plant General Arrangement Scheme 2

- E2572-11 Highland Valley Property 500 Ton per Day Mill Crushing & Concentrator Plant General Arrangement Scheme 1
- B2572-12 Highland Valley Property 500 Ton per Day Mill Machine Shop & Compressor House General Arrangement
- B2572-13 Highland Valley Property 500 Ton per Day Mill Bunkhouse & Guest House General Arrangement
- B2572-14 Highland Valley Property 500 Ton per Day Mill Changehouse, Office & Warehouse General Arrangement
- A2572-15 Highland Valley Property 500 Ton per Day Mill Single Line Diagram

TERMS OF REFERENCE

Authority for preparation and the terms of reference for this report were stated in the following letter:

ALWING MINING COMPANY LTD. (N.P.L.) 807 United Kingdom Bldg. 409 Granville Street Vancouver 115, B.C.

February 23rd, 1970.

Messrs. Bacon & Crowhurst Ltd., 1720 - 1055 West Hastings Street, Vancouver 1, B.C.

Attention: Mr. J.J. Crowhurst, Vice-President and General Manager

As discussed with you, please accept this letter as authorization to proceed immediately with the preparation of a final feasibility report concerning placing the Highland Valley, British Columbia, Alwin Mining Company Ltd. copper property into production at the rate of 500 tons of ore per day or 175,000 tons of ore per year.

This authorization includes the engagement at your discretion of other engineers and technical personnel when deemed necessary for the proper completion of the work.

This feasibility report is to include economic studies concerning the following alternative types of operation:

- (1) Shaft and levels as outlined in the preliminary feasibility study as submitted by Bacon and Crowhurst Ltd., dated October, 1969.
- (2) Decline with subsequent trackless haulage re ore transportation to the concentrator.
- (3) Adit driven from a portal area to be selected and to be situated on the Valley Copper mineral claim properties to the northeast of the Alwin claim group.

In addition to the above, the following assumptions are to be made:

- (1) Ore to be extracted will be derived from the O.K. and I.O.U. Crown grant mineral claims in the Highland Valley area, British Columbia, at the average yearly rate quoted above. Provision is to be made for possible future concentrator expansion and/or the possible future installation of facilities required for custom ore treatment. No economic analyses are to be conducted, however, relative to these possibilities.
- (2) The design of the concentrator and the selection of related equipment will be based on the metallurgical test work completed to date by the Mines Branch, Department of Energy, Mines and Resources, Ottawa, and by the Lakefield Research Institute at Peterborough, Ontario.
- (3) Fresh water supply will be obtained from a source in the central Highland Valley area by arrangement with the Bethlehem Copper Corporation Ltd. or with Valley Copper Mines Ltd., under their existing water licenses or an addendum thereto.
- (4) Power will be supplied initially by rental diesel-electric units until delivery of hydro-electric power can be obtained. Discussions are to be held with the British Columbia Hydro Authority and with the property owners over which a transmission line would be erected.
- (5) Housing will be supplied by the construction, rental or acquisition of a small number of houses for key employees plus bunkhouse and trailer-type accommodation for the remainder of the required crew.
- (6) Copper concentrates will be transported to Vancouver, British Columbia, stored and loaded on deep sea ships, and then sold to prospective purchasers.
- (7) Detailed soil investigations of the various prospective concentrator and plant sites will not be completed, but preliminary assessments of the possibilities will be carried out.
- (8) Consideration will be given to the purchase of good second-hand equipment, and a preliminary survey of availability will be included in the report.
- (9) The final tailing disposal method will be subject to completion of negotiations with the various British Columbia Government Departments. Sufficient information will be obtained, however, to permit fairly accurate estimates of the possibilities.

Yours very truly,

ALWIN MINING COMPANY LTD. (N.P.L.)

Harold E. Jacques, President. Accordingly, arrangements regarding the completion of this study as a joint venture were made with Sandwell and Company Limited early in March, 1970. This report represents, therefore, the combined effort of both Bacon & Crowhurst Ltd. and Sandwell and Company Limited.

SCOPE OF THE REPORT

This report contemplates the following:

(1) Rate of Production

The concentrator will process 500 tons of ore per day for 350 operating days per year, or 175,000 tons of ore per year. Provision has been made for possible future concentrator expansion and/or the possible future installation of facilities required for custom ore treatment. No economic analyses relative to these possibilities, however, have been included.

(2) Source of Ore

The ore will be extracted from the mineralized zones situated on the O.K. and I.O.U. Crown grant mineral claims owned by Alwin in the Highland Valley area, British Columbia.

(3) General Plan

Three plans have been contemplated but only two have been studied and compared in detail:

(a) Shaft Method

A vertical three compartment shaft, 770 feet in depth with four levels established at 150-foot intervals would be sunk from the surface close to and just northerly from the centre of the ore zone.

Cut-and-fill and shrinkage stoping would be used to extract the ore, which would be hauled by trains to the shaft for hoisting to the surface.

The concentrator and plant services would be situated close to the shaft headframe.

(b) Decline-Trackless Method

A decline ramp system would be driven downwards from the surface close to and between the ore zones to gain access to the stoping areas. Cut-and-fill and shrinkage stoping would again be used to extract the ore, which would, however, be transported by trackless load-haul-dump diesel operated machines to centrally located ore passes. Diesel dump trucks would then carry the ore from chutes at the bottom of these ore passes through the existing adit to the concentrator coarse ore bin.

The concentrator would be situated on the hillside to the south of Little O.K. Lake, at an approximate distance of 800 feet to 1000 feet from the adit portal.

(c) New Adit Method

The possibility of developing the mine by means of a new adit (or decline) to be driven from a portal area situated to the northeast of the ore zones has also been investigated.

Discussions with Valley Copper Mines officials, on whose mineral claims the proposed portal collar, concentrator and plant services would be located, clearly indicated that the proposal would conflict with their plans for their own plant layout, and that therefore no agreement could be reached between Valley and Alwin relative to the acquisition of a suitable tract of land. As a result, no detailed study of this method of mine development has been made.

(4) Metallurgical Performance

The results submitted (a) in April 1969 by the Department of Energy, Mines and Resources, Ottawa, Ontario, (b) those contained in a January 1970 report by Lakefield Research of Canada Limited, Lakefield, Ontario and (c) those given in April 1970 by Allis Chalmers Manufacturing, Process, Test and Research Centre, Oak Creek, Wisconsin, all concerning grinding and copper flotation test work have been studied. Concentrator flow-sheet and design has been based on this information and on a report submitted by Mr. D.A. Livingstone, P. Eng., Metallurgical Consultant.

(5) Water Supply and Pollution Control

Discussions have been held with various British Columbia government officials, and applications have been formally submitted by the Alwin Mining Company relative to the construction of a five-foot dam at the outlet of Island Lake, the use of the extra water secured thereby, and the use of Little O.K. Lake as a tailings pond and water reclamation area.

This report considers that these applications will be favourably received and that permission will be granted as required.

(6) Power

It is assumed that the Alwin Mining Company will build a connecting transmission line between the main Highland Valley British Columbia Hydro and Power Authority high voltage line and the Alwin plant site and purchase power from the Authority.

- 4 -

Preliminary discussions with the Authority indicates that this will be possible. It is contemplated that delivery can be effected by the commencement of milling operations; rental diesel-electric units will be used in the interim period.

(7) Price of copper

The economic analyses in this report are calculated using metal prices per pound of 50ϕ , 55ϕ , 60ϕ , 65ϕ and 70ϕ U.S. for copper, and \$1.90 U.S. per troy ounce for silver.

(8) Marketing

It is assumed for the purpose of this report that the concentrates will be sold, loaded, trimmed and stowed, FOB ship at Vancouver, British Columbia under the terms of typical copper smelter contracts recently negotiated with Japanese companies.

(9) Economics

An economic analysis has been compiled including preproduction costs, capital expenditures, warehouse inventory, working capital, operating costs, operating profit, Dominion Income and Provincial Mining Taxes, estimated financial charges and net cash flow.

(10) Purchase of Equipment

The detailed cost estimates include prices for both new and available good, used machinery and equipment. The used articles would be carefully examined and perhaps tested before purchase.

Since it is desirable to keep the capital cost of placing the property into production at a minimum, the summary and financial analyses are based on the "new plus used" estimates.

(11) Escalation

Costs have been calculated on the basis of labour and supplies as estimated to cost during 1970-71. No allowances have been included for escalation in these costs, as it has been assumed that this will be offset by improvement in mining technology and general increases in the prices of metals.

ACKNOWLEDGMENTS

Acknowledgments are made to the following, all of whom contributed valuable assistance in the compilation of this report:

(1) Alwin Mining Company Staff

A.E. Wells - Property Superintendent

W.W. Cummings, P. Eng. - Chief Geologist

P.L. Hazell - Executive Assistant

(2) T.E. Swanson, P. Eng.

Ore reserves and mining plans.

(3) The Granby Mining Company Limited

D.A. Livingstone, P. Eng. - Metallurgy and concentrator flow sheet.

(4) R.W. Gould

Metallurgy, concentrator flow sheet and concentrator design.

(5) Sandwell and Company Limited

Senior staff engineers.

CHAPTER I SUMMARY & FINANCIAL

SUMMARY

Ore reserves as re-estimated during March 1970 by Mr. W.W. Cummings, P. Eng., Chief Geologist for the Alwin Mining Company, and Mr. T.E. Swanson, P. Eng., Consulting Engineer, acting for Bacon & Crowhurst Ltd., amount to 1,051,949 tons assaying 2.51% copper and 0.375 ounces of silver per ton of material in place, and 1,138,910 tons assaying 2.33% copper and 0.346 ounces of silver per ton after allowance for mining dilution.

It is conservatively estimated that a minimum of 250,000 tons of similar material will be found by future exploration.

Capital Costs

Using trackless diesel-powered equipment and a decline system, it is estimated that a total investment of \$4,766,586 will be required to prepare the underground workings for production, and to construct a concentrator with related facilities, including townsite requirements, capable of processing 500 tons of ore per day (175,000 tons per year).

The present ore reserves will suffice for 6.51 years operation at this rate, with a further 1.43 years anticipated, for a total of 7.94 years.

The sum of \$90,000 representing inventory of supplies, and the sum of \$344,992 representing two months' operating costs for working capital are included in the \$4,766,586 total.

Similarly, it is estimated that developing the mine by a vertical shaft and horizontal levels will require a total investment of \$5,402,226 including costs related to concentrator and plant services.

The sum of \$90,000 representing inventory of supplies, and the sum of \$363,727 representing two months' operating costs for working capital are included in the \$5,402,226 total.

During the first four years, the total operating cost for the trackless method is estimated to be \$11.829 per ton of ore milled, and \$12.472 per ton of ore milled for the shaft method. It is estimated this will increase to \$12.451 per ton milled (trackless) and \$13.094 per ton milled (shaft).

The estimated operating profit for each method and the estimated resulting cash flow has been calculated as shown in the tables on the succeeding pages.

It is estimated that nine months time will be required to place the mine in production from the time that suitable finances are provided.

TRACKLESS METHOD

SUMMARY - ESTIMATED CAPITAL COSTS

1.	Mine a. Equipment- including installation	\$ 536,730			
	Government Sales Tax Freight	33,950 5,400	76,080		
	b. Preproduction Development & Stoping - Direct Cost	φ ~ \$ 744,082	10,000		
	- Indirect Cost	345,825	89,907		
	Total Mine		\$1,665,987		
2.	Crushing Plant a. Equipment b. Building	\$ 246,869 <u>126,394</u>	373,263		
3.	Concentrator a. Equipment b. Building	\$ 298,606 <u>184,233</u>	482,839		
4.	Plant Services & Administration - Buildings & Equipment		306,459		
5.	Water Supply, Fire Protection, & Tailings Disposal		140,000		
6.	Power Transmission & Distribution		323,100		
7.	Camp Buildings & Housing		256,400		
8.	Preproduction Plant Services & Administration Cost		166,836		
9.	Vancouver Head Office - 9 months at \$4,064		36,576		
	Contingencies at 1	0%	\$3,751,460 <u>375,146</u>		
	Engineering on App	licable Items	\$4,126,606 		
	Inventory of Supplies				
	Working Cenitel -	2 months Operating	\$4,421,594 Costs		
	(i.e. 1/6 x \$2,0				
	Total		\$4,766,586		

SHAFT METHOD

SUMMARY - ESTIMATED CAPITAL COSTS

1.	Mine			
	a. Equipment - includ: installation Government Sales Ta Freight	\$ 669,515	\$ 718,057	
	 b. Preproduction Devel & Stoping - Direct Cost - Indirect Cost 	lopment \$ 996,092 <u>437,881</u>	\$1,433,973	
	Total Mine			\$2,152,030
2.	Crushing Plant a. Equipment b. Building	\$ 241,513 115,340		356,853
3.	Concentrator a. Equipment b. Building	\$ 303,494 144,550		448,044
4.	Plant Services & Admini -Buildings & Equipmer			339,449
5.	Water Supply, Fire Prot & Tailings Disposal	tection,		140,000
6.	Power - Including Elect Distribution	trical		344,400
7.	Camp Buildings & Housin	ng		280,900
8.	Preproduction Plant Ser & Administration Cost			183,373
9.	Vancouver Head Office - 9 months at \$4,064			36,576
	Conting	encies at 10%		\$4,281,625 428,163
	Enginee	ering		\$4,709,788 2 <u>38,711</u>
	Invento	ory of Supplies		\$4,948,499 90,000
	Working	; Capital - 2 months Ope	rating Costs	\$5,038,499
		1/6 x \$2,182,363)	TANTIE OUD DD	363,727
	Total			\$5,402,226

-

-

- 4 -

ESTIMATED NET SMELTER RETURNS

PER SHORT TON OF CONCENTRATES

FOB MINESITE

		Price of Cop	per - ¢U.S	. per lb	
	50.00	55.00	60.00	65.00	70.00
Content & Price Paid For					
a. Lbs of copper contained/ton of concentrate	640	640	540	640	640
b. Lbs of copper paid for/ton of concentrate	620	620	620	620	620
c. Price of copper less deduction of 1.20¢/lb	48.80	53.80	58.80	63.80	68.80
Value of Metals Contained					
d. Value of copper - (item "b") x (item "c") - \$U.S.	\$ 302.56	\$ 333.56	\$ 364.56	\$ 395.56	\$ 426.56
e. Value of silver - 5.40 ozs x \$1.90/1b x 90%	9.23	9.23	9.23	9.23	9.23
f. Value of gold - less than 1.0 gr/dry m. ton					
g. Total - item "d" + item "e"	311.79	342.79	373.79	404.79	435.79
Deductions					
h. Treatment Charge = $27.00/dry$ metric ton					
i.e. = $\frac{27.00 \times 2000}{2204.6}$ = 24.49/dry short ton	24.49	24.49	24.49	24.49	24.49
Net Value					
(FOB Ship Vancouver, B.C.)					
i. Item "g" - item "h" - \$U.S./short ton concentrate	287.30	318.30	349.30	380.30	411.30
j. Plus Canadian/U.S. exchange @ 7.75%	22.27	24.67	27.07	29.47	31.88
k. Net value - \$Canadian/short ton concentrate	\$ 309.57	\$ 342.97	\$ 376.37	\$ 409.77	\$ 443.1 8

.

	-	5 -				
		Pri	ce of Coppe	er - ¢U.S.	per lb	
		50.00	55.00	60.00	65.00	70.00
<u>Loa</u> 1.	ding & Freight (Mine to Vancouver, B.C. to Ship) Loading at mine - included in mill operating costs	Per Wet Ton of Concentrate				
	Trucking (or rail) - mine to Vancouver, B.C.	\$ 6.45				
n. Sub	Sampling, warehousing & shiploading (Vancouver Wharves - $$3.50$) + (stevedoring = $17¢$) Total	<u>3.67</u> \$ 10.12				
ο.	Loading & freight per dry ton of concentrate*	Per Dry Ton <u>of Concentrate</u> \$ 10.88	\$ 10.88	\$ 10.88	\$ 10.88	\$ 10.88
Net	Smelter Returns					
	(FOB Minesite)					
p.	Per short dry ton of concentrate (item "k") - (item "o") = \$Canadian	298.69	332.09	365.49	398.89	432.30
q.	Per lb of copper contained - $\frac{\text{item "}p"}{640} = \phi \text{ Canadian}$	46.67	51.89	57.11	62.33	67.55

1 1 1 1

I

٦

1

1

Assumptions

Grade of copper concentrate = 32% Cu. + 0.035 ozs Au/ton + 5.40 ozs Ag/ton.

1 1

1

* Moisture content = 7% of wet weight.

1

1

1

1

1

Ţ

Price of silver = \$1.90 U.S. per ounce.

TRACKLESS METHOD

ESTIMATED OPERATING COST - 500 TPD OR 175,000 TPY

	First	4 Years	Next	4 Years		
	Amt/yr	Per Ton <u>Milled</u>	Amt/yr	Per Ton <u>Milled</u>		
Mining	\$1,325,248	\$ 7.573	\$1,443,125	\$ 8.195		
Milling	301,1 75	1.721	301,175	1.721		
Power	93,996	•537	93,996	•537		
Mine Administration, Plant Services and Townsite	300,768	1.719	300, 768	1.719		
Vancouver Head Office	48,768	<u>279</u>	48,768	<u>.279</u>		
Totals	\$2 ,0 69 , 955	\$11.829	\$2,187,832	\$ 12.451		

.

...

- 6 -

SHAFT METHOD

ESTIMATED OPERATING COST - 500 TPD OR 175,000 TPY

	First	4 Years	Next 4	Years
	<u>Amt/yr</u>	Per Ton <u>Milled</u>	<u>Amt/yr</u>	Per Ton Milled
Mining	\$1,406,895	\$ 8.040	\$1,515,850	\$ 8.662
Milling	301 , 175	1.721	301,175	1.721
Power	108,600	0.621	108,600	0.621
Mine Administration, Plant Services and Townsite	316,925	1.811	316,925	1.811
Vancouver Head Office	48,768	0.279	48,768	0.279
Totals	\$2,182,363	\$12.472	\$2,291,31 8	\$13.094

-

- 7 -

Г

•

- 8 -

ESTIMATED TONS OF CONCENTRATES PRODUCED AT 500 T.P.D.

Year	<u>Mill Feed</u> Tons	Assay % Cu	Tons of Copper	000's lbs of Copper	Concentrates 000's lbs Cu. Recovered At 94%	Dry Tons At 32% Cu.	Dry Tons Sold at 99% (1% loss in transit)
1	175,000	2.77	4847.5	9695	9113.3	14,240	14,098
2	175,000	2.67	4672.5	9345	8784.3	13,726	13,589
3	175,000	2.30	4025.0	8050	7567	11,823	11,705
4	175,000	2.18	3815.0	7630	7172.2	11,207	11,095
5	175,000	2.18	3815.0	7630	7172.2	11,207	11,095
6	175,000	2.18	3815.0	7630	7172.2	11,207	11,095
7	175,000	2.18	3815.0	7630	7172.2	11,207	11,095
8	175,000	2.18	3815.0	7630	7172.2	11,207	11,095
Totals and Avera	s ges 1,400,000	2.33	32620.0	65240	61325.6	95 , 824	94,867

1

TRACKLESS METHOD

•

ESTIMATED OPERATING PROFIT - CANADIAN FUNDS PRICE OF COPPER - 50¢ US

Year:	<u> </u>	2	3	4	5	6	_7_	_8_	Total & Average
Tons milled - 000's	175	175	175	175	175	175	175	175	1,400
Tons concentrates sold	14,098	13,589	11 , 705	11,095	11,095	11,095	11,095	11,095	94,867
Net smelter returns - 000's \$Can. at \$298.69/ton of concentrates	4,211	4,059	3,496	3,314	3,314	3,314	3,314	3,314	28,336
Net smelter returns per ton of ore milled	24.063	23.194	19.977	18•937	18.937	18.937	18.937	18.937	20.240
Operating cost per ton of ore milled	11,829	11.829	11.829	11.829	12.451	12.451	12.451	12.451	12.140
Operating Profit per ton of ore milled	12.234	11,365	8,148	7.108	6.486	6.486	6.486	6.486	8,100
Operating Profit - 000's \$Can.	2,141	1,989	1,426	1,244	1,135	1,135	1,135	1,135	11,340

.

- 10 -

TRACKLESS METHOD

ESTIMATED OPERATING PROFIT - CANADIAN FUNDS PRICE OF COPPER - 55ϕ US

Years	1	2	_3_	_4	_5	6	7	8	Total & Average
Tons milled - 000's	175	175	175	175	175	175	175	175	1,400
Tons concentrates sold	14,098	13,589	11,705	11,095	11,095	11,095	11,095	11,095	94,867
Net smelter returns - 000's \$Can. at \$332.09/ton of concentrates	4,682	4,513	3,887	3 , 685	3 , 685	3,685	3,685	3, 685	31,504
Net smelter returns per ton of ore milled	26.754	25.789	22,211	21.057	21.057	21.057	21.057	21.057	22.503
Operating cost per ton of ore milled	11.829	11.829	11.829	11.829	12.451	12.451	12.451	12.451	12.140
Operating Profit per ton of ore milled	14.925	13.960	10.382	10.22 8	8.606	8.606	8.606	8.606	10.363
Operating Profit - 000's \$Can.	2,612	2,443	1,617	1,790	1,506	1,506	1,506	1,506	14,508

Т

- 11 -

TRACKLESS METHOD

ESTIMATED OPERATING PROFIT - CANADIAN FUNDS PRICE OF COPPER - $6c\phi$ US

Years	1	2	3	<u> </u>	_5	6	_7_	8	Total & Average
Tons milled - 000's	175	175	175	175	175	17 5	175	175	1,400
Tons concentrates sold	14 ,0 98	13,589	11 , 705	11,095	11,095	11,095	11 ,0 95	11,095	94,867
Net smelter returns - 000's \$Can. at \$365.49/ton of concentrates	5,153	4,967	4 ,2 78	4,055	4,055	4,055	4,055	4,055	34,673
Net smelter returns per ton of ore milled	29.446	28.383	24.446	23.171	23.171	23.171	23.171	23,171	24.766
Operating cost per ton of ore milled	11.829	11,829	11.829	11,829	12.451	12,451	12.451	12.451	12,140
Operating Profit per ton of ore milled	17.617	16.554	12.617	11.342	10.720	10.720	10.720	10.720	12.626
Operating Profit - 000's \$Can.	3,083	2,897	2 ,20 8	1,985	1,876	1,876	1,872	1,872	17,676

1

- 12 -

TRACKLESS METHOD

ESTIMATED OPERATING PROFIT - CANADIAN FUNDS PRICE OF COPPER - 65ϕ US

Years	1	2	3	<u> </u>	_5_	6	_7	8	Total & Average
Tons milled - 000's	175	175	175	175	175	175	175	175	1,400
Tons concentrates sold	14,09 8	13,589	11,705	11 ,0 95	11,095	11,095	11,095	11,095	94,867
Net smelter returns - 000's \$Can. at \$398.89/ton of concentrates	5,624	5,421	4,669	4,426	4,426	4,426	4,426	4,426	37,841
Net smelter returns per ton of ore milled	32.137	30.977	26.680	25.291	25.291	25.291	25.291	25.291	27.029
Operating cost per ton of ore milled	11.829	11.829	11.829	11.829	12.451	12.451	12.451	12.451	12,140
Operating Profit per ton of ore milled	20.308	19.148	14.851	13.462	12.840	12.840	12.840	12.840	14.889
Operating Profit - 000's \$Can	3,554	3,351	2,599	2 , 356	2,247	2,247	2 , 247	2,247	20, 845

TRACKLESS METHOD

ESTIMATED OPERATING PROFIT - CANADIAN FUNDS PRICE OF COPPER - 70ϕ US

Years	1	2	3	<u> 4 </u>	5	6	_7	8	Total & Average
Tons milled - 000's Tons concentrates sold	175 14,098	175 13,589	175 11 ,705	175 11,095	175 11,095	175 11,095	175 11,095	175 11,095	1,400 9 4 ,867
Net smelter returns - 000's \$Can. at \$432.30/ton of concentrates	6,095	5 , 875	5,060	4,796	4,796	4,796	4,796	4,7%	41,011
Net smelter returns per ton of ore milled	34.829	33.571	28.914	27.406	27.406	27.406	27.406	27.406	29.294
Operating cost per ton of ore milled	11.829	11.829	11.829	11.829	12.451	12.451	12.451	12.451	12.140
Operating Profit per ton of ore milled	23.000	21.742	17.085	15.577	14.955	14.955	14.955	14.955	17.154
Operating Profit - 000's \$Can.	4,025	3, 805	2,990	2,726	2,617	2,617	2,617	2,617	24,016

1

- 13 -

- 14 -

7 --- 7

1

SHAFT METHOD

ESTIMATED OPERATING PROFIT - CANADIAN FUNDS PRICE OF COPPER - 50ϕ US

Year:	_1_	2	_3_	<u>4</u>	_5	6	_7	8	Total & <u>Average</u>
Tons milled - 000's	175	175	175	175	175	175	175	175	1,400
Tons concentrates sold	14 , 098	13,589	11 , 705	11,095	11,095	11,095	11 ,0 95	11,095	94,867
Net smelter returns - 000's \$Can. at \$298.69/ton of concentrates	4,211	4,059	3 , 496	3 , 314	3,314	3,314	3,314	3,314	28,336
Net smelter returns per ton of ore milled	24.063	23.194	19.977	18.937	18.937	18.937	18.937	18,937	20.240
Operating cost per ton of ore milled	12.472	12.472	12.472	12.472	13.094	13.094	13.094	13.094	12.783
Operating Profit per ton of ore milled	11.591	10,722	7.505	6.465	5.843	5.843	5. ⁸⁴ 3	5,843	7.457
Operating Profit - 000's \$Can.	2,028	1,876	1,131	1,131	1,023	1,023	1,023	1,023	10,440

SHAFT METHOD

ESTIMATED OPERATING PROFIT - CANADIAN FUNDS PRICE OF COPPER - 55ϕ US

Years	1	_2	3	<u> </u>	_5	6	7	8	Total & Average
Tons milled - 000's	175	175	175	175	175	175	175	175	1,400
Tons concentrates sold	14,098	13,589	11,705	11,095	11,095	11,095	11,095	11,095	94,867
Net smelter returns - 000's \$Can. at \$332.09/ton of concentrates	4,682	4,513	3,887	3,685	3,685	3,685	3 , 685	3,685	31,504
Net smelter returns per ton of ore milled	26.754	25.789	22.211	21.057	21.057	21.057	21.057	21.057	22.503
Operating cost per ton of ore milled	12.472	12.472	12.472	12.472	13.094	13.094	13.094	13.094	12.783
Operating profit per ton of ore milled	14.282	13.317	9.739	8.585	7.963	7.963	7.963	7.963	9.720
Operating profit - 000's \$Can	2,499	2,330	1,704	1,502	1,394	1,394	1,394	1,394	13,608

I.

- 16 -

The second second

SHAFT METHOD

ESTIMATED OPERATING PROFIT - CANADIAN FUNDS PRICE OF COPPER - 60ϕ US

Years	1	_2	_3_	4	_5_	6	_7_	8	Total & Average
Tons milled - 000's	175	175	175	175	175	175	175	175	1,400
Tons concentrates sold	14,098	13,5 ⁸ 9	11,705	11,095	11,095	11,095	11,095	11,095	94,867
Net Smelter Returns - 000's \$Can at \$365.49/ton of concentrates	5,153	4,967	4,278	4,055	4,055	4,055	4,055	4,055	34,673
Net Smelter Returns per ton of ore milled	29.446	28.383	24.446	23.171	23.171	23.171	23.171	23.171	24.766
Operating cost per ton of ore milled	12.472	12.472	12.472	12.472	13.094	13.094	13.094	13.094	12.783
Operating Profit per ton of ore milled	16.974	15.911	11.974	10.699	10.077	10.077	10.077	10.077	11.983
Operating Profit - 000's \$Can	2,970	2,784	2,095	1,872	1,763	1,763	1,763	1,763	16,776

I.

- 17 -

1

1

SHAFT METHOD

ESTIMATED OPERATING PROFIT - CANADIAN FUNDS

PRICE OF COPPER - 65¢ U.S.

Years	1	2	3	<u> </u>	_5	_6	_7_	8	Total & Average
Tons milled - 000's	175	175	175	175	175	175	175	175	1,400
Tons concentrates sold	14,098	13,589	11,705	11,095	11,095	11,095	11,095	11,095	94 , 867
Net smelter returns - 000's \$Can at \$398.89/ton of concentrates	5 , 624	5,421	4,669	4,426	4,426	4,426	4,426	4,426	37,841
Net smelter returns per ton of ore milled	32.137	30.977	26.680	25.291	25.291	25.291	25.291	25.291	27.029
Operating cost per ton of ore milled	12.472	12.472	12.472	12.472	13.094	13.094	13.094	13.094	12.783
Operating Profit per ton of ore milled	19.665	18.505	14.208	12.819	12.197	12.197	12.197	12.197	14.246
Operating Profit - 000's \$Can	3,441	3,238	2,486	2,243	2,134	2,134	2,134	2,134	19, 944

SHAFT METHOD

ESTIMATED OPERATING PROFIT - CANADIAN FUNDS PRICE OF COPPER - 70¢ US										
į										
Years	<u> </u>	2	_3_	<u>4</u>	_5_	6	_7_	8	Total & Average	
Tons milled - 000's	175	175	175	175	175	175	175	175	1,400	
Tons concentrates sold	14,098	13,589	11,705	11,095	11,095	11,095	11,095	11,095	94,867	
Net smelter returns - ooo's \$Can. at \$432.30/ton of concentrates	6,095	5,875	5,060	4,796	4,796	4,796	4,796	4,796	41,011	
N.S.R. per ton of ore milled	34.829	33.571	28.914	27.406	27.406	27.406	27.406	27.406	29.294	
Operating cost per ton of ore milled	12.472	12.472	12.472	12.472	13.094	13.094	13.094	13.094	12 .783	
Operating profit per ton of ore milled	22.357	21.099	16.442	14.934	14.312	14.312	14.312	14.312	16.511	
Operating profit - 000's \$Can.	3,912	3,692	2,877	2,613	2,505	2,505	2,505	2,505	23,115	

1

- 19 -

1

TRACKLESS METHOD

•

ESTIMATED CASH FLOW PRICE OF COPPER - 50¢ US											
ALL FIGURES ARE 000'S \$ CANADIAN										• •	
	1/2	1	<u>1-1/2</u>	2	<u>2-1/2</u>	_3_	<u>4</u>	_5_	6	_7_	_8
Operating Profit Investment Income	1,070	1,071	994 -	995 -	713	713	1,244 14	1,135 39	1,135 39	1,135 39	1,135 39
Total Income Replacement of Assets (Non-Capital) Interest	1,070 - 396	1,071 50 205	994 - 164	995 50 122	713 - 81	713 50 53	1,258 50 14	1,174 50 -	1,174 50 -	1,174 50 -	1,174 50 -
Total Other Deductions Operating Profit Prior to Dep'n. & Taxes	396 674	255 816	164 834	172 823	81 632	103 610	64 1,194	50 1,124	50 1,124 428	50 1,124	50 1,124
Depreciation Write-off Pre-Production Expenses Total Other Write-offs	- 674 674	- 816 816	- 834 834	- 823 823	- 108 108		873 - 873	612 - 612	428 - 428	300 - 300	210 - 210
Taxable Income for B.C. Min. Tax Processing Allowance + \$10,000 Allowance	-	-	-	-	605 101	610 92	307 59	473 81	657 109	785 128	875 141
Taxable Income Sub. to B.C. Min. Tax B.C. Mining Tax Payable at 15% Taxable Income for Federal Tax Base		-	-	-	504 76 -	518 78 -	248 37 284	392 60 452	548 82 614	657 98 726	734 110 804
Depletion Federal Income Tax at 50%	-	-		-		-	95 95	151 151	205 205	242 242	268 268
Cash Repayment - Debt	4,766		3,276	2,442		1,063	531	913	837	784	746
- Cash Available for Repayment - Balance - Cash Available for Shareholders	674 4,092 -	816 3,276 -	834 2,442 -	823 1,619 -	556 1 ,0 63 -	532 531 -	1,062 - 531	- 913	- 837	- 784	- 746

- 20 -

TRACKLESS METHOD

EST	CIM/	/TED	CAS	SΗ	FLOV	1
PRICE	OF	COPI	PER	-	60¢	US

ALL FIGURES ARE OOO'S \$ CANADIAN

	<u>1/2</u>	<u> </u>	<u>1-1/2</u>	2	_3_	_4	5	6	_7_	8
Operating Profit	1,541	1,542	1,448	1,449	2,208	1,985	1,876	1,876	1,872	1,872
Investment Income	-	-	_	-	77	69	66	66	66	66
Total Income	1,541	1,542	1,448	1,449	2,285	2,054	1,942	1,942	1,938	1,938
Replacement of Assets (Non-Capital)	-	50	-	50	50	50	50	50	50	50
Interest	396	181	116	52	-	-	-	-	-	-
Total Other Deductions	396	231	116	104	50	50	50	50	50	50
Operating Profit Prior to Dep'n. & Taxes	1,145	1,311	1,332	1,345	2,235	2,004	1,892	1,892	1,888	1,888
Depreciation	-	-	-	-	-	873	612	428	300	210
Write-off Pre-Production Expenses	1,145	1,311	799	-	-	-	-	-	-	-
Total Other Write-offs	1,145	1,311	799	-	-	873	612	428	300	210
Taxable Income for B.C. Min. Tax	-	-	533	1 , 345	2,158	1,062	1,214	1,398	1,522	1,612
Processing Allowance + \$10,000 Allowance	-	-	200	212	345	170	192	220	238	251
Taxable Income Sub. to B.C. Min. Tax	-	-	333	1,133	1,813	892	1,022	1,178	1,284	1,361
B.C. Mining Tax Payable at 15%	-	-	50	170	272	134	153	177	193	204
Taxable Income for Federal Tax Base	-	-	-	-	-	997	1,127	1,287	1,395	1,474
Depletion	-	-	-	-	-	332	372	428	465	490
Federal Income Tax at 50%	-	-	-	-	-	332	372	428	465	490
Cash Repayment										
- Debt	4,766	3,621	2,310	1,028	-	-	-	-	-	-
- Cash Available for Repayment	1,145	1, 311	1,282	1,175	1,963	1,538	1,367	1,287	1,230	1,194
- Balance	3,621	2,310	1,028	-	-	-	-		-	
- Cash Available for Shareholders	-	-	-	147	1,963	1,538	1,367	1,287	1,230	1,194

Ţ

FUNDS REQUIRED - BY MONTHS

Months	Trackless Method	Shaft Method
1	\$ 448,226	\$ 659,994
2	448,226	427,523
3	493,312	523,387
4	424,233	465,774
5	424,728	509,721
6	459,902	631,177
7	614,204	627,385
8	625,533	690,842
9	828,222	866,423
Totals	\$ 4,766,586	\$ 5,402,226

_

CHAPTER II PROPERTY, HISTORY, GEOLOGY & ORE RESERVES

. .

PROPERTY AND LOCATION

The Alwin Mining Company Ltd. hold a group consisting of three Crown-granted claims and twenty-one recorded claims in the Highland Valley Area. This group is situated about $4\frac{1}{2}$ to 5 miles west of the Bethlehem Copper Corporation Ltd. concentrator, and is connected to the Ashcroft-Bethlehem hard surface highway by 5 miles of good gravel road.

HISTORY

The property was located originally in the early 1900's. 11,000 tons of ore with an average grade of 3.25% copper, 0.30 ounces of silver and a trace of gold per ton were mined by the Ashcroft Copper Company Ltd. in the period 1916, 1917 and 1918.

It appears that the mine was shut down in 1918 because the price of copper declined, since reported estimates of material remaining amounted to 10,000 tons averaging 4.85% copper and 0.28 ounces of silver per ton.

The Alwin Mining Company Ltd. acquired title shortly after incorporation in 1964. Induced polarization, magnetic and geochemical surveys led to extensive surface diamond drilling with successful results.

During 1968 and 1969, further surface diamond drilling was completed. An adit at the 5130 elevation has been driven easterly on line for 2700' and a 700' northerly crosscut through at least seven mineralized zones completed from a point about 1700' from the portal.

Drifting and raising has partially explored four of the zones at and above this 5130 elevation and numerous underground diamond drill holes have probed the various zones at 100' intervals, from the surface, (approximate elevation 5,430) down to about the 4550 elevation.

BUILDINGS AND PLANT

Present buildings are temporary in nature, consisting of a number of trailers and plywood buildings suitable to accommodate an exploration crew of about thirty men.

Similarly, a plywood building houses a compressed air and generating plant consisting of three 600 cfm diesel operated portable compressors. Electricity is supplied by means of two diesel generators, one 25 kW and one 75 kW in size.

GEOLOGY AND MINERALIZATION

The adit area is in the eastern part of the Alwin property, in Bethsaida granodiorite. This rock is fractured along steeply dipping, N60 E and N70 W, planes.

At least seven (and possibly more) mineralized zones of economic significance have been discovered, which occupy such fractures and vary from one foot to over thirty feet in width.

Chalcopyrite and lesser amounts of bornite are present with generally abundant sericite in the fracture fillings. Pyrite occurrence is quite minor.

A north-south dyke of feldspar porphyry, twenty feet wide, traverses the various mineralized zones. It dips 45° easterly and has the effect of segmenting the ore. Another lesser dyke of similar rock is known in the underground workings.

ORE RESERVES

(1) SUMMARY

As of March 1970, the ore reserves are estimated to be 1,051,949 tons in place, containing 2.51% copper and 0.375 ounces of silver per ton. Including an allowance of 86,961 tons assaying 0.10% copper (8.27% average) for mining dilution, these reserves are estimated at 1,138,910 tons assaying 2.33% copper. This represents 1539 tons per vertical foot of depth. All of the ore will have to be mined by underground methods.

Drifting and raising conducted along and upwards from the 5130 level has confirmed much of the results indicated by previous diamond drilling and has demonstrated that the mineralization possesses good continuity.

It is conservatively estimated therefore that an additional 250,000 tons of similar material will be found by further exploration.

(2) GENERAL

The zones vary from about one foot to thirty-two feet and average about 10.5 feet in true width. They are spread along a total strike length of about 1,700 feet, and although some appear to have weakened or have been delimited by the exploration work completed to date, several are still open in strike and in depth. From the present underground openings it has been possible to probe the structure of long diamond drill holes to about 800 feet below the surface. No change in the favourable geological environment has been observed at this depth and some zones are still open.

The lower limit of this deep diamond drilling represents an approximate economic limit for further exploration by this means.

Along the strike of the favourable structure possibilities still exist relative to the discovery of additional zones of the extension of the present ones.

Four surface diamond drill holes situated about 400' easterly from the underground work cut interesting copper values worthy of further investigation.

Similarly, several diamond drill holes directed across the structure about 500' westerly from the main mineralized zones cut narrow widths of good grade mineralization with extensions as yet not fully determined.

Summarizing, additional ore as stated will undoubtedly be found therefore both easterly and westerly of the presently explored zones with depth extensions possible.

Extensive work was carried on in the 1969 in an effort to prove or disprove the presence of disseminated or "porphyry" type copper deposits on other parts of Alwin's claim group.

Tractor trenching at regular intervals followed by surface diamond drilling, designed to explore several areas showing copper geochemical anomalous values, failed, however, to disclose anything of any economic significance.

(3) CALCULATIONS

The principles used in the ore reserve calculation were as follows:

1. Length of intersections and assay values determined from a total of close to 200 diamond drill holes, both surface and underground, were combined with lengths and assay values obtained from chip and channel sampling of mineralization exposed by underground work. It should be noted that diamond drilling was directed so as to cut the zones at 100' intervals.

2. Areas of influence for any one intersection have been extended halfway to adjacent holes and up to a maximum of 100' (chiefly in depth) where no other drilling exists.

3. True widths of mineralization have been obtained by multiplying the drill hole intersection lengths by factors related to the angle of the drill hole and the angle of the mineralization.

4. If the true width amounted to less than 4.0', which is considered to be a minimum mining width, the grade of copper has been reduced proportionately.

5. If the grade of copper so calculated amounted to less than 0.90%, the intersection was disregarded except as noted below.

6. Material containing 0.70% copper has been included if adjacent to an acceptable block.

7. A factor of 11.2 cu. ft. per ton has been used, as per specific gravity determinations reported by the Department of Energy, Mines and Resources, Ottawa.

8. Mining dilution has been calculated by considering the relative dimensions of the ore zones in relation to the proposed method of mining, and the physical characteristics of the mineralization together with that of the wall rocks. It is considered that both the ore and the wall rocks are competent and will stand well if mined as proposed.

Dilution was therefore calculated as follows: -

- (a) Blocks 200' and less in length, with widths less than 9', limited tonnage and no pronounced bends along the strike - shrinkage stoping to be used and dilution factor of 12%.
- (b) Blocks over 9' in width, all blocks over 200' in length, blocks too close to other blocks to permit shrinkage stoping cut and fill stoping to be used and dilution factor of 7%.
- (c) Blocks up to 9' in width, but not in category (a) cut and fill stoping to be used and dilution factor of 10%.

- 4 -

Γ

Block	Section	Tons	Grade % Copper	Width Feet	% Dilution	Tons Including Dilution	Grade % Copper
BIUCK	966 01011	10115	% copper	<u>reeu</u>			% copper
1	46	5,625	4.48	6.0	12	6,300	4.01
2	46	3,107	1.61	4.0	12	3,480	1.45
3	46	1,787	1.61	4.0	12	2,001	1.45
3 4	46	7,303	5.10	5.8	12	8,179	4.56
5	46	2,232	1.66	5.0	12	2,500	1.49
5 6 7 8	46	2,232	1.66	5.0	12	2,500	1.49
7	47	7,152	2.58	7.7	12	8,010	2.31
8	47	4,107	2.51	4.0	12	4,600	2.25
9	47	3,285	0.73	4.0	12	3,679	0.66
10	47	3,125	1.36	7.0	10	3,438	1.24
11	47	3,125	1.36	7.0	10	3,438	1.24
12	47	2,678	0.93	6.0	10	2,946	0.85
13	47	2,678	0.93	6.0	10	2,946	0.85
14	47	3,571	1.01	4.0	10	3,928	0.93
15	48	4,500	3.00	7.0	12	5,040	2.69
16	48	4,464	1.22	5.0	12	5,000	1.10
17	48	2,625	1.09	4.9	12	2,940	0.98
18	48	2,411	1.09	4.9	12	2,700	0.98
19	48	20,464	1.65	19.1	12	22,920	1.48
20	48	3,821	0.77	4.0	12	4,280	0.70
21	48	1,786	2.55	4.0	12	2,000	2.29
22	48	1,786	2.55	4.0	12	2,000	2.29
23 24	48	8,571	1.76	6.0	12	9,600	1.58
24	48 110	11,910	2.35	12.7	7	12,744	2.20
25	49 110	9,036	1.84	9.2	. 12	10,120	1.65 6.42
26	49 110	1,008	7.18	4.5	12	1,129	6.42 6.42
27	49 110	1,008	7.18	4.5 18.7	12	1,129	2.67
28	49 110	20,035	2.85	28.0	7	21,437	2.07 2.46
29	49 50	23,000 4,464	2.63		7 12	24,610 5,000	2.40 3.92
30 21	50 50	4,404 5,902	4.38 2.85	5.0 4.4	12	6,600	2.55
31 32	50 50	5,893 12,286	2.24	17.2	7	13,146	2.10
33	50	11,054	4.82	27.5	7	11,828	4.51
33 34	50	5,357	1.82	20.0	12	6,000	1.63
35	50	24,107	2.62	20.0	7	25,794	2.45
36	50	23,571	4.09	16.0	7	25,221	3.82
37	50	13,500	2.04	14.4	7	14,445	1.91
38	50	3,348	2.15	10.7	7	3,582	2.01
39	50	5,312	2.15	7.0	7	5,684	2.01
40	50	3,214	0.95	<u>4</u> .0	12	3,600	0.89
41	50	30,357	1.06	13.6	7	32,482	0.99
41A	50	17,678	6.27	9.0	7	18,915	5•87
42	50	7,036	1.08	7.5	12	7,880	0.98
43	50	3,571	0.88	4.0	12	4,000	0.80
43A	50	3,482	2.07	3.9	10	3,830	1.89
44	51	9,107	2.89	10.2	7	9,744	2.70
45	51	3,839	0.76	4.3	12	4,300	0.69

Block	Section	Tons	Grade % Copper	Width Feet	% Dilution	Tons Including Dilution	Grade <u>% Copper</u>
Block 46 47 48 90 51 23 55 55 55 55 55 55 56 61 23 45 66 78 90 12 34 55 67 78 90 81 23 45 67 78 90 81 23 45 67 78 90 81 23 45 77 89 80 81 23 45 55 78 90 81 23 45 55 78 90 81 23 45 55 78 90 81 23 45 55 78 90 81 23 45 55 78 90 81 23 45 55 78 90 81 23 45 55 78 90 81 23 45 55 78 90 81 23 45 55 78 90 81 23 45 55 78 90 81 23 45 55 78 90 81 23 45 55 78 90 81 23 45 55 78 90 81 23 45 55 78 90 81 23 45 55 78 90 81 23 45 55 77 89 890 81 23 45 55 77 890 81 23 45 55 77 890 81 23 45 66 77 890 81 77 77 77 77 77 77 77 77 77 77 77 77 77	Section 51 51,51,51,51,51,52,52,52,52,52,52,52,52,52,52,52,52,52,	<u>Tons</u> 5,455 4,875 24,339 5,007 8,258 2,455 2,007 15,267 2,257 2,257 2,257 2,257 2,257 2,267 2,257 2,267 2,275 2,2			<pre>% Dilution 12 12 7</pre>	•	
86 87 88 89	54 54 54 54	6,071 5,098 8,062 5,714	4.47 3.52 2.16 1.34	4.0 5.1 7.4 8.0	10 12 12 12 12	6,678 5,710 9,030 6,400	4.07 3.15 1.94 1.20

- 6 -

-

_

Block	Section	Tons	Grade <u>% Coppe</u> r	Width Feet	% Dilution	Tons Including Dilution	Grade % Copper
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120	555555555555555555555555555555555555555	6,428 3,098 6,955 2,750 3,214 6,071 5,223 13,286 10,178 7,696 10,348 2,901 6,152 6,071 5,714 14,571 5,714 3,571 2,857 5,714 19,973 4,393 4,714 7,607 3,571 4,732 2,857 1,428	2.60 1.04 1.78 1.51 1.51 1.43 4.03 1.18 2.95 1.61 4.59 5.30 1.20 2.52 0.75 1.47 8.95 0.92 1.10 2.65 3.14 3.14 3.70 2.02 0.87 1.47 1.08 1.75 1.75	$\begin{array}{c} 4 & 0 \\ 5 & 4 \\ 4 & 0 \\ 0 \\ 0 \\ 3 \\ 7 \\ 0 \\ 8 \\ 9 \\ 5 \\ 5 \\ 5 \\ 5 \\ 4 \\ 4 \\ 0 \\ 4 \\ 1 \\ 4 \\ 8 \\ 4 \\ 4 \\ 4 \\ 2 \\ 4 \\ 4 \\ 7 \\ 4 \\ 5 \\ 4 \\ 4 \\ 5 \\ 4 \\ 4 \\ 5 \\ 4 \\ 4$	12 12 10 10 10 12 12 12 12 12 12 12 12 12 12	7,200 3,470 7,650 3,025 3,535 6,800 5,850 14,216 11,400 8,620 11,590 3,250 3,250 6,890 6,800 6,400 15,591 6,400 3,680 13,600 4,000 3,200 6,400 22,370 4,920 5,280 8,520 4,920 5,280 8,520 4,000 5,300 3,200 1,600	$\begin{array}{c} 2.33\\ 0.94\\ 1.63\\ 1.38\\ 1.38\\ 1.29\\ 3.61\\ 1.10\\ 2.64\\ 1.45\\ 4.10\\ 4.74\\ 1.08\\ 2.26\\ 0.68\\ 1.32\\ 8.37\\ 0.83\\ 0.99\\ 2.38\\ 2.81\\ 2.81\\ 3.31\\ 2.16\\ 1.81\\ 0.85\\ 0.79\\ 1.32\\ 0.97\\ 1.57\\ 1.57\end{array}$
Reason: As	ably sured	900,169	2.57			985,540	2.36
Probabi	le	151,780	2.17			153,370	2.15
Total:		1,051,949	2.51			1,138,910	2.33

.

1

ί.

-

-

Į.

.

5

-

1

-

- --

	_
CHAPTER	Ι

I L

> CHAPTER III MINE

MINING

GENERAL

Two methods of developing the mine have been studied. The first involves the sinking of a three-compartment shaft at the approximate coordinates 96,530 ft north and 97,420 ft east. Two levels will be cut from the shaft, No. 3 at the 4,980 elevation and No. 4 at the 4,830 elevation, in addition to the present adit at 5,130 elevation. A new adit at the 5,280 elevation would be driven from the surface and connect with the shaft.

The section of the shaft from the surface down to the present adit will be constructed by boring a pilot hole about 10 inches in diameter, followed by reaming to 72 inches or 84 inches in diameter. This will subsequently be enlarged to the full shaft size after the installation of the shaft hoist and head frame, by normal progress downwards using the 10 inch diameter hole as a "cut" and removing the broken rock out from the present adit. The section of the shaft below the second level will then be sunk in the ordinary fashion and a minimum amount of work completed on the two lower levels at the 4,980 elevation and the 4,830 elevation prior to production.

The second method would be by means of a decline ramp system, driven downwards through and adjacent to the mineralized zones. A main decline (8 ft x 9 ft in cross section) would be started (at minus 15) from a portal at the 5,342 elevation and would connect with the present adit as shown on the drawings accompanying this report. Prior to production the decline would also be sunk below the present 5,130 adit, an additional distance of 1,200 ft to permit stope preparation during the first year of production. The decline would be positioned so as to provide access to the bottom of the various ore blocks by means of short connecting cross-cuts. The broken ore would be moved to short ore pass raises for transfer to the adit level by means of diesel-powered trackless load-haul-dump equipment; from thence it would be carried to the concentrator through the present adit using diesel trucks. The section of the adit used for truck haulage would be increased to 11 ft wide and 9 ft high.

In either case it is planned that the ore will be extracted by shrinkage stoping and cut and fill stoping. The ore mined during the pre-production period would be stockpiled on the surface at a point close to the concentrator in order that it can be later reclaimed to serve as feed to the mill during the first year of production.

COMPARISON OF SHAFT METHOD AND TRACKLESS METHOD

The tops and bottoms of the potential ore blocks at Alwin are at many different elevations. With the shaft method, some blocks would have sill elevations above and some below the horizontal levels. Additional preparation work is therefore required for these blocks as compared to those with sill elevations on the level. With the trackless method, however, openings can be driven off the main declines at any angle and distance required to adjust to the bottom of the ore blocks. Costs are therefore reduced relative to the shaft method and greatly increased flexibility is attained.

Less men are required for the trackless method with corresponding reductions in operating costs, accommodation required, etc.

SELECTION OF STOPING METHODS

The wall rocks at Alwin are quite competent and much of the ore can be mined by shrinkage stoping. A number of the blocks, however, are parallel and are separated by only a few feet of intervening rock. A closely controlled mining sequence must therefore be established in order that one stope underlying another stope would not produce caving before proper mining can be completed.

It would appear that some of the ore blocks will join each other along the strike, but in places insufficient diamond drilling has been completed to determine whether this is so or not. It is proposed therefore to further explore the ore zones by means of closely spaced drilling from the new openings prior to establishing stope layouts.

It is proposed that approximately one-half of the ore will be mined by cut and fill methods, which will avoid, at least partly, the dilution that would be encountered by shrinkage stoping due to possible gaps in the ore shoots along the strike. In addition, cut and fill stoping will provide an immediate source of ore for the mill and does not require time to build up a sufficient broken reserve to supply daily requirements as in shrinkage stoping.

Thirty-nine and two part blocks situated above the 5,130 level have been selected for initial mining, and will provide sufficient ore for the first two years of production.

A total of 14 stopes made up of combinations of these blocks will be prepared during the pre-production period. Of these, 4 cut and fill stopes and 5 shrinkage stopes will supply the necessary initial ore for the concentrator. The extra stopes provide insurance to prevent interruptions in production caused by either the irregular nature of the ore blocks or by mechanical problems. After the first year of mining, sufficient ore will be broken and available in the shrinkage stopes to use as an additional reserve. The ore blocks have been chosen so as to constitute a total of about 16,000 tons/shrinkage stope, and a continuous program to develop and prepare new stopes will replace those exhausted as mining progresses. It is anticipated that 20 such new stopes will be required during the first three years.

STOPE PREPARATION

In this report, preparation work is considered to be composed of the drifts in the footwall parallel to the ore, cross-cuts to the ore zones, the sill drifts, slashing and taking down the first lift in the stope, and the necessary timbering for starting the cut and fill stopes.

- 2 -

SHRINKAGE STOPING

Cross-cuts will be driven to the bottom of the shrinkage stopes from drifts which will be driven in the footwall of the ore zones in a parallel direction but about 25 ft away. These cross-cuts, as it can be seen from the accompanying drawings in this report, will be at an angle of about 30° to the general strike of the ore zones. A sill drift will be driven from the ends of the cross-cuts at the same elevation and the resulting broken ore removed.

It is not planned to drive manway raises for many of the stopes. There will therefore be no point of exit at the top of the stope. Instead it is planned to carry timbered manways up each end of a shrinkage stope to provide access where the stope is 200 ft or more in length. If the stope is only 100 ft long, one manway will be carried at one end.

Two men per shift on each of 2 shifts will carry out the necessary drilling and blasting, and a special timber crew will extend manways as and when necessary. Broken ore will be picked up in the cross-cuts by diesel-operated loaders and moved to ore passes situated close to the stoping areas. Under the trackless method proposed, a lo-ton truck (or two lo-ton trucks) will draw the ore through chutes at the bottom of the ore passes and haul it to the concentrator. In the shaft method, diesel locomotives and trains of ten-45 cu ft cars each will transport the ore to an ore pass system which will be connected at its lower end to a shaft loading pocket, situated below the 4,830 level. It is planned that hoisting will be carried out on a one shift basis, using 3 ton skips operating in balance.

CUT AND FILL STOPING

The cut and fill stopes will be prepared by cross-cuts in the same manner as that suggested for shrinkage stoping. Each cut and fill stope, however, will have two mill holes and 3 manways for the short to medium length stopes and 3 mill holes and 4 manways for the longer stopes. Two of these manways will always be kept open.

One cu yd capacity diesel-operated loaders will be used in the stopes to move the ore to the mill holes. The mill holes will be carried upwards and parallel to the stope but about 20 ft away in the footwall side. This will permit easy turning for the loaders. The mill holes will be timbered on one side and the waste extracted will form part of the fill in the stope. The ore, after being dumped in the mill holes, will be extracted by diesel operated loaders at the bottom of the mill holes and transported to ore passes situated not more than 200 ft away, in the same manner as in the shrinkage stopes.

A stope crew will consist of two machine men and a leader on each of 2 shifts and will carry out the drilling, blasting and transporting of broken ore. Timber crews, who will alternate between the shrinkage stopes and the cut and fill stopes, will construct the manways, build cat-walks, install drains and be responsible for the placing of the fill. Ore will be broken in one section of the stope at the same time as fill is being placed in the other end, so that continuous production can be maintained.

STOPE FILL PLANT

It is planned that the mill tailings will be cycloned at the concentrator to remove slimes, prior to pumping to the fill plant. This will be located on the surface at a point on the top of the hill over the approximate centre of the ore area. Three storage tanks will be provided, with conical bottoms. A cement storage tank and two mixing tanks will also be constructed. One of these mixing tanks will be used for mixing cement and water and the second one for mixing slurry. The resulting sand-cement mix will be passed downwards by gravity to the various stoping areas through holes drilled for this purpose.

From the processing of 175,000 tons of ore approximately 14,000 tons will be removed as concentrates, the remaining 161,000 tons will be available to replace the proposed 95,000 tons of cut and fill ore to be mined yearly. No test work has been done on the ore to ascertain what recovery of suitable sand can be expected but it is felt that enough fill will be thus easily provided.

MINE SERVICING

For the "trackless" method, it is proposed that second hand four wheel drive "Jeeps" will be provided to transport the working crews and the necessary supplies. Five vehicles have been included in the cost estimates of which 2 will be equipped with special bodies so that 14 men can be transported per vehicle.

For the "shaft" method, servicing would take place by means of the 5,130 adit level, the 5,280 adit level and the shaft itself.

VENTILATION

It is planned, for the trackless method, to blow fresh air down the new decline (5,342 elevation) using two 30,000 cfm fans in series, and to blow additional fresh air down the existing raise which has been connected via the old workings to the surface, by means of a 15,000 cfm fan. Foul air will be exhausted through the 5,130 adit portal.

For the shaft method, it is planned to blow fresh air in through the 5,130 adit level, pass it upwards through ventilation raises connected with the stoping areas, and exhaust it as foul air along the levels and up the shaft.

SOURCE OF ORE AND GRADE OF COPPER

The tables following itemise the proposed stope locations, the statistics concerning the preproduction stockpile, the tons developed, mined and drawn during the first three years of production and the estimated grade of ore milled during this period.

Similar calculations have been compiled for the fourth year and partially estimated for the fifth year, but these have not been included in this report; because it is felt insufficient information is now available to project such figures with any degree of accuracy.

TABLE 1.

PROPOSED STOPE LOCATIONS FOR FIRST 3 YEARS PRODUCTION

Stope No.	Section	Blocks	Width-Ft.	% Dilution	Designation Shrinkage (S) Cut & Fill (CF)
1	46,47	1,7	6.0-7.7	12	S
	46,47	4 , 8	4.0-5.8	12	S
3	48	15	7.0	12	S
4	50	31	4.4	12	S
2 3 4 56	49,50	25,30	5.0-9.2	12	S
6	55,56	96,98,99,1/3(100)	4.3-19.0	12	S
7	57,58	108,113	4.0.23.3	12	S
7 8	47,48	9.19	4.0-19.1	12	S
9	49,50	28,35	18.7-20	7	CF
10	50,51,52	36,48,56,57	4.5-23.7	7	CF
11	52,53,54,55	65,66,77,79,86, <u>1</u> (92)	4.0-8.9	10	CF
12	50,51,52	37,38,49,58	7.6-20.6	7	CF
13	50,51,52,53	43A,54,67,78,80	3.9-8.9	10	CF
14	50,51	32,33,44	17.2-27.5	7	CF
15	48,49	16,26,27	4.5-5.0	12	S
16	50	34	20.0	12	S
17	52	64	4.4	12	S
18	57	112	4.0	12	S
19	54	87,88	5.1-7.4	12	S
20	51	<u> </u> (68),69	8.7-8.9	10-12	S
21	54	90	4.0	12	S
22	51.	,52,53	5.0	12	S
23	52,53	½(61),62,63,84 <u>½</u> (61),59	4.0-28.3	7-12	CF
24	52	±(61),59	20.0-30.0	7	CF
25	50,51	39,50,1/3(51)	7.0-7.7	7	CF
26	50,51	$2/3(51),\frac{1}{2}(68)$	7.7-8.9	7-10	CF
27	54	89	8.0	12	S

TABLE 2.

ESTIMATED PREPRODUCTION STOCKPILE

FROM STOPE PREPARATION

Tons After Mining Dilution								
Stope	-	Mined &	Remainder -	Stope Grade				
No.	Reserves	Stockpiled	Tons Developed	% Copper				
٦	14,310	980	12 220	3.06				
1	12,780	900 700	13,330 12,080	3.00				
2 3 4 5 6	5,040	500	4,540	2.69				
Д	6,600	320	6,280	2.56				
5	15,120	1,010	14,110	2.40				
6	29,730	930	28,800	2.69				
7	26,050	1,950	24,100	2.00				
7 8	26,600	1,640	24,960	<u>1.37</u>				
-								
Sub Total								
& Average	136,230	8,030	128,200	2.25				
		·						
0		5 500	ha 700	0 ==				
9	47,220	5,520	41,700	2.55				
10	62,570	6,300	56,270	2.44				
11 12	44,765	3,090	41,675	3.16				
	46,105	5,580	40,525 26,650	3.29 1.45				
13 14	29,970 34,710	3,320 6,120	28,590	-				
T #	<u></u>	0,120	_20, 990	3.09				
Sub Total								
& Average	265,340	29,930	235,410	2.72				
0-	~) -		<i></i> ,	•				
Grand Total		,						
& Average	401,570	37,960	363,610	2.62				

- 6 -

-

	ESTIMAT	ED TONS DEVELOPI FIRST YEAR PI	ED, MINED &	DRAWN		
	Stope No.	Tons Developed at Beginning of Year In Place	Tons Mined	Tons Drawn to Mill		eveloped of Year In Place
Shrinkage Stopes	1 2 3 4 5 6 7 8	13,330 12,080 4,540 6,280 14,110 28,800 24,100 24,960	13,330 12,080 4,540 14,110 23,520	4,660 4,230 1,590 - 4,940 8,230 - -	8,670 7,850 2,950 9,170 15,290	- 6,280 5,280 24,100 24,960
Cut & Fill Stopes	Sub Total 9 10 11 12 13 14	128,200 41,700 56,270 41,675 40,525 26,650 28,590	67,580 22,000 28,795 25,000 20,000	23,650 22,000 28,795 25,000 20,000	43,930 - - - - - -	60,620 19,700 27,475 16,675 20,525 26,650 28,590
Shrinkage Stope Preparation	Sub Total 15 16 17 18 19 20 21 22 27 Sub Total	235,410 7,270 5,990 3,520 6,410 14,740 10,760 7,200 5,760 6,410 68,060	95,795 700 1,400 310 290 450 625 290 360 580 5,005	95,795 700 1,400 310 290 450 625 290 360 580		139,615 6,570 4,590 3,210 6,120 14,290 10,135 6,910 5,400 5,830
Cut & Fill Preparation	23 24 25 26 Sub Total Total - Stope	51,390 22,930 12,980 <u>9,930</u> <u>97,230</u>	4,290 3,570 2,230 <u>2,500</u> 12,590	4,290 3,570 2,230 <u>2,500</u> 12,590	- - - 	47,100 19,360 10,750 <u>7,430</u> <u>84,640</u>
	Prepara- tion Grand Tota	165,290	17,595 <u>180,970</u>	17,595 <u>137,040</u>	- 43,930	147,695 <u>347,930</u>

-

TABLE	4.	•
-------	----	---

	ESTIMATE		ELOPED, MIN				
	Stope No. (or Sect. Block No.)	at Beg	eveloped inning Year In Place	Tons Mined	Tons Drawn to Mill		Developed of Year In Place
Shrinkage Stopes	1 2 3 4 5 6 7 8 15 16 17 18 19 20 21 22 27	8,670 7,850 2,950 - 9,170 15,290 - - - - - - - - - - - - - - - - - - -	- 6,280 24,100 24,960 6,570 4,590 3,210 6,120 14,290 10,135 6,910 5,400 5,830	- 6,280 24,100 24,960 - - - - - - - - - - -	8,670 7,850 2,950 1,960 9,170 17,050 8,000 8,000 - - - - - - - - - - - - - - - - - -	4,320 3,520 16,100 16,960 - - - - - -	- - - - - 6,570 4,590 3,210 6,120 14,290 10,135 6,910 5,400 5,400 5,830
Cut & Fill Stopes	Sub Total 9 10 11 12 13 14 23 24 25 26	43,930 - - - - - - - - - - - - -	123,675 19,700 27,475 16,675 20,525 26,650 28,590 47,100 19,360 10,750 7,430	60,620 19,700 27,475 16,675 20,525 7,665	63,650 19,700 27,475 16,675 20,525 7,665	40,900	63,055 - - 26,650 20,925 47,100 19,360 10,750 7,430
	Sub Total	-	224,255	9 2,040	92,040	-	132,215

е е., р

continued

<u>&</u>	Stope No. (or Sect. Block No.)	at Begi	eveloped inning <u>Year</u> In Place	Tons <u>Mined</u>	Tons Drawn to Mill		Developed of Year In Place
Shrinkage Stope Prepara- tion	58-114 57-109 56-105 56-103 55-95 53-85 48-23 50-42 50-43 52-72 52-63		4,920 13,600 6,400 6,890 6,800 10,800 9,600 7,880 4,000 3,870 5,400	290 610 290 360 290 390 430 540 285 610 290	290 610 290 360 290 390 430 540 285 610 290		4,630 12,990 6,110 6,530 6,510 10,410 9,170 7,340 3,715 3,260 5,110
	Sub Total	-	80,160	4,385	4,385	-	75,775
Cut & Fill Stope Prepara- tion	56-106 55-97 51-55 49-29 48-24 50-41	- - - -	15,590 14,215 25,320 24,610 12,740 32,480	1,460 1,240 2,530 4,000 1,815 <u>3,880</u>	1,460 1,240 2,530 4,000 1,815 3,880	- - - - -	14,130 12,975 22,790 20,610 10,925 28,600
	Sub Total Total - Stope Prepara- tion		124,955	<u>14,925</u>	<u>14,925</u>		<u>110,030</u>
	Grand Total	43,930	<u>553,045</u>	171,970	175,000	40,900	381,075

TABLE	5	•
-------	---	---

- 10 -

-

ESTIMATED TONS DEVELOPED, MINED & DRAWN THIRD YEAR PRODUCTION

	Stope No.	at Beg	leveloped ginning Year In Place	Tons <u>Mined</u>	Tons Drawn to Mill		eveloped of Year In Place
	4 6 7 8 15 16 17 18 19 20 21 22 27 27 pes prepared	4,320 3,520 16,100 16,960 - - - - - - -	- 6,570 4,590 3,210 6,120 14,290 10,135 6,910 5,400 5,830	6,570 4,590 3,210 6,120 14,290 10,135 6,910 5,400	4,320 3,520 16,100 16,960 2,750 1,530 1,070 2,040 4,760 3,375 2,300 1,800	- 3,820 3,060 2,140 4,080 9,530 6,760 4,610 3,600	- - - - - - - - - - - - - - - - - - -
dur	ing 2nd year		<u>75,775</u>		••• 		<u>75,775</u>
	Sub Total	40,900	138,830	57,225	60,525	37,600	81 , 605
Cut & Fill Stopes	24 25 26	- - - -	26,650 20,925 47,100 19,360 10,750 7,430	26,650 20,925 28,000 19,360	26,650 20,925 28,000 19,360 -	- - - -	- 19,100 10,750 7,430
	es prepared ing 2nd year		<u>110,030</u>				110,030
	Sub Total	-	242,245	94,935	94,935	-	147,310
(estimate	e Preparation ed but not	-	195,400	19,540	19,540	-	175,860
detailed))	<u></u>					
	Grand Total	40,900	<u>576,475</u>	<u>171,700</u>	175,000	<u>37,600</u>	404,775

TABLE 6.

ESTIMATED GRADE OF ORE MILLED

		First	Year	Second	Year	Third	Year
	Stope No.	Tons Drawn to Mill	Grade % Copper	Tons Drawn to Mill	Grade % Copper	Tons Drawn to Mill	Grade <u>% Copper</u>
Shrinkage Stopes	1 2 3 4 5 6 7 8 15 16 17 18 19 20 21 22 27 21 22 27 Sub Total	4,660 4,230 1,590 4,940 8,230 - 700 1,400 310 290 450 625 290 360 580	3.06 3.73 2.69 2.56 2.40 2.69 2.00 1.37 2.72 1.64 5.26 3.31 2.41 1.99 2.33 1.92 1.20	8,670 7,850 2,950 1,960 9,170 17,050 8,000 - - - - - - - - - - - - - - -		4,320 3,520 16,100 16,960 2,750 1,530 1,070 2,040 4,760 3,375 2,300 1,800	
	& Average	28 , 655	2.77	63,650	2.57	60,525	2.06
Cut & Fill Stopes	13 14 23 24 25 26	22,000 28,795 25,000 20,000 - 4,290 3,570 2,230 2,500	2.55 2.44 3.16 3.29 1.45 3.09 2.48 3.66 2.26 2.13	19,700 27,475 16,675 20,525 7,665 - - - -		26,650 20,925 28,000 19,360	
Ct and a	Sub Total & Average	108,385	2.82	92,040	2.84	94 , 935	2.56
Stope Prepara- tion Stockpile	Grand Total	Included	above 2.62	19,310	2.24	19,540	1.80
	& Average	175,000	2.77	175,000	2.67	175,000	2.30

-

TABLE 7.

INITIAL 3 YEAR PRODUCTION SUMMARY TONS MILLED & GRADE

	First	Year	Secon	d Year	Third	Year	Tot	al
	Tons Milled	Grade % Copper	Tons Milled	Grade % Copper	Tons Milled	Grade % Copper	Tons Milled	Grade % Copper
Shrinkage Stopes	28 , 655	2.77	63,650	2.57	60,525	2.06	152 , 830	2.41
Cut & Fill Stopes	108 , 385	2.82	92,040	2.84	94,935	2.56	295,360	2.74
Stope Prep- aration	Include	d above	19,310	2.24	19,540*	1.80*	38,850	2.02
Stockpile	37,960	2.62	-	-	-	-	37,960	2.62
Total:	175,000	2.77	175,000	2.67	175,000	2.30	525,000	2.58

	Tons	Grade % Copper
Total ore reserves at March, 1970 Tons milled first 3 years Remaining ore reserves Expected additional reserves	1,138,910 525,000 613,910 250,000	2.33 <u>2.58</u> 2.12 <u>2.33</u> *
Reserves expected at end of year 3	863,910	2.18

-

* Estimated

PREPRODUCTION REQUIREMENTS AND ESTIMATED COSTS

A detailed program has been constructed for both the shaft method and the trackless method relative to the preproduction underground work required, and plans, which accompany this report, have been prepared.

Statements and tables follow outlining the requirements and the related estimated costs.

SHAFT METHOD

•

PREPRODUCTION MINE DEVELOPMENT

Month	Description	Hole & <u>Reaming</u>	Shaft Sinking Conventional	Pilot Shaft Slashing & Timbering	Drifting & Crosscutting	Sub-Drifting & Crosscutting	<u>Raising</u>	Cu.Ft. Sill Drift <u>Slashing</u>
1	(A) Sink 18' shaft & pour							
	concrete collar 2 weeks (B) Drill pilot hole for shaf	+	18					
	from surface @ 5450 to	L.						
	5130 elevation (1 week) (C) Drifting on 5130 level to							
	intersect pilot hole &							
	<pre>slash station (D) Hoist construction & head</pre>				400			
	frame erection 2 weeks							
	(E) Drift from surface @ 5280				h co			
	elevation				450			
2	(A) Drift (IE) cont'd on 5280 level							
	(B) Ream shaft to 7' diameter				450			
	5130 level to surface (14 days)							
	(C) Slash & timber shaft 6'/d	ay						
	for 14 days - to elev. 5348			84				
	(D) Drift to west on 5130 to			04				
	stopes 1 & 2 (230' & 220')			450			
3	(A) Complete slashing & timbe							
	shaft (2C) 8'/day to 5130 elev.			218				
	(B) (2A) cont'd & cut station			<u>~</u> ± ∪				
	15 days 5280 level (C) Drift to east on 5280				220			
	level				230			
	(D) Drift to east on 5130 & crosscuts to stope 13				480			
	(E) Raise ore passes @ 55 ⁰							
	from 5140 elevation to stopes 1 & 2 (120' & 125')						I
		•					235	

235

ŧ

Table 8a

	!]] []	1	<u>)</u>]]	١	1 1 1		! 1	ן ו
				- 15 - Pilot Shaft			Table 8	a (cont'd)
Month		Hole & <u>Reaming</u>	Shaft Sinking Conventional	Slashing & Timbering	Drifting & Crosscutting	Sub-Drifting & Crosscutting	Raising	Cu.Ft. Sill Drift <u>Slashing</u>
4	 (A) Crosscutting on 5130 level to stope 8 (B) Begin sinking shaft 25 down 61/2000 below 5120 				150			
	days 6'/day - below 5130 level (C) Continue (3C) to east - drift on 5280 (D) Raises - ore & waste		150		450			
	passes 5130 to 5280 (4 crews - 20'/day) (E) Install grizzly on 5280 level & control chute on 5130 level						400	
	(F) Crosscutting on 5130 level to stopes 14 (115) & 12 (210)				325			
5	<pre>(A) Continue sinking shaft</pre>		180					
	<pre>(B) Raise (ventilation) 5140 to 5280 elevation east end stope 7 (C) Drift 120' from (4C) &</pre>						185	
	<pre>crosscuts to stopes 6 & 7 (18 x 10) (5280 level) (D) Raise ore pass 502 DRE to stope 11 sub dr. 145' @</pre>				300			
	57 ⁰⁻ (E) Sub drift stope ll from						145	
	2 raise tops (F) Raise ventilation 502 DRE to stope 11 140'@					410		
	57° (G) Raise ventilation 502 DRE to stope 10 @ 57°						140 110	
								,

ł]	١	١	Ì	ļ	1	1	1	١	١	1	١	I	1	1)	١	1	<u> </u>
										- 16 - Pilot Shaft Slashing				,		Tabl	e 8	a (cont' Cu.Ft.	
<u>Month</u>		Descrip	otion			Hole & Reaming		t Sinki entiona		& Timbering		ifting & sscutting	3	Sub-Dr <u>& Crossc</u>	-	Raisir	ıg	Sill Dri Slashir	ift
. 6	(B) (C) (D) (E) (F) (G)	4830 s Driftin on 528 & 4 Crossed in sto Manway ll to Raises pass) 5140 e Sub-dr cuttin Raise elev. Sill d (200),	s @ 6' tation ng & c: 0 to s uts fro pe 11 raise 5280 e: (manwa to sto levation ifting g in s ore pa to sto rifts 7 (20	/day & (140' rosscut topes 1 om sub- from s lev. @ ay & or pe 5 fr on & cros tope 5 ss from pe 10 @	cut shaft) ting .,2,3, drift tope 45° e om s- 5140 257° wes 6 200),			180				500 100		25	0	15 115 110			
7	 (B) (C) (D) (E) (F) (G) 	grizzl Instal 4980 1 Sub-dr stope Ore pa	te sha levati t load s 60' to ion & y l lip evel ift & l0 ss rai ') & f 9 (68) ifting aise to	on ing & s 4830 install chute c crosscu se to s inger t for st o stope	pill on ts in tope o cope l	m		20						150 50 26	0	60 213 140			

		1 1 1		1 1 1) I	} '		· •	נ ריייני (
					- 17 - Pilot Shaft			Table	8a (cont'd)
Month		Description	Hole & Reaming	Shaft Sinking Conventional	Slashing & Timbering	Drifting & Crosscutting	Sub-Drifting & Crosscutting	Raising	Cu.Ft. Sill Drift Slashing
7		Sill drifts in stopes 3 (100), 5 (200), 11 (400 Sill drift slashing & taking down backs of stop 12 (40800), 13 (18560), 11 (17280), 14 (54080))	<u>.</u>		<u> </u>	<u>~ 02 00 00 00 00 00 00 00 00 00 00 00 00 </u>	<u></u>	130,720
8		Install skips & cage, remove dump door, install skip dump mechanism Raises-ore pass & waste			·				
	(C)	pass (2 x 225'-15'/raise/ day) 30 days Drifting on 4980 level past raise locations (ore						450	
	(D)	& waste) Drifting on 4830 level				200			
	(E)	past raise locations (ore & waste) Sub-drifting in stope	2			90			
	(F)	4 (130), 2 (260), 9 (325) Manway raise from stope 1 to 5280 elevation (58') 8	0				715		
	(G)	stope 1 to 5280 (40') Vent raise to old working	ţs.					98	
	(I)	from 5280 level near stop Sill drifts in stopes 1 (& 10 (300) Fill holes, lines & drain holes Sill timbering	200),				500	100	

)

Month	Description	Hole & <u>Reaming</u>	Shaft Sinking Conventional	- 18 - Pilot Shaft Slashing & Timbering	Drifting & Crosscutting	Sub-Drifting & Crosscutting	Table <u>Raising</u>	8a (cont'd) Cu.Ft. Sill Drift Slashing
9	 (A) Raises (8B) continued (2 x 165'-15'/raise/day) break through to 5130 level (B) Install control chute & grizzly on 4830, 4980; grizzly on 5130 level (C) Raises - manways from stopes 4 (20'), 4 (110') & 2 (30') to 5280 elev. (D) Vent raises to stope 9 (66'), 1 (166') (E) Sill drifts in stopes 2 (200), 4 (100), 9 (200) (F) Sill drift, slashing & 					500	330 160 232	
	taking down backs in stor 9 (47,520) & 10 (48,960) (G) Sill timbering	bes						96 , 480
	TOTAL GRAND TOTAL		548	302	4795	5335	3238	227,20 0 241,418

Table 8b

1

ŧ

- 19 -

SHAFT METHOD

			PREPI	RODUCTIO		MATED DI EVELOPME		PE PRE	PARATION nths	N				
Description		Footage	<u>Cost/Ft.</u>	<u> </u>	2	3	4	_5		6	7	_8	9	Total
Sink 18' of shaft & power collar Move in large hole drill & drill pilot	(IA	18	\$341.39	\$ 6,145	\$	\$	\$	\$	\$.	\$		\$	\$	\$
hole	В		16.56											
Drift - 5,130 level	C	400		14,112										
Drift - 5,280 level Portal preparation	E	450	45.28	20,376										
(5,280 level)	F			5,000										
Drift - 5,280 level	2A	450	35.28	2,122	15,876									
Ream shaft hole	В	302	103.44		31,240									
Slash & timber shaft	С	84	269.56		22,643									
Slash & timber shaft Drift - 5,280 level	3A	218	269.56			58 , 764								
& station	В	220	35.28			7,762								
Drift - 5,280 level	С	230	35.28			8,114								
Drift - 5,130 level	D	480	35.28			16,934								
Raise - ore passes	Е	235	29.94			7,036								
Crosscut - 5,130			_											
level	4 A	150	3 5. 28				5,292							
Sink shaft - below			_ 1											
5,130 level	В	150	341.39				51,208							
Drift - 5,280 level	С	450	35.28				15,876							
Raise - ore & waste	D	400					11,976							
passes Crosscut - 5,130	D	400	29.94				11,970							
level	F	325	35.28				11,466							
Sink shaft - below	+	<u></u>	J). 20				 ,							:
5,130 level	5A	180	341.39					61	,450					
Raise	B	185	29.94						,539					
Drift - 5,280 level	С	300	35.28						, 584					

											Tabl	e 86 (c	ont'd)
						- 20	-	Month	s				
Description	F	ootage	<u>Cost/Ft.</u>	_1_	2	3	4	5	6	_7	8	_9_	Total
Raise - ore pass Sub drift Raise - ventilation Raise - ventilation Diamond drilling Sink shaft & cut	D E F G	145 410 140 110 2,700	\$ 29.94 45.28 29.94 29.94 4.50	\$	\$	\$	\$	\$ 4,341 20,376 4,192 3,293 12,150		\$\$		\$	\$
4,830 station Drift - 5,280 level Crosscuts Manway raise Raises - ore pass	6A B C D	180 500 100 15	341.39 35.28 45.28 29.94						61,450 17,640 4,528 449				
& manway Sub drifts & crosscuts Raise - ore pass Sill drifts Diamond drilling	E F G H	2,700	29.94 45.28 29.94 45.28 4.50						3,443 11,320 3,293 67,920 12,150	6 00 0			
Complete shaft Raise - loading pocket to 4,830 level Sub drifts - stope #10	7A C E	20 60 500	341.39 29.94 45.28							6,828 1,796 22,640 6,377			
Ore pass raise Sub drift - stope #1 Vent raise Sill drifts - stopes #3, #5 & #11	F G H I	213 260 140 700	29.94 45.28 29.94 45.28							11,773 4,192 31,696			
Sill drift slash & backs Hoisting costs Diamond drilling		.30,720 2,010	0.319 4.50							41,700 12,603 9,045			
Ore pass & waste pass Drift 4,980 level Drift 4,830 level Sub drifts - stopes	8b C D	450 200 90	29.94 35.28 35.28							-	13,473 7,056 3,175		
#4, #2 & #9	E	715	45.28								32,375		ı

Table 8b (cont'd)

<u>Cost/Ft.</u> \$ 29.94 29.94 45.28	<u> </u>	- -	2	-	3_	\$	<u>4</u>	<u>5</u> \$	\$	6	<u>7</u> \$	+ 22 22 22	8 2,934 2,994 2,640 8,948 4,598 2,603	<u>9</u> \$	<u>Total</u> \$
29.94	\$	\$		\$		\$		\$	\$		\$	22 22 1	2,994 2,640 8,948 4,598	\$	\$
												22 { 1	2,640 8,948 4,598		
45.28												נ נ	8,948 4,598		
												1	4,598		
												1	4,598		
												12	4,598		
												12	2.603		
													-,		
												6	6,000		
														9,8	380
29.94														4.7	'9 0
29.94														6,9	46
45.28														22,6	40
0 310														30.7	77
														12,6	03
	29.94 45.28 0.319	29.94 29.94 45.28 0.319	29.94 29.94 45.28	29.94 29.94 45.28 0.319	29.94 29.94 45.28 0.319	29.94 4,7 29.94 6,9 45.28 22,6									

<u>\$50,633</u> <u>\$85,635</u> <u>\$98,610</u> <u>\$95,818</u> <u>\$121,925</u> <u>\$182,193</u> <u>\$148,650</u> <u>\$116,796</u> <u>\$95,832</u> <u>\$996,092</u>

Total

- 21 -

Table 8b (cont'd)

- 22 -Shaft Method

ESTIMATED INDIRECT COST

PREPRODUCTION MINE DEVELOPMENT

.

Months										
;	1	2	3	4	5	6	7	8	9	Total
Supervision	\$ 5,670	\$ 5,670	\$ 5,670	\$ 5,670	\$ 5,670	\$ 5,670	\$ 5,670	\$ 5,670	\$ 5,670 \$	51,030
Assaying	1,160	1,160	1,160	1,160	1,160	1,160	1,160	1,160	1,160	10,440
Engineering	5,148	5,148	5,148	5,148	5,940	5,940	5,940	7,854	7,854	54,120
First aid-Warehou	1se 848	848	848	848	848	848	848	848	848	7,632
Change house & la	amps 833	833	833	833	833	833	833	833	833	7,497
Compressor & powe plant operation		11,385	12,698	18,322	18,322	18,322	18,322	18,322	18,322	145,070
Truck operation surface	925	925	925	925	925	925	925	925	925	8,325
Tractor operation surface	n 900	900	1,800	1,800	1,800	1,800	1,800	1,800	1,800	14,400
Mechanical and electrical	7,450	7,450	7,450	7,450	8,750	8,750	8,750	8,750	8,750	73,550
General undergrou and clean up	und 698	698	698	1,396	1,396	1,396	2,094	2,094	2,094	12,564
Tramming and Supp Distribution	plies 5,917	5,917	5,917	5,917	5,91 7	5,917	5,917	5,917	5,917	<u>_53,253</u>
Totals	\$40,604	\$40,934	\$43,147	\$49,469	\$51,5 61	\$51,561	\$52,259	\$54,173	\$54,173 \$	437,881

Table 8c

SHAFT METHOD

- 23 -

ESTIMATED CAPITAL COSTS - SUPPLEMENTARY SHEET PREPRODUCTION MINE DEVELOPMENT

Item	Unit Weight - lbs	Unit Cost (New)	Unit Cost (Used - Where _Applicable)	Unit Installation Cost	Amount Required	Total Weight <u>- 1bs</u>	Total Cost (New)	Total Cost (Used - Where Applicable)	Installation Cost
900 cfm Stationary Compressor Electric	- 7,800	\$20,135	\$13,425		6	46,800	\$120,810	\$ 80,550	
Compressor Installatio		1)-02		\$2,000	6			, ,,,,	\$12,000
After Cooler	s 1,300	1,047	7,000		3	3,900	3,141	2,100	
After Cooler Installatio									600
Receivers - 42" x 120"	2,000	702	500		3	6,000	2,106	1,500	
Receiver Installatio	n			100	3				300
Diesel Loco- motives (4 ton size)	8,000	6,795	_		3	24,000	20,385	-	
Mine Cars (45 cu ft each)	1,000	1,200	800		35	35,000	42,000	28,000	
Loaders (1 cu yd each)		26,500	21,300		6	54,000	159,000	127,800	
Air Slusher Hoists (15 hp each)	1,800	3,220	2,576		5	9,000	16,100	12,880	

Table 8d

- 24 -

۱

Table 8d (cont'd)

Item	Unit Weight - lbs	Unit Cost (New)	Unit Cost (Used - Where _Applicable)	Unit Installation Cost	Amount Required	Total Weight - 1bs	Total Cost (New)	Total Cost (Used - Where Applicable	Installatio Cost
Scraper - 42"	400	\$ 800	\$ 500		6	2,400	\$ 4,800	\$ 3,000	
Mucking Machines	6,000	6,500	4,500		4	24,000	26,000	18,000	
Rock Drills	120	1,600	-		24	2,880	38,400	-	
Tugger Hois	ts 500	2,000	1,500		10	5,000	20,000	15,000	
30,000 cfm Fan (60 hp) 2,000	3,000	2,000		1	2,000	3,000	2,000	
10,000 cfm Fan (20 hp) 1,300	1,200	1,000		l	1,300	1,200	1,000	
5,000 cfm Fans (air 7.5 hp)	400	900	715		7	2,800	6,300	5,000	
Fan Installati	on								\$ 1,000
Pumps - Sub mersible - Electric - 20 hp	- 290	1,250	_		2	580	2,500	_	
Station Pumps (150 gpm x 350'					0	500			
head)	250	2,000	-		2	500	4,000	-	
Underground Power Cabl						10,000	5,000	-	
Power Cable Installati									700

Item	Unit Weight - 1bs	Unit Cost (New)	Unit Cost (Used - Where Applicable	Unit Installation Cost	Amount Required	Total Weight - 1bs	Total Cost (New)	Total Cost (Used - Where Applicable	Installation <u>Cost</u>
Prefab Ste Chutes -		\$ 2,500	\$ -		8	3 2, 000	\$ 20,000	\$ -	
Grizzlies	4,000	2,000	-		3	12,000	6,000	-	
Shaft Hois Double Dr	t - rum 60,000	85,000							
Hoist Installat and Ream	ion								\$15,000
Ropes & Sheaves						6,000	8,000	-	
Skips - 3 Ton	5,000	5,000	4,000		2	10,000	10,000	8,000	
Cage	4,000	5,000	4,000		1	4,000	5,000	4,000	
Shaft Load Pocket & Installat	ing ion 30,000	10,000	-	\$4,000	1	30,000	10,000	-	4,000
Spill Pock & Install	et ation 1,000	1,000	-	1,000	l	1,000	1,000	- .	1,000
Lip Chute 4,980 lev Installat	el &	1,000	-	500	l	500	1,000	-	500
Head Frame 125' - 15 & Bin		45,000	30,000		1	450,000	45,000	30,000	
Head Frame & Dump Do Installat	or								15,000
Dump Door	1,000	1,000	-		1	1,000	1,000	-	

Table 8d (cont'd)

· 1

- 25 -

1 7

ŧ

.

١

	Jnit 1 ht - 1bs	Unit Cost (New)	Unit Cost (Used - Where <u>Applicable</u>	Unit Installation <u>Cost</u>	Amount <u>Required</u>	Total Weight <u>- lbs</u>	Total Cost (New)	Total Cost (Used - Where <u>Applicable</u>	Installatio Cost
Skip Dump Mechanism 1,	,000 ;	\$ 4,000	\$ -		1	1,000	\$ 4,000	\$ -	
14 Ton Bulk Cement Tank 5,	,000	2,000	-		l	5,000	2,000*	-	
Fill Tanks - 20' x 20' 26,	,000	5,834	-		4	104,000	23,335*	-	
Fill Tank - 9' x 9' with 15 hp agitator 5	5,100	2,500	-		l	5,100	2,500*	-	
Fill Tank - 5' x 6' with 5 hp agitator 2,	,400	1,800	_	·	l	2,400	1,800*	-	
Fill Pumps 100 gpm (40 hp) 1,	,000	2,500	-		2	2,000	5,000*	- -	
Pipe 3" Standard Fill 7	lbs/ft	\$1.05/ft	-		3,000 ft	21,000	3,150*	-	
Pipe - 6" Litewall (6.8) 6	5.8 lbs/ft	\$1.16/ft	-		3,000 ft	20,400	3,475*	-	
Couplings - 6"	10	\$5.62	-		155	1,550	870*	-	
Couplings - 3"	4	\$6.16	-		155	620	955*	-	
Fill Plant Installation									\$10,795
Shop Equipment & Installation						10,000	15,000	12,000	500
Totals						949,730	\$643,827	\$350,830	\$61,395

* Federal Sales Tax Applicable

- 26 -

Table 8d (cont'd)

1

- 27 -

SHAFT METHOD

ESTIMATED CAPITAL COSTS

PREPRODUCTION MINE DEVELOPMENT

											5								
N	Description	7 0	0			1.0	-		Month	S						Tota	l Estimate	d Costs	
No.	Description	l &;		3		4 &		6			7	8)			Purchase	
		New	Used	New	Used	New	Used	New	Used	New	Used	New	Used	New	Used	New	Used	Price	latio
6	Compressors			\$60,405	\$40,275							the Contract	41.0 075			4700 070	h 0a ===a	+ 00 ====	
	Installation			6,000	6,000							\$ 60,405	\$40,275			\$120,810	\$ 80,550		\$ -
2	Aftercoolers			2,094	1,400							6,000	6,000			12,000	12,000	- 100	12,000
1	Installation			400	400							1,047 200	700			3,141	2,100	2,100	- 600
3	Receivers			1,404	1,000							702	200 500			600	600	1,500	-
	Installation			200	200							100	100			2,106	1,500		
3	Diesel			200	200							100	100			300	300		300
Ĩ		\$ 13,590	\$ -									6,795				20,385	-	20,385	
35	Mine Cars	24,000	16,000									18,000	12,000			42,000	28,000	28,000	
35 6	Loaders	,						\$79.500	\$63.900	\$ 79,500	\$63,900	10,000	12,000			159,000	127,800	127,800	
5 6 4	Slusher Hoists			9,660	7,728	\$ 6,440	\$ 5.152	11292	1.5,5	1 12,52						16,100	12,880	12,880	
6	Scrapers - 42"			2,400	1,500	2,400	1,500									4,800	3,000	3,000	
4	Mucking Machines	13,000	9,000	13,000	9,000											26,000	18,000	18,000	
24	Rock Drills	19,200				9,600		9,600								38,400	,	38,400	
10	Tugger Hoists					10,000	7,500			10,000	7,500					20,000	15,000	15,000	
1	30,000 cfm Fan	3,000	2,000													3,000	2,000	2,000	
1	10,000 cfm Fan	1,200	1,000													1,200	1,000	1,000	
7	5,000 cfm Fans	2,800				3,600	3,000			2,700	2,000	3				6,300	5,000	5,000	
	Installation	-	500				500										1,000		1,000
2	Pumps -	0 500																	
0	Submersible	2,500										1				2,500		2,500	
e 2	Station Pumps	1 000										4,000				4,000		4,000	
2	Sump Pumps Power Cable	1,920				5,000										1,920		1,920	
1	Installation					700										5,000		5,000	
8	Steel Chutes					100						20,000				700		00.000	700
3	Grizzlies					2,000						20,000		\$1,000	4	2 0,0 00 6,000		20,000	
1	Shaft Hoist		85,000			2,000								\$4,000	φ -	0,000	85 000	6,000	
	Installation		15,000								12						85,000 15,000	85,000	15,000
	Ropes & Sheaves	8,000														8,000	1),000	8,000	19,000
2	Skips	,								10,000	8,000					10,000	8,000	8,000	
1	Cage									5,000	4,000					5,000	4,000	4,000	
1	Loading Pocket									14,000						14,000	.,	10,000	4,000
l	Lip Chute									1,500						1,500		1,000	500
1	Head Frame	45,000	30,000													45,000	30,000	30,000	
	Installation	15,000	15,000													15,000	15,000	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	15,000
	Signal System	12,000	6,000													12,000	6,000	6,000	
1	Oump Door	1,000														1,000		1,000	
	Dump Mechanism	4,000										and pressions				4.000		4,000	
1	Cement Tank											2,000				2,000	-	2,000*	
T	Spill Pocket				12					2,000						2,000	-	1,000	1,000
* Fod	leral Sales Tax Appl	liophic																	
1.60	CTAT DATES TAX APP-	TCUDIE																	

Ta'le ĉe

4 Fill Tanks 20' x 20' 1 Fill Tank 9' x 8' 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 1 Fill Tank 5' x 6' 1 Fill Pumps 3000' Pipe - 3" 3000' Pipe - 6" 1,475 3,475 3,475 3,475 3,475 3,475 3,475 3,475 3,475 3,475 3,475 3,475 3,475 3,475 3,475 3,475 3,475 870 870 870 870 955 955 955						- 1	28 -					 (coll'd)	
20' x 20' \$ 23,335 \$ 23,335 \$ 23,335* 1 Fill Tank 2,500 2,500 2,500* 1 Fill Tank 2,500 2,500 2,500* 5' x 6' 1,800 1,'00 1,800* 6' Fill Pumps 5,000 5,000 5,000* 3000' Pipe - 3" 3,150 3,150 3,150* 3000' Pipe - 6" 3,475 3,475 3,475* 155 Couplings - 6" 870 870* 155 Couplings - 3" 955 955*	No.	Description		3 New Used		6 New		7 Jew Used		-		Purchase	Instal- lation
9'x 8' 2,500 2,500 2,500* 1 Fill Tank 5'x 6' 1,800 1,800* 5'x 6' 1,800 1,800 1,800* 2 Fill Pumps 5,000 5,000* 300' Pipe - 3" 3,150 3,150 3,150* 300' Pipe - 6" 3,475 3,475* 3,475* 155 Couplings - 6" 870 870 870* 155 Couplings - 3" 955 955* 955*	4	20' x 20'							\$ 23,335		\$ 23,335	\$ 23,335*	
2 Fill Pumps 5,000 5,000* 3000' Pipe - 3" 3,150 3,150 3,150* 3000' Pipe - 6" 3,475 3,475 3,475* 155 Couplings - 6" 870 870* 155 Couplings - 3" 955 955*	1	9' x 8' Fill Tank				5. 2 K					2,500	2,500*	
155 Couplings - 3" 955 955*		Fill Pumps Pipe - 3"							5,000 3,150		5,000 3,150	5,000* 3,150*	
Shop Equipment \$ 15,500 \$ 12,500 $\frac{10,795}{12,500}$ \$ 12,500 $\frac{10,795}{12,500}$ \$ 12,000 \$	155	Couplings - 6" Couplings - 3" Installation				k					870	870*	
Total \$178,910 \$192,000 \$95,563 \$67,503 \$39,740 \$17,652 \$89,100 \$63,900 \$124,700 \$85,400 \$171,129 \$59,775 \$4,000 \$ - \$703,142 \$486,230 \$618,915 \$50,6	Month	ly Purchase Price	\$242,210	\$67,503	\$34,952	\$73,500		\$102,900	\$144,450	\$4,000		\$669,	515

* Federal Sales Tax Applicable

Table 8f

ŧ

SHAFT METHOD

SUMMARY

ESTIMATED PREPRODUCTION MINE DEVELOPMENT COSTS

,

Months												
	1	2	3	4	5	6	7	8	9	Total		
Direct Costs	\$ 50,633	\$ 85,635	\$ 98,610	\$ 95,818	\$121,925	\$ 182,193	\$148,650	\$116,796	\$ 95,832 \$; 996 ,0 9		
Indirect Costs	40,604	40,934	43,147	49,469	51,561	51,561	52,259	54,173	54,173	437,88		
Capital Costs	242,210	-	67,503	11,600	23,352	73,500	102,900	144,450	4,000	669,51		
Federal Tax @ 12% on 43,085	-	-	-	-	-	-	-	5,170	-	5,17		
Provincial Tax @ 5% on 624,085	4,458	-	4,458	4,456	4,458	4,458	4,458	4,458	-	31,20		
Freight 507 tons @ \$24.00/ton	1,352	1,352	1,352	1,352	1,352	1,352	1,352	1,352	1,352	12,16		
Total	\$339,257	\$127,921	\$215,070	\$162,695	\$202, 648	\$313,064	\$309,619	\$326,399	\$155,357	2,152,03 [,]		

Table 8g

-

SHAFT METHOD - PRODUCTION

ESTIMATED OPERATING COST

SUMMARY - MINING

Direct Costs	<u>Total/Yr</u>	\$ Per Ton <u>Milled</u>
1. Development	\$131,216	\$.750
2. Diamond drilling	35,000	.020
3. Stope preparation	83,470	• 477
4. Stoping	770, 354	4.402
5. Loading	33,1 14	.189
6. Hauling	43,192	.247
7. Hoisting	67,730	.387
8. Fill plant	20,996	.120
Sub total	\$1,185,072	\$6.772
Indirect Costs		
1. Mine maintenance	\$ 55,431	\$.317
2. Mechanical	50,966	.291
3. Engineering	62,289	•356
	02,209	
4. Supervision	53,137	.304
4. Supervision Sub total	·	

-

TRACKLESS METHOD

1

1

- 31 -

PREPRODUCTION MINE DEVELOPMENT

Month	Description	Decline - Incline footage	Drift & Crosscut footage	Raise footage	Sill drift footage	Sill drift Slashing cu.ft
1&2	 (A) Decline - 9'x8' cross-section from portal (elevation 5340'), past stopes 1,3&4 to turnoff @ elevation 5200' to stope 10 @ -15% 	960				
	 (B) Incline - 9'x8' cross-section from 5130 elevation (present adit) @ face of 502 drift west to second crosscut into stope 13 @ +15% 	192				
	(C) Ore pass raise from 5130' to 5280' @ +50° Two wings from raise to 5230' & 5195' elevations			184 85		
3	 (A) Decline - 9'xll' cross-section northerly on Section 45 from main drift @ 5130' elevation to 5080' elevation @ -12% 	460				
	(B) Incline (1B) continued to east to elevati 5195'@+10%	405				
	 (C) Decline from face (1A) northerly to break through with (3B) @ -2% (D) Crosscuts to stopes 3(95'), 4(105') @ 0% 	- 230				
	& 5(35') @ -15%	35	200			

Table 9a

÷

Table 9a (cont'd)

ŧ

			Decline -	Drift &			Sill drift
			Incline	Crosscut	Raise	Sill drift	Slashing
Month		Description	footage	footage	footage	footage	cu.ft.
4	(A)	Depline (1)1 among section from					
4	(A)						
		face (3A) to 5045 elevation @ ore					
		& waste pass chutes 123' @ -2%,	210				
		217' @ -12%	340				
		Triangular connection to west 80'	80				
	(p)	@ +15% Decline Olevel emerge section westerla	00				
	(D)	Decline 9'x8' cross-section westerly					
		from main decline @ elevation 5220					
		to stope 9 & to ore pass, 105' @ -15%, 120' @ 0%, 100' @ -15%	205	120			
	(C)		205	120			
	(0)	20' @ 0%		165			
	(D)	•		10)			
		of (3D) to stope 5 - 80' @ -15%	80				
	(E)		00				
	(1)	elevation, to north west to stope					
		10(200' @ +15%) & flat continuation					
		270' @ 0%	200	270			
			200	210			
5	(A)	Drift 9'x8' cross-section, - continuation					
-		of $(4E)$, to stope 1 @ 0%		315			
	(B)						
		(4E) to stope 2 @ 0%		300			
	(C)	Crosscuts to stope 10 @ 0%		200			
	(D)	Incline (9'x8') easterly from (4E)					
		@ 5230 elevation to stope 11 @ +10%, & fla	t 300	70			
	(E)						
		$@ +12\frac{1}{2}\% & + 10\%$	380				
	(F)						
		& ore pass chutes @ 0% plus sump		140			
	(G)						
		@ 5140 elevation to 5260 elevation @ 57 ⁰			140		

- 32 -

Table 9a (cont'd)

1

Decline -Drift & Sill drift Incline Crosscut Raise Sill drift Slashing Month Description footage footage footage footage cu.ft. (A) Raises 1) ventilation 5130 elevation to 5280 elevation - stope 6 185 east end @ 50° 2) ventilation - main decline 5205 elevation to 5280 elevation - stope 6 @ 57° 90 3) ore pass from (5F) 5055 elevation to 5130 elevation in 502 DR. @ 46° 103 4) waste pass from (5F) 5055 elevation to 5130 elevation in 502 DR. @ 46° 103 (B) Miscellaneous crosscuts on 5130 level to stopes 8 & 12 @ 0% (9'xll') plus sump 705 (C) Crosscuts to stopes 1(215'), 2(200'), 3(20'), 4(15') @ 0% 450 (D) Decline from face (3D) @ -15% (9'x8' crosssection) to stope 5 continued 70 Incline (9'x8') to east @ +10% from face (5D) (E) to stope 6(200'), 5260 elevation to 5280 elevation 380' @ 0% 380 200 (A) Decline to stope 5(100' @ -15%) to 5190 elevation 100 (B) Drift & crosscuts to stope 5 from (7A) 430 (C) Crosscuts to stope 13 from main decline @ 0% 185 (D) Crosscuts to stope 11 @ 0% 180 (E) Crosscuts to stopes 6 & 7 @ 0% 450 1) ore pass raise to stope 5 from (F) 5140 elevation to 5190 elevation @ 510 65

- 33 -

1

1

1

1

1

1

. 1

1

1

7

Table 9a (cont'd)

T

Decline -Drift & Sill drift Incline Crosscut Sill drift Slashing Raise footage Month Description footage footage footage cu.ft. (F)2) ventilation raise stope 1 to main decline 5240 elevation 85 to 5310 elevation @ 57° 3) ventilation raise stope 2 to main decline 5250 elevation to 5316 elevation @ 46° 90 (G) Sill drifts to shrinkage stopes 1(200'), 2(200'), 3(100'), 4(100'), 5(200') 800 Decline (9'xll') below 5130 level @ -12% (H) 400 (A) Sill drifts to shrinkage stopes 6(200'), 7(200'), 8(200'), @ 0% 600 (B) Sill drifts to cut & fill stope 9(200') 200 (C) Sill drift slashing (cut & fill) 9(16560 cu.ft.), 10(13680 cu.ft.), 12(9600 cu.ft.), 14(19840 cu.ft.) 59,680 (D) Taking down backs (cut & fill), 9(30960 cu.ft.), 10(35280 cu.ft.), 11(17280 cu.ft.), 12(31200 cu.ft.), 13(18560 cu.ft.), & 14(34240 cu.ft.) 167,520 (E) Ventilation raise from 5140 elevation to 5195 elevation @ face (4B) @ 50^o 73 (F) Ventilation raise from 5120 elevation of (5E) to 5230 elevation of (4E) @ 57° 135 Decline (7H) continued (9' x 11') @ -12% 400 (G) (H) Fill holes, lines & drain holes @\$8,948.00

(I) Sill timbering @ \$4,598.00

1

1

1

1

- 34 -

1

1

1

1

Month	Description	Decline - Incline footage	Drift & Crosscut <u>footage</u>	Raise <u>footage</u>	Sill drift footage	Sill drift slashing cu.ft.	
9	 (A) Sill drifts to cut & fill stopes 10(300'), 11(400'), 12(300'), 13(400'), 14(200') (B) Decline (8G) continued (9' x 11') @ -12% (C) Sill timbering @ \$8,196.00 	400			1,600		
	Totals	5,437	4,560	1,338	3,200	227,200	241,665

- 35 -

Table 9a (cont'd)

1

Table 9b

I.

- 36 -

TRACKLESS METHOD

•

ESTIMATED DIRECT COSTS PREPRODUCTION MINE DEVELOPMENT

Months

Description	Footage	<u>Cost/Ft.</u>	1&2	3	_4	_5_	6	_7	8	_9_	Total
Decline 1A	960	\$43.05 \$	41,328	\$	\$	\$	\$	\$	\$	\$	\$
Retimber 180' at											
5,130 portal	180	31.17	5,611								
Slashing 5,130 level											
(1,850'x40)	74,000cu.1		23,606								
Incline 1B	192	43.05	8,266								
Raises 1C	269	29.94	8 , 054								
Decline 3A	460	45.99		21,155							
Incline 3B	405	39•75		16,099							
Decline 3C	230	39.75		9,142							
Diamond drilling	2,700	4.50		12,150							
Chute erection	6	93.26		560							
Cross Cuts 3D flat	200	39.75		7,950							
incline		39.75		1,391							
Decline 4A	340	45.99			15,637						
Incline connection	80	39.75			3,180						
Decline 4B	205	39.75			8,149						
Drifting 4B	120	39.75			4,770						
Cross cuts 4C	165	39.75			6,559						
Diamond drilling	2,700	4.50			12,150						
Slash 502 Dl-E(330'x4					4,211 560						
Chute erection	6	93.26									
Decline 4D	80	39.75			3,180						
Incline 4E	200	39.75			7,950						
Drifting 4E	270	39.75			10,732	10 50	1				
Drifting 5A	315	39.75				12,52					
Drifting 5B	300	39.75				11,92					
Crosscuts 5C	200	39.75				7,950					
Incline 5D	300	39.75				11,92 <u>;</u> 2,782					
Drifting 5D	70	39.75				رم 17,476 17					
Incline 5E	380	45.99				+10+10	0				

Table 9b (cont'd)

1 1 7

,

						Months					
Description	Footage C	ost/Ft.	1 & 2	3	4	5	6	_7_	8	_9	Total
Cross cuts 5F		\$39.75 \$	4	þ	\$	\$ 5,565	\$	b	\$ 5	₿	\$
Raise 5G Diamond drilling	140	29.94				4,192					
month 5	2,010	4.50				9,045					
Raises 6A	481	29.94					4,192				
Cross cuts 6B & 6C	1,155	45.99					53,118				
Chute erection (12)	12	93.26					1,119				
Decline 6D	70	39.75					2,782				
Incline 6E	200	39.75					7,950				
Drifting 6E	380	39•75					15,105				
Decline 7A	100	39•75						3,975			
Drifts & Cross cuts											
7B,7C,7D,7E	1,245	39.75						49,489			
Chute erection	6	93.26						560			
Raises 7F	240	29.94						7,186			
Sill drifts 7G	800	39.75		`				31,800			
Decline 7H	400	45.99						18,396	31,800		
Sill drifts 8A & 8B	800	39•75							000,10		
Sill drift	50 600 mg	210							19,038		
slashing 80	59,680cu.ft.								53,439		
Taking down backs 8D Raises 8E & 8F	167,520cu.ft. 208	.319 29.94							6,228		
Decline 8G	400	45.99							18,396		
Fill holes &	400	-7.							8,948		
Sill timbering 8I									4,598		
Sill drift 9A	1,600	39•75								63,600	
Decline 9B	400	45.99								18,396	
Sill timbering 9C	700	()•))								8,196	
NTTT OTHOCTTHE 20		-	·								

\$86,865 \$68,447 \$77,078 \$83,381 \$84,266 \$111,406 \$142,447 \$90,192 \$744,082

- 37 -

Table 9c

~~~~

•

1

•

### TRACKLESS METHOD

| ESTIMATED INDIRECT COSTS<br>PREPRODUCTION MINE DEVELOPMENT |                   |          |          |                   |          |             |                   |              |                    |
|------------------------------------------------------------|-------------------|----------|----------|-------------------|----------|-------------|-------------------|--------------|--------------------|
|                                                            |                   |          |          | Mo                | nths     |             |                   |              |                    |
|                                                            | 1&2               | <u>3</u> | <u>4</u> | <u>5</u>          | <u>6</u> | I           | 8                 | 2            | Total              |
| Compressor & Power Plant Operation                         | \$ 9,400          | \$ 7,547 | \$ 7,547 | \$ 7,547          | \$ 7,547 | \$ 7,547    | \$7,547           | \$ 7,547     | \$ 62,229          |
| Truck Operation - Surface                                  | 1,850             | 925      | 925      | 925               | 925      | 925         | 925               | 925          | 8,325              |
| Tractor Operation - Surface                                | 1,800             | 1,800    | 1,800    | 1,800             | 1,800    | 1,800       | 1,800             | 1,800        | 14,400             |
| Underground Truck & Loader Operation                       | -                 | 4,349    | 4,349    | 4,349             | 4,349    | 4,349       | 4,349             | 4,349        | 30,443             |
| Small Service Trucks                                       | 2,000             | 2,331    | 2,331    | 2,331             | 2,331    | 2,331       | 3,662             | 3,662        | 20,979             |
| Explosive Distribution                                     | -                 | -        | -        | 698               | 698      | <b>6</b> 98 | 698               | 6 <b>9</b> 8 | 3,490              |
| Mechanical & Electrical                                    | 9,994             | 7,060    | 7,060    | 7,060             | 7,060    | 7,060       | 7,060             | 7,060        | 59 <b>,4</b> 14    |
| General Underground & Cleanup                              | 1,396             | 698      | 698      | 698               | 698      | 2,094       | 2,094             | 3,490        | 11,866             |
| Change House & Lamps                                       | 1,666             | 833      | 833      | 83 <b>3</b>       | 833      | 833         | 833               | 83 <b>3</b>  | 7,497              |
| First Aid - Warehouse                                      | 1,696             | 848      | 848      | 848               | 848      | 848         | 848               | 848          | 7,632              |
| Engineering                                                | 11,088            | 5,940    | 5,940    | 5,940             | 6,732    | 6,732       | 7,854             | 7,854        | 58,080             |
| Assaying                                                   | 2,320             | 1,160    | 1,160    | 1,160             | 1,160    | 1,160       | 1,160             | 1,160        | 10,440             |
| Supervision                                                | 1 <b>1,</b> 340   | 5,670    | 5,670    | 5,670             | 5,670    | 5,670       | 5,670             | 5,670        | 51,030             |
| Totals                                                     | \$54 <b>,</b> 550 | \$39,161 | \$39,161 | \$39 <b>,</b> 859 | \$40,651 | \$42,047    | \$44 <b>,</b> 500 | \$45,896     | \$34 <b>5,</b> 825 |

## Table 9d

÷.

**ר**יווי וווווווווו

### TRACKLESS METHOD

## ESTIMATED CAPITAL COSTS - SUPPLEMENTARY SHEET

### PREPRODUCTION MINE DEVELOPMENT

| Item                                                    | Unit Wt.<br>1bs | New<br><u>Unit Cost</u> | Used<br>Unit Cost<br>(Where<br>Applicable) | Unit<br>Installatio | on Amt<br><u>Req'd</u> | Total<br>Wt.<br><u>-lbs</u> | Total<br>Cost (U | Cotal<br>Cost<br>Jsed Wh <b>ere</b><br>pplicable) | Install<br>atio<br>Cost |
|---------------------------------------------------------|-----------------|-------------------------|--------------------------------------------|---------------------|------------------------|-----------------------------|------------------|---------------------------------------------------|-------------------------|
| 900 cfm Stationary compressor - electri                 | c 7,900         | \$20,135                | \$13,425                                   |                     | 4                      | 31 <b>,60</b> 0             | \$80,540         | \$53 <b>,7</b> 00                                 |                         |
| Compressor Installation                                 |                 | ) -                     |                                            | \$2,000             | 4                      |                             | • • • •          |                                                   | \$8 <b>,000</b>         |
| Aftercoolers                                            | 1,300           | 1,047                   | 700                                        |                     | 2                      | 2,600                       | 2,094            | 1,400                                             | 1.5.5                   |
| Aftercooler Installation                                | 0.000           | 700                     | 500                                        | 200                 | 2                      | h 000                       |                  | 1 000                                             | 400                     |
| Air Receivers - 42" x 120"<br>Air Receiver Installation | 2,000           | 702                     | 500                                        | 100                 | 2<br>2                 | 4,000                       | 1,404            | 1,000                                             | 200                     |
| Diesel Loaders (3 cu yds each)                          | 33,015          | 37,983                  | _                                          | 100                 | 2                      |                             | 113,950          | _                                                 | 200                     |
| Diesel Trucks (10 tons each)                            | 20,000          | 40,000                  | 30,000                                     |                     | 2                      |                             | 80,000           | 60,000                                            |                         |
| Loaders (1 cu. yd. each)                                | 9,000           | 26,500                  | 21,300                                     |                     | 5                      |                             | 132,500          | 106,500                                           |                         |
| Rock Drills                                             | 120             | 1,600                   | ;5==                                       |                     | 24                     | 2,880                       |                  |                                                   |                         |
| Tugger Hoists - air                                     | 500             | 2,000                   | 1,600                                      |                     | 10                     | 5,000                       |                  | 16,000                                            |                         |
| Fans (30,000 cfm) 60 hp                                 | 1,000           | 3,000                   | <b>_</b>                                   | 600                 | 2                      | 2,000                       |                  | -                                                 | 1,200                   |
| Fan (15,000 cfm) 30 hp                                  | 300             | 1,200                   | -                                          | 1,240               | 1                      | 300                         | 1,200            | -                                                 | 240                     |
| Fans (7,500 cfm) 30 hp                                  | 250             | 800                     | -                                          | 150                 | 4                      | 1,000                       |                  | -                                                 | 600                     |
| Fans - air (4,000 cfm)                                  | 80              | 533                     | -                                          | 120                 | 3                      | 240                         | 1,600            | -                                                 | 360                     |
| Pumps - submersible - electric - 20 hp                  | 73              | 1,250                   | -                                          |                     | 4                      | 290                         | 5,000            | -                                                 |                         |
| Pumps - sump                                            | 83              | 640                     | -                                          |                     | 5                      | 415                         | 3,200            | -                                                 |                         |
| Underground Power Cable & Installation                  |                 | 1                       |                                            | •                   | -                      | 10,000                      |                  | -                                                 | 700                     |
| Prefab Steel Chutes                                     | 4,000           | 4,000                   | -                                          |                     | 2                      | 20,000                      |                  | -                                                 | 500                     |
| Shop Equipment & Installation                           | 2 000           | _                       | 1 500                                      |                     | 5                      | 10,000<br>15,000            | 15,000           | 1,200<br>22,500*                                  | 500                     |
| Jeeps - rebuilt<br>14 ton Bulk Cement Tank              | 3,000<br>5,000  | 2,000                   | 4,500                                      |                     | 2                      | 5,000                       | 2,000*           | 22,500*                                           |                         |
| Fill tanks 20' x 20'                                    | 26,000          | 5,834                   |                                            |                     | <u>т</u><br>Д          | 104,000                     |                  | -                                                 |                         |
| Fill tank 9' x 8' with 15 hp agitator                   | 5,100           | 2,500                   | -                                          |                     | ĺ                      | 5,100                       |                  | -                                                 |                         |
| Fill Tank 5' x 6' with 5 hp agitator                    | 2,400           | 1,800                   | -                                          |                     | 1                      | 2,400                       |                  | -                                                 |                         |
| Fill pumps (100 g.p.m.) 40 hp                           | 1,000           | 2,500                   | -                                          |                     | 2                      | 2,000                       |                  | -                                                 |                         |
| Pipe - 3" standard fill                                 | 7/ft            | \$1.05/ft               | ; –                                        | 3                   | 3000 ft                | 21,000                      |                  | -                                                 | ,                       |
| Pipe - 6" litewall (6.8)                                | 6.8/ft          | \$1.16/ft               |                                            | 3                   | 3000 ft                | 20,400                      | 3,475*           | -                                                 | ,                       |

# Table 9d (cont'd)

,

1

¥

1

Ţ

# - 40 -

| Item                                                        | Unit Wt.<br><u>-lbs</u> | New<br><u>Unit Cost</u> | Used<br>Unit Cost<br>(Where<br><u>Applicable)</u> | Unit<br>Installation<br>Cost | Amt<br><u>Req'd</u> | Total<br>Wt.<br><u>-lbs</u> | Total (<br>Cost (Us | otal<br>Cost<br>sed Where<br><u>plicable)</u> | Install-<br>atic~<br>Cost |
|-------------------------------------------------------------|-------------------------|-------------------------|---------------------------------------------------|------------------------------|---------------------|-----------------------------|---------------------|-----------------------------------------------|---------------------------|
| Couplings - 6"<br>Couplings - 3"<br>Fill plant installation | 10<br>4                 | \$5.62<br>\$6.16        | -                                                 |                              | 155<br>155<br>-     | 1,550<br>620                | 870*<br>955*        | -                                             | <u>10,795</u>             |
| Totals                                                      |                         |                         |                                                   |                              | Ĺ                   | 451,440                     | \$572,173           | \$273,100                                     | \$22,995                  |

\* Federal Sales Tax Applicable

·

١

1

. 1

١

}

- 41 -

# TRACKLESS METHOD

ESTIMATED CAPITAL COSTS

PREPRODUCTION MINE DEVELOPMENT

| No.    | Description     | l &<br>New | Used     | 3<br>New  | Used     | 4 8<br>New | Used       | New      | 6<br>Used   | 7<br>New  | Used      | New Used   | 9<br>1 New U |
|--------|-----------------|------------|----------|-----------|----------|------------|------------|----------|-------------|-----------|-----------|------------|--------------|
| 4      | Compressors     |            |          | \$ 40,270 | \$26,850 |            | ŝ          |          |             | \$ 40,270 | \$ 26,850 |            |              |
| -      | Installation    |            |          | 4,000     | 4,000    |            |            |          |             | 4,000     | 4,000     |            |              |
| 2      | Aftercoolers    |            |          | 1,047     | 700      |            |            | <i>F</i> |             | 1,047     | 700       |            |              |
|        | Installation    |            |          | 200       | 200      |            |            |          |             | 200       | 200       |            |              |
| 2      | Air Receivers   |            |          | 702       | 500      |            |            |          |             | 702       | 500       |            |              |
|        | Installation    |            |          | 100       | 100      |            |            |          |             | 100       | 100       |            |              |
| 3      | Diesel Loaders  | \$113,950  |          |           |          |            |            |          |             |           |           |            |              |
| 2      | Diesel Trucks   |            |          | 40,000    | 30,000   |            |            |          |             | 40,000    | 30,000    |            |              |
| 5      | Loaders         |            |          | 26,500    | 21,300   |            |            |          |             | 106,000   | 85,200    |            |              |
| 24     | Rock Drills     | 16,000     |          |           |          |            |            | \$16,000 |             | ,         |           |            | \$6,400      |
| 10     | Tugger Hoists - | ,          |          |           |          |            |            | . ,      |             |           |           |            | , ,          |
|        | Air             | 4,000      | \$ 3,200 |           |          |            |            | 16.000   | \$12,800    |           |           |            |              |
| 2      | Fans (30,000    | ,          | 4 5,200  |           |          |            |            |          | <i>+</i> ,, |           |           |            |              |
|        | cfm)            |            |          |           |          |            |            | 6,000    |             |           |           |            |              |
| 1      | Fan (15,000     |            |          |           |          |            |            | 0,000    |             |           |           |            |              |
| -      | cfm)            |            |          |           |          |            |            |          |             | 1,200     |           |            |              |
| +      | Fans (7,500     |            |          |           |          |            |            |          |             | 1,200     |           |            |              |
| 1.<br> | cfm)            |            |          |           |          |            | 201<br>201 |          |             |           |           | \$ 3,200   |              |
| 3      | Fans (4,000     |            |          |           |          |            |            |          |             |           |           | \$ 5,200   |              |
| )      | <b>cfm</b> )    |            |          |           |          |            |            |          |             |           |           | 1,600      |              |
|        | Installation    |            |          |           |          |            |            | 1 000    |             | 240       |           |            |              |
| ŧ      |                 |            |          |           |          |            |            | 1,200    |             | 240       |           | 960        |              |
| +      | Pumps -         | 0 500      |          |           |          | 41 050     |            | 1 050    |             |           |           | 2. S.      |              |
| -      | Submersible     | 2,500      |          | 1 0 00    |          | \$1,250    |            | 1,250    |             |           |           |            |              |
| 5      | Pumps - Sump    | 1,920      |          | 1,280     |          | 5 500      |            |          |             |           |           |            |              |
| -      | Power Cable     |            |          |           |          | 5,700      |            |          |             |           |           | 00.000     |              |
| 5      | Steel Chutes    | 15 500     | 10 500   |           |          |            |            |          |             |           |           | 20,000     |              |
| -      | Shop Equipment  | 15,500     | 12,500   |           |          |            | 410 500    |          |             |           |           |            |              |
| 5      | Jeeps           | 3          | 9,000    |           |          |            | \$13,500   |          |             |           |           |            |              |
| -      | Cement Tank     |            |          |           |          |            |            |          |             |           |           | 2,000      |              |
| ł      | Fill Tanks      |            |          |           |          |            |            |          |             |           |           |            |              |
|        | 20' x 20'       |            |          |           |          |            |            |          |             |           |           | 23,335     |              |
| L      | Fill Tanks      |            |          |           |          |            |            |          |             |           |           |            |              |
|        | 9' x 8'         |            |          |           |          |            |            |          |             |           |           | 2,500      |              |
| L      | Fill Tanks      |            |          |           |          |            |            |          |             |           |           |            |              |
|        | 5' x 6'         |            |          |           |          |            |            |          |             |           |           | 1,800      |              |
| 2      | Fill Pumps      |            |          |           |          |            |            |          |             |           |           | 5,000      |              |
| 3000'  | Pipe 3"         |            |          |           |          |            |            |          |             |           |           | 3,150      |              |
| 3000'  | Pipe 6"         |            |          |           |          |            |            |          |             |           |           | 3,475      |              |
| 155    | Couplings 6"    |            |          |           |          |            |            |          |             |           |           | 870        |              |
| 155    | Couplings 3"    |            |          |           |          |            |            |          |             |           |           | 955        |              |
|        | Installation    |            |          |           |          |            |            |          |             |           |           | 10,795     |              |
| [otal  |                 | \$153,870  | \$24,700 | \$114.099 | \$83.650 | \$6,950    | \$13,500   | \$40,450 | \$12.800    | \$193,759 | \$147,550 | \$79,640 - | \$6,400      |
|        |                 |            |          | \$84,     |          | \$20,4     |            | \$37,    | , , ,       | \$148     |           |            | \$6,400      |

Monthly Purchase Price

Table 9e

|           | Total                       | Estimated                   |                         |              |
|-----------|-----------------------------|-----------------------------|-------------------------|--------------|
| 9<br>Used | New                         | Used                        | Purchase<br>Price       | Installation |
| Usea      |                             |                             |                         |              |
|           | \$ 80,540<br>8,000<br>2,094 | \$ 53,700<br>8,000<br>1,400 | \$ 53,700<br>-<br>1,400 | \$ 8,000     |
|           | 400                         | 400                         | 1,000                   | 400          |
|           | 200                         | 200                         | -                       | 200          |
|           | 113,950<br>80,000           | 60,000                      | 113,950<br>60,000       |              |
|           | 132,500                     | 106,500                     | 106,500                 |              |
| ,         | 38,400                      | -                           | 38,400                  |              |
|           | 20,000                      | 16,000                      | 16,000                  | *            |
|           | 6,000                       | -                           | 6,000                   |              |
|           | 1,200                       | -                           | 1,200                   |              |
|           | 3,200                       | -                           | 3,200                   |              |
|           | 1,600                       | -                           | 1,600                   |              |
|           | 2,400                       | -                           | -                       | 2,400        |
|           | 5,000                       | -                           | 5,000                   |              |
|           | 3,200<br>5,700              |                             | 3,200                   | 700          |
|           | 20,000                      |                             | 20,000                  | 100          |
|           | 15,500                      | 12,500                      | 12,000                  | 500          |
|           | -                           | 22,500                      | 22,500*                 |              |
|           | 2,000                       | -                           | 2,000*                  |              |
|           | 23,335                      | -                           | 23,335*                 |              |
|           | 2,500                       | -                           | 2,500*                  |              |
|           | 1,800                       | -                           | 1,800*                  |              |
|           | 5,000                       | -                           | 5,000*                  |              |
|           | 3,150                       | -                           | 3,150*                  |              |
|           | 3,475<br>870                | -                           | - 3,475*<br>870*        |              |
|           | 955                         | _                           | 955 <b>*</b>            |              |
|           | 10,795                      | -                           | -                       | 10,795       |
| ) -       | \$595,168                   | \$282,220                   | \$513,735               | \$22,995     |
| 100       |                             |                             | + + = > 6               | 1720         |

\$536,730

## TRACKLESS METHOD

## SUMMARY

# ESTIMATED PREPRODUCTION MINE DEVELOPMENT COSTS

|                                    | Months    |           |           |           |           |           |           |           |             |  |
|------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-------------|--|
|                                    | 1 & 2     | 3         | 24        | 5         | 6         | 7         | 8         | 9         | Total       |  |
| Direct Costs                       | \$ 86,865 | \$ 68,447 | \$ 77,078 | \$ 83,381 | \$ 84,266 | \$111,406 | \$142,447 | \$ 90,192 | \$ 744,082  |  |
| Indirect Costs                     | 54,550    | 39,161    | 39,161    | 39,859    | 40,651    | 42,047    | 44,500    | 45,896    | 345,825     |  |
| Capital Costs                      | 159,070   | 84,930    | 13,500    | 6,950     | 37,250    | 148,990   | 79,640    | 6,400     | 536,730     |  |
| Sub Total                          | 300,485   | 192,538   | 129,739   | 130,190   | 162,167   | 302,443   | 266,587   | 142,488   | 1,626,637   |  |
| Federal Tax 12%<br>on \$ 65,587    | 2,623     |           |           |           |           |           | 5,247     |           | 7,870       |  |
| Provincial Tax 5<br>on \$521,605   | 5,800     | 2,900     | 2,900     | 2,900     | 2,900     | 2,900     | 2,900     | 2,880     | 26,080      |  |
| Freight 225 tons<br>at \$24.00/ton | 1,200     | 600       | 600       | 600       | 600       | 600       | 600       | 600       | 5,400       |  |
| Total                              | \$310,108 | \$196,038 | \$133,239 | \$133,690 | \$165,667 | \$305,943 | \$275,334 | \$145,968 | \$1,665,987 |  |

- 42 -

1

٦

ŧ

١

# TRACKLESS METHOD

# ESTIMATED OPERATING COST SUMMARY - MINING

|                             | Total Per Year | \$.<br>Per Ton Milled<br>(175,000 TPY) |
|-----------------------------|----------------|----------------------------------------|
| DIRECT COSTS                |                |                                        |
| Development                 | \$ 149,867     | <b>\$ .</b> 856                        |
| Diamond Drilling            | 35,000         | .200                                   |
| Stope Preparation           | 83,470         | .477                                   |
| Stoping                     | 670,707        | 3.833                                  |
| Ore Loading                 | 68,275         | •39                                    |
| Ore Hauling                 | 43,057         | .246                                   |
| Fill Plant                  | 20,996         | .120                                   |
| Sub Total<br>Indirect Costs | \$ 1,071       | 1,372 \$ 6.122                         |
| Mine Maintenanc <b>e</b>    | \$ 62,431      |                                        |
| Mechanical Maintenance      | 76,019         |                                        |
| Engineering                 | 62,289         |                                        |
| Supervision                 | 53,137         |                                        |
| Sub Total                   | 253            | 3,876 1.451                            |
| Total                       | \$ 1,325       | 5,248 \$ 7.573                         |

÷

,

- -

CHAPTER IV METALLURGY, CRUSHING PLANT & CONCENTRATOR

.

#### MILLING

#### GENERAL

Representative samples obtained by combining diamond drill core and chip samples from underground ore exposures have been submitted to Department of Energy, Mines and Resources, Ottawa, to Lakefield Research of Canada Ltd., Lakefield, Ontario and to Allis Chalmers Metal Processing Research and Test Centre, Oak Creek, Wisoonsin for flotation and grinding tests, and reports have been submitted to Alwin.

Mr. D.A. Livingstone, P. Eng., Group Metallurgist, Grandby Mining Company Limited, Vancouver, British Columbia, has prepared a preliminary report and plant layout, relative to the treatment of ore from the Alwin Mining Company property, at the rate of 500 t.p.d. Mr. Livingstone's report was based upon flotation test work and the mineralogical examinations of ore samples carried out by the Mines Branch at Ottawa.

All of the above report were studied and the various items incorporated in the concentrator flow sheet, plant layout and estimated costs contained in this report.

#### SUMMARY OF METALLURGICAL TEST WORK RESULTS

(a) Department of Energy Mines and Resources, Ottawa.

Summarizing the results, the following is noted:

The copper in this ore occurs largely as coarse to medium-grained chalcopyrite disseminated in gangue. A smaller amount of copper (about 10%) is present as bornite and chalcocite. The head sample assays 2.50% copper, 0.0025 oz/ton gold, and 0.44 oz/ton silver.

Satisfactory concentrate grades and recoveries were obtained by flotation at a grind of 55% minus 200 mesh. In a seven-stage locked-cycle test, a copper concentrate assaying 33.0% copper, was produced with copper, gold and silver recoveries of 95.1%, 85.4% and 89.7% respectively. Calculated gold and silver assays for this test were 0.0024 and 0.41 oz/ton respectively, which are in close agreement with the assay heads.

The work index determined for the ore was 17.4 kWh/short ton.

(b) Lakefield Research of Canada Ltd.

The complete summary submitted by Lakefield is not quoted in detail but the following paragraphs extracted outline the principal conclusions.

#### - 1 -

### <u>S U M M A R Y</u>

#### Head Analysis

The chemical analyses of the two composites were as follows:

|                 | % Cu | % Fe | <u>%</u> S |
|-----------------|------|------|------------|
| Composite No. 1 | 2.42 | 4.83 | 2.22       |
| Composite No. 2 | 2.38 | 4.67 | 2.38       |

#### Work Index

Four grinding tests were performed on Composite No. 1 and one grinding test was performed on Composite No. 2. The work indices were calculated using the relationship established by F.C. Bond in his Third Theory of Comminution. In order to obtain the 80 percent passing size, the screen analyses were plotted and the size moduli  $K_{80}$  were determined graphically.

Composite No. 1

| Grinding Time<br>minutes/1000 g. | % Passing<br>200 mesh | Size Modulus<br>K <sub>80</sub> (Microns) | Power<br>Consumption<br>kwh/ton | Work<br>Index |
|----------------------------------|-----------------------|-------------------------------------------|---------------------------------|---------------|
| Feed (nil)                       | 16.6                  | 949                                       | 3.1                             |               |
| 5<br>10                          | 54.2<br>73.5          | 158<br>84.8                               | 3.1<br>6.2                      | 6.6<br>8.2    |
| 20                               | 88.3                  | 53.9                                      | 12.4                            | 12.0          |
| 40                               | 95.9                  | *                                         | 24.8                            | *             |

\* Not determined because outside range.

Composite No. 2

| Grinding Time<br>Minutes/1000 g | % Passing<br>200 Mesh | Size Modulus<br>K <sub>80</sub> | Power<br>Consumption<br>kwh/ton | Work<br>Index |
|---------------------------------|-----------------------|---------------------------------|---------------------------------|---------------|
| Feed (nil)                      | 19.0                  | 833                             | -                               | 7.4           |
| 5                               | 47.6                  | 175                             | 3.1                             |               |

Calculated average work index for 55 percent passing 200 mesh was 7.0.

#### Flotation - Individual Tests

Flotation tests were conducted on the products from the grinding series on Composite No. 1. One additional test was performed on ore ground to only 50.2% minus 200 mesh. The same procedure was followed in all five tests. This involved a roughing stage and two or three cleaning stages.

Reagent additions to the roughing stage were 0.2 lbs/ton sodium iso-propyl xanthate (Z-11) and 0.1 lbs/ton Dowfroth 250. Addition of 0.5 lbs/ton lime to the ball mill resulted in an initial pH of 9.5 to 10.0 in the cell. The rougher concentrates were cleaned by reflotation using 0.02 lbs/ton Dowfroth 250 when required.

The best results were obtained with the coarsest grinds. After grinding to 54.2 percent minus 200 mesh, a copper concentrate was produced assaying 32.8% Cu at a recovery of 96.7% of the copper. All five tests yielded copper concentrates assaying between 32.0% and 34.0% Cu at recoveries ranging from 95.0% to 96.7%. In one test Cyanamid collector S-3501 was compared with iso-propyl xanthate (Z-11) (tests 4, 9). On a weight for weight basis the iso-propyl xanthate collector was more efficient than reagent S-3501.

Comparison of Z-11 and S-3501

| Test | Collector | Cu Cleaner<br>Assay % Cu | Concentrate<br>% Recovery, Cu |
|------|-----------|--------------------------|-------------------------------|
| 4    | Z-11      | 32.8                     | 96.7                          |
| 9    | S-3501    | 33.8                     | 94.9                          |

Composites No. 1 and 2 had similar flotation characteristics and were combined for subsequent locked cycle, settling and filtering tests. Two tests on each composite were used in the comparison, the results of which are illustrated in Figure 5.

#### Comparison of Composites No. 1 and 2

| Test | Composite<br>No. | Grind Time<br>(min./1000g.) | Со:<br>Туре | llector<br>Addition<br>(lb/ton) | Cu Clea<br>Assay<br>(%) | aner Conc.<br>Recovery<br>(%) |
|------|------------------|-----------------------------|-------------|---------------------------------|-------------------------|-------------------------------|
| 4    | 1                | 5                           | Z-11        | 0.2                             | 32.8                    | 96.7                          |
| 5    | 2                | 5                           | Z-11        | 0.2                             | 33.2                    | 95.8                          |
| 7    | 1                | 10                          | Z-11        | 0.3                             | 33.1                    | 96.3                          |
| 8    | 2                | 10                          | Z-11        | 0.3                             | 32.4                    | 97.0                          |

Increasing collector additions from 0.2 lbs/ton to 0.3 lbs/ton Z-ll did not improve the grade-recovery characteristics of the composites.

- 3 -

#### Comparison of Collector Additions

| Test   | Composite<br>No. | Col          | Lector           | Cu Clea      | ner Conc.     |
|--------|------------------|--------------|------------------|--------------|---------------|
|        |                  | Туре         | Level<br>lbs/ton | Assay<br>%   | Recovery<br>% |
| 1<br>7 | 1<br>1           | Z-11<br>Z-11 | 0.2<br>0.3       | 33.1<br>33.1 | 96.1<br>96.3  |

#### Mineralogy

The products from the flotation of Composite No. 1 in Test 1 were examined microscopically. The size analysis of the flotation feed was 73.5 percent minus 200 mesh.

The copper cleaner concentrate was a mixture of chalcopyrite and bornite with a ratio greater than 20 to 1. Some chalcocite was tentatively identified. Gangue was present as inclusions in the chalcopyrite.

Chalcopyrite of less than 10 microns size accounted for copper loss in the tailings. In the rougher and first and second cleaner tailings 20%, 30%, and 60% of the chalcopyrite was free.

#### Flotation Cycle Test

The results from the six-stage cycle test, test 10, showed that the recirculating cleaner tailings approached a steady weight after four cycles. If the recirculating cleaner tailings should be omitted from the calculations of the last two cycles, the metallurgical balance indicated that a copper cleaner concentrate assaying 33.6% Cu at a recovery of 97.7% could be produced. Overall copper cleaner concentrate grade in the six cycles was 33.5% Cu at a recovery of 96.9%.

### Thickening Test - Concentrate

Thickening tests were conducted on the copper cleaner concentrate at natural pH (a) without flocculant, (b) with 0.5 pounds per ton lime, (c) with 0.01 pounds per ton Separan AP30 (an anionic polyacrylamide, and (d) with 0.01 pounds per ton Polyhall 402 (an non-toxic polyacrylamide). The results are listed below.

#### Settling Test Data

| Addit<br>Amount     | tion<br>Type        | Thickener Area<br>Re <b>g</b> uirements<br>(ft <sup>2</sup> /ton/24 hr) | Thickener Underflow<br>Pulp Density<br>Max Solids | Supernatant<br>Liquid           |
|---------------------|---------------------|-------------------------------------------------------------------------|---------------------------------------------------|---------------------------------|
| nil                 | nil                 | -                                                                       | 75.0                                              | -                               |
| 0.5<br>0.01<br>0.01 | lime<br>AP30<br>402 | 0.58<br>0.08<br>0.09                                                    | 72.0<br>72.3<br>70.3                              | cloudy<br>clear<br>almost clear |

Note: The area requirements do not include a safety factor.

No solid-liquid demarcation was observable in the sample settled without flocculant. The organic flocculants Separan AP30 and Polyhall 402, notably the latter, produced good results.

#### Thickening Tests - Rougher Tailing

Thickening tests were conducted on the rougher tailing at natural pH (a) without flocculant, (b) with 1.0 and 2.0 pounds per ton lime, (c) with 0.01 and 0.05 pounds per ton Separan AP30, (d) with 0.05 pounds per ton Polyhall 402, (e) with 0.05 pounds per ton Jaguar MRL 22A (a cationic organic flocculant). The results are listed below.

#### Settling Test Data

| Addit<br>Amount<br>lb/ton | tion<br>Type | Thickener Area<br>Requirements<br>(ft <sup>2</sup> /ton/24 hr) | Thickener Underflow<br>Pulp Density<br>Max. % Solids | Super-<br>natant<br>Liquid        |
|---------------------------|--------------|----------------------------------------------------------------|------------------------------------------------------|-----------------------------------|
| nil<br>1.0                | nil<br>lime  | 4.9<br>4.1                                                     | 54.7<br>47.9                                         | very cloudy<br>slightly<br>cloudy |
| 2.0                       | lime         | 2.9                                                            | 47.1                                                 | almost clear                      |
| 0.01                      | AP30         | 2.0                                                            | 49.0                                                 | cloudy                            |
| 0.05                      | AP30         | 0.15                                                           | 53.5                                                 | clear                             |
| 0.05                      | 402          | 1.3                                                            | 52.0                                                 | cloudy                            |
| 0.05                      | MRL 22       | A 1.4                                                          | 52.0                                                 | cloudy                            |

Note: The area requirements do not include a safety factor.

Separan AP30 provided the best combination of clarity of overflow and minimum thickener area requirements.

#### Filtering Tests - Concentrate

A pour-on filter test was performed on the thickened concentrate at a density of 70 percent solids to simulate thickener underflow feed. The filter media was a nylon cloth. Cracking of the cake was not observed, however cake discharge from the cloth was only fair. The percent moisture in the cake was 10 percent. Other filtering tests on the concentrate with laboratory pan filters produced moisture levels of 6.2 to 8.7 percent moisture.

LAKEFIELD RESEARCH OF CANADA LIMITED

A.G. Scobie, P. Eng.,

Manager

#### (c) Allis Chalmers Metal Processing and Research Test Centre

Allis Chalmers were requested by Alwin to determine a Bond Work Index for closed-circuit ball milling from 5/8 inch to a fineness of 55% - 200 mesh. The rod mill work index indicated by the results amounted to 10.05 and the ball mill work index at 100 mesh amounted to 10.79.

### (d) Mr. D.A. Livingstone, P. Eng.,

Mr. Livingstone's report was based on the results of the work submitted by the Department of Mines in Ottawa which involved eight flotation tests including one lock-cycle test. Mr. Livingstone states that subject to a more extensive investigation of a new ore sample, the indications are that the ore can be concentrated very well by conventional flotation methods when ground to a medium fineness of 50-60% minus 200 mesh. Ore the same as that used in the test work may be expected to yield 94% recovery in concentrates grading at least 32% copper on heads containing 2.0% copper.

Chalcopyrite, as coarse to medium grains disseminated in gangue, is the main copper occurrence, but about 10% of the total occurs in the form of bornite and chalcocite. Gold and silver are reported as 0.0024 oz/ton and 0.41 oz/ton, respectively, and therefore inconsequential in so far as mill planning is concerned. The flotation performance and analytical data vailable to date have indicated no deleterious metallic or nonmetallic constituents which would affect adversely either flotation of the ore or marketability of the concentrates.

#### CRUSHING AND GRINDING

Mr. Livingstone states in part "crushability tests were not performed, so it is assumed that it is similar to other copper ores in the area. A Bond Work Index as a measure of grindability is reported as 17.4, which is mediumhard, and probably similar in this respect to Bethlehem ore.

In ores of this type, copper recovery is almost invariably proportional to the fineness of grind. Since the tests have not proceeded to the point where optimum fineness has been established, a fineness of 60% - 200 mesh is assumed. If coarser grinding proves to be acceptable, operating costs and mill capacity will benefit accordingly."

It will be noted from the Lakefield Research Grinding tests that the calculated work index of 55% passing 200 mesh was 7.0, in comparison to the figure of 17.4 as determined by the Mines Branch in Ottawa.

From the accompanying drawings in this report it will be noted that the ore received from the mine will be reduced in one stage of open circuit jaw crushing and a second stage of closed circuit crushing to minus  $\frac{1}{2}$  inch.

It is planned that the coarse ore bin will have a live storage of about 500 tons and the fine ore bin will provide capacity for 1500 live tons, so as to permit a one shift, five day work week for the crusher. The equipment recommended is a 36 in. x 42 in. jaw crusher and a  $5\frac{1}{2}$  ft short head cone crusher.

The grinding circuit will consist of one 8 ft x 10 ft ball mill in closed circuit with one 15 in. cyclone classifier. An extra cyclone has been included to serve as a spare. It is felt that the selection of the above equipment is conservative and will cover the run of Bond Work Indexes indicated satisfactorily, so as to produce the designed performance.

#### FLOTATION AND DEWATERING OF CONCENTRATES

Ten cells each 50 cu ft in size are provided for roughing in the flotation circuit and 6 cells each 40 cu ft in size will be installed to clean the rougher concentrates. It will be noted that space is provided for an additional 20% in capacity for both the rougher and cleaner circuit to allow for future expansion.

The cleaner concentrates will be partially dewatered in a 25 ft x 10 ft thickener followed by a 6 ft diameter four disc filter and drier. A surge 12 ft x 14 ft in size placed ahead of the filter will permit intermittent operation of the drier to accommodate fluctuating output.

#### PLANT LAYOUT

Special attention has been made to providing a simplified compact layout in order to obtain maximum efficiency in supervision maintenance and power distribution. It will be noted that the crushing plant has been placed adjacent to the concentrator and that the operating floors in both plants are at the same elevation. An airtight door will be provided to provide passage backwards and forwards between the crushing and concentrating operations.

Processed water will be reclaimed from the tailings pond for the purposes of water conservation and pollution control.

#### PERSONNEL

Mill Superintendent, foreman - metallurgist, one repairman and two helpers, one crusherman, three grinding operators, three flotation operators, three operators for filtering, drying and concentrate loading, one labourer, for a total of sixteen. In addition, three swing men and two men in the assay office will be required.

### OPERATING DATA AND CONSIDERATIONS

### 1. METAL BALANCE

Quoting from Mr. Livingstone's report "assuming 515 TPD for an average throughput per calendar day of 500.

| Product      | Tons | % Copper | % Distribution |
|--------------|------|----------|----------------|
| Mill Heads   | 515  | 2.00     | 100.0          |
| Concentrates | 30   | 32.00    | 94.0           |
| Tailings     | 485  | 0.12     | 6.0            |

Owing to the low contents of gold and silver, the test results showed erratic recoveries. Consequently these are not included in the metal balance, but the concentrates may be expected to run about 0.035 oz/ton in gold, and 5.4 oz/ton in silver.

#### 2. ORE BINS

"Broken ore, 18 cu ft/ton. Specific Gravity 2.86. Coarse ore bin, 60% draw-off through 1 drawpoint. Fine ore bin, 70% draw-off through 6 drawpoints.

#### 3. COARSE ORE FEEDER

A reciprocating feeder 36 ft x 96 in. will extract the ore from the coarse ore bin and feed it to the jaw crusher.

#### 4. CONVEYOR SLOPES

 $14^{\circ}$  for coarse "run-of-mine" ore  $16^{\circ}$  for intermediate sizes up to 4"  $18^{\circ}$  for minus  $\frac{1}{2}$  in. ore  $20^{\circ}$  for concentrates

# SHAFT METHOD CRUSHING PLANT AND ORE STORAGE - 500 TPD CAPITAL COST ESTIMATE - EQUIPMENT

|                                                                       | Weight - 1bs | New      | Cost<br>Second-hand<br>(where applicable) |
|-----------------------------------------------------------------------|--------------|----------|-------------------------------------------|
| Reciprocating feeder - 34" x 96"                                      | 9,500        | \$10,000 | \$ 6,750                                  |
| Jaw crusher 30" x 42" - 140 TPH                                       | 108,000      | 70,000   | 33,500                                    |
| Jaw and cone crusher chutes and skirting                              | 1,200        | 2,000    | 2,000                                     |
| #1 Conveyor 36" x 34' @ \$105/ft                                      | 8,000        | 3,570    | 3,570                                     |
| #l Transfer chute                                                     | 900          | 300      | 300                                       |
| #2 Conveyor 36" x 75' @ \$105/ft                                      | 19,000       | 7,900    | 7,900                                     |
| #2 Transfer chute                                                     | 900          | 300      | 300                                       |
| #3 Conveyor 36" x 82' @ \$105/ft                                      | 20,000       | 8,600    | 8,600                                     |
| #3 Feed box to screen                                                 | 1,000        | 500      | 500                                       |
| Primary screen double-deck 5' x 10<br>(top deck 2" - lower deck 5/8") |              | 6,200    | 6,200                                     |
| Screen discharge & chute skirting<br>#4 conveyor                      | to<br>1,000  | 300      | 300                                       |
| #4 Conveyor 24" x 10' @ \$70/ft                                       | 3,000        | 700      | 700                                       |
| Cone crusher feed chute                                               | 2,700        | 1,000    | 1,000                                     |
| Cone crusher - 5 <sup>1</sup> / <sub>2</sub> ' S.H <b>2</b> 10 TPH    | 101,000      | 84,900   | 56,600                                    |
| #5 Conveyor 24" x 80' @ \$70/ft                                       | 21,000       | 5,600    | 5,600                                     |
| #5 Conveyor-transfer chute                                            | 900          | 300      | 300                                       |
| #6 Conveyor 24" x 98' @ \$70/ft                                       | 25,000       | 6,900    | 6,900                                     |
| Metal detector                                                        | 500          | 5,000    | 3,000                                     |
| Dust control                                                          | 12,000       | 18,000   | 18,000                                    |
| 5 Ton crane                                                           | 12,000       | 7,000    | 5,000                                     |
| Sub Total                                                             | 352,200      |          | \$167,020                                 |
| Equipment installation @ 20%                                          |              |          | 33,404                                    |
| Electrical control & distribution                                     | 1,000        |          | 28,500                                    |
| Freight @ \$24                                                        |              |          | 4,238                                     |
| Sales Tax @ 5%                                                        |              |          | 8,351                                     |
| Total                                                                 | 353,200      |          | \$241,513                                 |

----

;

-

# SHAFT METHOD

- 10 -

-

Cost

# CRUSHING PLANT & ORE STORAGE

# CAPITAL COST ESTIMATE - CONSTRUCTION & INSTALLATION

| Conveyor Trestles                                                     | -               | 379 ft | at    | \$50/ft      | \$   | 19,000  |
|-----------------------------------------------------------------------|-----------------|--------|-------|--------------|------|---------|
| Crusher Foundations (Jaw & Cone)                                      | - 129           | cu yds | at    | \$120/cu yd  |      | 15,480  |
| Building Footings & Floor Slab                                        | - 44            | cu yds | at    | \$110/cu yd  |      | 4,840   |
| Conveyor & Transfer House Footings                                    | - 30            | cu yds | at    | \$110/cu yd  |      | 3,300   |
| Coarse Ore Bin Foundation                                             | <del>-</del> 52 | cu yds | at    | \$ll0/cu yd  |      | 5,720   |
| Fine Ore Bin Foundation                                               | - 150           | cu yds | at    | \$110/cu yd  |      | 16,500  |
| Coarse Ore Bin                                                        | -               |        |       |              |      | 12,000  |
| Fine Ore Bin                                                          | -               |        |       |              |      | 23,000  |
| Crusher Building 26 ft x 52 ft = 3<br>(including heating, ventilation |                 |        | : \$1 | 1,426/sq ft. |      | 15,500  |
| Total                                                                 |                 |        | -     |              | \$ 3 | 115,340 |

Freight and Taxes included in above figures.

# SHAFT METHOD

# CONCENTRATOR

# CAPITAL COST ESTIMATE - EQUIPMENT

|                                                                |              | Cost     |                                                     |  |  |
|----------------------------------------------------------------|--------------|----------|-----------------------------------------------------|--|--|
|                                                                | Weight - lbs | New      | Se <b>c</b> ond-hand<br>( <u>where applicable</u> ) |  |  |
| 6 tube feeders                                                 | 4,000        | \$ 3,500 | \$ <b>3,</b> 500                                    |  |  |
| #7A conveyor 24" x 33' @ \$70/ft                               | 9,000        | 2,310    | 2,310                                               |  |  |
| #7A transfer box                                               | 800          | 300      | 300                                                 |  |  |
| #7B conveyor 24" x 33'<br>@ \$70/ft                            | 9,000        | 2,310    | 2,310                                               |  |  |
| #7B transfer box                                               | 800          | 300      | 300                                                 |  |  |
| #8A conveyor - 24" x 23'<br>@ \$70/ft                          | • 7,000      | 1,610    | 1,610                                               |  |  |
| #8A transfer box                                               | 800          | 300      | 300                                                 |  |  |
| #8B conveyor - 24" x 69' @ \$70/ft                             | 18,000       | 4,830    | 4,830                                               |  |  |
| Ball mill feed box                                             | 800          | 700      | 700                                                 |  |  |
| 8' x 10' Ball Mill including<br>liners & ball charge           | 232,500      | 75,000   | 43,500                                              |  |  |
| 2 - 15" cyclones                                               | 1,500        | 3,500    | 3,500                                               |  |  |
| 3 - 5' x 5' steel reagent tanks                                | 1,500        | 650      | 650                                                 |  |  |
| 10 - 50 cu ft cells                                            | 25,700       | 17,820   | 12,500                                              |  |  |
| 8 - Reagent feeders                                            | 700          | 3,400    | 2,500                                               |  |  |
| 6 – 40 cu ft cells                                             | 12,500       | 9,470    | 7,800                                               |  |  |
| <pre>1 - 25' x 10' thickener with<br/>mechanism</pre>          | 29,000       | 14,000   | 10,000                                              |  |  |
| <pre>1 - 12' x 14' stock tank with<br/>mechanism</pre>         | 11,000       | 5,285    | 4,000                                               |  |  |
| l - 6' x 4' leaf filter - with<br>vacuum equipment             | 11,000       | 25,000   | 16,700                                              |  |  |
| <pre>1 - 3' x 26' Rotary drier<br/>including dust system</pre> | 51,000       | 25,000   | 25,000                                              |  |  |
| #9 conveyor 24" x 9'<br>@ \$70/ft                              | 3,000        | 6,300    | 6,300                                               |  |  |
| #9 discharge chute & skirting                                  | 800          | 300      | 300                                                 |  |  |
| #10 conveyor 24" x 12'<br>@ \$70/ft                            | 4,000        | 840      | 840                                                 |  |  |

(Continued)

-

|                                                         | Weight - 1bs | New    | Cost<br>Second-hand<br>(where applicable) |
|---------------------------------------------------------|--------------|--------|-------------------------------------------|
| Rod Mill pump box                                       | 1,500        | \$ 800 | \$ 800                                    |
| 3 pump boxes - flotation                                | 1,000        | 900    | 900                                       |
| 1 - 5" x 4" pump                                        | 1,150        | 1,400  | 1,400                                     |
| 1 - 3" x 3" pump                                        | 600          | 900    | 900                                       |
| 2 - 2" x 2" pump                                        | 400          | 1,700  | 1,700                                     |
| 2 - 1 <del>1</del> " x 2" pump                          | 400          | 1,700  | 1,700                                     |
| 1 - 3" x 3" pump                                        | 1,554        | 1,600  | 1,600                                     |
| $1 - 2\frac{1}{2}$ " x 2" pump                          | 1,400        | 820    | 820                                       |
| Process pipe hoses & launders                           | 10,000       | 30,000 | 30,000                                    |
| <b>S</b> prinkler system<br>@ \$.50/sq ft x 5,200 sq ft | 2,000        | 2,600  | 2,600                                     |
| Sub Total                                               | 454,404      |        | \$192,170                                 |
| Electrical equipment                                    | 4,000        | 55,900 | 55,900                                    |
| Sub Total                                               | 458,404      |        | \$248,070                                 |
| Equipment installation @ 20% of \$192,170               |              |        | 38,434                                    |
| Sales Tax @ 5% of \$192,170                             |              |        | 11,490                                    |
| Freight @ \$24 x 229.2 Tons                             |              |        | 5,500                                     |
|                                                         |              |        |                                           |

Total

-

\_\_\_

\$303,494

# SHAFT METHOD

ŧ,

## CONCENTRATOR

# CAPITAL COST ESTIMATE - CONSTRUCTION & INSTALLATION

|                                                                          |      | $\underline{Cost}$ |
|--------------------------------------------------------------------------|------|--------------------|
| Clearing & Grubbing Yard & Service Area                                  | \$   | 2,000              |
| Backfill                                                                 |      | 5,000              |
| Concrete Foundations (except ball mill)<br>- 236 cu yds at \$120/cu yd   |      | 28,320             |
| Concrete Foundations (9' x 10' ball mill)<br>- 175 cu yds at \$120/cu yd |      | 21,000             |
| Building & Miscellaneous Concrete<br>- 244 cu yds at \$110/cu yd         |      | 26,840             |
| Concentrator Building (includes heating, plumbing & ventilation)         |      | 51,690             |
| Conveyor #2 and 3 Housing and Cover                                      |      | 500                |
| Conveyor #5 and 6 Housing and Cover                                      |      | 500                |
| Conveyor Transfer House & Tower                                          |      | 8,700              |
| Total                                                                    | \$ ] | 144,550            |

Freight and Taxes included in above figures.

.

-

# TRACKLESS METHOD

# CRUSHING PLANT AND ORE STORAGE - 500 TPD

# CAPITAL COST ESTIMATE - EQUIPMENT

|                                                                        | Weight           |                | Cost                              |
|------------------------------------------------------------------------|------------------|----------------|-----------------------------------|
|                                                                        | lbs              | New            | Second-hand<br>(where applicable) |
| Reciprocating feeder - 34" x 96"                                       | 9,500            | \$ 10,000      | \$ 6,750                          |
| Jaw crusher 30" x 42" - 140 TPH                                        | 108,000          | 70,000         | 33,500                            |
| Jaw & cone crusher chutes & skirting                                   | 1,200            | 2,000          | 2,000                             |
| #1 Conveyor 36" x 15' at \$105/ft                                      | 4,000            | 1,580          | 1,580                             |
| #1 Transfer Chute                                                      | 900              | 300            | 300                               |
| #2 Conveyor 36" x 100' at \$105/ft                                     | 25,000           | 10,500         | 10,500                            |
| #2 Transfer Chute                                                      | 900              | 300            | 300                               |
| #3 Conveyor 36" x 82' at \$105/ft                                      | 20,000           | 8,610          | 8,610                             |
| #3 Feed box to screen                                                  | 1,000            | 500            | 500                               |
| Primary screen double-deck 5' x 10'<br>(top deck 2" - lower deck 5/8") | 4,600            | 6,200          | 6,200                             |
| Screen discharge & chute skirting<br>to #4 conveyor                    | 1,000            | 300            | 300                               |
| #4 conveyor 24" x 10' at \$70/ft                                       | 3,000            | 700            | 700                               |
| Cone crusher feed chute                                                | 2,700            | 1,000          | 1,000                             |
| Cone crusher - 5-1/2' SH - 210 TPH                                     | 101,000          | 84 <b>,900</b> | 56 <b>,</b> 600                   |
| #5 conveyor 24" x 106' at \$70/ft                                      | 27,000           | 7,000          | 7,000                             |
| #5 conveyor - transfer chute                                           | 900              | 300            | 300                               |
| #6 conveyor 24" x 120' at \$70/ft                                      | 30,000           | 8 <b>,400</b>  | 8,400                             |
| Metal detector                                                         | 500              | 5 <b>,000</b>  | 3,000                             |
| Dust control                                                           | 12,000           | 18,000         | 18,000                            |
| 5-ton crane                                                            | 12,000           | 7,000          | 5,000                             |
| Sub-Total                                                              | 365 <b>,20</b> 0 |                | ÷ 170,540                         |
|                                                                        |                  |                |                                   |

(Continued)

- ---

|                                   | - 17 -  |              |        |              |
|-----------------------------------|---------|--------------|--------|--------------|
|                                   |         |              | Cost   |              |
|                                   | Weight  |              |        | cond-hand    |
|                                   | lbs     | New          | (where | applicable)  |
| Equipment Installation at 20%     |         |              | \$     | 34,108       |
| Electrical Control & Distribution | 1,000   | \$<br>28,500 |        | 28,500       |
| Freight at \$24                   |         |              |        | 4,394        |
| Sales Tax at 5%                   |         |              |        | <u>9,327</u> |
| Total                             | 366,200 |              | \$     | 246,869      |

- 16 -

-

# CRUSHING PLANT & ORE STORAGE

# CAPITAL COST ESTIMATE - CONSTRUCTION & INSTALLATION

|                                                                                             | Cost       |
|---------------------------------------------------------------------------------------------|------------|
| Excavation                                                                                  | \$ 5,614   |
| Conveyor Trestles - 440 ft at \$50/ft                                                       | 22,000     |
| Crusher Foundations (Jaw & Cone) – 129 cu yds at \$120/cu yd                                | 15,480     |
| Building Footings & Floor Slab - 44 cu yds at \$110/cu yd                                   | 4,840      |
| Conveyor & Transfer House Footings- 30 cu yds at \$110/cu yd                                | 3,300      |
| Coarse Ore Bin Foundation - 52 cu yds at \$110/cu yd                                        | 5,720      |
| Fine Ore Bin Foundation - 150 cu yds at \$110/cu yd                                         | 16,500     |
| Coarse Ore Bin                                                                              | 12,000     |
| Fine Ore Bin                                                                                | 23,000     |
| Crusher Building 29 ft x 42 ft = 1,220 sq ft<br>(including heating, ventilation & plumbing) | 13,940     |
| Truck Bin Cribbing & Roof                                                                   | 4,000      |
| Total                                                                                       | \$ 126,394 |

Freight and Taxes included in above figures.

# CONCENTRATOR

# CAPITAL COST ESTIMATE - EQUIPMENT

|                                                                |                      |         | Cost<br>Second-nand |
|----------------------------------------------------------------|----------------------|---------|---------------------|
|                                                                | <u>Weight - lbs.</u> | New     | (where applicable)  |
| 6 tube feeders                                                 | 4,000                | \$3,500 | \$ 3,500            |
| #7A conveyor 24" x 33'<br>@ \$70/ft                            | 9,000                | 2,310   | 2,310               |
| #7A transfer box                                               | 800                  | 300     | 300                 |
| #7B conveyor 24" x 33'<br>@ \$70/ft                            | 9,000                | 2,310   | 2,310               |
| #7B transfer box                                               | 800                  | 300     | 300                 |
| #8 conveyor 24" x 31'<br>@ \$70/ft                             | 9,000                | 2,170   | 2,170               |
| Ball mill feed box                                             | 800                  | 700     | 700                 |
| 8' x 10' Ball Mill including<br>liners and ball charge         | 232,500              | 75,000  | 43,500              |
| 2 - 15" cyclones                                               | 1,500                | 3,500   | 3,500               |
| 3 - 5' x 5' steel reagent tanks                                | 1,500                | 650     | 650                 |
| 10 - 50 cu. ft. cells                                          | 25,700               | 17,820  | 12,500              |
| 8 - Reagent feeders                                            | 700                  | 3,400   | 2,500               |
| 6 - 40 cu. ft. cells                                           | 12,500               | 9,470   | 7,800               |
| <pre>1 - 25' x 10' thickener with<br/>mechanism</pre>          | 29,000               | 14,000  | 10,000              |
| <pre>1 - 12' x 14' stock tank with<br/>mechanism</pre>         | 11,000               | 5,285   | 4,000               |
| 1 - 6' x 4' leaf filter - with<br>vacuum equipment             | 11,000               | 25,000  | 16,700              |
| <pre>1 - 3' x 26' Rotary drier<br/>including dust system</pre> | 51,000               | 25,000  | 25,000              |
| #9 conveyor 24" x 9'<br>@ \$70/ft                              | 3,000                | 6,300   | 6,300               |
| #9 discharge chute & skirting                                  | 800                  | 300     | 300                 |

r

|                                                                                      | <u>Weight - lbs.</u>    | New    | Cost<br>Second-hand<br>(where applicable) |
|--------------------------------------------------------------------------------------|-------------------------|--------|-------------------------------------------|
| #10 conveyor 24" x 12'<br>@ \$70/ft.                                                 | 4,000                   | \$ 840 | \$ 840                                    |
| Rod Mill pump box                                                                    | 1,500                   | 800    | 800                                       |
| 3 pump boxes - flotation                                                             | 1,000                   | 900    | 900                                       |
| 1 - 5" x 4" pump                                                                     | 1,150                   | 1,400  | 1,400                                     |
| 1 - 3" x 3" pump                                                                     | 600                     | 900    | 900                                       |
| 2 - 2" x 2" pump                                                                     | 400                     | 1,700  | 1,700                                     |
| 2 - 1-1/2" x 2" pump                                                                 | 400                     | 1,700  | 1,700                                     |
| 1 - 3" x 3" pump                                                                     | 1,554                   | 1,600  | 1,600                                     |
| 1 - 2-1/2" x 2" pump                                                                 | 1,400                   | 820    | 820                                       |
| Process pipe, hoses,<br>and launders                                                 | 10,000                  | 30,000 | 30,000                                    |
| Sprinkler system<br>@ \$.50 sq. ft. x 6845                                           | _2,000                  | 3,442  | 3,422                                     |
| Sub total<br>Electrical equipment                                                    | 437,604<br><u>4,000</u> | 55,900 | \$188,422<br>55,900                       |
| Sub total<br>Equipment installation at 20%<br>Sales tax at 5%<br>Freight at \$24/Ton | 441,604                 |        | \$244,322<br>37,684<br>11,300<br>5,300    |
| Total                                                                                |                         |        | \$ 298,606                                |

-

# CONCENTRATOR

# CAPITAL COST ESTIMATE - CONSTRUCTION & INSTALLATION

| Clearing & grubbing yard & service area                             | \$ 2,000  |
|---------------------------------------------------------------------|-----------|
| Excavation & backfill                                               | 28,333    |
| Concrete foundations (except ball mill) 236 cu. yds.@\$120/cu. yd.  | 28,320    |
| Concrete foundation (9' x 10' ball mill) 175 cu. yds @ \$120/cu. yd | 21,000    |
| Building & miscellaneous concrete - 244 cu. yds.@\$110/cu. yd.      | 26,840    |
| Concentrator building (includes heating, plumbing & ventilation     | 68,040    |
| Conveyor #2 & 3 housing & cover                                     | 500       |
| Conveyor #5 & 6 housing & cover                                     | 500       |
| Conveyor Transfer house & tower                                     | 8,700     |
| Total                                                               | \$184,233 |
|                                                                     |           |

\*Freight and taxes included in above figures.

ľ

-

<u>Cost</u>

| - 20 -<br><u>CONCENTRATOR</u><br><u>ESTIMATED OPERATING COST</u><br><u>LABOUR</u> |                         |                    |                           |                           |                                                 |                           |                               |                           |                                   |            |                                          |
|-----------------------------------------------------------------------------------|-------------------------|--------------------|---------------------------|---------------------------|-------------------------------------------------|---------------------------|-------------------------------|---------------------------|-----------------------------------|------------|------------------------------------------|
|                                                                                   | No.<br>of<br><u>Men</u> | Jobs               | Shifts<br><u>Per Wk</u> . | Rate/hr<br><u>Per Man</u> | Amt/Day<br><u>Per Man</u><br>(Straight<br>Time) | Amt Per*<br><u>7 D Wk</u> | Avg. Amt<br>per<br>Calendar D | No.<br>of<br><u>Men/D</u> | Amt. Per<br><u>Year (350 days</u> | <u>)</u>   | Cost/ton<br>Milled<br><u>175,000 TPY</u> |
| Crusher                                                                           | •                       |                    |                           |                           |                                                 |                           |                               |                           |                                   |            |                                          |
| Operator                                                                          | l                       | l                  | 5                         | \$3•75                    | \$30.00                                         | \$180.00                  | \$25.71                       | l                         | <u>\$8,999</u><br>\$8.            | 000        | ¢ 050                                    |
| Concentrator                                                                      |                         |                    |                           |                           |                                                 |                           |                               |                           | φΟ,                               | 999        | \$.052                                   |
| Grinding Operator<br>Flotation Operator (Lead Hand)<br>Filter, Drying and         | 14<br>24                | 3<br>3             | 21<br>21                  | 3.75<br>4.00              | 30.00<br>32.00                                  | 250.50<br>268.80          | 35.79<br>38.40                | 3<br>3                    | 37,580<br>40,320                  |            |                                          |
| Conc. Loading Operator<br>Labourer                                                | 4<br>1                  | 3<br>1             | 21<br>5                   | 3.60<br>3.42              | 28.80<br>27.36                                  | 240.48<br>164.16          | 34.35<br>23.45                | 3<br>1                    | 36,068<br><u>8,208</u>            |            |                                          |
|                                                                                   |                         |                    |                           |                           |                                                 |                           |                               |                           | 122,                              | 176        | .698                                     |
| <u>Maintenance</u>                                                                |                         |                    |                           |                           |                                                 |                           |                               |                           |                                   |            |                                          |
| Mechanic<br><u>Helper</u><br>Sub Total                                            | 1<br>2<br>17            | 1<br>2<br>14       | 6<br>10                   | 4.50<br>3.60              | 36.00<br>28.80                                  | 261.00<br>172.80          | 37.29<br>24.69                | 1<br>2                    | 13,051<br><u>17,283</u><br>30,    | 334        | .173                                     |
| <u>Staff</u> <u>Salary/Mont</u>                                                   | <u>ch</u>               |                    |                           |                           |                                                 |                           |                               |                           |                                   |            |                                          |
| Superintendent \$1400<br>Mill Foréman -                                           | 1                       | 1                  | 5                         |                           |                                                 |                           |                               |                           | 20,160                            |            |                                          |
| Metallurgist 1200<br>Assayer 800<br>Sample Preparation 600                        | 1<br>1<br><u>1</u>      | 1<br>1<br><u>1</u> | 5<br>5<br>5               |                           |                                                 |                           |                               |                           | 17,280<br>11,520<br>8,640         |            |                                          |
| Sub Total<br>Total                                                                | 4<br>21                 | 4<br>18            |                           |                           |                                                 |                           |                               |                           | <u>57,</u><br>\$219,              | 600<br>109 | .329<br>\$1.252                          |

\* Including fringe benefits @ 20% of base wages and weekend overtime where applicable.

- 21 -

CONCENTRATOR ESTIMATED OPERATING COST SUPPLIES & OTHER

> Cost/Ton Milled 175,000 TPY

\$ 0.051

0.179

-

### CRUSHER

1

| Primary-Steel- 0.04#/Ton Milled = 7000#   |          |
|-------------------------------------------|----------|
| @ $33 c/1b = $2310/yr$                    | \$ 0.013 |
| Secondary-Steel- 0.03#/Ton Milled = 5250# |          |
| $@ 43 \phi/1b = $2258$                    | 0.013    |
| Screening & Feeders Etc.                  | 0.010    |
| Conveying                                 | 0.010    |
| Lubrication                               | 0.005    |
| Subtotal - Crusher                        |          |

### CONCENTRATOR

| 0.130 |
|-------|
| •     |
| 0.044 |
| 0.005 |
|       |

# Subtotal - Grinding & Classifying

4. Flotation

| a. <u>Reagents</u>                | <u>#/Ton</u>         | <u>Cost/lb</u>   | $C_{ost}/Ton-\phi$       |
|-----------------------------------|----------------------|------------------|--------------------------|
| Zanthate-Z-ll<br>Dowfroth<br>Lime | 0.20<br>0.12<br>0.50 | 34¢<br>28¢<br>5¢ | 6.80<br>3.36<br>2.50     |
|                                   |                      |                  | 12.66                    |
| b. Cell Repair &                  | Pumps                |                  | <u>    1.00</u><br>13.66 |

#### Subtotal - Flotation

| 5. <u>Filtering &amp; Drying</u>                                    | <u>Amt/Y</u> r |
|---------------------------------------------------------------------|----------------|
| Supplies @ \$0.05/ton<br>Fuel - 1½ g/ton of<br>concentrate @30¢/gal | \$ 875.00      |
| concentrate @30¢/gal<br>14,000 tons/yr                              | 6,300.00       |
|                                                                     | 7,175.00       |

Subtotal Filtering & Drying

0.041

0.137

|                                                                      |                            | Cost/Ton Milled<br>175.000 TPY |
|----------------------------------------------------------------------|----------------------------|--------------------------------|
| MISCELLANEOUS                                                        |                            |                                |
| Tailings Disposal<br>Assaying (\$250/month)<br>General (\$500/month) | \$ 0.010<br>0.017<br>0.034 | \$ <u>0.061</u>                |
| Total                                                                |                            | 0.469                          |

CONCENTRATOR ESTIMATED OPERATING COST SUMMARY -

|                        | Labour   | <u>Cost/Ton Milled</u><br>Supplies & Other | Total             |
|------------------------|----------|--------------------------------------------|-------------------|
| Crushing               | \$ 0.052 | \$ 0.051                                   | \$ 0.103          |
| Grinding & Classifying | 0.215    | 0.179                                      | 0.394             |
| Flotation              | 0.230    | 0.137                                      | 0.367             |
| Filtering & Drying     | 0.206    | 0.041                                      | 0.247             |
| Concentrate Disposal   | 0.047    | -                                          | 0.047             |
| Maintenance Labour     | 0.173    | -                                          | 0.173             |
| Assaying               | 0.115    | 0.017                                      | 0.132             |
| Tailings Disposal      | -        | 0.010                                      | 0.010             |
| Miscellaneous Supplies | -        | 0.034                                      | 0.034             |
| Supervision            | 0.214    | -                                          | 0.214             |
|                        |          |                                            |                   |
| Total                  | \$ 1.252 | \$ 0.469                                   | \$ 1 <b>.</b> 721 |

ſ

# CHAPTER V FRESH WATER SUPPLY & TAILINGS DISPOSAL

#### WATER SUPPLY

#### INTRODUCTION

Water requirements for a 500 TPD mill at Alwin Mines Ltd. property in the Highland Valley have been reviewed. Various schemes have been investigated by Alwin Mines to ensure an adequate water supply for the proposed mill, and the use of additional storage to be constructed at Island Lake together with tailings disposal in Little O.K. Lake has been selected.

#### Water Requirements

Assuming 25% solids in the tailings and 75% use of reclaims yields the following water quantities:

| Total Water Requirement     | = | $\frac{500 \times 3}{6}$ | = | 250 USGPM |
|-----------------------------|---|--------------------------|---|-----------|
| Reclaimed Water Requirement | = | 0.75 x 250               | = | 190 USGPM |
| Fresh Water Required        |   |                          | = | 60 USGPM  |

The domestic use of a 100-man camp is expected to range between 25 and 50 US gallons per person per day. Using the maximum figure gives

Domestic Requirement

 $= \frac{50 \times 100}{24 \times 60} = 3.4 \text{ USGPM}$ 

Applying a safety factor of 1.5 to the above figures gives a fresh water requirement of 100 USGPM.

Water Supply - "Island Lake Scheme"

The "Island Lake Scheme" for water supply will provide a catchment area of 1.7 square miles or approximately 10% of the useable Inkikuh Creek Basin area of 18.7 square miles. Assuming a yield of 25% of the average annual precipitation of 16 in. will give the following runoff from Island Lake.

Annual Yield =  $1.7 \times 640 \times 4/12$ 

= 360 ac ft

This is equivalent to a continuous flow of 225 USGPM or almost sufficient water to supply all of the mill requirement both fresh and reclaim. During the first year of operation there may not be adequate water in the reclaim pond to give adequate settling and the mill may have to operate totally on fresh water. In addition during dry years there may be no runoff except during the freshet. A five-foot increase in the water level of Island Lake, however, will yield 450 ac ft of storage, sufficient for three years of mill water supply. Normal runoff from the watershed will probably supply the total water required, but the recommended storage will assure a supply even in the driest years when there is virtually no runoff.

During the lifetime of the mill it is estimated that the sands and slimes from the tailings will fill Little O.K. Lake. A five-foot dam on the outlet of the lake will store a minimum of forty days of reclaim water, which will promote adequate settling and reduce the size of the fresh water system.

Fresh water will be pumped from the pumphouses on Island Lake to the fire storage tank above the mill through a six-inch pipeline. Fresh water and domestic use will be circulated through the fire tank to reduce ice build up during the winter, and all pipelines will be buried deep enough to avoid freezing problems. Reclaim water will be pumped at a constant rate to an overflow within the mill. The overflow will provide a constant head, reduce control problems and eliminate some pumps and pump boxes within the mill.

#### Licenses and Permits

Applications have been made to the Provincial Government for the licenses and permits required for the water supply and tailings disposal systems as outlined. The water license will cover the storage and use of water from Island Lake, and possible diversion of flood water from Inkikuh Creek should this ever be required to fill Island Lake. In addition, an application has been made to divert the runoff around Little O.K. Lake which will control the level of the tailings pond. The application for a Pollution Control Permit covers the disposal of tailings in Little O.K. Lake, construction of a dam to store the supernatant and release of the supernatant at periods of high flow to Inkikuh Creek. Since it appears feasible all effluent will be reused in the mill, diminishing the water requirement, the cost of the Inkikuh Creek diversion and decant line have not been included in the estimate.

The system outlined will provide an adequate water supply and effectively controlled effluent storage scheme at minimum cost. Construction of the storage dams well in advance of the mill will guarantee an assured supply during the expected lifetime of the mine.

#### Alternative Sources

Assurance has been received from the various governmental representatives and agencies that the required licenses and permits will be issued in due course.

In addition, conversations with the Valley Copper-Iornex-Bethlehem group who are making plans to pump substantial quantities of water on a joint venture basis for their concentrators indicate that Alwin will be able to purchase water from this supply if deemed desirable.

# WATER SUPPLY AND TAILINGS DISPOSAL ESTIMATED COST MILL ON DL 3645

# Water Supply

| Dam on Island Lake                             | \$10,000 |
|------------------------------------------------|----------|
| Clearing trees, Island Lake                    | 10,000   |
| Water Pumphouse                                | 5,000    |
| 3-10 hp Water Pumps & Motor                    | 3,000    |
| Valves and Piping                              | 2,000    |
| 5,000 ft 6 <b>in</b> Supply Main at \$10.00/ft | 50,000   |
| 50,000 Imp. Gal. Water Tank                    | 12,000   |

\$ 92,000

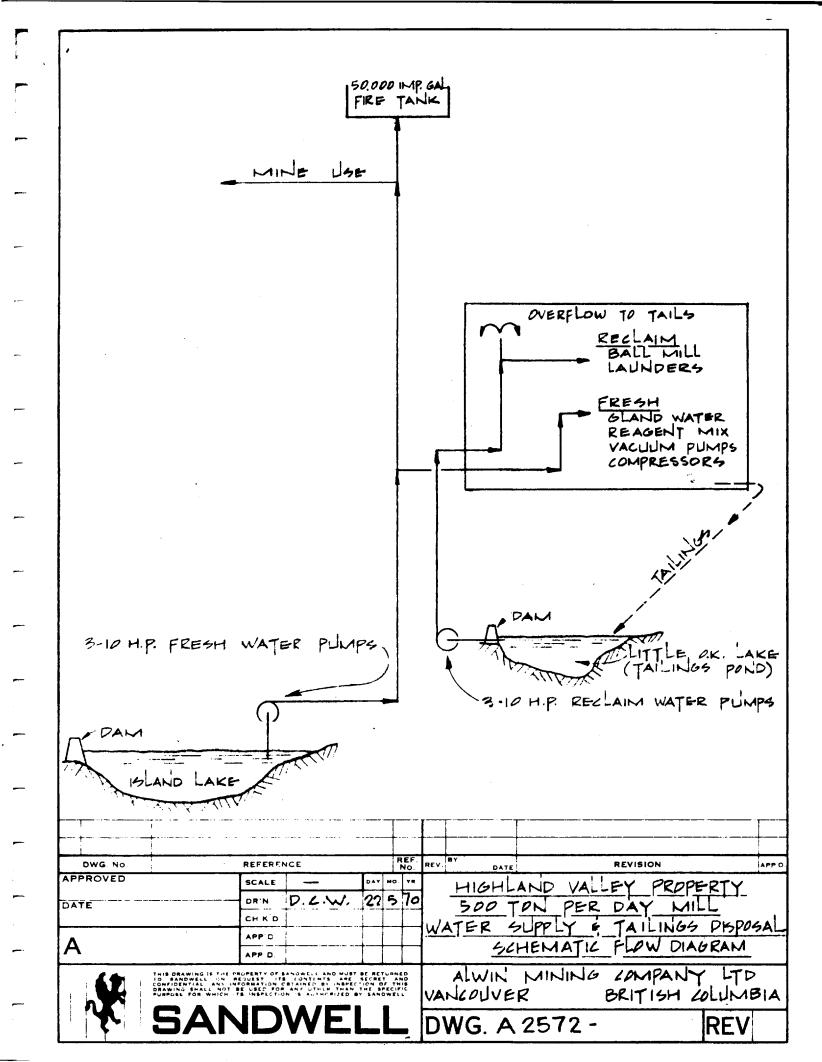
-

# Tailings Disposal

| 1,000 ft Tailing Line at \$10.00/ft       | \$1 <b>0,</b> 000 |
|-------------------------------------------|-------------------|
| 2,000 ft Diversion Ditch at \$5.00/ft     | 10,000            |
| Storage Dam 5 ft high                     | 5,000             |
| Reclaim Water Pumphouse                   | 5,000             |
| 3-10 hp Pumps and Motor                   | 3,000             |
| 1,000 ft Reclaim Water Line at \$10.00/ft | 10,000            |

.

\$ 43.000


# Fire Protection

Extinguishers and miscellaneous

....

### 5,000

\$140,000



CHAPTER VI POWER

#### REQUIREMENTS AND AVAILABILITY

Mine development and exploration will be started immediately after financing arrangements are completed. Most of the power related to the mine therefore will be required early. For this reason and for construction purposes, rental diesel electric sets will be required until delivery of power from the Hydro Authority can be effected; costs have been included in the estimates.

Power for the concentrator and the trailer camp will probably not be required until immediately prior to production.

A preliminary meeting with a representative from the B.C. Hydro Authority disclosed that an existing 60 kV line comes within  $3-3\frac{1}{2}$  miles of the proposed shaft location. It is anticipated that this voltage will be increased to 138 kV. Power therefore will be delivered to Alwin at 60 kV initially and 138 kV later. Assurance has been given that power can be purchased by Alwin as and when desired.

The total estimated cost of power transmission and distribution amounts to \$323,100 for the "Trackless Method", and \$344,400 for the "Shaft Method" as detailed on the following tables.

#### TRACKLESS METHOD ESTIMATED COSTS

#### POWER TRANSMISSION & DISTRIBUTION

| Transmission tap. 138 kV                                                               | \$ 35,000 |
|----------------------------------------------------------------------------------------|-----------|
| Transmission substation 138/25 kV                                                      | 86,000    |
| Primary distribution power line (25 kV - $3\frac{1}{2}$ miles)                         | 52,000    |
| Primary distribution substation                                                        | 75,000    |
| Secondary distribution substation                                                      | 26,400    |
| Site power supply - distribution to buildings                                          | 21,000    |
| Temporary, construction power distribution                                             | 10,000    |
| Transmission lines and controls for fans                                               | 12,000    |
| Transmission lines and controls for fill plant                                         | 3,850     |
| Transformers and transmission down shaft (in addition to that estimated in mine costs) | -         |
| Lighting - roads and camp general                                                      | 1,050     |
| Welding and grounding - general                                                        | 800       |
|                                                                                        |           |

\$323,100

# SHAFT METHOD ESTIMATED COSTS

# POWER TRANSMISSION, & DISTRIBUTION

| Transmission tap. 138 kV                                                               | \$ 35,000 |
|----------------------------------------------------------------------------------------|-----------|
| Transmission substation 138/25 kV                                                      | 86,000    |
| Primary distribution power line (25 kV - $3-1/2$ miles)                                | 52,000    |
| Primary distribution substation                                                        | 75,000    |
| Secondary distribution substation                                                      | 41,400    |
| Site power supply - distribution to buildings                                          | 21,000    |
| Temporary, construction power distribution                                             | 10,000    |
| Transmission lines and controls for fans                                               | 12,950    |
| Transmission lines and controls for fill plant                                         | 3,850     |
| Transformers and transmission down shaft (in addition to that estimated in mine costs) | 5,000     |
| Lighting - roads and camp general                                                      | 1,300     |
| Welding and grounding - general                                                        | 900       |
|                                                                                        | \$344,400 |

- 2 -

The estimated operating cost when the mine is in production is calculated as follows:

|                                                | POWER DEMAND |        |                |         |                                |  |  |  |
|------------------------------------------------|--------------|--------|----------------|---------|--------------------------------|--|--|--|
|                                                | Inst. hp     | Max kW | <u>Avg. kW</u> | kWh/mo  | <u>Amt - \$/mo<sup>*</sup></u> |  |  |  |
| Concentrator                                   | 675          | 463    | 463            | 324,000 | \$3,850                        |  |  |  |
| Crushing plant                                 | 450          | 347    | 215            | 37,600  | 450                            |  |  |  |
| Mine - "trackless"                             | 1,050        | 820    | 574            | 231,000 | 2,750                          |  |  |  |
| Mine - "shaft"                                 | 1,800        | 1,290  | 795            | 335,300 | 3,970                          |  |  |  |
| Water supply                                   | 60           | 26     | 23             | 16,300  | 193                            |  |  |  |
| Lighting, heating & power<br>(misc. buildings) | <u>53</u> 5  | 270    | 183            | 49,500  | 590                            |  |  |  |
| Totals - "trackless"                           | 2,770        | 1,926  | 1,454          | 658,400 | \$7,833                        |  |  |  |
| Totals - "shaft"                               | 3,520        | 2,396  | 1,675          | 762,700 | \$9,050                        |  |  |  |

\* Assuming schedule 1604 i.e. 11.86 mills/kWh.

\_

# PLANT SERVICES ADMINISTRATION & MAN POWER

#### GENERAL

Because the mine is only four to five hours away from mechanical and electrical repair maintenance services in Vancouver, British Columbia, only minimum facilities are required at the mine.

A plan accompanying this report shows the position of the various buildings and services to be constructed if the mine is placed in production by the trackless method. It is assumed that the cost relative to the shaft method will be comparable; no plan has therefore been prepared for this alternative.

#### CAMP BUILDINGS & HOUSING

In view of the current activity in the mining industry in the Highland Valley area in British Columbia, it would appear that there is a strong possibility that a small to medium size new town (or an addition to one of the surrounding ones) will be undertaken during the next few years in the immediate vicinity.

Alwin's needs, however, will very likely have to be satisfied before such a development takes place, and since present nearby facilities are inadequate, it is suggested that temporary housing must be provided in the interim, in order to secure the necessary personnel for a successful operation.

Construction would be of such a nature that the units could be moved or re-sold in the event that participation in a larger centre of population appears desirable.

The estimated preproduction plant services and administration costs, manpower required during preproduction, capital costs required and the operating costs at the mine and at the head office in Vancouver are shown in the following tables.

### SHAFT METHOD

### PLANT SERVICES & ADMINISTRATION ESTIMATED CAPITAL COSTS

|    |                                                 | Cost               |
|----|-------------------------------------------------|--------------------|
| 1) | Assay Office                                    | \$ 10,140          |
| 2) | Office, Warehouse & Change House                | 129,228            |
| 3) | Machine Shop & Compressor House                 | 93,210             |
| 4) | Mobile Equipment                                | 57,000             |
| 5) | Access & Plant Roads & General Site Preparation | 8,871              |
| 6) | Sewage Disposal                                 | 21,000             |
| 7) | Fuel Oil Storage                                | 10,000             |
| 8) | Telephone System                                | 10,000             |
|    |                                                 | \$339 <b>,</b> 449 |

# SHAFT METHOD

### CAMP BUILDING & HOUSING

### ESTIMATED CAPITAL COST .

|    |                                               | Cost      |
|----|-----------------------------------------------|-----------|
| 1) | Senior Staff Residences - Ashcroft 6 x 15,000 | \$ 90,000 |
| 2) | Staff House                                   | 37,900    |
| 3) | Bunkhouse or Trailers                         | 103,000   |
| 4) | Trailer Camp                                  | 35,000    |
| 5) | Present Camp - Alterations and Additions      | 15,000    |
|    |                                               | \$280,900 |

-

# SHAFT METHOD

# ESTIMATED PREPRODUCTION PLANT SERVICES & ADMINISTRATION COSTS

| Months                                                          |                   |                   |                   |                   |                    |                    |                    |                    |                    |                     |
|-----------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|--------------------|--------------------|--------------------|--------------------|--------------------|---------------------|
|                                                                 | <u> </u>          | 2                 | 3                 | <u>4</u>          | _5                 | 6                  | 7                  | _8                 | 9                  | Total               |
| Supervision                                                     | \$ 2420           | \$ 2420           | \$ 2420           | \$ 2420           | \$ 2420            | \$ 2420            | \$ 2420            | \$ 2420            | \$ 2420            | \$ 21780            |
| Mine office                                                     | 968               | 968               | 2331              | 2331              | 2331               | 2331               | 2331               | 2331               | 2331               | 18253               |
| Mechanical - electrical                                         | 1847              | 1847              | 1847              | 1847              | 1847               | 1847               | 1847               | 1847               | 1847               | 16623               |
| Truck & Tractor                                                 | 2770              | 2770              | 2770              | 2770              | 2770               | 2770               | 2770               | 2770               | 2770               | 24930               |
| First Aid & Safety                                              | 100               | . 100             | 100               | 100               | 100                | 100                | 100                | 100                | 100                | 900                 |
| Cookhouse & single men's quarters                               | 6862              | 7313              | 8212              | 8663              | 9225               | 11250              | 12262              | 10013              | 10687              | 84487               |
| Insurance                                                       | 200               | 200               | 300               | 300               | 300                | 400                | 400                | 500                | 600                | 3200                |
| Travelling<br>Telephone & telegraph<br>Taxes, property & school | 100<br>300<br>200 | 100<br>300<br>200 | 100<br>300<br>500 | 100<br>300<br>500 | 100<br>300<br>1000 | 100<br>300<br>1000 | 100<br>300<br>1000 | 100<br>300<br>2600 | 100<br>300<br>2600 | 900<br>2700<br>9600 |
| Totals                                                          | \$15767           | <b>\$1</b> 6218   | \$18880           | \$19331           | \$20393            | \$22518            | \$23530            | \$22981            | \$23755            | \$183373            |

- 3 -

| SHAFT | PREPRODUCI | TION MINE | DEVELOPMENT |
|-------|------------|-----------|-------------|
|       |            |           |             |

|          | • –          |
|----------|--------------|
| MANPOWER | REQUIREMENTS |

|                           |    |          |          | Мс       | nt       | ; h s    | 5        |    |    |       |
|---------------------------|----|----------|----------|----------|----------|----------|----------|----|----|-------|
| Category                  | 1  | 2        | 3        | 4        | 5        | 6        | 7        | 8  | 9  | Total |
| Engineers                 | 4  | 4        | 4        | 4        | 5        | 5        | 5        | 7  | 7  | 45    |
| Supervision               | 4  | 4        | 4        | 4        | 4        | 4        | 4        | 4  | 4  | 36    |
| Assaying                  | l  | 1        | l        | 1        | 1        | 1        | 1        | 1  | l  | 9     |
| lst Aid & Warehouse       | 1  | 1        | 1        | 1        | 1        | l        | l        | 1  | 1  | 9     |
| Changehouse & Lamps       | l  | l        | 1        | 1        | 1        | 1        | 1        | 1  | l  | 9     |
| Mechanical & Electrical   | 3  | 3        | 3        | 3        | 3        | 3        | 4        | 4  | 4  | 30    |
| Miners - Drift            | 12 | 12       | 16       | 16       | 16       | 30       | 30       | 30 | 30 | 192   |
| Miners - Raise            | -  | -        | 4        | 8        | 8        | 8        | 8        | 8  | 8  | 52    |
| Surface Truck & Tractor   | l  | 1        | 1        | l        | 1        | 1        | 1        | 1  | 1  | 9     |
| Explosive Distribution    | l  | 1        | l        | l        | 1        | 1        | 1        | 1  | 1  | 9     |
| Trainmen & Helpers        | -  | -        | -        | -        | -        | 4        | 4        | 4  | 4  | 16    |
| Labour - Sill Timbering   | 1  | 1        | l        | 1        | l        | 1        | 3        | 3  | 9  | 21    |
| Diamond Drillers          | -  | -        | -        | -        | 4        | 4        | 4        | -  | -  | 12    |
| Construction - Fill Plant | -  | -        | -        | -        | -        | -        | 4        | 4  | 4  | 12    |
| & Lines                   |    |          |          |          |          |          |          |    |    |       |
| Shaft Foreman             | 1  | l        | 1        | 1        | 1        | 1        | 1        | ~  | -  | 7     |
| Shaft Miners              | 12 | 12       | 12       | 12       | 12       | 12       | 12       | -  |    | 84    |
| Hoistman                  | 3  | 3        | 3        | 3        | 3        | 3        | 3        | 3  | 3  | 27    |
| Deckman                   | 3  | 3        | 3        | 3        | 3        | 3        | 3        | -  | -  | 21    |
| Shaft Surface Labour      | 3  | 3        | 3        | 3        | 3        | 3        | 3        | 3  | 3  | 27    |
| Skiptender - Cage Tender  | -  | -        | -        | -        | -        | -        | 2        | 2  | 2  | 6     |
| Timbermen                 |    | <u>4</u> | <u>4</u> | <u> </u> | <u> </u> | <u> </u> | <u>4</u> | 2  | 2  | 28    |
|                           |    |          |          |          |          |          |          |    |    |       |
| Totals                    | 51 | 55       | 63       | 67       | 72       | 90       | 99       | 79 | 85 | 661   |

- 4 -

# SHAFT METHOD - PRODUCTION

# ESTIMATED OPERATING COST - PLANT SERVICES & ADMINISTRATION

| Per Month               |          |          |          |          |                                |  |  |  |  |  |
|-------------------------|----------|----------|----------|----------|--------------------------------|--|--|--|--|--|
|                         | Labour   | Supplies | Other    | Total    | Per Ton Milled<br>(14,583 TFM) |  |  |  |  |  |
| As in Trackless Method  | \$11,131 | \$ 2,458 | \$11,475 | \$25,064 | \$1.719                        |  |  |  |  |  |
| Minus "Cookhouse"       |          |          | 7,425    | 7,425    |                                |  |  |  |  |  |
|                         | 11,131   | 2,458    | 4,050    | 17,639   |                                |  |  |  |  |  |
| Plus "Actual" Cookhouse |          |          | 8,775    | 8,775    |                                |  |  |  |  |  |
| Total                   | \$11,131 | \$ 2,458 | \$12,825 | \$26,414 | \$1.811                        |  |  |  |  |  |

# SHAFT METHOD

-

# VANCOUVER HEAD OFFICE

| Salaries                                 | Per Month  |          |
|------------------------------------------|------------|----------|
| President                                | \$ 1,000   |          |
| Secretary-Treasurer                      | 1,000      |          |
| Stenographer                             | 400        |          |
| Printing, Stationery                     | 100        |          |
| Office Rent (partial)                    | 500        |          |
| Association Dues & Publicity             | 100        |          |
| Telephone & Telegraph                    | 100        |          |
| Audit, Legal & Trust Company             | 250        |          |
| Traveling                                | 100        |          |
| Annual Meeting                           | 75         |          |
| Stock Exchange                           | <b>7</b> 5 |          |
| Miscellaneous                            | _100       |          |
|                                          |            | \$ 3,800 |
| Fringe Benefits at 11% on \$2,400 Salary |            | _264     |
|                                          |            | \$ 4,064 |

-

# PLANT SERVICES & ADMINISTRATION - BUILDINGS & EQUIPMENT

# ESTIMATED CAPITAL COSTS

| 1. | Assay office                                    | \$ 10,140 |
|----|-------------------------------------------------|-----------|
| 2. | Office, warehouse & change house                | 124,228   |
| 3. | Machine shop & compressor house                 | 82,020    |
| 4. | Mobile equipment                                | 57,000    |
| 5. | Access & plant roads & general site preparation | 8,871     |
| 6. | Sewage disposal                                 | 21,000    |
| 7. | Fuel oil storage                                | 10,000    |
| 8. | Telephone system                                | 10,000    |
|    |                                                 | \$306,459 |

# TRACKLESS METHOD

# CAMP BUILDINGS & HOUSING

# ESTIMATED CAPITAL COST

| 1. | Senior staff residences - Ashcroft (6 x \$15,000) | \$ 90,000 |
|----|---------------------------------------------------|-----------|
| 2. | Staffhouse                                        | 37,900    |
| 3. | Bunkhouse or trailers                             | 85,500    |
| 4. | Trailer camp                                      | 28,000    |
| 5. | Present camp-alterations & additions              | 15,000    |
|    | Total                                             | \$256,400 |

1

1

# ESTIMATED PREPRODUCTION PLANT SERVICES & ADMINISTRATION COSTS

|                                      |          |          |          | М        | onths            |          |                  |                  |                |           |
|--------------------------------------|----------|----------|----------|----------|------------------|----------|------------------|------------------|----------------|-----------|
|                                      | 1        | 2        | 3        | 4        | 5                | 6        | 7                | 8                | 9              | Total     |
| Supervision                          | \$ 2,420 | \$ 2,420 | \$ 2,420 | \$ 2,420 | \$ 2,420         | \$ 2,420 | \$ 2,420         | \$ 2,420         | \$ 2,420       | \$ 21,780 |
| Mine Office                          | 968      | 968      | 2,331    | 2,331    | 2,331            | 2,331    | 2,331            | 2,331            | 2,331          | 18,253    |
| Mechanical - Electrical              | 1,847    | 1,847    | 1,847    | 1,847    | 1,847            | 1,847    | 1,847            | 1,847            | 1,847          | 16,623    |
| Truck & Tractor                      | 2,770    | 2,770    | 2,770    | 2,770    | 2,770            | 2,770    | 2,770            | 2,770            | 2,770          | 24,930    |
| First Aid & Safety                   | 100      | 100      | 100      | 100      | 100              | 100      | 100              | 100              | 100            | 900       |
| Cookhouse & Single Men's<br>Quarters | 4,388    | 4,950    | 7,762    | 7,762    | 8,100            | 7,762    | 8,438            | 9,000            | 9 <b>,7</b> 88 | 67,950    |
| Insurance                            | 200      | 200      | 300      | 300      | 300              | 400      | 400              | 500              | 600            | 3,200     |
| Travelling                           | 100      | 100      | 100      | 100      | 100              | 100      | 100              | 100              | 100            | 900       |
| Telephone & Telegraph                | 300      | 300      | 300      | 300      | 300              | 300      | 300              | 300              | 300            | 2,700     |
| Taxes, Property & School             | 200      | 200      | 500      | 500      | 1,000            | 1,000    | 1,000            | 2,600            | 2,600          | 9,600     |
| Totals                               | \$13,293 | \$13,855 | \$18,430 | \$18,430 | <b>\$19,2</b> 68 | \$19,030 | <b>\$19,70</b> 6 | <b>\$21,</b> 968 | \$22,856       | \$166,836 |

1

# TRACKLESS PREPRODUCTION MINE DEVELOPMENT MANPOWER REQUIREMENTS

-

|                                           |          |    |    | <u>M 0</u> | N T | H S |     |    |     |       |
|-------------------------------------------|----------|----|----|------------|-----|-----|-----|----|-----|-------|
| Category                                  | <u> </u> | 2  | 3  | <u>4</u>   | _5  | 6   | _7_ | 8  | _9_ | Total |
| Engineers                                 | 4        | 5  | 5  | 5          | 5   | 6   | 6   | 7  | 7   | 50    |
| Supervision                               | 4        | 4  | 4  | 4          | 4   | 4   | 4   | 4  | 4   | 36    |
| Assaying                                  | l        | l  | l  | l          | l   | l   | l   | l  | l   | 9     |
| lst. Aid & Warehouse                      | l        | l  | 1  | l          | 1   | l   | l   | l  | 1   | 9     |
| Changehouse & Lamps                       | 1        | 1  | l  | l          | l   | l   | l   | l  | l   | 9     |
| Mechanical & Electrical                   | 5        | 5  | 7  | 7          | 7   | 7   | 7   | 7  | 7   | 59    |
| Material distribution                     | -        | -  | -  | -          | l   | l   | 1   | l  | 1   | 5     |
| Small service trucks                      | -        | -  | l  | l          | l   | l   | l   | 2  | 2   | 9     |
| Truck & tractor (surface)                 | l        | l  | l  | l          | l   | l   | l   | l  | 1   | 9     |
| Mine development (Miners)                 | 12       | 12 | 18 | 18         | 18  | 18  | 18  | 18 | 18  | 150   |
| Raising 'Miners'                          | -        | 4  | 4  | 4          | 6   | 6   | 6   | 6  | 10  | 46    |
| Truck & Loader Operators<br>(underground) | -        | •  | 12 | 12         | 12  | 12. | 12  | 12 | 12  | 84    |
| Labour & Sill timbering                   | -        | -  | -  | -          | -   | -   | 2   | 5  | 8   | 15    |
| Diamond drillers                          | -        | -  | 4  | 4          | 4   | -   | -   | -  | -   | 12    |
| Construction<br>(Fill plant & lines)      | -        | -  | -  | -          | -   | -   | 4   | 4  | 4   | 12    |
| TOTAL :                                   | 29       | 34 | 59 | 59         | 62  | 59  | 65  | 70 | 77  | 514   |

.

# TRACKLESS METHOD - PRODUCTION

# ESTIMATED OPERATING COST PLANT SERVICES & ADMINISTRATION

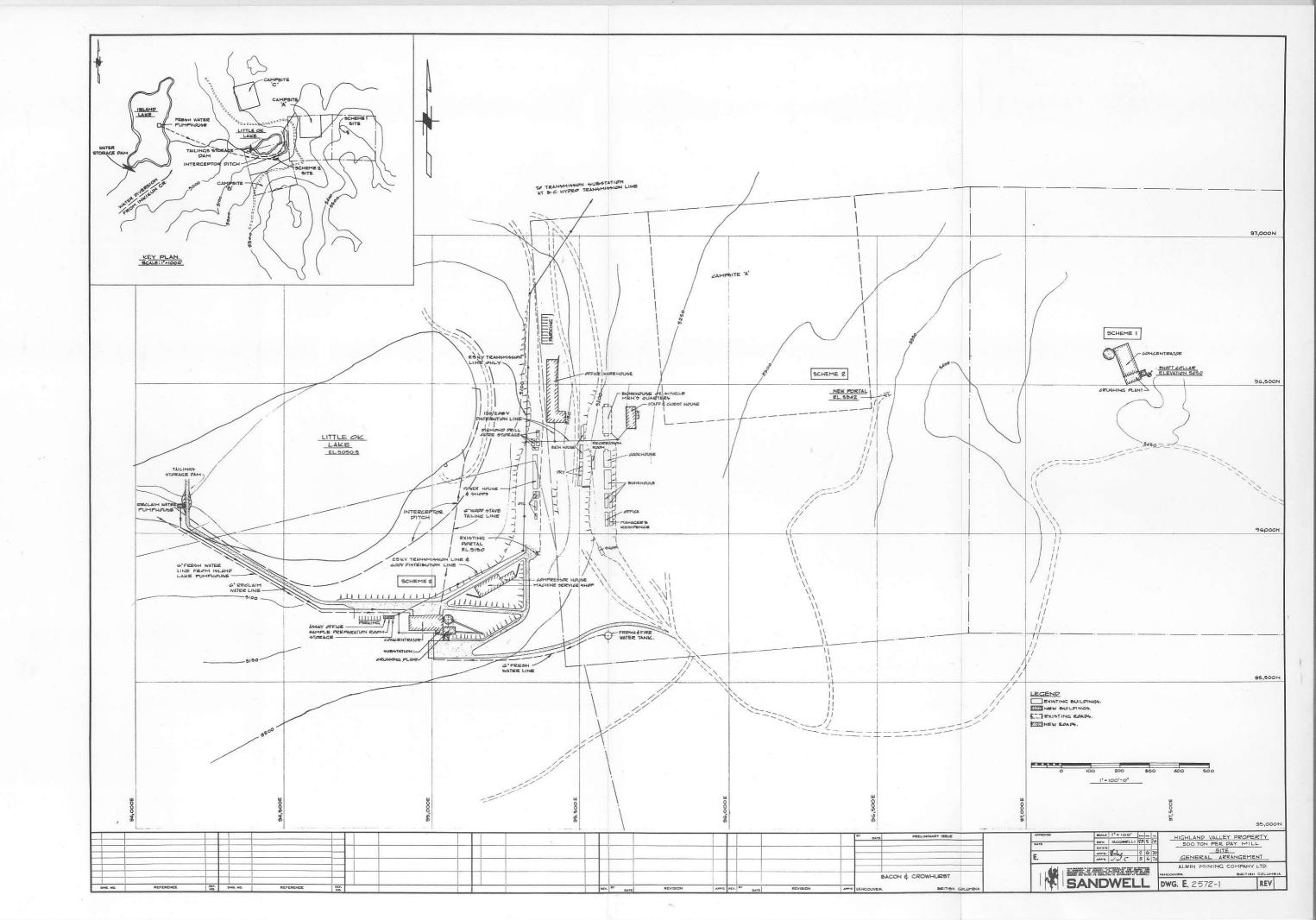
| - |                                      | Labour   | Per Month<br>Supplies | Other            | Total     | Per Ton<br>Milled<br>( <u>14,583 TPM)</u> |
|---|--------------------------------------|----------|-----------------------|------------------|-----------|-------------------------------------------|
|   | Supervision                          | \$ 2,220 | \$ 200                | -                | \$ 2,420  | \$0.166                                   |
|   | Mine Office                          | 2,830    | 255                   | -                | 3,085     | 0.212                                     |
|   | Mechanical - Electrical              | 3,820    | 636                   | -                | 4,456     | 0.306                                     |
| - | Truck & Tractor                      | 1,484    | 1,297                 | -                | 2,781     | 0.191                                     |
|   | Trailer Camp (Loss)                  | -        | . –                   | 200              | 200       | 0.014                                     |
| - | First Aid & Safety                   | 777      | 70                    | -                | 847       | 0.058                                     |
| - | Cookhouse & Single Men's<br>Quarters | -        | -                     | 7,425            | 7,425     | 0.508                                     |
|   | Insurance                            |          | · <b>-</b> .          | 600              | .600      | 0.041                                     |
|   | Travelling                           |          | -                     | 100              | 100       | 0.007                                     |
| _ | Telephone & Telegraph                | _        | -                     | 300              | 300       | 0.021                                     |
|   | Taxes - Property & School            |          | -                     | 2,600            | 2,600     | 0.178                                     |
|   | Miscellaneous                        |          | <b>4</b> 20           | 250              | 250       | 0.017                                     |
|   | Totals                               | \$11,131 | \$ 2,458              | <b>\$11,</b> 475 | \$25,064. | 1.719                                     |

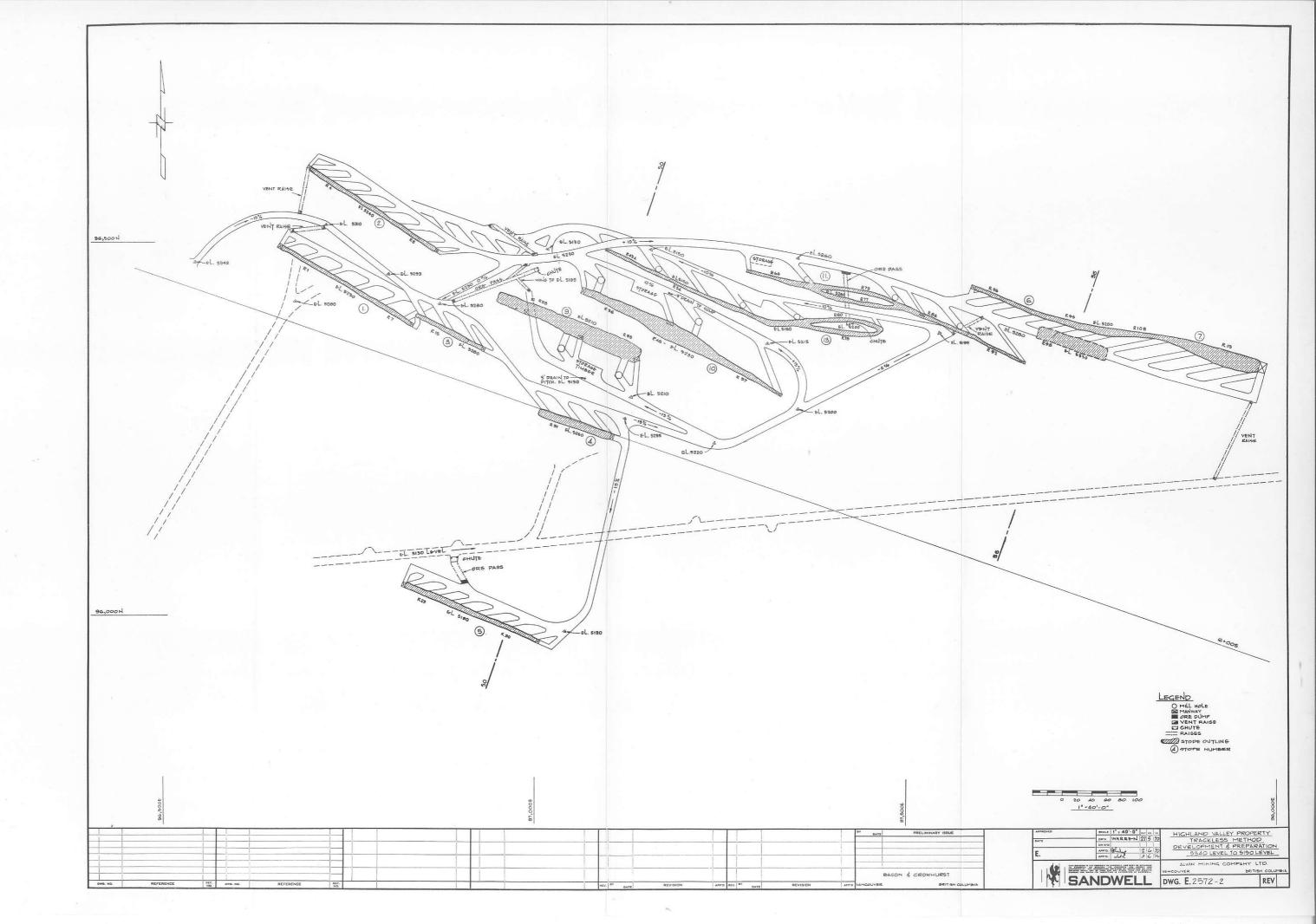
VANCOUVER HEAD OFFICE

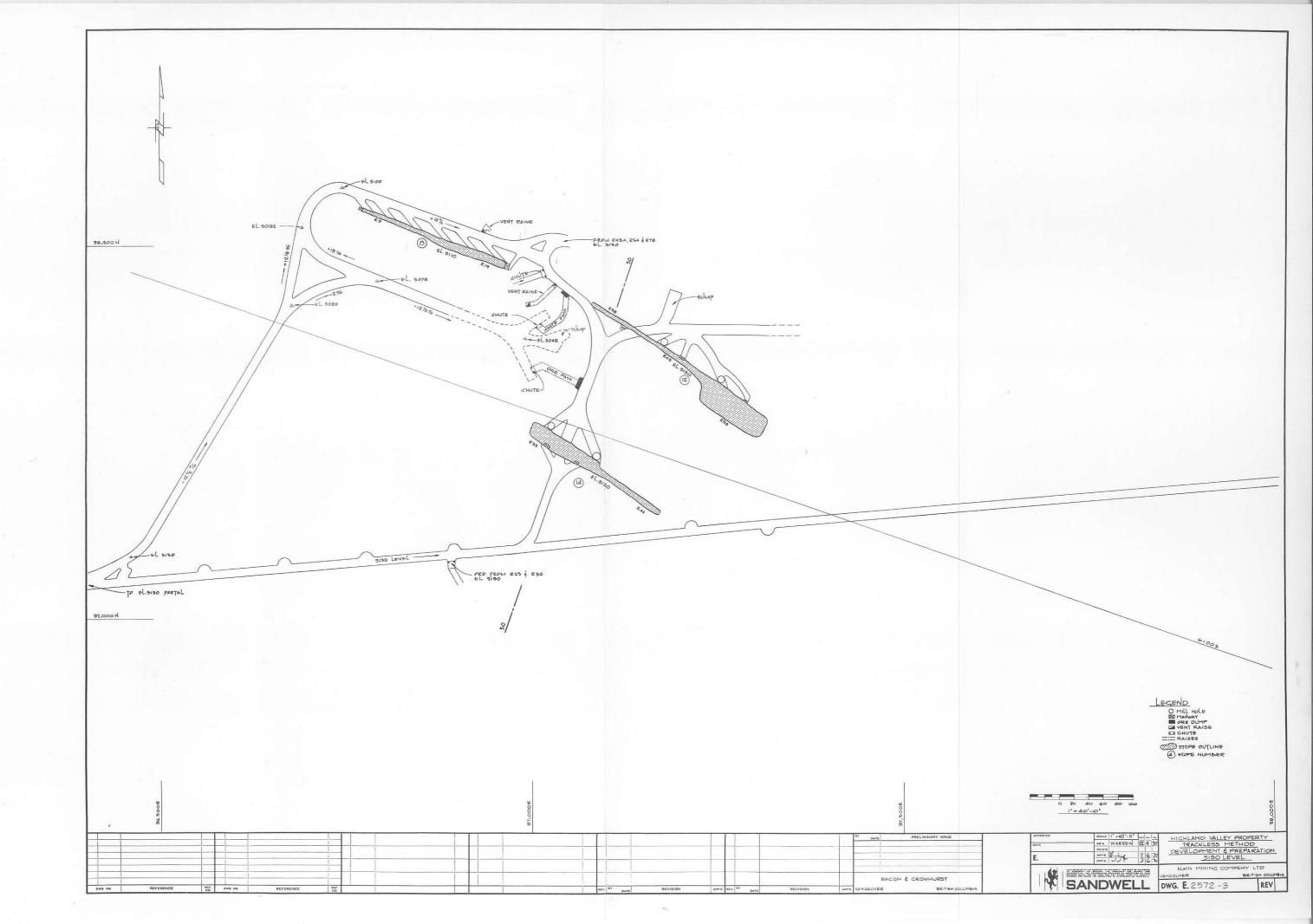
| Salaries                                 | Per Month |          |
|------------------------------------------|-----------|----------|
| President                                | \$ 1,000  |          |
| Secretary-Treasurer                      | 1,000     |          |
| Stenographer                             | 400       |          |
| Printing, Stationery                     | 100       |          |
| Office Rent (partial)                    | 500       |          |
| Association Dues & Publicity             | 100       |          |
| Telephone & Telegraph                    | 100       |          |
| Audit, Legal & Trust Company             | 250       |          |
| Traveling                                | 100       |          |
| Annual Meeting                           | 75        |          |
| Stock Exchange                           | . 75      |          |
| Miscellaneous                            | 100       |          |
|                                          |           | \$ 3,800 |
| Fringe Benefits at 11% on \$2,400 Salary |           | 264      |
|                                          |           | \$ 4,064 |
|                                          | ,         |          |

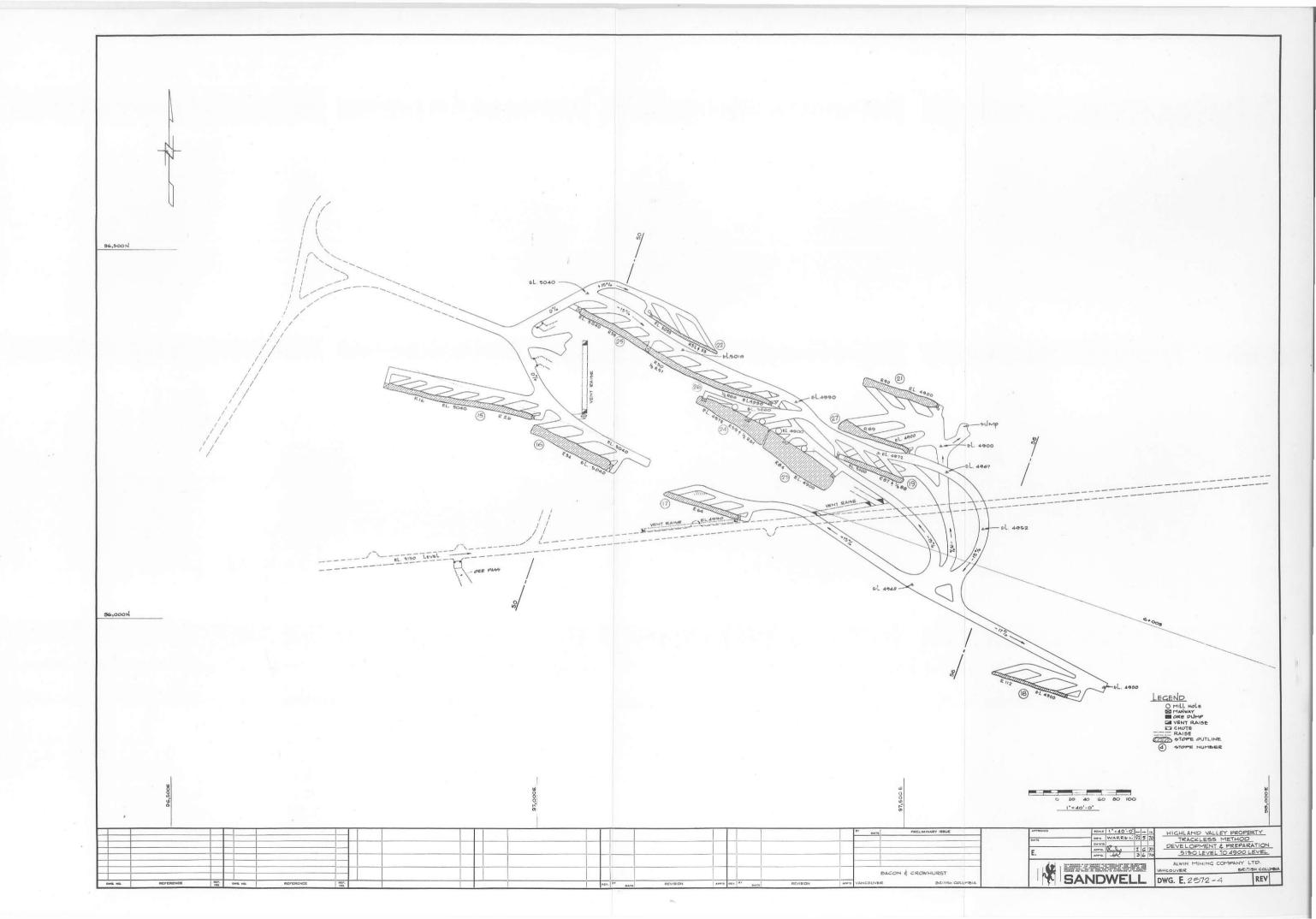
•

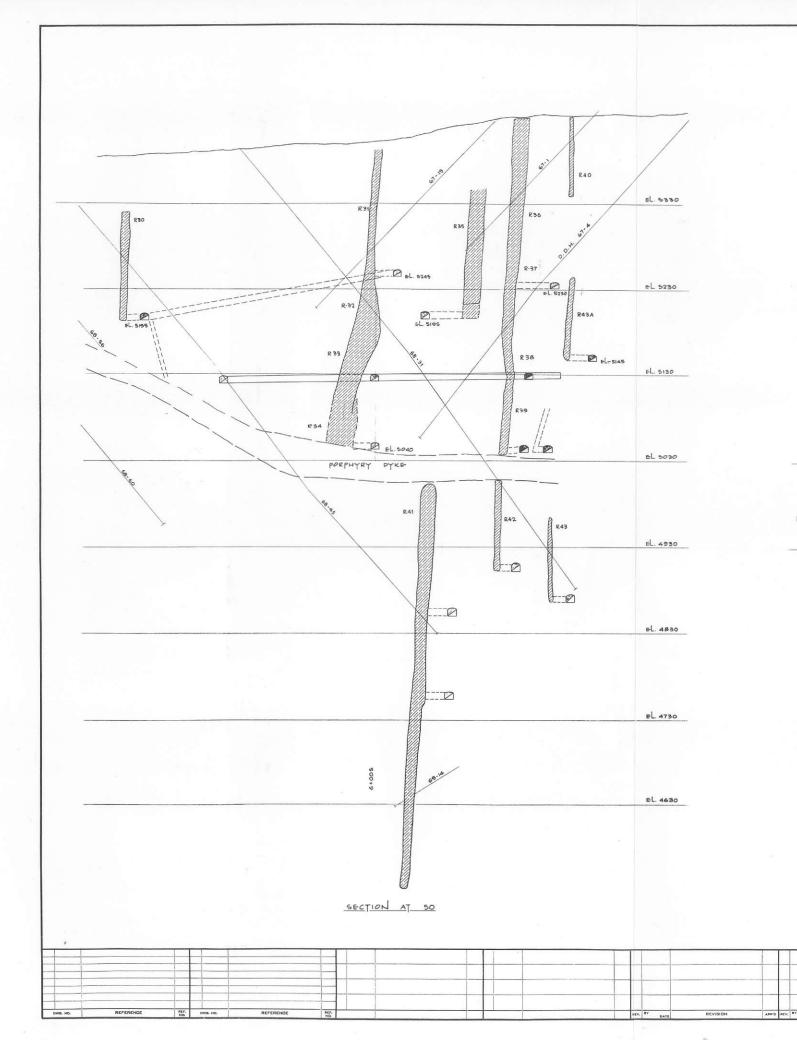
|                                 | Trackless | $\underline{Shaft}$ |
|---------------------------------|-----------|---------------------|
| Mine                            | 89        | 100                 |
| Mill (incl. swing men)          | 21        | 21                  |
| Plant Services & Administration | 18        | _19                 |
|                                 | 128       | 140                 |

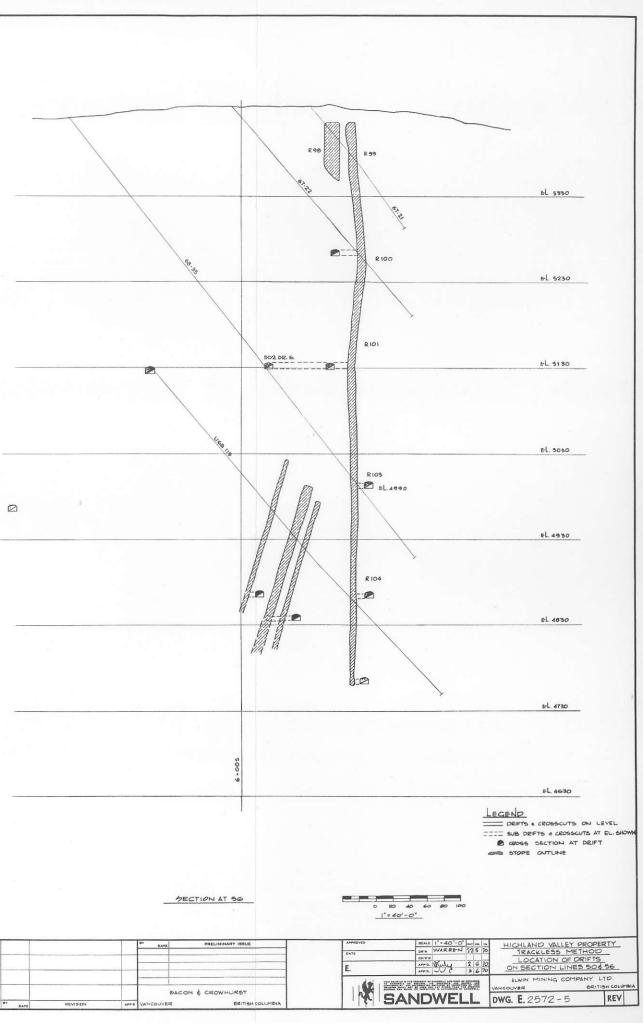

# DISTRIBUTION OF EMPLOYEE HOUSING

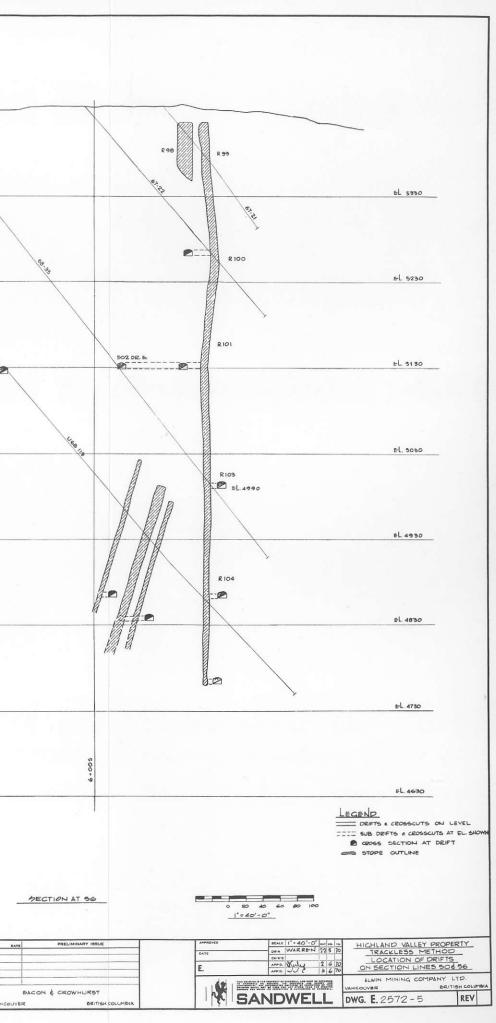

|                                    | <u>Mine Accommodation</u><br><u>Required</u> | Mine Accommodation<br>Not Required |
|------------------------------------|----------------------------------------------|------------------------------------|
| Trackless                          |                                              |                                    |
| Senior staff residences - Ashcroft | -                                            | 6                                  |
| Employee self owned accommodation  | -                                            | 10                                 |
| Single men's quarters              | 52                                           |                                    |
| Staff house                        | 10                                           | -                                  |
| Trailer camp                       | <u> </u>                                     | <u>50</u>                          |
|                                    | 62                                           | 66                                 |
| Shaft                              |                                              |                                    |
| Additional bunkhouse               | <u>12</u>                                    |                                    |
|                                    | 74                                           | 66                                 |

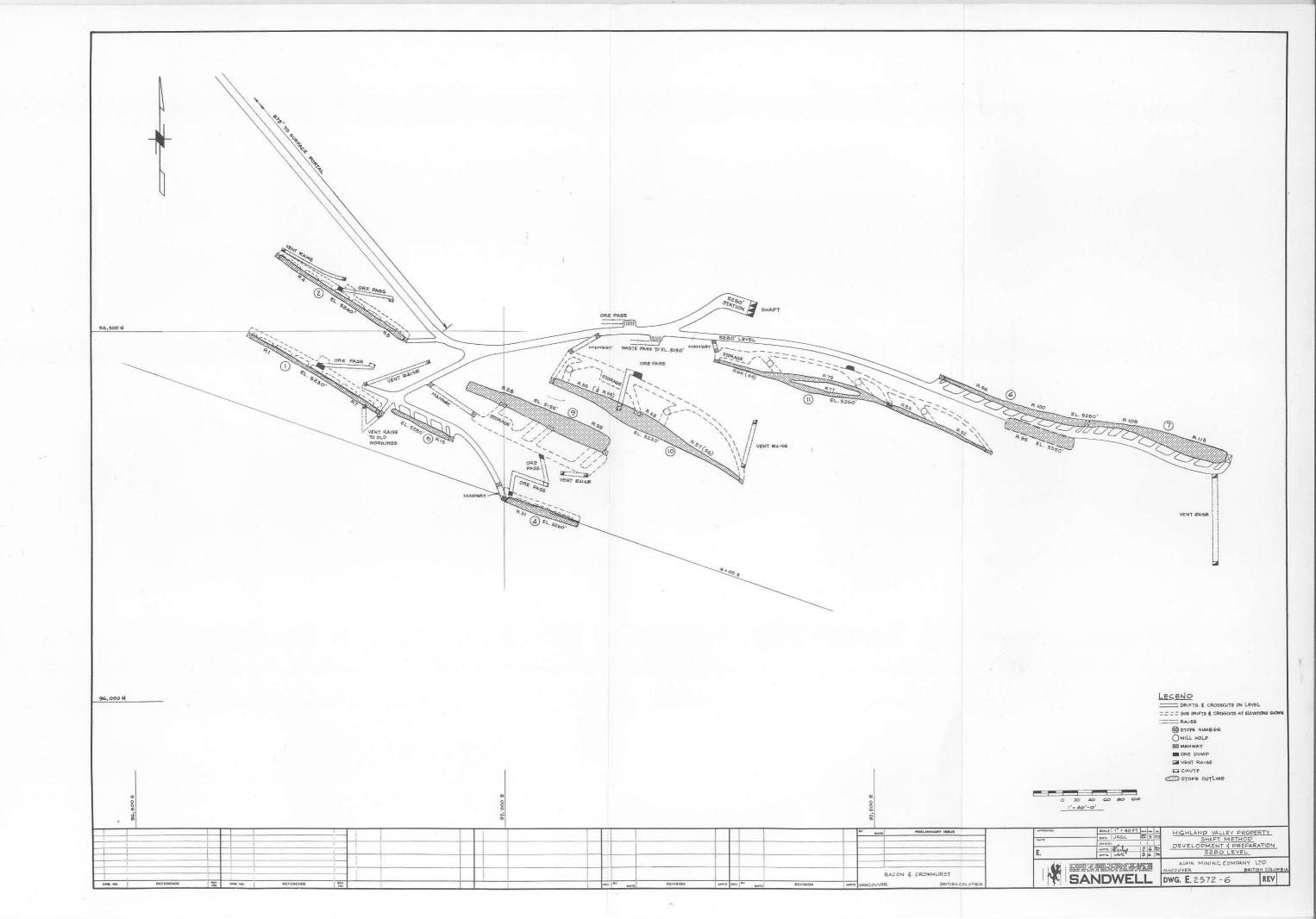

. ...

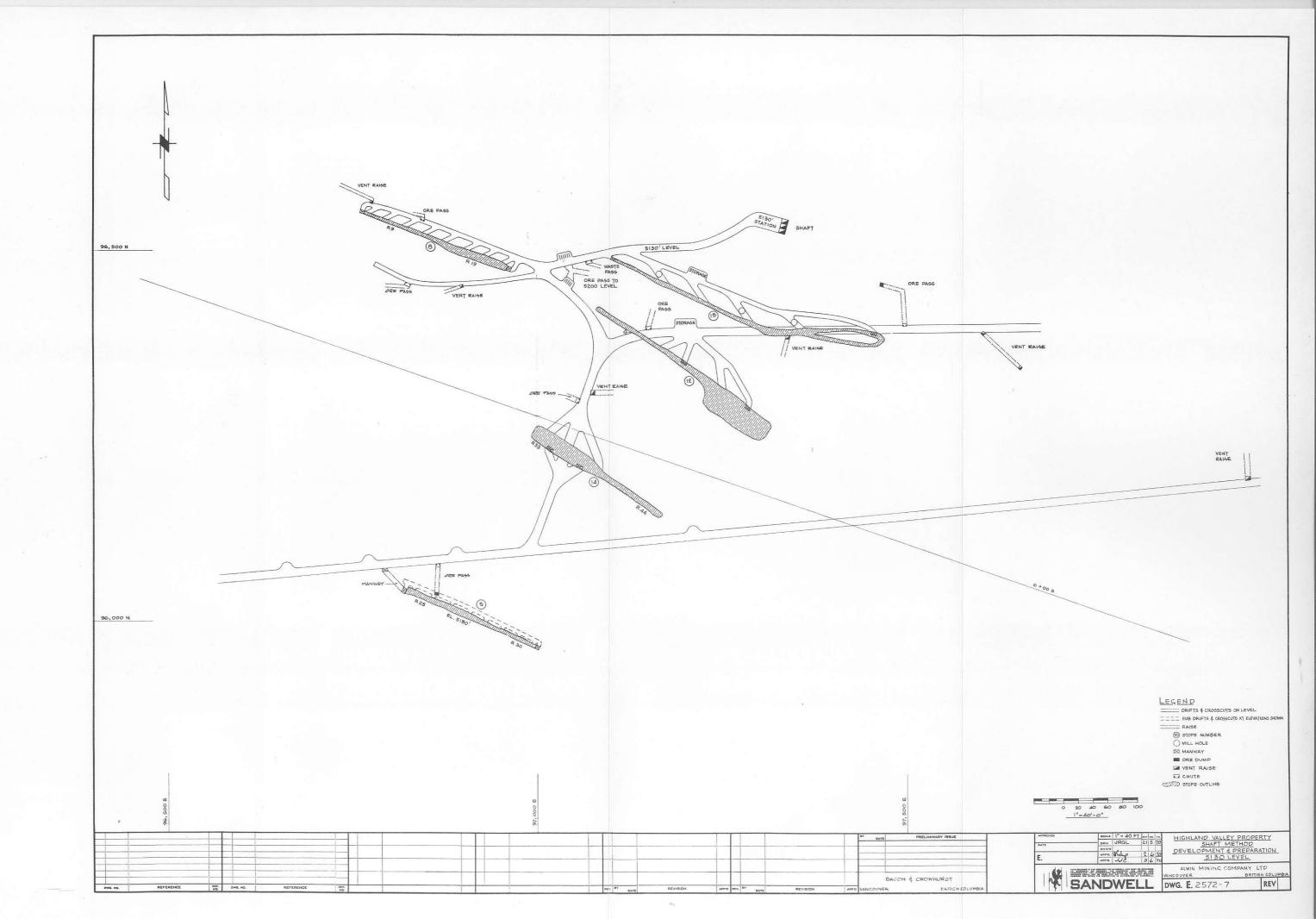

٢

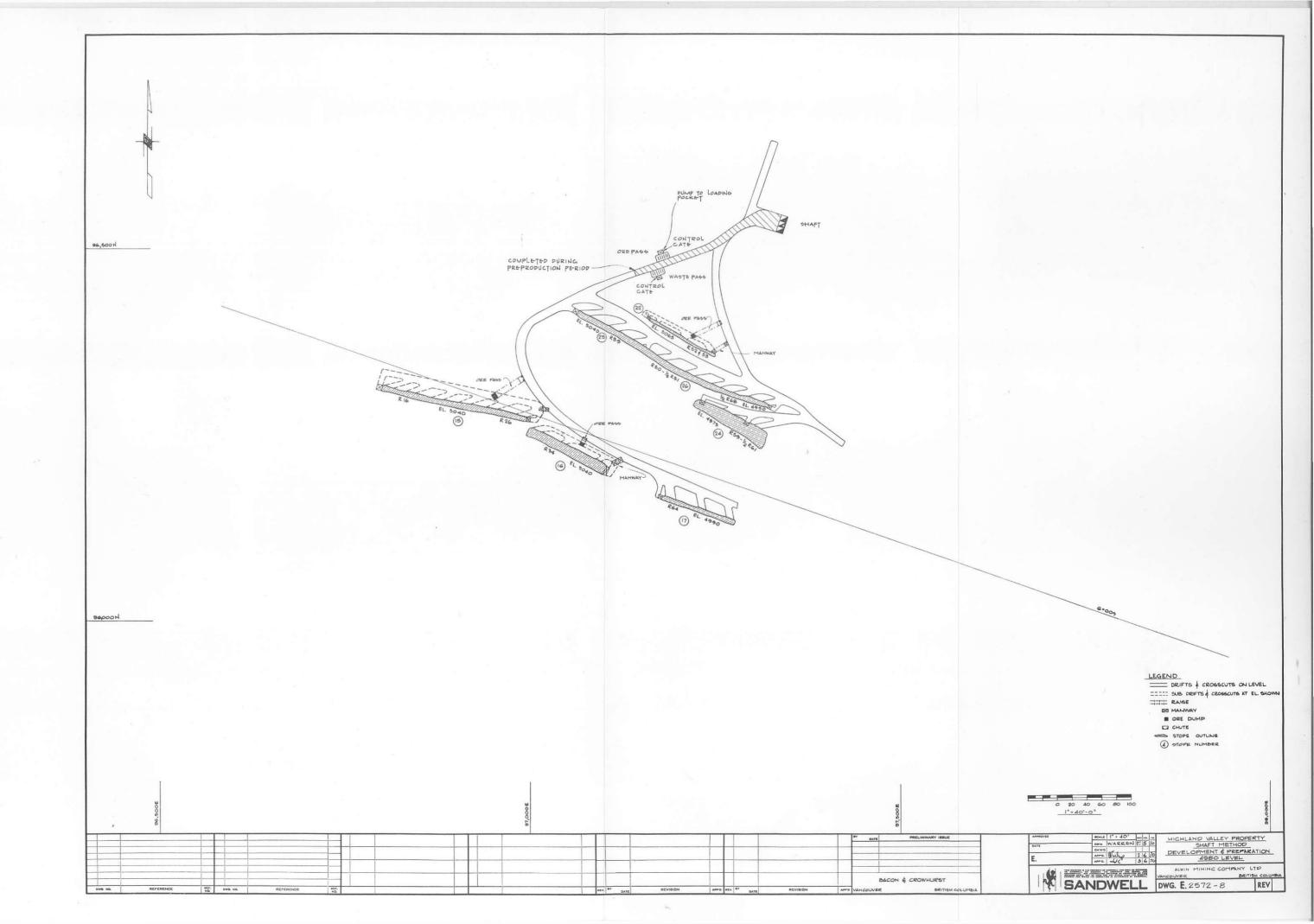

# CHAPTER VIII LIST OF ILLUSTRATIONS

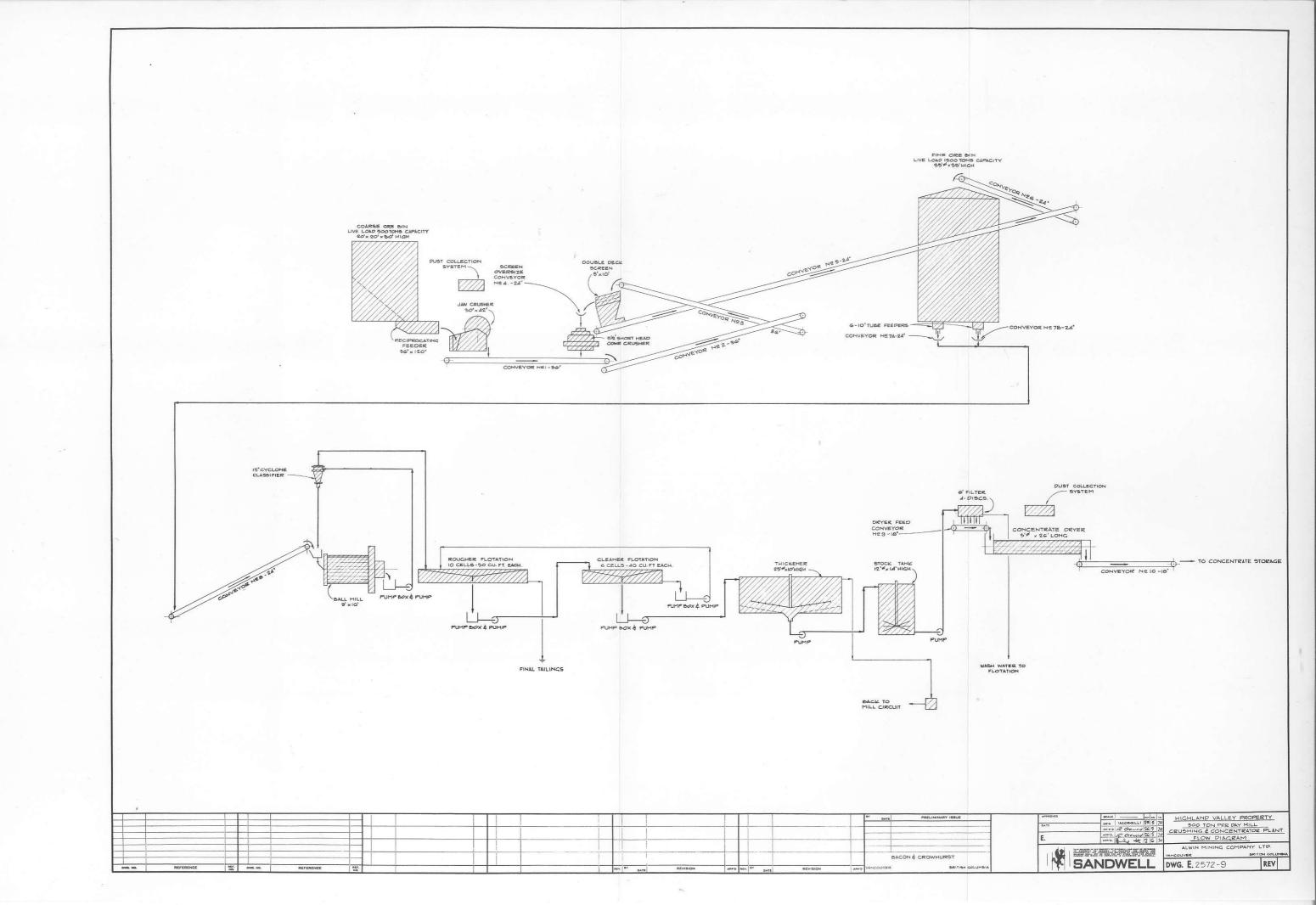


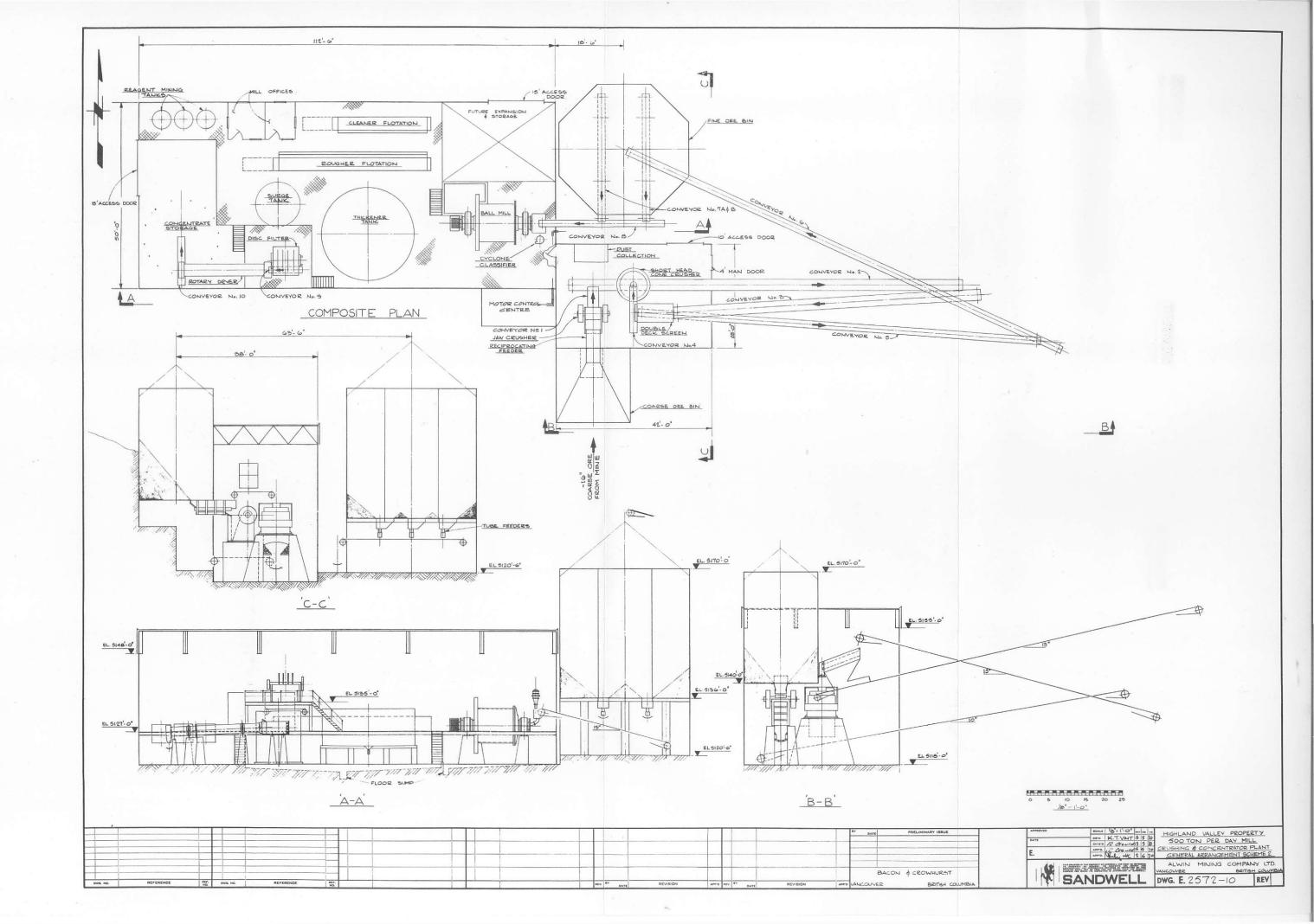



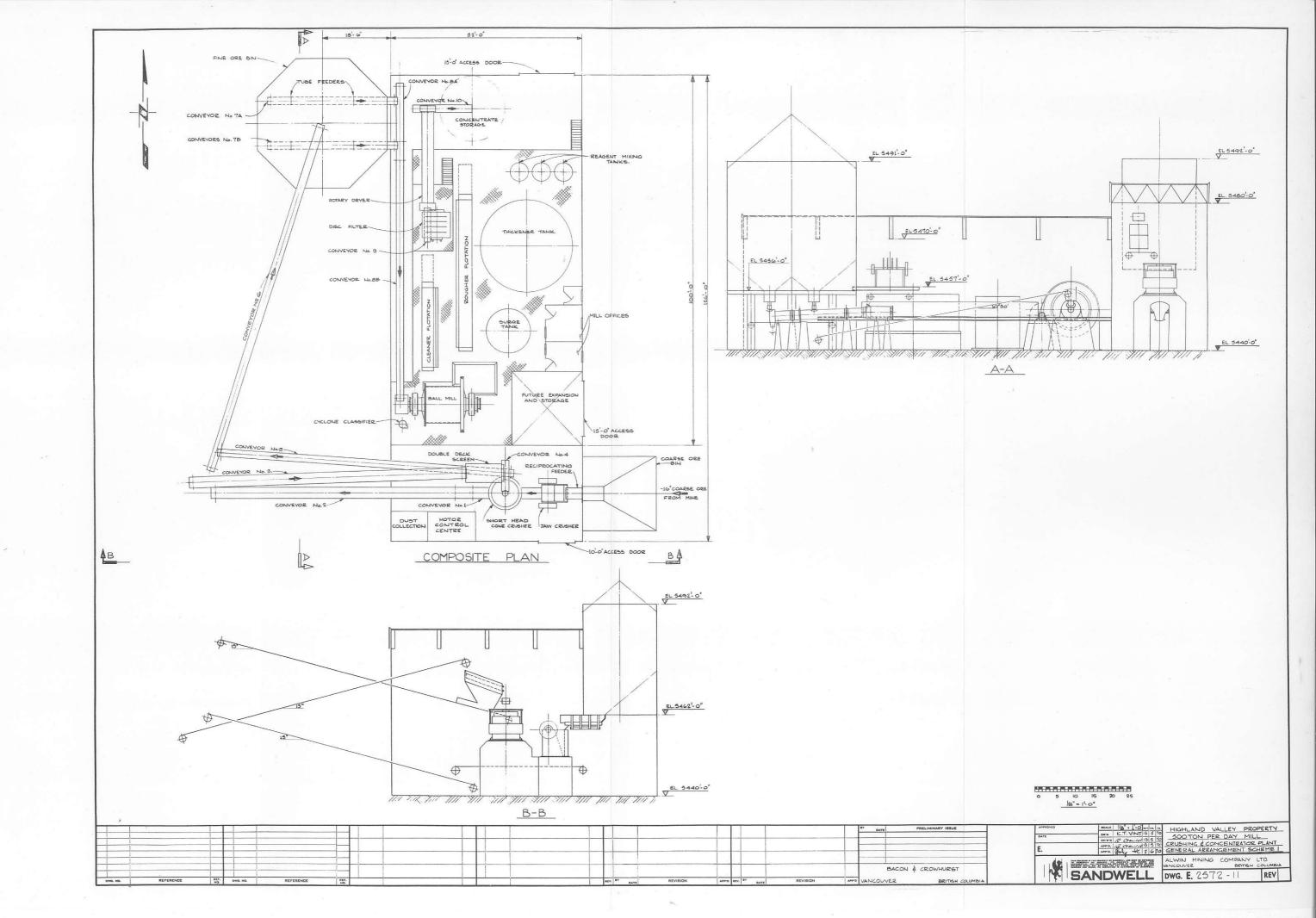



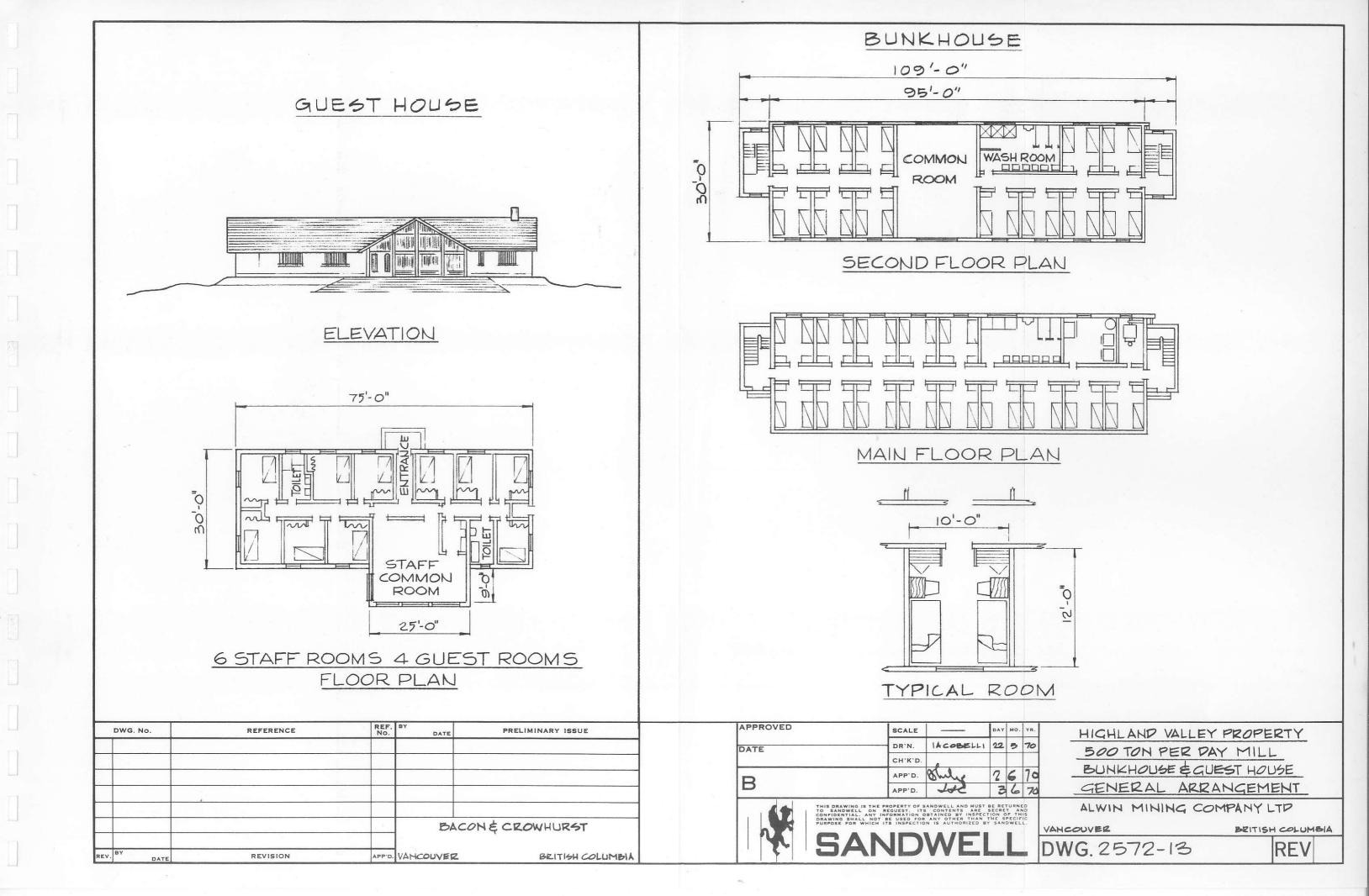












OVERHEAD DOORS TA \_\_\_\_\_ -2 TOH OVERHEAD CRANE OVERHEAP -CONTROL PAHELY POORS MACHINE SERVICE SHOP BAYS -40'-0" 1 STORAGE OVER COMPRESSOR HOUSE WELDING =0 = SHOP TOOL 22'- 4 ELECTRICAL OFFICE WCC ## 90'-0" 48'-0"

| DWG. No.     | REFERENCE | REF.<br>No. | BY        | PRELIMINARY ISSUE | APPROVED                                         | SCALE                             |                                                                             | DAY     |
|--------------|-----------|-------------|-----------|-------------------|--------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------|---------|
|              |           |             |           |                   | DATE                                             | DR'N.                             | IACOBELL                                                                    | 1 22    |
|              |           | -           |           |                   |                                                  | CH'K'D.                           |                                                                             |         |
|              |           |             |           |                   | D                                                | APP'D.                            | Huly                                                                        | 2       |
|              |           |             |           |                   | B                                                | APP'D.                            | JAK                                                                         | 3       |
|              | ,         |             |           |                   | THIS DRAWING IS                                  | THE PROPERTY OF<br>ON REQUEST. IT | SANDWELL AND MUST                                                           | T BE RE |
|              |           |             | БÁ        | CON & CROWHURST   | CONFIDENTIAL J<br>DRAWING SHALL<br>PURPOSE FOR W | NOT BE USED FO                    | S CONTENTS ARE<br>OBTAINED BY INSPE<br>R ANY OTHER THAN<br>ON IS AUTHORIZED | THE S   |
|              |           |             |           |                   | V. CA                                            | NID                               | V/F                                                                         |         |
| REV. BY DATE | REVISION  | APP'D.      | VANCOUVER | BRITISH COLUMBIA  | I C JA                                           |                                   |                                                                             | Brane   |

|     | -   |                                                                                                                |
|-----|-----|----------------------------------------------------------------------------------------------------------------|
|     |     |                                                                                                                |
|     |     |                                                                                                                |
|     |     |                                                                                                                |
|     |     |                                                                                                                |
|     |     |                                                                                                                |
|     |     |                                                                                                                |
|     |     |                                                                                                                |
|     |     |                                                                                                                |
|     |     |                                                                                                                |
|     |     |                                                                                                                |
|     |     |                                                                                                                |
|     |     |                                                                                                                |
|     |     |                                                                                                                |
|     |     |                                                                                                                |
|     |     |                                                                                                                |
|     |     |                                                                                                                |
|     |     |                                                                                                                |
|     |     |                                                                                                                |
|     |     |                                                                                                                |
|     |     |                                                                                                                |
|     |     | al de la constante de la const |
|     |     |                                                                                                                |
|     |     |                                                                                                                |
|     |     |                                                                                                                |
|     |     |                                                                                                                |
|     |     |                                                                                                                |
|     |     |                                                                                                                |
|     |     |                                                                                                                |
|     |     |                                                                                                                |
|     |     |                                                                                                                |
|     |     |                                                                                                                |
|     |     |                                                                                                                |
|     |     |                                                                                                                |
|     |     |                                                                                                                |
|     |     |                                                                                                                |
|     |     |                                                                                                                |
|     |     |                                                                                                                |
|     |     |                                                                                                                |
|     |     |                                                                                                                |
|     |     |                                                                                                                |
| -   | YR. |                                                                                                                |
| мо. | 70  | HIGHLAND VALLET PROPERTY                                                                                       |
|     | 10  | SOU TON PER VAY MILL                                                                                           |
| 5   | -   | MACHINE SHOP & COMPRESSOR HOUSE                                                                                |
|     | 10  |                                                                                                                |
|     | 70  |                                                                                                                |
| 66  | 70  | GENERAL ARRANGEMENT                                                                                            |
|     | 70  | ALWIN MINING COMPANY LTD.                                                                                      |
| 66  | 70  | GENERAL ARRANGEMENT                                                                                            |



| BOILER LOCKERS BASKETS                                                  | AREHOUSE                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VASHE<br>LOCKERS WASHE<br>SHOWERS<br>FIRST WAIT LAMPS<br>AID WAIT LAMPS |                                                                                                                                                                                                                                                                                                                                          |
| 158'-0"                                                                 | 40'-0"                                                                                                                                                                                                                                                                                                                                   |
| FIRST FLOOR PLAN                                                        |                                                                                                                                                                                                                                                                                                                                          |
|                                                                         |                                                                                                                                                                                                                                                                                                                                          |
|                                                                         |                                                                                                                                                                                                                                                                                                                                          |
|                                                                         |                                                                                                                                                                                                                                                                                                                                          |
|                                                                         |                                                                                                                                                                                                                                                                                                                                          |
| OFFICE MEN 200F                                                         | ZOOF                                                                                                                                                                                                                                                                                                                                     |
| PEINT ENG ASSIST WAITING                                                |                                                                                                                                                                                                                                                                                                                                          |
| SECOND FLOOR PLAN.                                                      |                                                                                                                                                                                                                                                                                                                                          |
| G. No. REFERENCE REF. BY DATE PRELIMINARY ISSUE                         | APPROVED SCALE DAY MO. YR. HIGHLAND VALLEY PROPERTY<br>DATE DR'N. IACOBELLI 22 5 70 EDD TON DER DAY MULL                                                                                                                                                                                                                                 |
|                                                                         | CH'K'D.                                                                                                                                                                                                                                                                                                                                  |
|                                                                         | B APP'D. Jok 3670. GENERAL ARRANGEMENT                                                                                                                                                                                                                                                                                                   |
| BACON ÉCROWHURST                                                        | THIS DRAWING IS THE PROPERTY OF SANDWELL AND MUST BE PETUPRICA<br>TO SANDWELL ON RODERST ITS CONTENTS ARE SECRET AND<br>COMPENENTIAL ANY INFORMATION OBTAINED BY INSPECTION OF THIS<br>PRAVING SHALL NOT BE USED FOR ANY OTHER THAN THE SPECIFIC<br>PURPOSE FOR WHICH ITS INSPECTION IS AUTHORIZED BY SANDWELL.<br>VANCOUVER BRITISH COL |
| DATE REVISION APP'D. VANCOUVER BRITISH COLUMBIA                         | SANDWELL DWG.2572-14 REV                                                                                                                                                                                                                                                                                                                 |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | APPR                                                                                             | <b>₽</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                   |                                                              | 60/138 KV BC HYDRO LINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ş                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                                                              | Y 3 MVA, ONAN<br>V 60/138 - 25KV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CHIKID B                                                                                         | REFERENCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                     |                                                              | 525KV OVERHEAD LINE<br>3MILES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Martin War (1 6 10<br>Martin And Martin (1 5 70<br>Martin Anton Martin (1 5 70<br>Martin (1 5 70)<br>Martin | BPARRY 26 5 70                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                                                              | PRIMARY DISTRIBUTION<br>SUB-STATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SIN<br>ALW<br>VANCOU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | も<br>1<br>1<br>1<br>1<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1 | , and a second s | -<br>                                                                               |                                                              | VIE VR<br>VIE VR<br>VIE VR<br>VIE VR<br>VIE VR<br>VIE VE<br>VIE VR<br>VIE VE<br>VIE VE |
| MINING<br>72-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AND VAL                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DIACR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N PROPER                                                                                         | REVISION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 535 HP<br>UTG & MISC.<br>POWER<br>SUPPLY<br>CONE<br>CONE<br>CONE<br>CONE<br>CRUSHER | CRUSHING PLI<br>CRUSHING PLI<br>CONCENTRATOR<br>WATER SUPPLY | ADD<br>HP<br>HP<br>HP<br>HP<br>HP<br>HP<br>HP<br>HP<br>HP<br>HP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |