REPORT

on

ALWIN MINING COMPANY LTD.
HIGHLAND VALLEY, B.C.

by

J.J. CROWHURST, B.A.Sc., P.Eng.
R.W. PHENDLER, B.Sc., P.Eng.
G.D. DELANE, B.Sc.

Nippon Mining Co. Ltd., 475 Howe St., Vancouver, 1, B.C.

Attention: Mr. M. Nakamura, Vice-President

Dear Sir:

We are pleased to submit herewith a report concerning a preliminary feasibility study of the Highland Valley, B.C., Alwin Mining Company Ltd. property.

We trust that this report will provide you with the data you required to make a preliminary assessment of the economic possibilities concerning placing the property into production.

Yours very truly,

BACON & CROWHURST LTD.

J.J. Crowhurst, P.Eng.

JJC/ic

Figure 1. Key map, southwestern British Columbia, showing position of Ashcroft, Nicola, Hope, and Princeton map-areas.

TERMS OF REFERENCE

At a meeting between Mr. M. Nakamura, Vice-President, Mr. N. Hakari, Chief Geologist, Nippon Mining Co. Ltd., and Mr. J.J. Crowhurst of Bacon & Crowhurst Ltd., held in Vancouver on April 18th, 1969, the scope and terms of reference of this report were discussed.

It was understood that, because the time for preparation of information and making cost estimates would be very short, several assumptions, considered to be attainable or reasonable, would of necessity be made.

Some of the more important ones that have formed the basis for the report are as follows:

- (1) Rate of Production 1000 short tons of ore per calendar day to be extracted from the mineralized zones situated on the 0.K. and I.O.U. Crown grant mineral claims.
- (2) <u>Metallurgical Performance</u> as per the recent test work results submitted by the Department of Energy, Mines and Resources, Ottawa.
- (3) Metal Prices Copper @ 44¢ and @ 48¢, both U.S. per 1b.

 Silver \$1.86 U.S. per ounce.
- (4) Adequate Water Supply for a concentrating plant and camp requirements available from nearby lakes or a similar source such as supply to neighbouring proposed mining operations.
- (5) <u>Power</u> requirements to be supplied by B.C. Hydro and Power Authority from nearby transmission lines.

- (6) Mining Methods cut & fill stoping using small trackless equipment for stopes over 11' wide, and shrinkage stoping for ore zones under 11' wide actual mining considerations have not been determined to date.
- (7) Mine Access vertical shaft from surface to 3900 elevation with six levels at 150' intervals. It should be noted that the alternative of driving an inclined ramp system, with accompanying trackless and occurrence conveyor belt haulage, should be investigated in detail before a final decision is made.
- (8) <u>Camp</u> Alwin will construct bunkhouse and cookhouse accommodation for 100 men and provide housing for an additional 50. The other men required will commute from nearby towns and villages.

The scope of the report is intended to cover ore reserve estimate calculations, proposed mining methods including mine development procedures, proposed milling methods, concentrate deliveries deliveries deliveries, plant & to Vancouver, B.C., wharf handling facilities, plant & townsite construction, manpower requirements, power considerations, cost estimates concerning capital (preproduction) costs including warehouse inventory and working capital, operating costs, net smelter returns and operating profit.

It is to be noted that Bacon & Crowhurst Ltd. have not investigated, and this report does not cover, the following:

- (a) Ownership of the mineral claims.
- (b) Financing arrangements and related costs.
- (c) Dominion, Provincial or local taxation.
- (d) Royalty payments to Royal Canadian Ventures.
- (e) Cash flow (other than operating profit) and/or present value of shares.

TABLE OF CONTENTS

	Page
Covering Letter Terms of Reference Scope of the Report Table of Contents	
CHAPTER I - SUMMARY & FINANCIAL	
Summary Estimated Operating Profit Estimated Net Smelter Returns Estimated Capital Costs Estimated Operating Cost	1 2 3 5 5
CHAPTER II - GENERAL INFORMATION	
Property & Location History Buildings & Plant	1 1 2
CHAPTER III - GEOLOGY & ORE RESERVES	
Geology & Mineralization Ore Reserves Exploration	1 1 2
CHAPTER IV - MINING	
General Estimate "First" Stoping Blocks Mining Methods Estimated Production Estimated Manpower & Labour Cost Estimated Capital Expenditures Estimated Preproduction Mine Development Estimated Mine Production - Tons & Grade	1 2 3 3 5 7 9
CHAPTER V - MILLING & METALLURGY	
Milling & Metallurgy Estimated Capital Cost - Crushing Plant & Concentrator Estimated Tons Concentrates Produced	1 2 3
CHAPTER VI - SERVICES & CAMP	
Plant Services Camp Buildings & Housing	1

CHAPTER I SUMMARY & FINANCIAL

SUMMARY

Ore reserves as of April 20th, 1969, are estimated at 1,391,448 tons assaying 1.994% copper and 0.30 ounces of silver per ton after allowing for mining dilution. A further 870,000 tons of similar material may be anticipated.

It is estimated that a total investment of \$7,964,000 will be required to complete the necessary exploration, to prepare the underground workings for production and to construct a concentrator with related facilities capable of processing 1000 tons of ore per day (348,000 tons of ore per year).

The present ore reserves will suffice for 4 years operation at this rate, with a further 2½ years anticipated.

The sum of \$75,000 representing inventory of supplies and the sum of \$671,000 representing three months operating costs for working capital is included in the \$7,964,000 total.

Operating costs are estimated at \$7.71 per ton milled for the first 1½ years and \$8.95 per ton milled thereafter.

Operating profit, before writeoffs for depletion or depreciation, financing charges, royalties, or taxation, is estimated as follows (in 000's \$ Canadian funds):

	Price of Copper		
	44¢ U.S.	48¢ U.S.	
Year 1	\$3,144	\$3,737	
2	2,520	3,072	
3	1,895	2,406	
4	1,895	2,406	
Sub-Total	9,454	11,621	
5	2,202	2,743	
6	2,202	2,744	
7	1,100	1,371	
Total	14,958	18,479	

ESTIMATED OPERATING PROFIT - CAN. FUNDS

PRICE OF COPPER - 44¢ U.S.

Year	<u>I</u>	: 2	: 3	: 4	: Sub-total	: 5	: 6	: _7*	:Totals
Tons milled - 000's	348	: 348	: 348	: 348	: 1,392	: 348	: 348	: 174	2,262
Tons Concentrate	21,661	:20,144	18,626	:18,626	79,057		:19,765	9,882	: 128,469
Net smelter returns 000's Can. @ \$269.00/ton of		:	:		:			=	
Conc.		:	:	:	: 21,266	: 1		:	: 34,558
N.S.R. per ton of ore milled	\$16.74	:\$15.57	:14.40	: 14.40	: 15.28	: 15.28	: 15.28	: 15.28	: 15.28
Operating Cost - 000's \$ Can. (\$7.71 & \$8.95 per ton)	2,683	: 2,899	: :3,115	: : 3,115	: : 11,812	: 3,115	3,115	1,558	19,600
Operating Profit	3,144	2,520	:1,895	: 1,895	9,454	: 2,202	2,202	1,100	: 14,958
		: :	: :		:				=
		PAICE OF	COFFER	- 48¢	U.S.				
Net Smelter returns					:	:		:	:
000's Can. @ \$296.41/ton	6,420	: 5,971	:5,521	: 5,521	: 23,433		: 5,859	2,929	: 38,079
N.S.R. per ton ore milled	18.45	: 17.16	:15.86	: 15.86	: 16.83			: 16.83	16.83
Operating Cost - 000's \$ Can.	2,683	: 2,899	: <u>3,115</u>	: 3,115 :	:11,812	: 3,115	3,115	1,558	19,600
Operating Profit	3,737	: 3,072	:2,406	: 2,406	:11,621	: 2,743	: 2,744	: 1,371	: 18,479

^{*} ½ year

Per Short Ton

ESTIMATED NET SMELTER RETURNS

Assumptions

Grade of copper concentrate - 33.0% Cu + 5.45 ozs.Ag/ton + 0.004 ozs. Au/ton. Moisture content - 8%.

Price of copper per 1b. (a) 44¢ U.S. (b) 48¢ U.S.

Price of silver - U.S. equivalent - \$1.86- 1-1/8% or \$1.84 approx.

(a) PRICE OF COPPER - 44¢ U.S./1b.

	of Concentrate
Gross Value	
Copper contained - 660% . Copper paid for - 660% - 24% = 636% .	
Value of copper - 636 x (44¢-1¢) =	\$273.48 U.S.
Value of silver - 5.45 ozs. x 1.84 x 90% =	9.03 U.S.
Value of gold since content less than 1 gr./metric ton	•
	\$282.51 U.S.
<u>Deductions</u> 25.00	
(1) Treatment charge - 24.50/dry metric ton	
or $\frac{24.50 \times 2000}{2204.6}$ per dry short ton =	22.23 U.S. \$260.28 U.S.
Plus AmCan. exchange @ 7-3/4%	20.17 \$280.45 Can.

(2) Concentrate handling & freight Per ton of Concentrate

Loading μ^{ϕ}	0,45	
Trucking (3¢ x 250 m.) to Vancouver	7.50	
Sampling, warehousing, shiploading	3.50	11.45 Can.
Net value per short ton of concentrate		\$269.00 Can.
Net value per 1b. of copper contained - 2	69.00 660 =	40.76¢ Can.
		84

	of concentrate
(b) PRICE OF COPPER - 48¢ U.S./1b.	
Gross Value	
Copper contained - 660# Copper paid for - 660#-24# = 636# Value of copper - 636 x (48¢-1¢) = Value of silver - as above	\$298.92 U.S. 9.03 U.S. \$307.95 U.S.
Deductions	
(1) Treatment charge - as above Net	22.23 U.S. \$285.72 U.S.
Plus AmCan. exchange @ 7-3/4%	22.14 \$307.86 Can.
(2) Concentrate handling & freight	
As above	11.45 Can.
Net value per short ton of concentrate	\$296.41 Can.
Net value per 1b. of copper contained - $\frac{296.41}{660}$ =	44.91¢ Can.

Per short ton

ESTIMATED CAPITAL COSTS

Exploration		\$480,000
Preproduction developme Equipment Crushing plant & concentrate Water supply		1,463,000 772,000 1,905,000 100,000
Power (transmission line & t Plant services Camp buildings & housing Administration & head office	e costs	100,000 260,000 930,000
12 months @ \$20,000/mor	Jr.h	240,000
	Sub-Total Contingencies @ 10%	\$6,250,000 625,000 \$6,875,000
	Engineering @ 5%	343,000
	Sub-Total	\$7,218,000
Inventory of supplies	75,000	
Working capital - 3 months of 3 x \$29,000 x \$7.71	operating costs or	671,000
	Total	\$7,964,000

ESTIMATED OPERATING COST - 348,000 TONS/YR.

	Fire	st 1 Years	Next 5 years	
	Amt./yr. 000's \$	Per Ton Milled	Amt./yr.	Per Ton Milled
Mining	1830.5	5.26	2262.0	6.50
Milling .	435.0	1.25	435.0	1.25
Plant services & townsite Mine adminstration &	174.0	0.50	174.0	0,50
head office	243.6	0.70	243.6	0.70
Total	2683.1	7.71	3114.6	8.95

It is reasonable to expect that, if sufficient funds are expended for exploration, enough additional ore will be found to support the operation for a further 2 to $2\frac{1}{2}$ years. Total anticipated life for the purposes of this report has, therefore, been assumed to be $6\frac{1}{2}$ years.

EXPLORATION

In order to explore the presently known zones in more detail, to search for extensions and to look for additional ore, it is suggested two more exploration stages will be required.

The estimated cost is as follows:

Stage 1 - \$230,000 Stage 2 - 250,000

Total - \$480,000

During the second stage, a detailed feasibility study can be prepared.

CHAPTER II
GENERAL INFORMATION

CHAPTER III
GEOLOGY, MINERALIZATION,
ORE RESERVES & EXPLORATION

CHAPTER III
GEOLOGY, MINERALIZATION,
ORE RESERVES & EXPLORATION

CHAPTER IV MINING

GENERAL

It is proposed to sink a 700' three compartment vertical shaft from the 4680 level elevation to the 3980 elevation. This shaft will then be connected through to the surface by raising a distance of approximately 300' and a production type hoist installed at the collar. Levels will be cut at 150' intervals or at the 4830 elevation (No. 1), the 4530 elevation (No. 3), the 4380 elevation (No. 4), the 4230 elevation (No. 5), and the 3980 elevation (No. 6). The 4680 level is referred to in this report as No. 2 level.

The widest (11'-30'-average 20') stoping blocks have been selected for the initial production period. These are situated between Section 48 and Section 53, and are above the No. 5 level.

The attached calculation shows that 10 of these blocks are above and 8 of them are below the 4680 elevation or No. 2 level.

The average grade for all of these blocks, which contain an estimated 425,000 tons, is 2.355% copper after mining dilution.

Other adjacent narrower blocks (4'-10') will be also prepared for a proportion of the initial production and will eventually supply most of the mill feed.

ESTIMATE - "FIRST" STOPING BLOCKS - "WIDE" - CUT & FILL

BELOW LEVEL

Section -	Block	- Zone	Width	Tons	Grade
48	24	6	12.7	12,710	2.35
49	29	6	28.0	24,530	2.63
50	34	2	20.0	5,710	1.82
50	41	6	11.8	34,467	3.00
51	55	6	11.0	24,067	1.75
52	59	3	30.0	14,290	3.42
52	61	3	20.0	17,140	3.29
53	84	3	28.3	33,700	2.83
Average &	sub-to	tals-			
below leve			20.8	166,614	2.706
ABOVE LEVI	EL				
48	19	5	19.1	21,830	1.65
49	28	5	18.7	21,370	2.85
50	32	2	17.2	13,110	2.24
50	33	2	27.5	11,790	1.82
50	35	5	20.0	25,710	2.62
50	36	3	16.0	25,140	4.09
50	37	3	14.4	14,400	2.04
51	48	3	23.7	25,960	1.17
51	49	3*	7.6	5,430	1.37
52	58	3	20.6	22,560	3.42
Average &	sub-to	tals-			
above lev	el		19.5	187,300	2.468
Below lev	el el		20.8	166,614	2.706
			20.1	353,914	2.580
Mining di	lution	@ estimat	ed 10%	35,391	0.100
Average &	totals	_			
Feed to c			20.1	389,305	2.355

^{*} To be mined because of location

ESTIMATE - "FIRST" STOPING BLOCKS - "NARROW" - SHRINKAGE

L	E	VEL	1

Section -	Block - Z	one	Width	Tons	Grade
54 52 50 52 51 50-51 48	R86 R66, 54 R40 R57 R46 R44, 31	4 4 3 3 2 2	4.0 5.1 4.0 6.3 4.7 6.0 7.0	6,480 10,980 3,430 7,200 5,820 15,530 4,800	4.47 1.64 0.95 2.30 3.43 2.88 3.00
Total			5.3	54,710	2.68
LEVEL 2					
2444444					
57 56 55 53 51-52 51	R109(1/5) R100,101 R93 R78, 80 R67, 54 R47, 46 R52	4 4 4 4 5 4	7.0 7.3 4.0 6.5 6.0 4.5 5.0	3,500 14,140 2,930 13,110 12,750 11,020 2,860	2.65 3.85 1.51 1.53 1.94 2.53 2.14
50 48-49	R38,G19 R16, 26,)	3	8.2	8,460	1.36
48 48 47 47	G9, 10) R17 R21,G11 R12,G8 R8,9,10,) G7	2 5 3 3	4.6 4.9 4.0 6.0	10,120 2,800 3,800 5,720	2.21 1.09 2.55 0.93
47	R7	2	7.7	7,630	2.53
46 46 53	R1, 2 R5, G2 R75,76,) G26,27)	2 5 2	5.0	9,310 4,760	3.46 1.66
Total	020,21	4	4.0	7,600	1.60
Total			5.6	135,050	2.12

L	EV	EL	3

Section -	Block - Ze	one	Width	Tons	Grade
54	R90,) 85(½))	4	5.4	7,400	2.58
52	R74,) 85(½))	4	4.7	3,590	2.01
52	R70	4	8.3	7,110	1.67
52	R68	3	8.9	8.060	1.36
54	R89	3	8.0	6,100	1.34
54	R88,91	3	6.3	11,900	1.85
51.	R50,51	3	7.7	13,140	2.76
50	G2	4	5.0	2,380	1.66
50	R39,42	3	7.3	13,170	1.54
Total			6.8	72,850	1.93

SUMMARY -"NARROW" VEIN ORE - LEVELS 1, 2, 3

Level	No. of Stopes	Average Width	Tons	Grade
1	7	5.3	54,710	2.68
2	17	5.6	135,050	2.12
3	9	6.8	72,850	1.93
Sub-Tota & average		5.9	262,610	2.18
Mining d	ilution @ estimated	33%	86,661	0.10
Totals			349,271	1.66

ALWIN MINING CO. LTD.

ORE OUTLINES ON Nº 1 LEVEL (4830 EL.)

SCALE: 1"=100"

APRIL 1969

PREPARED BY BACON AND CROWHURST LTD.

				2+005
(MINE N.)				•
		PROPOSED	SHAFT	
				34005
IN				
		R-74		
	G-2		R-85	
	6-2	R-50,51 R-60	R-85 R-90	4+005
	0	TE X	R-90	
	R-39, 0	R-50 51		
	42 I	R-68	R-89	5+005
	R-41 X	Z	ONE 3 TR-88	
	ZONE 6 0 35	1	R-91	
	6 0 75	R-59,61	R-84	
	121		The state of the s	6+005
		ZONZ		
		R-64	5720 A 1920	
			R-83	71005
* 4	4	u, u	u u	7+005
£ 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5	4	1 + 0 + 0	5 4 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4
000	0	0 0	0 0	000
, a			,	
	ALWIN MININ	VG CO. LTD.		

ORE OUTLINES ON Nº 3 LEVEL (4550'EL.)

SCALE: 1"=100"

APRIL 1969

PREPARED BY BACON AND CROWHURST LTO.

ALWIN MINING CO. LTD.

ORE OUTLINES ON Nº 4 LEVEL (4400' EL.)

SCALE: 1"=100' APRIL 1969

PREPARED BY BACON AND CROWHURST LTD.

			1							
	_ (MINE	= w.) _		•						21005
						PROPOSED	SHAFT -	7		
			and the state of t							3+005
		N								
		1								4+005
		-	/E 5							
										5+005
		R-	24 R-	R	ZONE	55	2-73			
	v					ZON	(E 3			6+005
										7+005
	46+00	00+4	48400	44+00	20400	51700	\$ 22 + 0 0	53400	24400	4 5 4 0 0
	O.	N	M	m	•	W	h	M.	W	W.
ALWIN MINING CO ITO										

ALWIN MINING CO. LTD.

ORE OUTLINES ON Nº 5 LEVEL (4250'EL.)

SCALE: 1"=100' APRIL 1969

PREPARED BY BACON AND CROWHURST LTD.

MINING METHODS

Cut & fill stoping, using small trackless compressedair operated equipment (such as the Atlas Copco Cavo 310), is contemplated for the wider blocks of ore. Shrinkage stoping, using similar equipment for rock removal through draw points, is proposed for the narrower zones.

Notwen much Little is known at present concerning the nature of the ore and wall rock but it is felt that the above two methods will probably be applicable. Proper selection will depend on future exploration + development results.

Fill will be supplied by de-slimed mill tailings.

An ore & waste pass raise system will be established close to the ore blocks proposed for mining. Broken ore from the stopes initially to an ore

will be moved about 250' average to this system and will drop to one a below 2 level. storage and

Coloading pocket for hoisting to the surface. When required an one storage of longing pocket below No 5 level will used for the removal of

ESTIMATED PRODUCTION

In order to supply the concentrator with the predicted 29,000 tons per month, the mine must produce an average of 1394 tons of ore per day on a 20.8 day per month basis. Ore produced from stope development and exploration will probably supply about 3,000 tons per month, leaving 26,000 tons to result from stoping or a net of 1250 tons per day.

It is estimated 16 stopes of the "wider" category, fully developed and available, will be required initially, which will produce 75% x 1250 or 938 tons per day, representing 78 tons/stope/day. This will allow four stopes extra, or a 25% margin for breakdowns, unforeseen ground conditions, possible lack of ore continuity, "disappointing" stopes, and other contingencies.

In addition, it is estimated 13 stopes of the "narrower" category must be well advance to produce the other 312 tons required daily on the average, taking into account the fact that only 1/3 of the broken rock can be drawn. If ten of these, at any time, are producing ore, it is estimated an average of about 30 tons per stope can be drawn daily on the average.

An increasing broken ore supply will be established in the narrower shrinkage stopes by the time the wider stopes are mostly finished; this will tend to level out costs over the life of the mine.

In summary, the feed to the mill is therefore estimated as follows:

Estimate - Tons Mined (first 24 months)

	Cut & fill	Shrinkage	Development & Exploration	Total
Monthly	19,500	6,500	3,000	29,000
Daily	938	312	144	1,394
Stopes - total in use	16 12	13 10		
Production/day/stope	78	30		
Production/shift/stope	39	15		

ESTIMATED MANPOWER & LABOUR COST

(A) First 20-24 Months

Underground Crew Classification	No.	Average Cost per month including 20% fringe benefits	Total Cost
Machine men			
Cut & fill stopes 24			
Shrinkage 20			
Development &			
exploration 10			
	54	750	\$40,500
Slushermen	24	650	15,600
Timber & fill	10	650	6,500
Tramming & draw-			
point loading	10	600	6,000
Pipefitting & track	4	600	2,400
General underground	12	600	7,200
Hoistmen & skiptenders	6	600	3,600
Samplers	2	600	1,200
Dry & lamps	2	600	1,200
	124		\$84,200
Surface Crew			
D1 -11-11-1		700	700
Blacksmith-welder	1	700 650	700 650
Rockdrill repair & bits Mechanics & machinists	1 2	700	1,400
Electricians	2	700	1,400
Helpers	2	600	1,200
	8		5,350
Underground Staff			
Superintendent	1	1,500	1,500
Shift Bosses	2	1,000	2,000
Geology	1	1,000	1,000
Surveyors	2	800	1,600
Survey helpers	2	500	1,000
Safety & ventilation	1	700	700
First aid man	_1	700	700
	10		8,500

Total labour cost (Total no. - 142) \$98,050

Total supplies & other costs 54,450

Total estimated mining operating cost \$152,500

or $\frac{152,500}{29,000}$ = \$5.26/ton milled.

(B) After first 24 months

No detailed calculations have been made but it is estimated that the mining crew will require later possibly 30 men extra, if most of the ore results from shrinkage stoping.

Tramming distances to the shaft system will increase as well.

The estimated average mining cost, therefore, amounts to \$6.50 per ton milled during this period.

ESTIMATED CAPITAL EXPENDITURES

	Equipment	3600	Cost	
/	Compressors with allied equipment		\$120,000	108,000.
V	Raise climber and/or long hole bor (rented)	ing machine		
1	Mucking machines (2 exploration & + (2 stop ins) - 4@\$6,000 e + (2 - stople) = 3.@6,000 tack	ach	-24,000	18,000.
V	Rock drills - 34 @ \$1700 each	2+3 spares = 25 ()7	58,000	42,500
X	Rock drill carriages (cut & fill s	toping)	36,000	24,000
V	Cavo 310 (or similar autoloaders)	- 3@ \$13,000 ea.		13,000
·v	T2GH (or similar autoloaders)	-4 @ \$11,000 ea.		22,000
/	Small scraper hoists, slushers & r	elated equipment	40,000	30,000.
V	Ventilation fans		20,000	20,000
	Locomotives (one 4 to 5 ton diesel		-40,000	30,000
	Mine cars - 20 - average of \$800 e Headpane - second hand -100' - we Double drum - 3' diameter (?) hois electrics & all controls (pur	the rock bin o dump chanism - installe t with	16,000 beng	16,000
	second hand) - estimated constalled price.		120,000	
	Skip, cage & equipment shaft general	11y	40,000	30,000,
×	Service hoist & skip - 4680 level second hand	downwards -	35,000	35,000
	Pumps		30,000	多,000
	General electrical equipment		30,000	30,000
	Shop equipment & miscellaneous		50,000	50,000
	<u>Total</u>			\$742,000

Total (Equipment)

\$742,000

Buildings

Compressor house .

\$10,000

Hoistroom

10,000

Repair shops & miscellaneous

10,000

30,000

Total Equipment & Buildings

\$772,000

ESTIMATED PREPRODUCTION MINE DEVELOPMENT

Plans have been prepared showing the approximate ore zone outlines on each of the five proposed levels between Sections 46 East(?) and 58 East(?)

The level development necessary to gain access to the eigh-?

teen "wider" ore zones on all levels and to thirty-three of the

"narrower" zones on No. 1, 2 and 3 levels has been planned diagram
matically. The shaft position is assumed to be at 96,470 North
97,430 East.

This level development is as follows:

Level No.	Drifting & X-Cutting
1	1670 ft.
2	2010
3	1720
4	610
5	660
Total	6670
Contingencies @ 10%	67
Total	6737 ft.

It is, therefore, assumed that 6000' of this total will be completed prior to production.

ESTIMATED COST

(1) Shaft

Excavation & timbering

Sinking - 2 level (4680) to 6 level (4080) 600'
Sump - 6 level (4080) to bottom (3980) 100'
Raise - 2 level (4680) to surface (4980) 300'
Cut 6 stations @ 25' equiv. of shaft
Total 150' @ \$400/ft - \$460,000

Access & miscellaneous

Access & hoistroom on 2 level, & preparation 30,000

Rental (or loss on resale) plus installation of sinking hoist 35,000

Loading pocket & head frame dump installation 30,000 95,000 \$555,000

(2) Drifting & Crosscutting

Levels 1 to 5 inclusive - 6000' @ \$60/ft.

360,000

(3) Raising

Main

Ore-waste pass system 5 level (4230) to 1 level (4830)
600' x 2 = 1200' @ \$50/ft.

Ventilation & service raise - 6 level (4080) to surface
(4980) - 900' @ \$50/ft.

45,000 105,000

Stope

Total of 29 raises (timbered) one for each stope) x 170' = say 5000' @ \$60/ft.

300,000

(4) Stope Preparation

Sub-levels

Cut & fill stopes - 2200'
Shrinkage stopes - 1600'
Total 3800' @ \$25/ft.

95,000

Drawpoints

Cut & fill stopes - one per stope - 1 x 16 x 25' = 400' Shrinkage stopes - one every 20' or $\frac{1600}{20}$ = 80 x 25' = $\frac{2000!}{2400!}$ @ \$20/ft. 48,000

Total \$1,463,000

ESTIMATED MINE PRODUCTION - TONS & GRADE

First 1½ Years	Months	Tons/month	Tons	Grade % Cu
Cut & fill ("wide") stopes	18	ж 21,750	= 391,500 @	2.36
Shrinkage ("narrow") stopes	18	x 7,250	= 130,500	1.66
Total	18	x 29,000	= 522,000	2.185
Next 2½ Years	Years	Tons/yr.		
	21/2	348,000	870,000	1.879
Total (as per ore reserves)			1,392,000	1.994
Next 2½ years	2½	348,000	870,000	1.994
Totals			2,262,000	1,994

CHAPTER V MILLING & METALLURGY

MILLING & METALLURGY

No final report has been received as yet from the Department of Energy, Mines and Resources regarding the bench test work carried out on samples of ore submitted from drift muck samples and diamond drill core, but preliminary results show that the ore is amenable to ordinary copper flotation at a coarse grind (approximately 55% minus 200 mesh).

A seven state locked cycle test gave results which apparently are typical, as follows:

	Weight	A	ssay		Dist	ributio	n %
Product		Au oz/ton	Ag oz/ton	Cu%	Au	Λg	Cu
Cu cl conc	6.8	0.030	5.43	32.95	85.4	89.7	95.1
Cu cl tail	0.4	0.009	0.62	2.19	1.6	0.6	0.4
Rougher tail	92.8	0.0003	0.04	0.114	13.0	9.7	4.5
Feed	100.0	0,0024	0.41	2.36	100.0	100.0	100.0

It would appear, therefore, that a sample flowsheet consisting of coarse crushing followed by fine crushing and grinding preparatory to conditioning for subsequent copper flotation, will be sufficient. Concentrates will be cleaned two or three times, filtered (perhaps dried if the economics so dictate) and stored for truck shipment to Vancouver deep sea loading facilities.

ESTIMATED CAPITAL COST - CRUSHING PLANT & CONCENTRATOR

(1) Crushing Plant

Site clearing & excavation	\$30,000
Building	50,000
Coarse Ore bin	75,000
Jaw crusher	80,000 -
Cone crushers	90,000 -
Conveyors & reclaiming	90,000
Installation of equipment	75,000
Fine ore bin - outside	

Total - Crushing plant

\$490,000

(2) Concentrator

Site clearing & excavation	50,000
Building	350,000
9 x 9 Ball mill	75,000-
8 x 12 Rod mil1	100,000 -
Filters	25,000
Thickener	30,000
Cyclones & scrubbers	25,000
Pumps	30,000
Flotation Cells	90,000-
Dryer	50,000
Conditioners	20,000
Repair & maintenance equipment	
including overhead cranes, etc.	50,000 -
Tailings disposal	40,000
Miscellaneous	40,000
Installation of equipment	350,000
	A DE PROPERTY AND ADDRESS OF THE PARTY AND ADD

Total - Concentrator

1,325,000

Total

\$1,815,000

Engineering @ 5%

90,700

Total

\$1,905,000

Equip = 200 200 85 160 50

ESTIMATED TONS CONCENTRATES PRODUCED

		Mil1 F	Mill Feed		Concentrates	
Year	Tons	Assay % Cu	Tons of Copper	000's 1bs. Copper	OOO's 1bs. Cu Recovered	Dry Tons @ 33% Cu
1	348,000	2.185	7,603.8	15,208	14,296	21.661
2	174,000 174,000 348,000	2.185 1.879 2.032	3,801.9 3,269.5 7,071.4	7,604 6,539 14,143	7,148 6,147 13,295	10,830 9,314 20,144
3	348,000	1.879	6,538.9	13,078	12,293	18,626
4	348,000	1.879	6,538.9	13,078	12,293	18,626
Sub-Total	1,392,000	1.994	27,753.0	55,507	52,177	79,057
5	348,000	1.994	6,939.1	13,878	13,045	19,765
6	348,000	1.994	6,939.1	13,878	13,045	19,765
7 (1/2)	174,000	1.994	3,469.5	6,939	6,522	9,882
Totals	2,262,000	1.994	45,100.7	90, 202	84,789	128,469

CHAPTER VI PLANT SERVICES & CAMP

PLANT SERVICES

Because the mine is only four to five hours away from mechanical and electrical repair maintenance services in Vancouver, B.C., only minimum facilities are required at the mine.

Similarly, it is contemplated that since the concentrator can be situated immediately adjacent to the head frame over the shaft, all the buildings and services can be concentrated in one area.

(a) Repair shops - provided for in "mine" estimate

The estimated capital cost for "Plant Services" is as

follows:

Total		\$950,000
Site preparation Roads Construction camp - extra to present facilities Electrical & water distribution	50,000 15,000 20,000 40,000	125,000
Sub-total		825,000
CAMP BUILDINGS & HOUSING Houses and apartments to accommodate total of 50 employees at average cost of \$15,000 per unit Bunkhouse accommodation for 100 men including equipment	750,000	
(h) Mobile equipment (i) Road	35,000 50,000	\$260,000
 (b) Offices & warehouses (c) Water, electrical & steam distribution (d) Change house, first aid & shifter room (e) Carpenter shop with equipment (f) Assay office & equipment (g) Heating plant 	\$40,000 60,000 30,000 5,000 20,000	