GEOLOGY

bose hill area, highland valley, biC. based on photogeology and previous work
 For
 CANZAC MINES LIMITED (N.P.L.)

by
W. WALKER, F.G.A.C. (picomplet - not not useful.)

Chew-Walker Associates
164 Nipigon Avenue, Willowdale, Ontario.

15th March 1966.
published as Trans.C.I.M. Vol. LX, 1957, pp. 273-289. The first scason's progranue by Canzac was guided by J. Sullivan, who made initial recommendations for an exploration programe on the Lux group on April 2 , 1965, and reported on work carried out on October 25, 1965. Mr. A.R. Dodds of Huntec Limited reported on an induced polarisation survey, also in October. Acknowledgments

The writer has bonofited from discussion with Mr. M. Zurowski of M.E.M. Consultants, who are directing Canzacis exploration activities.

Physical Features

The Cordilleran region includes three northwosterly tronding physiographic sub-provinces: a western system of mountains, an interior system of plateaux and mountains, and an castern system, mainly of mountains. The Highland Valley is in the interior system, and more specifically, the Interior Plateau. The topographic features of the plateau comprise rolling sumits and broad upland areas soparated by dooply cut valleys such as the Thompson. The Canzac area reaches 5,700 feet at Bose Hill and drops to 4,000 feet at Forge Creok, a tributary of Guichon Creek.

The ragion is situated within the dry belt of British Columbia (rainfall at Kanloops is between 10 and 11 inches a year). The lower slopes of tho hills support an open, pariz-like forest with little

Reference to north as the odge of the mosaic
should bo chocked in the ficld.
Fracturing is the principal control of drainago
in tho area. Largely from the drainago patterns two orders of fractures can bo seon, major faulte or fault zonos, relatively widoly spaced, and minor faults or joints in relatively uniform and closely spaced sets.

The main branches of Forgo Creck follow the major faults: faults of diroct interest will ba described indiviáually:

1. From centre of Lux 19, strikes 033 to Lux 39 and 028 to Trojan prospoct. Largely through gravol area south of Hose Hill. Strong break followed by series of emall croeks.
2. From turn in 1 at contre of Lux 19, strikes 337 onto Krain property Fault valley largely filled by fravel. Moderately defined.
3. 1,500 feet E. of Lux 38, strikes 020. N. ond of fault zono parallel with 1. N.N. W. joints terminate against it to N. and S.
4. Crosscs end of 3, 1,500 feet E. of Lux 38, strikes 000. Well developed member of poor joint system, probably utilised by latar fault movoment.
5. From tho E border of tino mosaic area strikes 301 towards Lux 40. Better dofined linear expression than most members of its sot $(6,7,8)$.
6. Frof E borcier of the mosaic area strikes 297 towards Lux 44. Poorly defined fault zone, may be of importanco as E cxtension of 7 . Part of set $5,6,7,8$.
7. From Lux 24 across Lux $30,45,444$. W. end is Elanked on N by esker. Kroad, strong linear membor of fracture zone. Part of sot $5,6,7,8$.
8. 500 feot wide fault zonc, strikes 298 from Lux 50 and 52 towards E border of area. Part of sut $5,6,7,8$.
9. Fron N . boundary of Lux 40 strikes 077 into group i of Lux. Markod by relatively short broad gully which may be purcly a downslopo consequent stream. If so, it would bo unusual for such a strone foaturo in this area, therefore it is rogarded as fault controlied.
10. 500 foot broad fault zone. Trending 145 between faults 6 and 8, E of Lux group. Parallel fractures to the north may also be faults. This zone is regarded as more important because of its breadth.
11. From Lux 32 across Lux 49 to Lux 52, strike 051 . Sharply defined linear valley followed by a main branch of Forge Croek.
12. From Lux 52 strikes 049 into new claims. Narrow break, possible extension of 11 across end of 8.
13. From just N. of Lux 53 strikes 051. Compares with 11 and also followed by Forge Creek.
14. From E end of 13, strikes 117 towards E border of area. Poorly defined narrow fault zone.
15. From Lux 16 strikes 320 across Lux 15 and Lux 17. S. end flanked on S.W. by esker, N. end followed by Foree Creek. Long broad fault zonc, probably formod in parts by trellis of minor faults.

Jointing is considored as the sets of rolatively short fractures which have the same overall aspect on aerial photographs as members of lesser orders do in outcrop.

In the high treed ground to tho west, few joints are recognized in marked contrast with the eastern park land. Tho sets which control much of the minor topography, because they were followed by slaciation,
trend about 150 north of No. 6 and 7 fault zone and 165 south of No. 8 fault zone. Between the two faults tho evidenceis unclear as to chango or duplication of direction of fractures and clacial movenent directions.

In the northeast of the aroa a set perpendicular to the first, striking 063, is also comon. Member joints are short, 1,000 feet or less. Southeast of the Lux group are two N.N.E. sets, one striking 025, the other 012. Thoy compare with and on analysis may be found to complement the 165 set. Two fractures east of the south part of the lux Group, which strike 054 may be minor faults.

A few minor fractures parallel the faults, e.f., wost of 1 and N. and S. of 9, and may be subsidiary faults.

Relativoly few fractures do not fit into the sets described.

The intial jointing in the granite could take place on cooling. Mapping, preforably by Cleos techniques, might be expected to ascertain the nature of the jointing, but for the present one may consider that the variations in principal joint directions in the Guichon batholith are cooling phenomena rather than subsequently imposed features. In contrast, the longer fractures which commonly cross the joint
sets are considered to bo post intrusive faults. (Iter 7 of white ot al, in thoir brief history). Joints which are larce onough to be apparent on aorial photographs must bo considerod as mastor joints. Faults may be of various types.

Faults $1,3,11,12$ and 13 appear to be relatively simple, clean breaks.

Faults 5,6,7,8,10 and 14 are fault zones. In some places true faulting may be seen, elsewhere an increased density of jointing.

Fault 4 is simple but has probably utilized an oxisting cooling joint.

Fault 15 is composite, formed in part by a trellis of minor faults.

ECONORIC GECLOGY

White et al describe three principal types of deposit:

1. Veins, which occur in faults and joints.
2. Disseminated, commonly associated with closely spaced fracturing.
3. Collapse breccia deposits - by far the most important.

Any weak structure which is doepscatod enough to provido a channolway for mineralisation is significant. Joints are comanly local paths for mineralisers, but uniikely to bo major channelways. Of the types of
15-.

Gaults interpreted from serial photofraphs, the simplo breaks and parallel subsidiaries may woll provide locil for vein deposits, and the fault zones for disscminated deposits. Any initial line of woakness for collapsing breccias might well also bo faulting, porhaps preferably a fault zono, or intersection of zonos. White et al described the Trojan deposit, adjacent to tho south of Lux, as follows: "From a brief examination it is apparent that the Trojan deposit is similar in many respects to the breccia deposits of the Bethlehem Copper property. The country rack resemblas Guichon quartz diorite but the geology has not been mappod in detail. The deposit is in a corme plex of the distinctivo Trojan breccia, largo horses of massivequartz diorite and numerous tabular bodies of dacite porphyry. Jhis complex appoars to be elongated in a direction slightly east of north and to dip either vertically or stoeply eastward. It is cut by several faults that strike a little more eastorly than the complex as a wholo and dip stooply eastward".

No. 1 fault strikes east of north from tho oast side of the Trojan zono and its relationship should be vorificd in the ficld. The N.N.W. fault also on the east side of the Trojan is parallel to No. 2 Eault zone which adjoins No. 1 on Lux 19. The Krain zone was doscribed by White ot al as
follows: "A large area of dismominated copper aineralization apparently oxists on this property but little can be learnod of its nature fron tho thoroughly oxidisod material in the dovelopaent trenches -- The material in the trenches is closely jointed and faulted quartz diorite cut by northeasterly striking dykes of dacite porphyry". Carris more recent work shows N.N.W. dykes to provail over N.E. ones, presumably following the cooling? joints evident on the aurial photographs. The road to the property appears on the photomosaic to follow a major N.W. fault, which would be large onough to act as s channelway for copper mineralisation.

The induced polarisation survey already carried out on the southern part of the Lux group has three anomalies outlined by Sullivan (Oct. 20, 1965). Anomaly B_{3}, the largest, is where faults 1 and 9 come together. Anomaly C is on fault 1. Future drill setups should allow for these faults.

CONCLUSIONS AND RECORTADATYONS

Canzac now has about 200 claims of which roughly eight have been covered by an I.P. survey. It is recommended that beforo drill targets are definitely decided on, preliminary studies should be completed for the properties as a whole. The most convenient and economic way in which this can be done is by geochemistry, stream sedimont sampling throughout the
property, followed by soil sampling where stream sediments indicate high valuos: in the present case only copper need be testod for, and the rule of thumb is 10% of the area covercd by stream eediment sampiling may be expected to requiro follow-up work.

The cost of such a survey would be about $\$ 4,000.00$. Priorities may be considered from the structural evidence.

Lux Group A. Lux 19, intersection of Faults 1 and 2.
B. Lux 14, intersection of Faults 7, 1l, and 15 .
C. Lux 50 and 52, intersoction of Faults 3, 11 and 12 .

Forme Group D. Forge 4, S.E. corner.
Now Clainis E. Intersection of Fault zones 8 and 10.
F. Intersection of Faults 3 and 4.
G. Intersection or Faults 13 and 14.

Visual inspection of these zones, particularly those in the less forested now claims, may indicate that soil sampling is warranted while waiting for the stream sediment samples from the balance of the property. Oriontation samples should first be taken ovor the Krain and Trojan zones.

In arcas where sampling the B soil horizon indicates anomalous copper values, consideration must be then given whether to outline the mineralization by sampling the C horizon (adjacent to bedrock) where
micration of metal is at a minimun, or by induced polarisation surveys. In goneral it is better to outline the deposit before stripping, trenching and drillins. These examination phases might bo best conducted under the control of a rosident geologist who should utilize the greater part of his tine in goological mapping; a graduate student woll versed in stractural tochaiques may be nost suitable.

Respectfully submitted CHEW-WALKEK ASSOCIATES, \because WW. Walker" W. Walker, F.G.A.C.

Ww: S

