895288

MOUNTAIN STAR RESOURCES LTD

1

G.F. DIXON, Q.C. 1020, 833 - 4th AVENUE S.W CALGARY, ALBERTA T2P 3T5

GEOLOGICAL EVALUATION AND EXPLORATION POTENTIAL

of the

VERMONT PROJECT MINERAL CLAIMS

GOLDEN MINING DIVISION, BRITISH COLUMBIA

M.J.Gidluck, B.Sc., P.Geol.

MARCUS J. GIDLUCK GEOLOGICAL CONSULTANT 79 Woodglen Circle S.W. Calgary, Alberta, T2W 4J6 Tel/Fax 403-281-7675

LETTER OF CONSENT

I hereby authorize the report titled "Geological Evaluation and Exploration Potential of the Vermont Project Mineral Claims", dated August 8, 1997 and written for Mountain Star Resources Ltd, to be used as a Qualifying Report on the Alberta Stock Exchange and as a source of information for Information Circulars and other documents pertaining to the claims referred to in this report.

Dated Calgary, Alberta, this <u>914</u> day of <u>September</u>, 1997.

ellec (

Marcus J. Gidluck, P.Geol.

GEOLOGICAL EVALUATION AND EXPLORATION POTENTIAL

of the

VERMONT PROJECT MINERAL CLAIMS

located at

BOBBIE BURNS CREEK - VOWELL CREEK GOLDEN MINING DIVISION, BRITISH COLUMBIA

NTS 82K/14,15 & 82N/3

August 8, 1997

Prepared for MOUNTAIN STAR RESOURCES LTD Calgary, Alberta

> by M.J.Gidluck, B.Sc., P.Geol.

SUMMARY

Geological Evaluation and Exploration Potential of the Vermont Project, Golden B.C.

History and Location

The Vermont Project is a large block of mining claims in the Northern Purcell Mountains of British Columbia assembled under the company name of Mountain Star Resources Ltd. The area was prospected in the late 1800's for gold and then explored in later years for lead, zinc and silver.

The property is comprised of recent mineral claims and old mining leases covering an 18 km stretch of rugged mountain terrain approximately 30 km south of Golden B.C. The land is divided into three main claim groups, each with its own exploration and development history; the VMT Claim Group in the south, the Ruth-Vermont Claim Group in the middle and the BB Claim Group in the northern two-thirds of the land package.

At the turn of the century a small stamp mill was set up at the north end of the property to treat gold from a number of mining leases in the area. A reclaimed lead-zinc-silver mine, the Ruth-Vermont Mine, with a sporadic and largely unsuccessful production history, is situated in the southern part of the property. With the advent of exploration for sedimentary exhalative (Sedex) deposits in the 1970's, the property was subjected to several years of regional surveys for shale-hosted lead-zinc deposits. This resulted in detail geological, geochemical and geophysical surveys in five areas on the property followed by several separate programs of exploratory diamond drilling in two of these areas. The Vermont Project still has considerable Sedex lead-zinc exploration potential as well as the opportunity to discover more gold-bearing quartz veins.

Geology

The property is located on a northwest trending assemblage of Upper Proterozoic marine sedimentary rocks belonging to the Horsethief Creek Group in the Windermere Supergroup. It occupies the core of the Purcell Anticlinorium which is locally deformed by small scale isoclinal folding and faulting. Detail mapping by various workers indicates that most of the property is located in the "Grit Division" of the lower portion of the Horsethief Creek Group. Lithologically it is composed of a series of interbedded gritty sandstones, black shales, pyritic slates and phyllites, limestones and calcareous sandstones and shales.

Mineralization and Conclusions

Approximately 35 drill holes and a number of trenches and surveys in separate programs, tested four showings of lead-zinc mineralization on the VMT Claim Group. The best of these is the LCP Zone, the most southerly showing on the property. Bedded galena and sphalerite produced grades of up to 3.43% Pb, 8.61% Zn and 3.39 oz/t Ag over a width of 14.5 ft. in one drill hole. This hole and four other similar drill and trench intersections at the same location appear to occur along the same stratigraphic interval, at the contact between black shales and an overlying tuffaceous schist. The LCP Zone is associated with a 500 m long Pb-Zn-Ag soil anomaly and is interpreted to occur on the eastern limb of a tight isoclinal syncline bounded on the north by a northwest trending fault. A tentative structural model for this area has been constructed, however, more detailed mapping and a structural analysis is required in order to target the location of the permissive, lead-zinc bearing horizon for future drilling. Faulting may have caused considerable displacement to the mineralized horizon.

The Ruth-Vermont Mine dates back to the start of the century and since that time there has been a number of unsuccessful attempts to bring it into full production. In 1972 there were 291,384 tons of mineable ore reserves averaging 4.76% Pb, 5.65% Zn and 6.62 oz/t Ag with good prospects of increasing these reserves. A later study concluded that it would not be profitable to operate this mine when silver prices were below \$8.00 an ounce. The workings have since been shut in and the site reclaimed.

Mineralization occurs as two distinct types in this orebody; vertically dipping quartz veins with galena, sphalerite, pyrite and scheelite and replacement deposits (manto) of pyrite, sphalerite, galena and locally arsenopyrite in black limestone beds overlying argillite. The veins may have been conduits for the mineralizing fluids and the replacement bodies may be final sulphide depositional sites. Other workers speculate these replacement deposits occur at the same stratigraphic level as one of the bedded lead-zinc horizons on the BB claims to the north. They also feel that the stratabound lead-zinc mineralization at Ruth-Vermont is similar to mineralization found in major shale-hosted lead-zinc deposits in other parts of the world (Dickie and Longe-1982).

Recent underground drilling in 1996 at Ruth-Vermont produced a 5.6 ft intersection assaying 2.08 oz/t Au with disseminated pyrite and arsenopyrite in replacement type lead-zinc mineralization hosted by a limy argillite bed. Historically, only a very limited number of gold analyses were conducted on this deposit so the quantity and distribution of gold associated with the orebody is not known. It may be related to a nearby, so far undetected, vein or the gold may be a distal facies associated with the lead-zinc manto deposits. In either case more systematic testing for gold is warranted at this location as well as at other bedded lead-zinc showings found on the property.

Seven significant lead-zinc-silver showings with galena and sphalerite conformable to bedding have been discovered in the following three areas on the BB Claim Group; Malachite Creek, Decision Creek and Crown Point areas. Most of the detailed surveys were done in the Malachite Creek area where 3 of the showings were tested with 11 drill holes in 1983. The best of these holes, at the Malachite Trenches showing, tested an IP anomaly coincident with the minerlization. It intesected an 18 cm vein of high grade massive sulphides assaying 16.4% Pb, 16.7% Zn and 15.9 oz/t Ag overlying a lower grade section of stratabound lead-zinc mineralization. To date none of the showings or drill holes on this claim group have produced economic grades over mineable thicknesses.

All the major lead-zinc mineralization on the BB Claim Group occurs at one of three stratigraphic levels, each at a contact between shale and an overlying limestone in the lower Grit Division of the Horsethief Creek Group. Due to repetition from folding a previous operator calculated there is as much as 73 km of these prospective horizons on the property. Only about half of this strike length had been prospected in 1982 leaving considerable exploration potential on the claims.

In addition to base metals, this claim group also has gold potential. Numerous auriferous quartzcarbonate veins on old mining leases are located both on and adjacent to the property. The veins have produced average grades as high as 0.76 oz/t Au from the Burns leases and 0.146 oz/t Au across a width of 2.2 ft from the Flying Dutchman leases. Apparently there has been no systematic exploration conducted for gold over this area since the turn of the century. As the gold bearing veins on both these leases have very similar characteristics, similar configuration and occur in the same host rocks, they provide the interveining and adjacent areas with considerable scope for the discovery of a more extensive gold system.

The Vermont Project property exhibits two principal requirements for shale hosted lead-zinc deposits; favourable lithologies of carbonaceous, iron rich, limy shales within a Proterozoic sedimentary sequence and the occurrence of numerous stratabound lead-zinc showings within these units. The presence of substantial thicknesses of bedded lead-zinc-silver "ore" at one of these stratigraphic levels in the Ruth-Vermont Mine, further strengthens the potential for finding an economic shale hosted lead-zinc deposit in this area. In addition, thin section work identified mafic volcanic alteration minerals in association with black shales and lead-zinc mineralization (Bottrill et al - 1983). This is another positive feature indicating alteration and sulphides may be diagenetic resulting from a sea-floor geothermal system associated with a Sedex environment.

Recommendations

Further exploration is warranted on this extensive land package both for shale-hosted lead-zinc deposits and gold vein systems. A two phase program is recommended involving an initial phase of detail mapping and prospecting in selected areas, namely the LCP Zone, Southern Ruth-Vermont claims and Decision Creek area, as well as more regional prospecting, mapping and soil geochem along approximately 35 km of strike length in the prospective shale units on the BB Claims. This work is estimated to cost approximately \$215,000.

A second phase of diamond drilling is recommended to test the results from the first phase. The program should commence in the LCP Zone area of the VMT claims (the thickest shale sequence and highest Sedex potential so far) where three holes should be targeted by projecting known mineralized beds based on structural modelling. Two holes should also be drilled on a southern extension of the LCP Zone and the lead-zinc-silver soil anomaly.

Finally two holes are proposed to be drilled from the surface at the Ruth-Vermont Mine to test for a deep Sedex source to the lead-zinc-silver manto mineralization. It is hoped these holes can bracket the 1996 gold intersection at the same time, however, if this is not possible two more short holes will be required to explore for additional gold intersections. The drilling program is estimated to cost \$385,000 and the total proposed budget for the first year of the Vermont Project is \$600,000.

TABLE OF CONTENTS

Page

1.0	INTRODUCTION 1
2.0	PROPERTY 1
2.1	Location and Access
2.2	Mineral Dispositions and Status
3.0	REGIONAL GEOLOGY 2
4.0	EXPLORATION HISTORY
4.1	The Spillimacheen District
4.2	VMT Claim Group
4.3	Ruth-Vermont Claim Group
4.4	BB Claim Group
	4.4.1 Old Claims within the BB Claim Group Boundary
	4.4.2 Old Claims in the Malachite Creek Basin
	4.4.3 Old Claims Adjacent to the BB Claim Group
	4.4.4 Recent Exploration on the BB Claim Group
5.0	DETAIL GEOLOGY
5.1	VMT Claim Group
	5.1.1 Stratigraphic Sequence
	5.1.2 Structure
5.2	BB claim Group 10
	5.2.1 Stratigraphic Sequence 10
	5.2.2 Structure
6.0.	MINERAL SHOWINGS AND DRILL INTERSECTIONS 11
6.1	VMT Claim Group
6.2	BB Claim Group
	6.2.1 Old Gold Claims
	6.2.2 BB Claims
	6.2.2.1 Malachite Creek Area
	6.2.2.2 Carbonate Mountain Area 15
	6.2.2.3 Decision Creek Area
	6.2.2.4 Crown Point Area
6.3	Ruth - Vermont Mine

.

-

•

•

1

.

Г

1

1

1

-

.....

٣

LIST OF FIGURES

Follows Page

1	Location Map 1
2	Mining Leases and Claims Map2
3	Regional Geology Map
4	Ruth - Vermont Mine, 6000 Level Plan 17
5	Ruth - Vermont Mine, 1600E Section
6	BB Claims Geology and Mineral Showings
7	Malachite Creek Area, Drill Holes and Mineral Showings
8	VMT and Ruth Vermont Claims Geology and Mine Workings
9	Central VMT Claims Drill Holes and Trenches
10	Central VMT Claims, Soil Geochemical Anomalies

LIST OF TABLES

1	Mineral Claim Status of the Vermont Project, Golden Mining District, B.C.	Page 3
2	Table of Formations	4

LIST OF APPENDICES

A	Geological Description	ons of Rock S	Samples - (Gidluck, J	une 28,1997
---	------------------------	---------------	-------------	------------	-------------

B Certificates of Analysis For Rock Samples

.

.

~

-

۳

-

ŀ

÷

.

TABLE OF CONTENTS (continued)

Page

7.0 7.1 7.2 7.3	CONCLUSIONS VMT Claim Group Ruth-Vermont Mine BB Claim Group	18 18 19 20
8.0	RECOMMENDED PROGRAM	22 22
ð. í	8.1.1 VMT Claim Group	22
	8.1.2 Ruth-Vermont Claim Group	23
	8.1.3 BB Claim Group	23
8.2	Phase II	24
9.0	PROPOSED BUDGET	25
9.1	Phase I - Detail Mapping, Prospecting, Soil Sampling and Trenching	25
9.2	Phase II- Diamond Drilling	25
10.0	REFERENCES	26
11.0	CERTIFICATE OF QUALIFICATIONS	29

.

٣

-

-

-

> .

i k

.

-

-

مو ۱

÷

-

1.0 INTRODUCTION

At the request of Mr. Gordon Dixon, President of Mountain Star Resources Ltd., the writer was contracted to conduct a geological evaluation on the mineral claims recently assembled into one land package under the company name of Mountain Star Resources Ltd. This evaluation was based on a review of all the various reports and documents available in the company's offices in Calgary, reports and maps available at MineQuest Exploration Associates Ltd offices in Vancouver, selected published references and selected assessment reports copied from the B.C. Mineral Resources Branch files. A property examination by the writer was conducted on the eastern portion of the VMT claim block on June 28 and on a small portion of the northern BB claims on July 4, 1997. Due to the lack of road access, rugged terrain and persistent snow cover at that time of the year, much of the claim group was not examined during these visits.

2.0 PROPERTY

2.1 Location and Access

The Vermont Project is a northwest oriented group of mineral dispositions located in the head waters of Bobbie Burns, Malachite and Vermont Creeks on the eastern slopes of the northern Purcell Mountains. The centre of the claims is located approximately 30 km south of Golden and 27 km west-southwest of the town of Parson, British Columbia, in the Columbia River valley (Figure 1). The entire property lies within NTS quadrants 82N/3 and 82K/14,15.

The southern part of the property, west of Vowell Creek, is accessible from a network of well maintained logging roads west of Highway #95 at Parson. Old logging and mining roads up the slopes from Vermont and Crystal Creeks provide access by 4-wheel drive and foot to the main areas of interest on the VMT and Ruth-Vermont claim blocks.

The northern two thirds of the property is not accessible by vehicle. An unused logging road branching north off the main road system at the 40 km post, is negotiable by standard vehicle for a distance of 8.2 km up Bobbie Burns Creek. The boundary of the northern BB claims, however, is another 14 km upstream from this point. An old mining road, constructed in 1966 along Bobbie Burns Creek, is grown over in many places and eroded beyond use for 4 wheel drive vehicles. An ATV trail utilizing the old road bed appears to be partially maintained by hunters to a point about 1 km east of the property boundary.

The best access to this area and other high elevations on the property is by helicopter based out of the town of Golden. Accommodation and helicopter charter may also be available on a seasonal basis, from the Bobbie Burns Ski Lodge (tel 250-348-2226) located on the Vowell Creek logging road at the 57 km post, adjacent to the VMT claims.

Elevations on the property vary from about 5000 ft to 9300 ft above sea level, although, much of the property is situated above treeline at about 7500 ft in this region. Snow generally remains on a large portion of the claims until mid July and permanent snow and ice occur in ice fields on the BB-1, BB-10 and VMT-2 claims.

2.2 Mineral Dispositions and Status

The property is a large, 18 km long block of mineral claims and mining leases which are either owned outright or optioned to Mountain Star Resources Ltd. of Calgary, Alberta (Figure 2). The property is comprised of 34 mineral dispositions made up of 218 whole or partial (fractions) claim units covering a total of approximately 3474 hectares (Table 1 below). The land package is made up of three major claim groups, the VMT group in the south, the Ruth-Vermont group in the middle and the BB group which occupies the northern two-thirds of the property. Each claim group has a slightly different exploration and ownership history which is described below (Exploration History).

The Mineral claim records and documents are on file at the Government Agent office at 606 North Street, Box 39, Golden B.C., V0A 1H0, tel. 250- 344-7550, fax. 250-344-7553. A title search was conducted on the property dispositions by the Assistant Gold Commissioner in Golden on July 4, 1997 and the results, which were faxed to the writer, are incorporated into the following Mineral Claims Status List (Table 1).

3. REGIONAL GEOLOGY

The Vermont Property is underlain by a thick sequence of Hadrynian marine sedimentary rocks exposed in the core of the northwest trending Purcell Anticlinorium, on the west side of the Rocky Mountain Trench (Figure 3). The anticline is deformed by subsequent thrust faulting and folding parallel to the structural axis (Okulitch and Woodsworth - 1977; Kubli and Simony - 1994).

The majority of lithologies exposed on the property belong to the Horsethief Creek Group, a subdivision of the Windermere Supergroup of Hadrynian age (Table 2). The Horsethief Creek Group is composed of four general divisions which are not easily separable; a lower Grit Division of turbidite sandstones and shales, a deep water Slate Division, a shallow water Carbonate Division and an Upper Clastic Division of shales, sandstone and carbonate deposited during a marine transgression (Evans - 1933; Young et al - 1973).

Conformably underlying the Horsethief Creek are diamictic conglomerates of the Toby Formation derived from subaqueous slides and debris flows. These rocks have been mapped in the Bugaboo Creek valley 20 km to the southeast of the property (Reesor - 1973).

TABLE 1

Mineral Claims Status of the Vermont Project, Golden Mining Division, B.C.

NAME	NUMBER	UNIT	ТҮРЕ	AREA	DUE DATE	OWNER			
BB Claim Group									
BB-1	338847	16	Claims	256	Aug.13,1997	Mountain Star Res. Ltd.			
BB-2	338848	12	Claims	192	Aug.13,1998	Mountain Star Res. Ltd.			
BB-3	338849	18	Claims	288	Aug.13,1997	Mountain Star Res. Ltd.			
BB-4	338850	18	Claims	288	Aug.13,1997	Mountain Star Res. Ltd.			
BB-5	340409	18	Claims	288	Sep. 24,1997	Mountain Star Res. Ltd.			
BB-6	340410	6	Claims	96	Sep. 24,1997	Mountain Star Res. Ltd.			
BB-7	340411	6	Claims	96	Sep. 24,1997	Mountain Star Res. Ltd.			
BB-8	340412	18	Claims	288	Sep. 24,1997	Mountain Star Res. Ltd.			
BB-9	340413	18	Claims	288	Sep. 24,1997	Mountain Star Res. Ltd.			
BB-10	340414	20	Claims	320	Sep. 24,1997	Mountain Star Res. Ltd.			
Bryan	3951	1	Mining Lease 97	16	Apr. 17, 1998	Gordon F. Dixon			
Lincoln	3952	1	Mining Lease 97	18	Apr. 17, 1998	Gordon F. Dixon			
Lucky Jack	3953	1	Mining Lease 97	16	Apr. 17, 1998	Gordon F. Dixon			
Ruth - Verm	ont Claim Grou	ıp							
Vermont 1	213300	3	Claims	48	Apr, 3, 2005	Mountairr Star Res. Ltd.			
Vermont 2	213301	12	Claims	192	Apr. 3, 2005	Mountain Star Res. Ltd.			
Cleopatra	L 8122	I	Mining Lease 95	16	Aug. 21, 1997	Mountain Star Res. Ltd.			
Vermont	L 8123	1	Mining Lease 95	16	Aug. 21, 1997	Mountain Star Res. Ltd.			
Sheba	L 8124	1	Mining Lease 95	16	Aug. 21, 1997	Mountain Star Res. Ltd.			
Ruth Fr.	L 8125	Fract.	Mining Lease 95	8	Aug. 21, 1997	Mountain Star Res. Ltd.			
Ruth	L 418	1	Mining Lease 95	16	Aug. 21. 1997	Mountain Star Res. Ltd.			
Minnie	L 419	1	Mining Lease 95	16	Aug. 21, 1997	Mountain Star Res. Ltd.			
Charlotte	L 405	1	Mining Lease 95	16	Aug. 21, 1997	Mountain Star Res. Ltd.			
VMT Claim	Group			· · · · ·					
VMT 2	213576	20	Claims	320	Sep. 15, 1997	Mountain Star Res. Ltd.			
VMT 3	213577	2	Claims	32	Sep. 15, 1997	Mountain Star Res. Ltd.			
VMT 5	213770	1	Claims	16	Sep. 12, 1997	Mountain Star Res. Ltd.			
VMT 6	213769	1	Claims	16	Sep. 15, 1997	Mountain Star Res. Ltd.			
VMT 7	213768	1	Claims	16	Sep. 15. 1997	Mountain Star Res. Ltd.			
VMT 8	213766	12	Claims	192	Sep. 15, 1997	Mountain Star Res. Ltd.			
VMT 9	213771	1	Claims	16	Sep. 14, 1997	Mountain Star Res. Ltd.			
VMT 10	213772	1	Claims	16	Sep. 14, 1997	Mountain Star Res. Ltd.			
VMT 11	213773	1	Claims	16	Sep. 14, 1997	Mountain Star Res. Ltd.			
VMT 12	213767	1	Claims	16	Sep. 15, 1997	Mountain Star Res. Ltd.			
VMT Fr	213774	Fract.	Claims	8	Sep. 15, 1997	Mountain Star Res. Ltd.			
-	213268	1	Revert Crown Gr.	16	Apr. 26, 1998	Mrs. Campeau			
		218		3,474					

-

ŗ

£.

7

Overlying the Horsethief Creek Group in the Purcell Mountains is the Lower Cambrian Hamill Group which occurs to the northeast of the property. This Group is largely comprised of quartzites, slates, phyllites and schists and is probably in sharp, unconformable contact with the Horsethief Creek Group (Reesor - 1973).

TABLE 2

Stratigraphic Nomenclature and Cross-section of the Windermere Supergroup (extract from Young et al - 1973)

C	DLUMBIA	MO	UNT	411	15		RC	C	K,	Y	MOUN	VT/	AINS
Southern Central SelkirkMtns. PurcellMtns. (Little 1960) (Reesor 1973)		Northern PurcellMtns. (Evans , 1933)		Cariboo Mountains CampbelMountjoy & Young , in press		Bow Valley, Banff area (Walcott , 1910)			(Che	Jasper area ariesworth. al., 1967)	Mount Robson (Slind & Perkins, 1966)		
QUARTZITE	HAMILL GP	намі	ILL GP	ANC	YANKS PEAK	G	og o	GROU	JP	GOG	JASPER	GOG	MC- NAUGHION
THREE	? HORSETHIEF	GROUP 25	per slate & artzite unit Slimesto- ne unit	BOO GRO	YANKEE BELLE CUNNING		;			UI and		anc III	
MONK	CREEK GROUP	CREEK	niddle slate unit	CAR	ISAAC	Щ	Щ	Ш	L	GRO		GRO	unit
	r? 	ETHIEF	lower dspathic grit		KAZA		HEC	TOR	III III	MIETTI	LOWER	MIETT	middle unit
TOBY	TOBY	HORS	unit		GROUP	? CO	RRAL	CRE	- ? EK		?? MEADOW CREEK		lower unit
		base no	ot exposed	base	not exposed	bos	e not	expo	sed	base	not exposed	base	not exposed
PURCELL	PURCELL								-				

Current stratigraphic nomenclature & correlations of the Windermere Supergroup

Regional stratigraphic cross-section of the Windermere Supergroup

4.0 **EXPLORATION HISTORY**

4.1 The Spillimacheen District

Many of the mineral occurrences and existing mining leases (original Crown Grants) on and adjacent to the present BB and Ruth-Vermont claim groups were first worked during the later years of the nineteenth century. A second phase of activity took place between 1920 and 1940. Most of this work was directed towards small scale mining and prospecting for gold and silver in quartz veins, however, lead and zinc was mentioned in many of these occurrences and occasionally copper as well.

A further attempt at mining lead-zinc-silver veins took place at the old Ruth-Vermont mine between 1965 and 1973. Then from the mid 1960's to the early 1980's, a variety of more extensive modern exploration surveys looking for stratiform lead-zinc-silver were conducted over different claim groupings within the boundaries of the present property package.

Government mapping in this district is quite limited and regional in nature. The few maps that exist over this area, at best, only show rocks of the Horsethief Group occuring on the property. None of these maps show any detail of the divisions within this group (Reesor - 1973, Wheeler - 1962, Okulitch and Woodsworth -1977, Price and Mountjoy - 1979).

4.2 VMT Claim Gronp

The first evidence of exploration in this area is from incomplete records which indicate that between 1965 and 1973 Mr. R. Renn, from Calgary, did a limited amount of geological mapping, biogeochemistry and trenching, and dritled at least 7 or 8 diamond drill holes on the property. Apparently core recovery was poor and no cores, core descriptions or hole locations are available (BCDM - AR # 6257 and #6744).

In 1974 to 1977 Medesto Exploration Ltd. conducted geochemical soil sampling, geological mapping, trenching and drilled three diamond drill holes in 1975 and two in 1977 to test the geochemical anomalies. The best intersection obtained in 1975 was in DDH 75-1 where 8 ft. of lead- zinc-silver mineralization was encountered. The best in 1977 was in DDH 77-3 were a similar zone 14.5 ft wide was intersected. Trenching 80 ft south of DDH 77-3 sampled a zone 24 ft wide indicating possible thickening to the south (BCDM - AR #6744).

In 1979 Norcen Energy Resources conducted a widespread exploration program over a strike length of about 25 km from Vermont Creek in the north to Warren Creek (off the VMT claims) in the south. Part of their program included soil geochemistry, geological mapping, trenching and diamond drilling on the VMT claim group (BCDM - AR # 8140 and #8154). Most of this work was done on the north and east slopes of Crystal Creek in the south eastern corner of the property where they drilled 12 holes in 1979 and another 7 holes in 1980. The best intersection was located on the same zone as encountered by DDH 77-3, the

Medesto trenches and coincident soil anomalies, however, they concluded the drilling did not obtain any zones of "significance" (Smith et al - 1980).

Bluesky Oil & Gas Ltd. obtained the property in 1981. They conducted more geological mapping, soil geochemistry and drilled another 4 holes in areas of known mineralization and previous drilling at the southeastern end of the VMT group. They encountered significant massive and disseminated mineralization and their best intersection was, again, in the Medesto-Norcen zone (LCP Zone). They recommended further work in 1982 to include; more standard surveys as well as drilling and an exploration adit to test the mineralized zone above (Nolin - 1981).

After the claims expired in 1989 and 1990, the VMT claims were staked over this ground by MineQuest Exploration Associates Ltd of Vancouver, B.C. Between 1990 and 1994 they conducted geological mapping, minor soil sampling and compiled all the previous exploration data (Longe - 1993).

The claims were optioned to Mountain Star Resources Ltd. in August of 1996 who then conducted a one line test survey of transient EM and gravity at the north end of the claim group.

4.3 Ruth - Vermont Claim Group

Lead-zinc-silver mineralization was discovered on the property in 1893 and a 150 tons of hand sorted ore was shipped from the Ruth Mine in 1896. The Galena Syndicate from London, England, held the property until the early 1960's and completed several hundred feet of underground development prior to 1930. Rio Canadian studied the property in 1956 and 1957 (Manning - 1972).

The property was optioned to Columbia River Mines in 1965 who conducted 2,300 feet of underground development on the 5750 and 6000 Levels, drilled approximately 40,000 feet of diamond drill core and shipped a load of high grade ore to the smelter at Trail.

In 1969 the property was optioned to Copperline Mines Ltd. who brought the Ruth-Vermont mine into full production and from 1970 to 1971 they milled 94,469 tons of ore. The mine was then shut down from 1971 to 1973 due to low metal prices (Longe - 1997).

During this period L.J.Manning and Associates Ltd from Vancouver B.C. conducted a feasibility study on the mining leases (Manning - 1972). The study concluded that there was 291,384 tons of mineable ore reserves remaining in the the mine. They stated the opportunity was good for increasing ore reserves and recommended that a more favourable smelter contract be obtained before starting up the operation again. An independent geological report, included with the study, indicates an excellant potential for finding more replacement ore in the immediate area (Tough - 1972).

Consolidated Columbia Mines Ltd. took over the operation in 1973 and shipped 26,975 tons of concentrate to the Cominco's smelter in Trail, B.C. In 1974 the mine facilities suffered extensive damage from snowslides. There was a short lived attempt to bring the mine back into production in 1981.

The Manning Feasibility Study was updated in 1982 (Foreman - 1982) and concluded the economics of the Ruth-Vermont Mine was dependent upon the price of silver. The mine lay derelict until 1994 when all the buildings and machinery were removed from the property, the surface sites reclaimed and underground openings sealed (Morrow - 1995).

In 1996 data from the archived mine records was compiled and the stratigraphy correlated by MineQuest Exploration Associates Ltd. A three hole underground diamond drill program was conducted to test for a Sedex lead-zinc deposit below the workings and to verify a high gold assay reported in mine archives. No evidence for Sedex mineralization was found in the one hole that penetrated the "Target Shale", however, another hole did intersect 5.6 ft of gold mineralization. MineQuest concluded further underground drilling and sampling of the mine tailings was required to evaluate the gold potential. The workings were once again sealed and the access road reclaimed after this program was completed (Cukor - 1996).

4.4 **BB** Claim Group

Although there are a number of old mining leases within the perimeter of the BB claim group which are not part of the Vermont Project, their histories are included here as the showings significantly impinge on the economic potential of this property. At the time of writing, only the Flying Dutchman claims were optioned by Mountain Star Resources Ltd.

4.4.1 Old Claims within the BB Claim Group Boundary

Gold and silver mineralization was first discovered in the early 1880's at the north end of the claim group in the headwaters of Bobbie Burns Creek on the old Burns, Flying Dutchman and Crown Point claims. In the late 1880's and early 1890's trenching on the Burns and tunneling on the Flying Dutchman was conducted to sample narrow, auriferous quartz veins and a stamp mill was set up on the Burns claims in 1891 (Howe - 1966). No apparent work was filed for assessment in this area until the 1980's.

In 1898 an adit was driven on an auriferous quartz vein on the Ellen D claims along the northern boundary of the property.

In 1981 the two adits on the Flying Dutchman claims were sampled by K.B. Larson who concluded this showing might have potential if more ore shoots could be found (Larsen - 1981). C. Dearin sampled the same veins in1982. He noted these veins have never been thoroughly mapped, trenched or drilled (Dearin - 1982) and in 1996 reported that the gold potential here is high (Dearin - 1996).

4.4.2 Old Claims in the Malachite Creek Basin

Additional old trenches and an adit are situated in the Malachite Creek basin in the central part of the property where gold vein prospecting was also conducted in the early 1900's.

4.4.3 Old Claims Adjacent to the BB Claim Group

In the 1890's several adits were driven on claims west of the claim group (Bennison claims) where a significant gold deposit was rumoured to occur in a 32 ft wide gold bearing quartz vein. Very little data, however, is available on this prospect (Dearin - 1991).

Mineralization found on the the Crown Point claims at about the same time, just northwest of the claims, consists mainly of replacement lead-zinc mineralization in limestone and quartz veins with minor gold values (Dearin - 1982).

In 1917 an adit was driven into a wide quartz-carbonate vein containing a 17 inch wide massive chalcopyrite seam northeast of the property on Copper Creek. A one ton sample at that time averaged 11.92% Cu (Dearin - 1982).

4.4.4 Recent Exploration on the BB Claim Group

In 1980 First Nuclear Corporation conducted reconnaissance geological mapping, prospecting and geochemical surveys over the entire BB claim group and the surrounding area. This program indicated the western highland portion of the property to be the most prospective for lead-zinc-silver. In 1981 mapping, prospecting and rock geochem concentrated on these highland areas and stratabound lead and zinc mineralization was found associated with carbonate horizons on four areas within the property (Brophy and Slater - 1981).

In 1982 Samim Canada Ltd. optioned the property and engaged MineQuest to followup in these areas of interest and conduct further mapping, prospecting and sampling. This work reported 6 showings of conformable lead-zinc mineralization on the present property, all ocurring at one of three stratigraphic levels near a shale - limestone contact. They concluded the Ruth-Vermont deposit to the south may also occur at one of these levels thus adding potential to this horizon on the BB claims. They recommended more mapping, prospecting, IP - EM surveys and drilling on the Malachite showings (Dickie and Longe - 1982).

In 1983 Samim conducted a follow-up program including geological mapping, IP surveys, soil sampling and 11 holes of diamond drilling on the Malachite Creek detail area in the southern part of the claim group. Though no economic deposits were located they confirmed the presence of highly altered and mineralized black shales on the surface. IP anomalies in black shales with associated soil geochem anomalies remain to be explored in the Carbonate Mountain area.

Samim concluded that various features of these lead-zinc showings are indicative of possible nearby bedded Sedex mineralization. They recommended more mapping, geochem and IP surveying as well as diamond drilling. They concluded the property remains one of considerable merit but recognized that a long term program of further work is required if a deposit is to be found (Bottrill et al - 1983).

5.0 DETAIL GEOLOGY

5.1 VMT Claim Group

Reconnaissance style geological mapping was conducted over large land holdings in this area by Norcen and Bluesky Oil & Gas between 1979 and 1982. It was not until 1992 and 1993, however, that mapping by MineQuest (Figure 8) established the first detailed stratigraphic sequence of lithologies (below) on the VMT claims. All these units are believed to be within the Grit Division (Table 2) of the lower Horsethief Creek Group.

5.1.1 Stratigraphic Sequence - in decending order (Longe - 1994)

Unit W	Whitebark Grit - white quartz grit with micaceous cleavage
Unit M	Schists - brown weathering ankeritic and tuffaceous appearing
	micaceous schists interbedded with grey argillite.
	- base of unit is host to sulphide occurrences.
Unit A	Argillte - grey or buff weathering argillite composed of thin turbidite
	beds with abundant disseminated pyrite.
Unit C	Cedar Grit - white quartz grit with mieaceous cleavage and
	occassional beus of qualtz people congiomerate.

The stratigraphic thickness of the shale units, A and M, in this area appear to be approximately 300 m thick (Longe - 1993).

5.1.2 Structure

These pelitic units occur on a shallow dipping, north plunging anticlinorium which is deformed locally by tight isoclinal folds and faults where bedding is near vertical. Typically there is a well developed axial plane cleavage striking 140° and dipping from 70° to 90° at these localities. A major northwest striking, northeasterly dipping fault zone, the Medesto Fault, appears to separate the LCP Zone from the other mineralized zones on the VMT claims (Figures 8, 9 and 10). MineQuest has interpreted this to be a northeasterly dipping, reverse fault which may have caused considerable displacement to a single mineralized horizon (Unit M) on this part of the property (Longe - 1994).

9

5.2 BB Claim Group

Reconnaissance scale mapping and prospecting was conducted over portions of this property by First Nuclear Corporation (F.N.C.) in 1980 and then more detailed mapping and other surveys concentrated on specific areas of interest established in 1981 (Brophy and Slater -1981). In 1982 MineQuest directed their program specifically towards correlating the stratigraphy in this area with the many occurrences of mineralized beds found by F.N.C. They classified the sedimentary sequence into 7 alternating coarse and fine grained stratigraphic units designated Units A to G (Figure 6). Like the lithologies on the VMT claims, the strata on the BB claims occur in the lower Horsethief Creek Group.

5.2.1 Stratigraphic Sequence - in decending order (Dickie and Longe - 1982).

Unit G	Sandstone and Grit - thickly bedded; laminated shales at bottom
Unit F	Calcareous Sandstone - bedded siltstone and shale in lower half
Unit E	Calcareous Sandstone - no shale
Unit D	Siltstone and Shale - regularly interbedded
Unit C	Sandstone and Grit - thickly bedded
Unit B	Shale - strongly foliated with crenulated bedding
Unit A	Sandstone and Grit - some clastic limestone and phyllitic shale

The seven units above have been identified and traced discontinuosly throughout the length of the BB property but because of their potential for hosting base metal deposits the finer grained units were studied in more detail. The black shales in this sequence contain considerable siderite (up to 25%) and variable amounts of pyrite (up to 10%). Black fine grained pyritic limestones occur in each of the shale units and pinch out laterally into black shales or calcareous siltstones.

Stratabound lead-zinc mineralization occurs in the limy beds within the following three shale units; Unit B at Crown Point (and possibly Ruth-Vermont), Unit D at Crown Point, Decision Creek and Malachite Creek and Unit F at Crown Point, Decision Creek and Malachite Creek (Dickie and Longe - 1982). The individual thickness of each of these shale units is about 80 metres and no significant thickness changes in the shales have been mapped on the BB claim group to date.

5.2.2 Structure

The lithologies described above comprise the centre of the broad northwest trending Purcell Anticlinorium which exposes the oldest strata in the creek valleys. This major structure, in turn, is further complicated by a series of smaller scale folds and north or northeast striking faults perpendicular to the fold axes. There is a strongly developed vertical follation parallel to their axial planes.

6.0 MINERAL SHOWINGS AND DRILL INTERSECTIONS

6.1 VMT Claim Group

The principal zones of interest on this group are the four areas illustrated by the four clusters of drilling and trenching activity (Figure 9) located on the VMT 2 and 3 claims. An approximate total of 35 diamond drill holes were drilled to undercut or test extensions of lead-zinc mineralization found in trenches on the surface. Most of the drill holes and trenches are shown on Figure 9, however, it should be noted that in the public and private reports available, there is considerable conflicting evidence on the location and orientation of many of the drill holes. As most of these sites have long since deteriorated and can not be confirmed in the field, the locations shown on Figure 9, in many instances, are a "best estimate".

The most southerly and most significant area of interest is the LCP Zone (Figure 9) where the best drill intersection on the property was obtained in DDH 77-3. This hole cut 14.5 ft of 3.43% Pb, 8.61% Zn and 3.39 oz/t Ag. Two other drill holes, 79-8 and 81-3, at this location also intersected 6.9 ft and 5.4 ft, respectively, of similar lead-zinc-silver values (Longe - Feb 1992)

Trenching 80 ft south of these holes in Trench 77-3, apparently revealed the zone to be 24 ft wide averaging 4.8% Pb, 5.4% Zn and 4.7 oz/t Ag indicating possible thickening to the south (Pelzer - 1978). The writer was unable to locate this particular trench. There was evidence of ground sluffing due to recent logging road construction immediately up slope from the suspected location so this trench is probably covered. The LCP Zone is also associated with a series of generally northwest trending, coincident lead-zinc-silver soil anomalies (Figure 10) found by Norcen in 1979 (Smith - 1980). These anomalies extend over a distance of about 500 metres and include the other mineralized zones on the claim group(below).

Separating the two main groups of soil anomalies is the prominent northwest striking Medesto fault which dips steeply to the east and can be seen in several outcrops. Other workers have speculated that there may be other subsiduary faults and minor folds but more detailed mapping and structural analysis is required before additional structures can be reasonably incorporated into the geological interpretation of this area. Based on a preliminary structural model, MineQuest hypothesized that the Pb-Zn-Ag mineralization in the LCP Zone dips gently at about 20° to the northwest. They feel the geochemical anomalies may represent "leakage" from a deeper source rather than from subcropping sulphide beds (Longe - 1994).

Another zone of surface mineralization, approximately 200 metres northeast of the LCP Zone, was tested by 8 drill holes between 1975 to 1981 with little apparent success (Figure 9). Numerous holes in the 1975 and 1977 drill campaigns reported drilling problems and

poor core recovery. DDH 75-3 did mention anomalous cuttings in the range of 3% Pb and 7% Zn associated with quartz vein material (Pelzer - 1978). A massive lense of highly weathered siderite, sphalerite, galena and pyrite(?) assaying 7.3% Pb, 8.3% Zn, 5.7 oz/t (189 ppm) Ag and 990 ppb Au was sampled by the writer (97-MG-04B) in old Trench 75-3 at this showing (Appendices A and B). The prominent cleavage (bedding?) dips to the northeast and accordingly all the holes were angled to the southwest. There is evidence, however, of subvertical to steep westerly structures in the form of faulting and associated quartz veining within the zone of mineralization. It is the writer's opinion there is a reasonable chance these structures may be controlling the orientation of the mineralized zone and hence the holes may have drilled "down dip" and missed the sulphides on the surface. A rather puzzling statement in the report (Pelzer - 1978) indicates that 45.5 ft of chip sampling in a trench just "east" of DDH 75-3 produced values as high as 6.61% Pb, 4.84% Zn and 5.16 oz/t Ag, however, this hole appears to plot east of the trench referred to above and no mineralization was observed by the writer east of the drill holes at this location.

The third area of interest is located about 300 m north of the LCP Zone where three holes where drilled to test a small exposure of lead-zinc mineralization in quartz veins (Figure 9). A grab sample in 1980 from this location produced 2.96% Pb, 5.60% Zn, 2.38 oz/t Ag and 0.01 oz/t Au (Smith - 1980), however, drilling failed to encounter these grades at depth. Again the holes were drilled westerly with the exception of the first hole, DDH 75-2, which was abandoned due to stuck drill rods and poor core recovery. This showing also has a coincident lead-zinc soil anomaly on both the Medesto and Norcen surveys.

The fourth and most northerly area of interest is 500 m to the north of the LCP Zone (Figure 9) where DDH 75-1 intersected disseminated galena and sphalerite in a reported massive limestone assaying 2.17% Pb, 5.6% Zn and 2.4 oz/t Ag over a length of 8 ft. This hole was apparently drilled on a Medesto soil geochem anomaly (Pelzer - 1978). The 1979 Norcen soil survey (Figure 10) does not appear to go that far north.

Another potential area of interest occurs near the northwest boundary of the VMT 2 claim where prospecting in 1983 located two massive argentiferous galena and boulangerite veins each over one foot in width. Grab samples are reported from these veins with values as high as 44.5% Pb, 2.63% Zn, 44.3 oz/t Ag, 0.18 oz/t Au, 12.6 Sb and 1.07% Cu (Nolin et al - 1983). There is no indication of followup work in this area nor could the exact location of these showings be found in the records.

The same report indicates 6 diamond drill holes where drilled in 1983 in conjunction with combined SP, magnetic and gravity surveys conducted over a large land package that covered more than the VMT Claim Group. Apparently though, no significant widths of mineralization were encountered in this program as the best width obtained, in DDH. 83-1, was 0.25 m of 1.41 oz/t Ag, 0.42% Pb and .005% Zn (Nolin et al - 1983).

NB

¥

NB

Y

6.2 BB Claim Group

The BB Claim Group is comprised of two types of mineral dispositions with two different exploration histories; isolated mining leases worked in the late 1800's for gold and silver and large mineral claim groupings which were explored in a more systematic fashion in the 1980's for stratiform lead-zinc mineralization.

6.2.1 Old Gold Claims

Gold and silver mineralization was first discovered at the north end of the claim group in the headwaters of Bobbie Burns Creek. The principal old workings were located on the old Burns claims (L776, 777, 1002, and 1982, not held by Mountain Star Resources), Flying Dutchman claims (L3951- 3953), Ellen D claims (L1114-1115, also not held by Mountain Star) and Crown Point claims (L6650- 6656 and L11630-11635) which are just off the present property (Figures 2 and 6).

Trenching was conducted on the Burns claims to sample and mine a series of narrow, conformable quartz veins containing pyrite, galena and arsenopyrite in schistose slates. A secondary, smaller set of cross-cutting veins contains more mineralization and visible gold. A stamp mill was set up on the Burns claims in 1891 and 70 tons of "ore" grading 0.752 oz/t Au gold from the Burns trenches was run through the mill. Apparently as much as 300 tons of ore was transported by wagon to the mill during this period (Howe - 1966). Very few records of this work are available and no apparent assessment work was filed in this area until the 1980's.

Gold showings on the Flying Dutchman claims were discovered in the 1880's when two adits were driven on separate quartz veins but little information is available on this old work. Howe (1966) states that these workings appear to be on the same system of veins as those on the Burns claims, one kilometre to the northwest. He also reported values of 1.9 oz/t Au and 0.62 oz/t Au from several samples taken by earlier workers in the adits. Apparently several other adits were also driven in this area during the same period of activity but their location and relevant information has disappeared with time (Dearin - 1982).

In 1981 K.B. Larsen sampled the two adits on the Flying Dutchman claims and obtained values of up to 0.20 oz/t Au across 3.4 ft of vein in the lower adit which he concluded might have potential if more ore shoots could be found (Larsen - 1981). As at the Burns claims, two sets of steeply dipping quartz veins, one striking northwest and dipping west and the other striking northeast dipping north, with brown siderite and "poddy" pyrite occur in flat lying schistose slates. C. Dearin sampled the same veins in 1982 and obtained an average grade of 0.146 oz/t Au and 0.04 oz/t Ag across 2.2 ft over a strike length of 56 ft in the lower adit (Dearin - 1982). He only obtained trace gold in the upper adit. He noted these veins

never been mapped, trenched or drilled. In 1996 he again reported that only a minor amount of geological work had been carried out in this rugged terrain and that its gold potential is considered to be high (Dearin - 1996).

In 1898 a short adit was driven on a 6 ft wide quartz vein carrying auriferous pyrite on the Ellen D claims which straddle the northern boundary of the property. No report of any subsequent work on this vein could be found.

Several trenches and an adit also exist in the Malachite Creek basin in the central part of the property where gold vein prospecting was conducted in the early 1900's (Dearin - 1996). No other information could be found on this early work.

6.2.2 BB Claims

First Nuclear Corporation (F.N.C.) conducted widespread reconnaissance geological mapping, prospecting and regional geochemical surveys in 1980, some of it over the present BB Claim Group. They concluded that the western highland portion, within the Purcell Anticlinorium of the Horsethief Creek Group, to be the most prospective for lead-zinc-silver. In 1981 further work in this area revealed stratabound lead and zinc mineralization associated with carbonate units in the basal half of this stratigraphic succession. The following four broad areas of interest (Figure 6) were identified within the present property configuration (Brophy and Slater - 1981).

6.2.2.1 Malachite Creek Area

This area is situated in the headwaters of the Malachite Creek basin on the south side of the main creek on the BB- 8 and 9 claims. Numerous occurrences of stratabound galena and sphalerite, some with conformable quartz veining, in limestones and sandy carbonates enclosed by black laminated slates, were reported over a length of one kilometre. Mineralized strata ranged from 0.3 to 9.0 m in thickness and individual samples assayed as high as 6.1% Pb, 6.3% Zn and 5.8 oz/t Ag. Average grades were about 1.83% combined Pb-Zn over an interval of 0.9 m (Brophy and Slater - 1981).

MineQuest in 1982 continued exploring the property for Samim, with the emphasis directed towards finding stratabound lead-zinc mineralization. As a result they prospected and further enhanced the following three F.N.C. showings in the Malachite Creek area (Figure 7). At the Malachite Ridge and Malachite Adit showings, high grade bedded galena and sphalerite mineralization was traced over a strike length of 200 metres in black limestone beds in stratigraphic Unit F. At the Malachite Trench showing, galena and sphalerite are disseminated in limestone and dolostone near the top of stratigraphic Unit D. The mineralized section averaged 4-5% combined Pb-Zn over intervals of 1-2 metres. The carbonate lithologies, which contain the lead and zinc, were traced over a distance of 1.5 km but the mineralization was only observed in the trenches (Dickie and Longe - 1982).

١.,

A follow-up program in 1983 by Samim included geological mapping, IP surveys, soil sampling, 493 metres of diamond drilling and a petrographic study. This work developed an additional showing, the SR Showing, where trenching revealed massive stratabound galena and minor pyrite mineralization lying within tightly folded Unit F shales.

Eleven holes were drilled on the grid, three of which tested the SR Showing (Figure 7). Only sideritic shales with anomalous zinc, however, were encountered at this location. Due to complex folding all three holes are interpreted to have only tested the footwall of the massive galena showing on the surface (Bottrill et al - 1983).

Five holes were drilled at the Malachite Trenches showing (Figure 7). The best of these, DDH 83-6, tested an IP anomaly and encountered a narrow vein of high grade massive sulphides assaying 16.4% Pb, 16.7% Zn and 15.9 oz/t Ag over 18 cm overlying a lower grade section of stratabound mineralization. The other four holes at this showing, however, only returned minor or insignificant mineralization.

The remaining three holes in the program tested the Malachite Adit Showing (Figure 7) but failed to encounter the bedded sphalerite observed on the surface. One of these holes, DDH 83-10, intersected a massive arsenopyrite vein with minor lead-zinc values. Another hole, DDH 83-11, cut 2.47% Pb, 5.05% Zn and 0.5 oz/t Ag over a narrow section of 25 cm. Though no economic deposits were located during the drilling Samim, did confirm the presence of highly altered and mineralized black shales on the surface (Bottrill et al-1983).

The petrographic study analysed 37 thin sections and 7 polish sections from mineralized showings and drill core. Samples from the Adit Showing clearly displayed banded sphalerite, galena and chalcopyrite parallel to bedding indicating "sedimentary hosted lead-zinc mineralization". Samples from drill holes and the Adit Showing displayed pyrite bands in arsenopyrite replaced by sphalerite, galena and chalcopyrite with accessory tetrahedrite and argentite. The interpretation is that the silver is "clearly late and intimately associated with galena and the remobilisation of Pb, Cu, Ag and S" (Bottrill et al - 1983).

Rock referred to in the field as green "quartzite" was identified in thin section as highly altered mafic volcanics. It contains phenocrysts, probably after olivine, of serpentine and chlorite with opaques and oalcite, quartz and muscovite, probably after calcium feldspar.

Samim concluded that various features of these lead-zinc showings, especially in the Malachite Detail area, are indicative of possible nearby bedded mineralization of the Sedex type. They recommended considerably more mapping, geochem and IP surveying as well as diamond drilling including possible pattern drilling over favourable stratigraphy and alteration sequences. Their final conclusion was that the property remains one of considerable merit but recognized that a long term program of further work is required if a deposit is to be found (Bottrill et al - 1983).

6.2.2.2 Carbonate Mountain Area

The second area of interest discovered by F.N.C., occurs on the north slope of Carbonate Mountain on the BB-5 claim. Here they discovered fine grained, low grade mineralization (>1% Pb-Zn) in orange weathering dolostone extending over a strike length of one kilometre. Another old adit, one drill hole and trenehing by earlier unknown prospectors were also reported in this area (Brophy and Slater - 1981) but their exact location is presently unknown. MineQuest's work in 1982 did not find any additional occurrences but did produce several soil geochemical anomalies which they recommended for further investigation (Dickie and Longe - 1982). In 1983 Samim located IP anomalies in black shales with associated soil geochem anomalies. These remain to be explored.

6.2.2.3 Decision Creek Area

The third area of interest is located at Decision Creek on parts of the BB 1, 3 and 4 claims, which also includes the old Burns and Flying Dutchman mining leases. Here mineralized float extends over an area of one kilometre. Disseminated galena and sphalerite occur in the matrix of a sandy dolostone with assays as high as 4.8% Pb, 4.4% Zn, 1.2 oz/t Ag and .04 oz/t Au. Of interest at this locality is the high tenor of gold and silver in many of the carbonate samples, even in the samples with low base metal values (Brophy and Slater - 1981).

MineQuest correlated these sulphides with Unit F at the Decision Creek Showing, where mineralization was traced along strike for 250 metres, and in Unit D at the Burns Showing (Figure 6). The total sulphides in these calcareous sandstones is always less than 10% and they concluded this area had a low priority for lead-zinc exploration.

6.2.2.4 Crown Point Area

The fourth and most northerly area of interest is located on and west of the BB 1 claim, adjacent to the Crown Point leases. F.N.C. discovered mineralized carbonate float over an area of approximately one square kilometre just east of the Crown Point leases. They found mineralization concentrated in two northwest-southeast trending zones. The best occurrence consisted of disseminated galena and sphalerite in the matrix of a silty dolostone along a 10 metre length. Grades in this zone are generally low. The other occurrence was mineralized carbonate samples in morainal float, east of the first locality (Brophy and Slater-1981).

In 1982 MineQuest discovered 3 more mineralized occurrences in the Crown Point Area, the RB, TJ and Cliff showings (Figure 6). The RB and TJ are off the property but occur in strata directly on strike with the northwest corner of the BB 1 claim. The RB Showing contains bedded galena in limy beds over a stratigraphic thickness of 3.5 m in the upper portion of Unit B. The TJ Showing contains disseminated suphides and conformable thin veins of galena and sphalerite at the base of a limestone bed in limy shales, also in Unit B.

The Cliff Showing is situated just inside the property. It is a one metre thick horizon of galena and sphalerite at the limestone-siltstone contact in Unit D. Mineralization has been traced along strike for a distance of 100 metres. Several other showings also occur near the Crown Point adits on unoptioned mining leases (Dickie and Longe - 1982).

6.3 Ruth - Vermont Mine

The underground workings lie on the southwest limb of a southeast plunging syncline (Fyles - 1966) comprised of a series of gently dipping argillites, limestones and grits belonging to the Grit Division of the Horsethicf Creek Group sediments. These rocks are all cut by quartz veins. Argillite-limestone contacts are gradational and display well developed turbidite features. The grits range from coarse grained sandstones to pebble size conglomerates. Small scale folding and soft sediment deformation is common (Cukor and Longe - 1996).

Lead-zinc-silver mineralization occurs as two distinct types; a) a series of quartz veins with galena, sphalerite, pyrite and scheelite and b) stratabound replacement sulphides of pyrite, sphalerite, galena and arsenopyrite. Chalcopyrite, boulangerite and tetrahedrite have also been reported. The replacement type (manto deposits) occur where quartz veins, especially the Pine Tree Vein, cut the limestone beds.

There are two main veins of particular economic importance in the mine, the Pine Tree Vein and the Blacksmith Vein (Figure 4). The Pine Tree Vein has a surface trace of 2600 feet in a southeast direction and vertical extent of 500 feet. The average grade of this vein over a length of 1200 ft underground is 7.0% Pb, 6.06% Zn and 12.27 oz/t Ag across a width of 5.0 ft. The Blacksmith vein is parallel to the Pine Tree and also has a length of 2600 ft. Underground it averages 5.2% Pb, 3.1% Zn and 10 oz/t Ag across a width of 4.0 ft. During the course of underground drilling several more veins with similar grades and thicknesses were intersected (Tough - 1972).

A three hole underground diamond drill program in 1996 (Figures 4 and 5) was designed to accomplish two objectives; a) to test for an underlying, shale hosted lead-zinc deposit, possibly the source for vein and replacement mineralization and, b) to find additional gold mineralization associated with a single gold value obtained in previous drilling. A deep vertical hole, DDH 96-1, did encounter a shale unit below the mine grit units, however, it failed to find any evidence of Sedex type lead-zinc-silver mineralization.

On the other hand, DDH 96-3 intersected 5.6 ft of 2.08 oz/t Au in a section of limy argillite with replacement type disseminated pyrite, arsenopyrite and sphalerite and massive vein type galena (Cukor and Longe - 1997). This mineralization was found only a short distance away from a gold value of 0.54 oz/t Au over 4.5 ft obtained in an old hole drilled in 1968 (Figure 5). Apparently this is the best gold value available from only a few gold analyses registered in the old the mine records.

7.0 CONCLUSIONS

7.1 VMT Claim Group

Mapping on this claim group has identified five lithological units in the Grit Division of the Horsethief Creek Group. Two of these units comprise a thick section of argillites and phyllitic schists with limy and possible tuffaceous beds all sandwiched between two grit horizons. The grit units are evidence of tectonic instability, possibly at a rift margin which is the preferred depositional site for Sedex style mineralization (MacIntyre - 1990).

Shale hosted lead-zinc deposits typically occur stratigraphically above a thick sequence of turbidite sediments at a level where there is a tuffaceous component. The shale units within the Horsethief Creek sediments to the north, in the BB claim group, only attain thicknesses of about 80 metres. On the VMT group, however, the argillite and schist units together appear to be at least 300 metres thick suggesting a deeper water environment suitable for Sedex style mineralization.

Lead-zine mineralization has been found at four locations on the southern part of the claim group. The best of these is the LCP Zone where bedded galena and sphalerite in DDH 77-3 produced grades of up to 3.43% Pb, 8.61% Zn and 3.39 oz/t Ag over a width of 14.5 ft. This hole and four other similar drill and trench intersections at the same location appear to occur along the same stratigraphic interval, the contact between black shales-Unit A and overlying tuffaceous schist-Unit M.

The LCP Zone is interpreted to occur on the eastern limb of a tight isoclinal syncline bounded on the northeast by the northwest trending Medesto fault zone. The fault appears to separate the Pb-Zn geochemical soil anomalies into two groups and may have exerted considerable displacement to the mineralized horizon.

Although MineQuest has constructed a tentative structural model for the LCP Zone, more detailed mapping and structural analysis is required inorder to predict the location of the prospective lead-zinc horizon away from the showing. In the meantime MineQuest has proposed the LCP Zone plunges gently to the northwest, a direction in which there has been no trenching or drilling activity to date.

The writer as well as previous operators (Longe - Aug 1994), obtained anomalous gold (990 ppb Au) in a lead-zinc bearing lense immediately north of the LCP Zone. This additional precious metal potential further accentuates the priority that should be given to exploring the structure and mineralized strata at this location.

A significant gold value (0.18 oz/t Au), as well as base metal values, were reported in 1983 from two massive galena-boulangerite veins along the northwest boundary of the claim group (Nolin et al - 1983). Even though at the present time, the exact location is not known,

this area should be prospected in more detail to investigate the potential of these showings.

Although a relatively large number of drill holes (35?) have been put down in this area, they were drilled by a number of sporadic and unrelated programs over a period of nine years. A number of the early holes were unsuccessful due to caving and lost core. Most of the 1983 holes were drilled on the opposing (displaced?) side of the Medesto fault at the LCP Zone. Many of the other holes appear to have been drilled with little or no understanding of the geological constraints on the mineralization (ie. a wide range of hole orientations on the same showing). Maps of the same showing in different reports even show the same hole drilled in opposite directions further reducing the confidence level in the qaulity of the data and the degree to which the showings have actually been tested. The obvious conclusion is that there is a definite need to further correlate drill intersections and surface showings with the stratigraphy and structure in this area to ultimately decipher the controls on the lead-zinc-silver mineralization.

The claim group should be further explored for its Sedex lead-zinc potential both because of the nature of the sulphides found to date on the property and the stratigraphy within which they occur.

7.2 Ruth - Vermont Mine

The history of this property dates back to the start of the century and since that time there have been a number of unsuccessful attempts to bring the mine into full production. A feasibility study in 1972 indicated there was 291,384 tons of mineable ore reserves (after dilution) averaging 4.76% Pb, 5.65% Zn and 6.62 oz/t Ag with good prospects of increasing these reserves (Manning - 1972). A later study concluded that it would not be profitable to operate this mine when silver prices were below \$8.00 an ounce (Foreman - 1982). The workings have since been shut in and the site reclaimed.

Mineralization occurs as two distinct types in this orebody; vertically dipping quartz veins containing galena, sphalerite, pyrite and scheelite and bedded replacement sulphides (manto deposit) of pyrite, sphalerite, galena, locally arsenopyrite and sometimes chalcopyrite, boulangerite and tetrahedrite. The veins are thought to have been the conduits through which the mineralizing fluids passed and the replacement bodies represent the final depositional sites in limestone beds immediatly overlying an argillite sequence. This bedded type of lead-zinc mineralization at Ruth-Vermont is very similar in hand specimen to mineralization found at major shale-hosted lead-zinc deposits in other parts of the world (Dickie and Longe - 1982).

From their work in both areas MineQuest has speculated that the replacement sulphides at

Ruth-Vermont appear to occur at the same stratigraphic level as Unit B, on the BB claims, which hosts other bedded lead-zinc occurrences to the north.

A recent underground exploration drill program cut a 5.6 ft intersection assaying 2.08 oz/t Au in a section of limy argillite with disseminated pyrite and arsenopyrite in replacement type mineralization. This intersection is adjacent to an isolated gold value in an old drill hole. The controls to the gold mineralization are not known at this time, however, one can speculate that the gold is related to a nearby vein, so far undetected. On the other hand the gold may be part of a distal mineralized facies associated with the lead-zinc manto deposits and warrant more systematic testing at this location as well as other lead-zinc showings found throughout the rest of the property. Further evidence for the manto theory is the anomalous gold values in the lead-zinc at Trench 75-3 on the VMT claims and at the north end of the BB claims where many of the lead-zinc samples contain a high tenor of gold.

7.3 BB Claim Group

Mapping has designated seven lithological units in the lower Grit Division of the Horsethief Creek Group of sediments, which although variable, are traceable throughout the length of the claim group. Considerable lateral variation within these units indicates the depositional environment was not constant in this area.

Seven significant lead-zinc-silver showings have been discovered on the claims but to date none have produced mineable grades and thickness.

Galena and sphalerite conformable to bedding at all these showings indicates primary stratigraphic control to the lead-zinc mineralization. All occur at one of three stratigraphic levels near the contact between shale and overlying limestone. Due to repetion from folding, MineQuest have calculated there is as much as 73 km of these three prospective stratigraphic horizons on the property. In 1982 they estimated that only about half of this strike length had been prospected leaving considerable exploration potential on the claims (Dickie and Longe - 1982).

The property exhibits two principal requirements for shale hosted lead-zinc deposits; favourable lithologies of carbonaceous, iron rich, limy shales within the sedimentary sequence and numerous stratabound lead-zinc showings within these units. The presence of substantial thicknesses of bedded lead-zinc mineralization at one of these stratigraphic levels in the Ruth-Vermont Mine to the south, further strengthens the potential for finding an economic shale hosted lead-zinc deposit in this area.

Thin section work by Samim (Bottrill et al - 1983) identified alteration minerals of mafic volcanic origin in association with black shales and lead-zinc mineralization. As this assemblage is conformable to bedding and not the predominant foliation cleavage (ie pre-deformational), the alteration and sulphide mineralization may be diagenetic resulting from

a sea-floor geothermal system associated with a Sedex depositional environment.

To date no significant thickness changes have been observed in the shale units on this claim group. An increase in thickness of black shales to hundreds of metres would indicate a low energy reducing basin considered to be a favourable environment for the formation of shale-hosted base metal deposits (MacIntyre - 1990). The discovery of such a basin in this area would provide a major Sedex exploration target and should continue to be searched for.

In addition to base metals, the northern half of this claim group has obvious gold potential exhibited by auriferous veins on the Flying Dutchman and nearby Burns and Bennison claims. These veins have produced average grades as high as 0.76 oz/t Au from the Burns claims and 0.146 oz/t Au across a width of 2.2 ft from the Flying Dutchman claims (Dearin - 1982). As gold bearing quartz-carbonate veins on both these claim groups have very similar characteristics, similar configuration and occur in the same host rocks, they provide the interveining (over a kilometre apart) and adjacent areas with considerable scope for the discovery of a much more extensive gold system. Although these showings have been examined by several geologists in the past couple of decades, no real exploration to exploit the gold potential in this area appears to have been conducted since the turn of the century.

8.0 RECOMMENDED PROGRAM

There is still exploration potential for the two principal commodity types of historic interest on this property, lead-zinc-silver and gold. The main lead-zinc-silver targets warranting further attention are; Sedex shale-hosted base metal deposits modelled after the Sullivan Mine orebody at Kimberly B.C. and additional manto replacement deposits similar to the Ruth-Vermont Mine. The latter deposit type may be genetically related to the former and hence the presence of bedded replacement mineralization at the Ruth-Vermont is thought to be one of the better indicators for potential Sedex deposits on the property.

The other commodity, gold, is also well worth looking for. Most of the early prospecting was for auriferous quartz-carbonate vein systems and the possible discovery of more gold is good, especially on the northern BB claims. Recent exploration has also encountered anomalous gold values (VMT and Decision Creek) and even ore grade gold values (Ruth-Vermont) with bedded replacement type lead-zinc mineralization indicating a spatial if not genetic association of these two metals on the property. Future exploration for lead-zinc in this area should always keep the possibility of accompanying gold values in mind and ensure that all laboratory work includes gold in the analytical package.

It is recommended that the following two phase program be undertaken on the property as soon as possible;

8.1 Phase I:

8.1.1 VMT Claim Group

A program of detailed geological mapping with the emphasis on structural analysis centered over the LCP showing and expanded to include the other three showings to the north and the lead-zinc soil geochemical anomalies outlined by Norcen (1981). The principal object of this work would be to obtain more detailed structural and stratigraphic information inorder to determine the geological controls on the lead-zinc mineralization and further develop a structural model.

Tight topographic elevation control will be required for the detailed structural and stratigraphic mapping. It will be necessary to have an orthophoto made of the area with 1 to 2 metre contours and survey control points, especially in the area of the LCP Zone. A mapping grid will then be cut or refurbished and tied into the orthophoto.

This program should lead to a better prediction of likely drill targets whether the mineralization is strictly stratigraphic in nature or structurally controlled. At the same time additional evidence of basin thickening and synsedimentary faulting, (eg. clastic breccias, soft sediment deformation) should be looked for in order to target potential Sedex depositional sites.

The literature should be searched further for the exact location of the massive galenaboulangerite veins with anomalous gold values reported by Nolin (1983) along the northwest boundary of the VMT claims. Detailed prospecting and mapping, and possibly trenching if any zones of interest are discovered, should be conducted over this area.

8.1.2 Ruth-Vermont Claim Group

It is recommended geological mapping be conducted over this claim group where possible, (some areas unaccessable due to steep topography) as there appears to be no surface mapping to date. The program should concentrate on prospective strata and structures generated from the proposed work on the adjacent VMT claims. Again special attention should be given to possible indicators of shale-hosted base metal environments. In addition this work should also examine features relevant to the Ruth-Vermont ore body, such as surface projections of the mineralized Unit N/Unit M contact and projected extensions of the Pinetree, Blacksmith and Windlass lead-zinc-silver vein systems.

It would also be worth while to sample the remnant mine tailings stored on site. As no assaying for gold was conducted (or at least not presently available) on past production and drill core, positive results from this sampling could assist in determing the amount of gold associated with lead-zinc mineralization previously removed from the old workings. A high gold content in the old tailings might be economically recoverable in itself.

8.1.3 BB Claim Group

٩

Further mapping, prospecting and selectively placed lines of geochemical soil sampling should be conducted over the remaining prospective strike length of Units B, D and F which have not been explored in detail to date. As with the other two claim groups this work should constantly explore for various indicators of a Sedex environment.

Detailed prospecting and mapping for gold is recommended at the north end of the claims in the Bobbie Burns basin. The area between and adjacent to the Flying Dutchman, Burns and Ellen D leases should be carefully prospected for any evidence of mineralization, quartz veining and shear zones with particular emphasis placed on northwest and northeast trending systems. All zones of interest should be sampled, trenched where warranted and geologically mapped.

8.2 Phase II

The second phase of exploration recommended here is a diamond drill program. All the drilling is proposed for south end of the project area where mapping to date has indicated a considerable thickening in the Hadrynian shale sequence.

Firstly, diamond drilling (3 holes) should be conducted on stratabound lead-zinc targets, potentially Sedex targets, projected from a new structural model (or a revised MineQuest model) resulting from Phase I work, adjacent to the LCP Zone area on the VMT claims. If the present model is not significantly changed the holes should test the interpreted northwesterly plunge of the LCP sulphide zone.

Secondly, two holes at approximately 75 to 100 m spacings should be drilled on the southeasterly extension of the LCP Zone and the Norcen geochemical anomalies. They should be targeted on a projected extension of the mineralized contact which, at this stage at least, is believed to be associated with the geochemical anomaly.

Thirdly, after geological mapping on the Ruth-Vermont claims has been completed, interpreted and correlated with the VMT geology (above), drilling (minimum of 2 holes) should be done to locate a possible Sedex source to the lead-zinc mineralization. Undoubtedly the steep topography in this area will restrict the availability of drill sites on the surface and the holes may have to drill extra footage to intersect the intended target zones. It is assumed at this time, that drilling from the surface will still be less expensive than reopening and reclosing the mine workings and drilling from underground setups, especially for the limited program proposed here.

Hopefully these holes can be placed to serve the additional objective of bracketing the previous gold drill intersections along strike as well as testing the Sedex model. If dual purpose holes are not possible due either to limited access on the surface or a structural configuration that does not allow one hole to test two targets, two separate additional holes will have to be drilled to explore the gold targets.

9.0 PROPOSED BUDGET

9.1 Phase I - Detail Mapping, Prospecting, Soil Sampling and Trenching

(Assumes 30 field, 40 comp. & prep. and 20 reporting days; 20 helicopter days)

Salaries	1 Project Geologist, 1 Field Geologist, 2 Assistants	\$78,500
Helicopter	20 days x 2 hrs x \$800	\$32,000
Vehicles	1 4x4 truck, 2 ATVs	\$5,000
Motel-Meals	4 men x 30 days x \$80	\$10,000
Mob-Demob	Vancouver-Golden-Vancouver	\$1,000
Orthophoto	VMT-Ruth Vermont area	\$15,000
Surveying	Line-cutting, orthophoto control points	\$15,000
Blasting	Contractor wages, drill rental, powder	\$5,000
Analyses	500 soils, 200 geochem rocks, 40 rock assays, 50 checks	\$14,000
Environment	Baseline ground water study	\$7,500
Supplies	Maps, photos, field supplies and equipment	\$5,500
Shipping and	Communication	\$1,000
Drafting	100 hr x \$46, paper, copying, binding	\$6,000
Contingency	10%	<u>\$19,500</u>
	Phase I Total	\$215,000

9.2 Phase II - Diamond Drilting

(Assumes 1800 m core, 9 holes, 40 day program+ 20 days permitting and reporting)

Salaries	1 Proj.Geologist (50days), 1 Consolt. Geologist (20days)	\$42,000
Contractor	1800m x \$100, bulldozer, water truck, mob-demob	\$235,000
Access	Mob-demobilize bridge on Ruth-Vermont road	\$10,000
Reclamation	Bulldozer, labour, seed, fertilizer	\$9,000
Vehicle	Rental 4x4 truck, fuel	\$4,000
Accomo	Geologist staying at drill camp	\$3,000
Analyses	300 geochem, 80 assays	\$7,500
Petrographic	Microscopic analysis (1996 core and Phase II core)	\$2,500
Supplies	Maps, bags, equipment	\$4,000
Shipping and	Communications	\$1,000
Drafting	100 hr x \$46, paper, copy, binding	\$6,000
Claim Fees	Filing and renewal fees	\$10,000
Contingency	15%	<u>\$51,000</u>
	Phase II Total	\$385,000

TOTAL PROPOSED BUDGET \$600,000

10.0 REFERENCES

- Bottril, T.J. et al 1983: Spillimacheen Project, Geology, Geophysics and Diamond Drilling on the DEB Claims, Golden Mining Division, by T.J. Bottrill, S.D. Robinson and J.A. McCance, Nov., 1983; A.R. #11,806
- Brophy, J.A. and Slater, J. 1981: Report on Regional and Detailed Geological and Sampling Surveys Conducted on Group 1, Group 2, Group 3 and Group 4 of the DEB Claims, Golden Mining Division, by J.A. Brophy, B.Sc. and J.Slater B.Sc.; A.R #10,061
- Cukor, D. 1996: Ruth-Vermont Property, Reclamation Following the 1996 Drill Program; report prepared for the inspector of Mines
- Cukor, D. and Longe, R.V. 1997: Ruth-Vermont Mining Lease Underground Drilling -1996, Golden Mining Division, by D.Cukor, B.Sc. and R.V. Longe, P.Eng, MineQuest Exploration Associates Ltd.; report for Mountain Star Resources and Bright Star Ventures Corporation
- Dearin, C. 1982: Geological Report on Flying Dutchman and Copper Creek Properties Bobbie Burns Basin, Golden Mining Division, B.C., by C. Dearin, P.Geol., Feb. 22, 1982; report for Canadian Fortune Resources Ltd.
- Dearin, C, 1991: Valuation of the Flying Dutchman Mineral Claims Located at Bobbie Burns Basin, Golden Mining Division, B.C., by C. Dearin, P.Geol., Sept.20, 1991: report for Consolidated Canadian Fortune Resources Inc.
- Dearin, C. 1996: Valuation of the Vermont Project Mineral Claims Located at Bobbie Burns Creek - Vowell Creek, Golden Mining Division, B.C., by C. Dearin, P.Geol., Sept 29, 1996: report for Mountain Star Resources Ltd.
- Dickie, G.J. and Longe, R.V. 1982: DEB Project, Geology and Geochemistry of the DEB Claims, Golden Mining Division, G.J. Dickie and R.V.Longe, Oct. 1982, MineQuest Exploration Associates Ltd; A.R #10,823.

Evans, C.S. - 1933: Brisco-Dogtooth Map Area, B.C.; G.S.C. Summary Report 1932

Foreman, H.D. - 1982: Feasibility Report of Ruth-Vermont Mine Ltd.(NPL), March 15,1982, by H.D.Foreman, P.Eng.; an appendix to report on Ruth-Vermont Mine Belt by L.J.Manning & Associates, Sept. 15,1982

Fyles, J.T. - 1966: Ruth Vermont Mine; B.C. Ministry of Mines Annual Report - 1966

- Howe, A.C.A. 1966: Flying Dutchman Property, Bobbie Burns Basin, Golden Mining Division, B.C., by A.C.A. Howe & Associates Ltd., Oct. 20,1966
- Kubli and Simony 1994: The Dogtooth Complex, a Model for the Structural Development of the Northern Purcell Mountains, by T. E. Kubli and P. S. Sinony, July, 1994; Can J Earth Sci Vol 31, 1994.
- Larsen, K.B. 1981: Preliminary Report on the Flying Dutchman Property, B.C., K.B. Larsen, Consulting Geologist, June, 1981.
- Longe, R.V. Feb 1992: Spillimacheen Joint Venture, The Case for Exploration of the VMT and Neighbouring Claims; a summary report by R.V. Longe, MineQuest Exploration Associates Ltd, Feb. 1992
- Longe, R.V. 1992: VMT Claims, Crystal Creek, Geological Mapping 1992 by R.V.Longe P.Eng., MineQuest Exploration Associates Ltd.
- Longe, R.V.- 1993: VMT & Neighbouring Claims, Geological Mapping 1993, Golden Mining Division by R.V. Longe, P.Eng, MineQuest Exploration Associates Ltd., Sept. 1993 - AR #23439
- Longe, R.V. Aug 1994: Spillimacheen Joint Venture, The Case for Exploration of the VMT and Neighbouring Claims; a summary report by R.V.Longe, P.Eng., MineQuest Exploration Associates Ltd, Aug. 1994
- Longe, R.V. Sept 1994: VMT & Neighbouring Claims, Geological Mapping 1994, Golden Mining Division by R.V. Longe, P.Eng, MineQuest Exploration Associates Ltd., Sept. 1994
- MacIntyre, D.G.- 1990: Sedimentary Exhalitive (Sedex) Deposits of Ancestral North America and Related Terranes; G.A.C. Short Course by D.G.MacIntyre, May 1990
- Manning, L.J. 1972: Feasibility Report, Ruth Vermont Mine, for Columbia River Mines Ltd. (N.P.L.), April 1972
- Morrow, J.J. 1995: Annual Reclamation Report for 1994 for Centipede Resources Ltd., Reclamation Permit M-89
- Nolin, G. 1981: Crystal Creek Prospect, B.C., Yearend Report, 1981 exploration Program, October, 1981; internal Bluesky report

Nolin, G.A et al - 1983: Crystal Creek Exploration Program, Geophysics and Drilling on Cochrane Joint Venture Claims (Pro 10, Tect 1 to 4 Cog 2); report for Cochrane Oil and Gas Ltd, by Nolin Geo Enterprises Ltd, G.A. Nolin, P.Geol. T. Dundas, P. Geoph. and A. Vonhof, Ph.D., P.Eng., Nov. 1983

Okulitch, A.V. and Woodsworth, G.J. - 1977: Kootenay River Map Area; G.S.C. O.F. 481

- Pelzer, M.A. -1978: Geochemical Soil Sampling Survey and Diamond Core Drilling, ME Claim Group; report to Medesto Exploration Ltd. by M. A. Pelzer, P.Geol., Brunswick Resources Ltd., April 1978; A.R. #6744
- Price, R.A. and Mountjoy, E.W. 1979: McMurdo Map Sheet West; G.S.C Map 1502A
- Reesor, J.E. 1973: Geology of the Lardeau Map Area, East Half, B.C., GSC Memoir 369
- Smith, L.J. 1980: Assessment Report, Geological Mapping, Geochemical Sampling and Diamond Drilling Program, Group VII (PRO 1 - COG 5); Norcen Energy Resources Limited, L.J. Smith, P.Geol., June 1980; A.R. #8140
- Smith, L.J, Slingsby, A., Laird, R. 1980: Crystal Creek Project, B.C., 1980 Exploration Program, Dec. 1980; internal Norcen Report
- Tough, T.R. 1972: Geological Report Relating to the Ore Reserve Potential of the Ruth-Vermont Mine for the Columbia River Mines Ltd. (NPL), March 1972, by T.R.Tough, P.Eng., Consulting Geologist; report included with Manning Feasibility Study - 1972
- Wheeler, J.O. 1963: Rodgers Pass Map Area; G.S.C. Paper 62-32
- Young, F.G., Campbell R.B., Poulton T.P. 1973: The Windermere Supergroup of the Southeastern Canadian Cordillera, Belt Symposium 1973 Volume 1, Sept. 1973, Moscow, Idaho

CERTIFICATE OF QUALIFICATIONS

I, MARCUS J. GIDLUCK of the City of Calgary in the Province of Alberta do hereby certify:

- 1. I am a practising Geologist residing at 79 Woodglen Circle S.W., Calgary, Alberta.
- 2. I have practised my profession continuously since graduating from the University of British Columbia, Vancouver B.C., with a B.Sc. in Geology in 1965.
- 3. I am a registered Professional Geologist with the Association of Professional Engineers, Geologists and Geophysicists of Alberta, a registered Professional Engineer with the Association of Professional Engineers of Ontario, a Fellow of the Geological Association of Canada and a Member of the Canadian Institute of Mining, Metallurgy and Petroleum.
- 4. I have not received nor do I expect to receive any interest, direct or indirect, in the property described in this report, nor do I own or expect to own any securities of Mountain Star Resources Ltd. or any of its affiliated companies.
- 5. This report is based on a review of selected published reports and all the company geological reports and maps made available in the offices of the Dixon Law Firm in Calgary, Alberta and MineQuest Exploration Associates Ltd. in Vancouver, B.C. as well as a two day examination of parts of the Vermont Project property in June and July 1997.

DATED AT CALGARY, ALBERTA THIS <u>15th</u> DAY OF <u>August</u>, 1997. <u>A Micliuc</u> (

Marous J. Gidluck, B.Sc, P.Geol.

APPENDIX A

GEOLOGICAL DESCRIPTION OF SAMPLES - GIDLUCK, June 28, 1997

- 97-MG-01 Mineralized Deformed Quartz "Vein"
 - Located up slope from LCP Showing on new logging road on north side of Crystal Creek.
 - Highly weathered, gossanous sulphides of pyrite and possible sphalerite and fine grained galena in small quartz segregations in small crenulated folds.
 - Quartz veins semi-conformable to fracture (bedding) cleavage, 120°/ 60-70°E, in grey sandstone grit.
 - Prominent cross cleavage at 015°/80°S.

97-MG-02 Small Mineralized Deformed Quartz "Vein"

- Located 50 metres east of #01 on same road.
- Similar to above but smaller vein, highly weathered.
- In grey silty shales; same orientation as above.

97-MG-03 Highly Weathered Gossan In Fault Zone

- Located 50 metres east on new road then 50 metres north on old drill road.
- Prominent fault zone 5 m wide @ 170°/70-75°W.
- Highly weathered, spongy gossanous lense in fault zone, no fresh sulphides.
- No sample submitted to lab

97-MG-04A Weathered Sulphides in Quartz Boulder

- Located over DDH 80-4 (found original backsite) at Trench 75-3
- Some gossanous sulphides in massive white quartz; assume fresher than 04B(?)

97-MG-04B Weathered Sulphide Lense

- Crude channel sample across eastern sulphide lense in Trench 75-3 approx. 30m west of DDH 80-4.
- Zone of weathered massive sulphides; galena, sphalerite, pyrite adjacent to vertical, quartz filled fault zone.
- General cleavage dip is 60-70° to east but faulting appears vertical, maybe steeply west.
- Sulphide lense on west side of fault indicates probable down-drop to west.
- Mineralization appears to be associated with structure.

97-MG-05 Massive Quartz Vein

- Located in road bank below drill holes 75-2, 79-6 and 80-1.
- Massive white quartz vein material, orientation unknown but outcrops 15m up-slope.
- Appears barren.

APPENDIX B

To : BRIGHT STAR VENTURES CORP. 1020, 833 - 4th Avenue S.W. Calgary, Alberta

ATTN: Gordon Dixon

-

File No : **3 9 2 8 3** Date : July 15, 1997 Samples : Rock Project : P.O.#

Certificate of Assay Loring Laboratories Ltd.

629 Beaverdam Road, NE Calgary Alberta Tel: (403)274-2777 Fax: (403)275-0541

Sample No.	Au ppb	Ag ppm	Cu ppm.	Pb ppm	Zn ppm	
"Geochemical Analysis"						
970MG - 01	5	< 0.1	< 1	43	33	
970MG - 02	6	< 0.1	< 1	32	366	
970MG - 04A	16	3.0	52	1633	680	
970MG - 04B	990	189.0	224	>10000	>10000	
970MG - 05	10	0.5	< 1	250	330	

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples :

To : BRIGHT STAR VENTURES CORP. 1020, 833 - 4th Avenue S.W. Calgary, Alberta

ATTN : Gordon Dixon

File No : **39283** Date : July 15, 1997 Samples : Rock Project : P.O.#

Certificate of Assay Loring Laboratories Ltd.

629 Beaverdam Road, NE Calgary Alberta Tel: (403)274-2777 Fax: (403)275-0541

<u></u>	Sample No.	Pb %	Zn %					
	'Assay Analysis''							
	970MG-04B	7.30	8.30					
			7					
	I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples :							
	Rejects and pulps are retained for one month unless specific arrangements are made in advance.							

APPENDIX I

DRILL LOGS

MINEQUEST EXPLORATION ASSOCIATES LTD.

DRILL LOG - CORE

HOLE NO DDH 96-1

T

CLAIM BLOC	K CODE:	VMR	1
NTS:	82K15	UTM:	
CLĂIM NĂMI		E8215 L418	
LOCATION-	GRID NAM	NE:	MINE GRID
GRID N:	10350N	GRID E:	1600E
SECTION	1600E	ELEV:	6000 LEVEL
AZIM:		LENGTH:	
DIP:	- 90	CASING LEF	T NO
CORE SIZE:		MQ	
CORESTOR	AGE:	ON SITE	

.

SURVEY

DRILLING CO:	ADVANCED DRILLING
STARTED:	OCTOBER 5, 1996
COMPLETED:	OCTOBER 19, 1996
PURPOSE	SEDEX STATIGRAPHY
CORERECOVER	Y:GOOD
LOGGED BY:	K. NORTHCOTE
DATE LOGGED:	OCT. 5 TO OCT. 19
ASSAYED BY:	BONDAR-CLEGG
LAB REPORT NO	Ś.:

Interval	lo	Lilhology	Becking	Structure	Vem	1 Sulptudes in Veins	Suphirles in Serbinerds	Remarks
feel In	feel	and the second sec		,		12		2
DDH 96-01 H	1,277 FT	(389 23 M)		AZIMUTH	ES : 10+350N, 1+600E (1600E CRC	DSS SECTION) INCLINATION : - 90 (vertical)		DATE STARTED. OCTOBER 5, 1996 DATE STOPPED. OCTOBER 19, 1997
0.00	55.6J	UNIT WY ANGLETTE						
3 09	3 50 1 07	Rubble - fill	ian nono destruito de la seconda de la se Intern		Broken vein	Pyrile sp (GA)	-	
3 50 1 07	6 50 1 98	Argilite .	45 deg CA	Massive	-	-	· ·	Massive, locally thin interbeds
6 50 1 98	25 00 7 62	Argilite	50 deg to 55 deg/CA	Weak parallel to bedding	-	-	Disseminated pyrite 1 - 2 %	Bedding locally considuous at 40 deg. CA. Pyrile crystals, Syngenetic v. wear fracturing - atmost sold core
25 00 7 62	26 00 7 92	Argilite	⊷ 8	-	Veiniets (Fracture coatings)		-	Broken interval with thin siliceous coatings
26 00 7 92	57 00 17 37	Silly Arginte	60 deg CA	v weak frecturing	Sparse (Fracture costing)	-	Disseminated pyrite 1 - 2 %	
57 00	57 80	Sity Argitte	ň.,	v. weak fracturing	-	-	Disseminated Pyrite approx 10%	More abundanity disseminated Pyrite @ contact with mineralized vein
17 37	17.62							
57 60	77 00	Sity Arollite and veln	FO deals A	Diokeo	Vein approx. parallel to CA (V)	Sidna patchy by bb sp	disseminated pv 5 - 10%	Vein width? Half core
17 62	23 47	mineralized.		DOWCH				Mineral veln extends beyond core, py crystal at veln margin, finer clusters within veln, less conspicuous crystals, Late white quartz cuts across main veln Two generations inte quartz less mineralized. Veln trends out of core info want at hase of interval. Few thin living interbeds @ 74 ft.
								NOTE: UV lammed - several patches / Recks of blue while Romescence, Run AU + 34 (Drilling additive also Ruoresces)
77 00	85 00	Argilite thin leminated Gredetional, light gray sity	epprox. 45 - 50 deg/CA	Fractures filled with Quartz - mineralization	Varled Cuts bedding approx. 40 - 45 deg/CA vugs nall head carbonate	py pb Sp	py varied to 10% coarse and fine	cut by numerous thin velos 1/8" to 1 1/2" cutting at varied angles across berking - varied. Course and fine py in velos and in wail rock
23.47	25.91							
65.50	92.00	Argilite thin laminated. Gredational, light gray sills	y. approx. 45 - 50 deg/CA	v. week fractures	Wide spaced 6" to 24" 1/4" - 1" wide	py (traces of pb / sp)	py 3 - 5%	Decrease in mineralization. Decrease in qtz - carbonate (dol) velning
26 08	28.04	1	•					
92 00 28 04	97.00 29.57	Argilite banded / laminate / light	d derk approx. 45 - 50 deg/CA	v, weak fractures	Varied Integular cuts in bedding	py (pb / sp)	py 3 - 5%	Light bands no reaction to cold acid.
97.00	100 00	Argilite banded / laminate	d derk epprox 50 - 60 dep/CA	v. weak fractures	Wide scattered irregular veiniets 1/16 to 1/4*	PY	py 3 - 5%	Narrow qtz (carbonate (dol)) weak reaction - powder
29.57	30.48							

			_				81111111		Demaile
Intervi	al In	lo	Lithology	Bedding	Structure	L Veln	Suprides in Veins	Suprides in Sedments	Nerruntis
100 00 30 48	s ło	netres 105 00 32 00	Argrite banded / laminated dark / light	approx 50 - 60 deg/CA	v. week fractures	Wide spaced qiz / car v. weak eff across bedding	bà tọ zb	py 5 - 6 %	Vein @ 101 1" - 1 5" 45 dep/CA Vein @ 103 4 5" - 5" 50 dep/CA Vein @ 103 5 0.25 - 0.5 50 dep/CA Mineralization - 104,3 0.5" 50 dep/CA
105 00 <i>32 00</i>)	119 00 J6 27	Augrite banded / laminated dark / light Sharp boundaries 0 25 - 1 0° taminate Gradational 114 - 119'	approx 50 - 60 deg/CA	v, week fractures	Wide spaced qiz / car	General weak py pb sp	py 2 · loc 5%	Vein @ 106 - 106.75 swam carbonale v. weak effect Vein @ 112 5 2 - 2 5 * qtz / (carbonale) py hb (sp) 114 5 0 5 - 1 py pb (sp) 118 0.25 - 0 5 qtz carbonale py pb (sp) 118.5 0.5 qtz carbonale
1 19 00 36 27	0 ,	130.00 J9 62	Argilite terminated gradational, becoming	approx. 40 deg/CA	Weak cleavage parallel to bedding	cuts bedding @ RT <'s @ 60 deg/CA	General weak py pb sp	py 1-2% local 5% associated veinlets	Veinlets widely scattered, few clusters 0.25 - 0.5" @ 12 weak py 4" - 4.5"
130 00 39 62	0	132.00 40.23	Silly ergilite, thin argilite with Nicker silly laminate bands	approx. 60 deg/CA	v. weak fracturing	qtz / (weak carbonale)	×	py coarse crystals 1-2%	Some rounded silly clasts? Vein @ 132 3* non minerally
132 00 40 23	0	144 00 43 88	argilite, local lhin Interbed silly laminate	Massive loc 65 deg/CA	v weak fracturing Few silp surfaces	ctz 132.6 wesk carbonale ctz 140 wesk carbonale	x	py 1 - 2%	132 6 rdz v 4" 45 rleg/CA non mineralized, weak carbonate at margins 138.0 rdz weak carbonate 3" @ 65 dep/CA v minor py 140.0 rdz with minor carbonate at margins. Disseminate
					144 slip surface approx. 40 deg/CA	qtz 142 weak carbonate	ру рб (sp) (сру 7)		142 qtz with minor cer, mineralized py / pb / cpy ?
144 Di 43 89	0	164 00 49 99	argilite more conspicuous sity laminations	40 - 55 deg/CA	v, weak fractures	few nerrow veinlets 1/8" to 1/2"	ny nh In some veins	py 1% loc 3%	Two generations of z / (carbonate) volns. Few narrow vehicles 155.5° 3° (b 45 deg/CA cids berking Strong mineralized my ob Not assayed. Too narrow!! 159° 7° length butting into core py. Lete, cutting earlier
164 0 49 91	•	182 50 55 6J	argilite / local sitistone thin bedded laminate locally graded increases from interval 144 - 164	55 deg/CA	Nerrow sip surfaces @ 174 5' @ 75 deg/CA	dz / carbonnte velniets, włdeły scattered	py (pb) (sp) (cpy)	py 1% Increasing to 8 - 10% @ 173* conc on bedding planes	Widely scattered qiz / (carbonate) veinlets cut bedding varied attitudes Few well mineralized py, pb, cpy, sp
192.5	0	403.50 122.99	UNIT L GRIT]				
182 5 55 63	0	184 00 56.08	Fine sendstone Argilaceous	A	^	qtz vuggy 183.7 80 - 85 deg/CA	v. weak py	py coarse crystal clusters	
184.0	0	199.50	Interbeckled argilaceous sandstone and "grils"	60 deg/CA	v. weak	qtz some vuggy		ру	184 - 188 Grading from Argilinceous sandstone to grit qLz pebbles to 1/2 Inch. Elongata in preferred orientatio
56 06	9	60.81	Showing variations in "sand" size and argifaceous content, Locally grades to pebble	@ 192 ft.	fractured massive	184 qtz, vuggy approx. 4" @ 85 deg/CA	-		188 - 191.5 argillaceous sandstone 191.5 - 192.2 Intertaminated shale
			conglomerale Locely conspicuous blue qiz eyes.			185 qfz 0.5" @ 20 deg/CA 189 qfz, vugqy 3.5" @ 80 deg 7 CA additional 1/2 - 1"	CG pb nol sampled CG sp nol sampled weak py, trace sp		1922 - 194 Coarse sandstone 194 - 196 Coarse sandstone 196 - 199.5 grit
199 5 60.0	60 1	201 50 61.42	Argillite, leminated light silly with v. fine sandy leminate	50 deg/CA	Cleavage visible on broken ends of core	dz 3/4" @ 50 deg/CA @ 200 "perailel to Bedding	ру (pb)	4 - 5% ry following bedding	
201.5	2	215.00	orit	7	Cleavage visible on	qtz 60 deg/CA	sp	py coarse	202 5 - 203 gtz veln; 6° @ 60 deg/CA. Cluster of coan sp crystals. Wiggy 204 - 212 5 [13] Non mineralized white gtz velns 1/8°
			ergiliaceous		broken ends of core	6" (Nck qtz @ 40 deg/CA 0.5" (Nck	pb (Sp)	1 lo 2%	1-1/2" INck. All (0 40 - 50 dep/CA 214" dz 1-1/2" INck (0 25 dep/CA Non-mineralized

Interval		Lithology	Bedding	Structure	Vein	Sulphides in Veins	Suphides in Sedments	Remarks
leet	to feet							
215 00	224 00							of pebbles with distinct thrish lint. Ovoid. Preferred
		grit with	50 deg/CA	Cleavage visible on	qlz vein 1/4"	-	Fine disseminated	orientation, Sandy Interbeds @ 215, 219
65 53	68.28	finer sandy interheds	opposite to velo	broken ends of core	@ 45 deo/CA		DV 1% +/-	Smell fault Reverse 20 deg/CA approx. 1" offset, Smell tensolds douge.
		Pebbles approx 1/4"		small fault approx. 1/8" offsets	S			
				dz vein @ 219 approx 1" offset				
				approx. I oneor				
224 00	238 00	-	60/202	Cleavers on broken	dir velo	N/A	Fine disseminated	atz (carbonale) 2" @ 25 deg/CA coincides with small sip
68 28	72 54	Interbeds Pebbles approx. 1/4"	ethox	ends of core approx. 55 deg/CA	2" @ 25 deg/CA		py 1% +/-	
		to 1/16" in finer sections			otz velo	Week mineralization		ntz (carbonate) 14" wide
55		approx 30 deg/CA			30 deg/CA	to nil py		Assay - AU +34
		thin sendy layers (sperse)			14" wide			and address and a
		(qtz vein	weak to		226 - 229 finer grit interbed
					35 deg/CA 2" wide (0 235 5	nlipy		
					6			
					otz / carbonata velo	-		ofz / carbonate vein @ 238' @ 35 deg/CA, 1" wide, non-mineralized
			<i></i>	7				230 241 Firm maked interval
238 00	256 50 78 18	Grit with finer interbeds medium to coarse sendstone.	@ 70 deg/CA	Cleavage weak @ 10 deg/CA	see remarks	non-mineralization	py 1 - 2 %	243.5 - 246 Finer grained interval
		argilite conspicuous blue que		0				250 253 6 Final states of interval
	15	pebbles						Q 246 - 3" wide slicified Q 40 dep/CA
								239.7 - 242 5 dz veins 0.5 - 1" wide @ 40 to 70 deg/CA
					de / cerbonala	(m)		252 5 Approx 10" wide v. weak mineralization (252 - 254 GEO AU + 34)
					eff HCL powder	(pb)		255.5 qtz vein 0.5" @ 50 deg/CA
366 60	775.00							256 5 - 257 rtz vein 6" wide @ 50 deo/CA
230 30	213.00	Grit with 'liner' interbeds	@ 50 deg/CA	Cleavage weak	qtz / (cerbonete) 6"	-	py 1 - 2%	Non-mineralized. Vugs
78 18	83.82			O annual 10 destCA			sightly more	257 5 - 261 'Finer' coarse to medium anglitie SS becoming coarser towards base of Interval
		erglieceous		B atdrox 20 get ov	ntz / (cerbonete) (3)	-	abundant in liner	261 - 274 7 Coarse Gril
		•			@50 deg/CA		intervals	274.7 - 276 'Finer' Interval
								259 - 259 5 (3) dz veins approx, 0,5" each Each g 50 deg/CA.bul intersect
					dtz / (cerbonate) (7)	(pb)		201 - 203.5 (1) 1/8 10 1/2 g 40 000/CA Traces of po/
					1/8 - 1/2" @ 40 deg/CA	(sp)		267 - 267.5 qtz 6" wide @ 60 dep/CA. Non-mineralized
					qtz / (carbonete) 6" @ 60 deo/CA - 267"	-		268.5° arginaceous incusion 270.5 - 273.5 (8) 1/4" to 1/2" @ 50 - 60 deg/CA. Barren
256 50	275.00							274 - Two Intersecting, Each 21" wide, Barren, 70 deg
		contid			gtz / (carbonate) (8) 1/4 - 1/2" @ 50 - 60 deg/CA			and 30 deg/CA
10.10	03.02							NOTE: dz / (carbonate) veinlets this interval not sampled
		@ 275 - coarser / fine	@ 50 deg/CA		gtz / (carbonate) (2) Intersecting each 1° @ 30 deg and 70 deg/CA	-		for assay - Barren to traces po / sp
		connect roodding	8		@ 274			
275.00	206.00							3 . 6 < 1° angliaceous inclusions. Approximately 15 ptz
213.00	200.00							stringers this interval 1/8 - 1/2", minor carbonale, not
		Gril conspicuous blue of z	approx. 50 deg/CA	v weak cleavage	Small veins	NII	py 1% Fine / medium	mineralized.
63 62	80.22	coarse sandsione / silceous		approx. ou ocycon	00-10 00g or 1			
		Interbeds					crystals	276 - 278 Coarse - sandy interval
								291 - 294 Grit has more sliceous appearance (less
								argilaceous metrix)
296.00	317.00							298 - 309 (15) qtz / carbonate veinlets, non-mineralized,
200.00		Cell consolerious	anotor ADEO dealCA	Folalion	(15) dz (carbonata)	159	DV	carbonate is calcile.
90 22	96.62	ont, conspicuous	abbiox, anon nethow	r vrauvii	first der fem permist	1977		sendstone with darker Tiner's and stone interbeds.
10000		blue atz pebbles. Interbeds		@ 30 deg/CA	1/4 - 1/2"		approx. 1-2% fine / medium	argilite
		or medium-coarse sendstone		(MGBH CHORARDA)	abbiost on only out			

Interval	lo	Lithology	Bedding	Structure	Vein	Suphines in Veins	Sulphides in Sedments	Remarks
feel meires	lo feel to moires	Ighter colour less argifaceous, more			approx. 70 deg/CA			
	224.00	siliceous			(young)			147 154 tottant materials measing while as much
96 62	101 80	giz vein system locally	-	Massive	qtz vein system wider then drill core	v. weak py	ру	317 - 334 Q2 (carbonine) vein imissive write v went minenized, Apparently +/- parallel to CA. May be only a few inches write naming approxy parallel to CA - possibly linker: Geochem Al + 34
		wall rock +/- parallel to CA Few	r:					NOTE: Assay interval 314 - 339 AU +34 in 5' assay
		short intervals / diffuse partings silicified Gril / sandstone						
334 00	339 00	dz Grit with	approx. 45 deg/CA	Cleavage @ 75 deg/CA	atz silicified.	-	Py v, fine / wide	337.5 - 339 Partially silicified with slightly diffuse margin vein 1.5° @ 50 deg/CA. Accompanied by two veiniets 1/8 to 1/4° wide below larger vein.
101.00	103.33	coerse sendstone		Alable of cloker core circa			scattered medium crystals 1-2%	[Included in interval of qtz veins 314 - 319]
103 33 339 00	343 50 104.70	Sandstone argillaceous fine grained medium gray Speckled with medium gray soft, Grains (lithic fragments?)	-		-	-	py < 1% loc 3% fin	Has a specified appearance - sampled for TS.
343 50 104 70	354 50 108 05	Sendstone, medium to coarse Few blue qiz eyes interbedded with grit @ 346.5 - 354.5	spprox. 45 deg/CA Foliation spprox 20 deg/CA	Weak approx, parallel to CA	Two small veins @ 346.5 and 348 approx. 1" @ 45 deg/CA 349' 2" qtz (carbonate) @ 45 deg/CA	Barren	sparse py approx. 1% fine / medium	343,5 - 346 5 Sandstone 346,5 - 345 Grit 345 2" thin argliaceous layer @ 45 deg/CA
354 50 108 05	375 00 114.30	Course Grit 354 5 - 357.8 Loc grit shale 1/2" speckled unil 357.8 - 364 grit / Grit 364 -	@ 70 deg/CA	-	(4) small veins varied attitude 1/4 - 1/2" (hick one convoluted	Trece sp	sparse to 1-2% In Grit	
375 00	384 00	qiz veins, massive while. Near		Slicken surfaces in	qtz (cerbonate)	v. weak	py In	disseminated blue / white fluorescence and regular patterns
114 30	117.04	continuous with irregular screen of shale and grit / Gril.	5				Suble to 2% costse	NOTE: Sample Interval 374 - 384 AU +34
384 00 117 04	385 50 117.50	Grit / loc Grit Feiny uniform light gray			-	-	py fine to medium 1-2%	Pale cream - brown mineral fluoresces blue / white
385 50 117.50	394 00 120.00	Interbeds Few v. narrow beds argitaceou	approx. 60 deg/CA 8.	8 - 8	(5) veins 1/8 - 1/4" @ 50 - 60 deg/CA	ру	py (med) 1-2% loc 5% associated with veins	
394 00	397.00	Sendstone specked medium			-	-	py medium/	Sedimentary rock with a pseudoporphyritic, Same as sample from 342.5 for TS.
120 09	121.01	grained in a v line matrix (lithic grains 7) 396 5 - 396.7 Isminated argilita	approx. 50-60 deg/CA	se of 1−1	qlz/ (calc) 1/4" perailel to bedding	-	py medium/ coarse 1%	* · · · ·
397 00 121.01	403 50 122 99	Sendstone medium / coarse Light coloured	approx. 60 deg/CA	-	qtz 1/2" 45 deg/CA	-	py traces	
403.50	499.00 152.10	UNIT K ARGILLITE TAR	GET SHALE"					
403 50	405 50	ergilite thinly leminated with sittstone / fine sendstone	approx. 65 deg/CA	Foliation @ 25 deg/CA pattern of	sparse qtz (cerbonate) veins 1/2" @ deg/CA	-	py (coarse) 1 - 2 %	NO EVIDENCE OF MASSIVE SULFIDES
405 50 123 60	406 50 123.90	Grit as for grit unit above			olz approz, 45 deg/CA 1/2" Wick	-	py weak fine / medium disseminated	
406 50 123.90	439 00 133.81	ergilite thinly laminated with sitistone / fine sendstone	50 - 60 deg/CA	Cleavage	Widely scattered thin 1/8 - 1/4" alg (cerbonate) veinlets	-	py, fine	Some graded beds. Non calcareous

(and the second second

1

[100 F]

1

.

I liden int		Likelen	Batton	Claubas	1 Vala	1 Siddyidas in Veine	Subtides in Sectionards	Remarks
feel la	o feet	Lilhology	Bedding	I Siruciure	Vein	Suprides in venis	1 copilities in octiments	000000
439 00 133 81	0 metros 459 00 139 90	argilite thinly laminated	50 - 55 deg/CA	Folation @ 20 deg/CA	442 - remarks	py weak	py scattered	Noncelcareous locally v weak graded bedding 442 - (3) 1/8 - 1/2" (0: 45-50 deg/CA in tight cluster, qtz /
		with villy argitule lighter sillstone few lighter bands argitule sillstone to v. fine sandstone	60 deg/CA	@ 20 deg/CA	443.5 - remarks 448 remarks Yellow lan mineral with dz. Weak reaction cold HCL when powered		medum / coarse 1 - 2 %	(carbonate) 4435 - 2" (0 70 deo/CA 448 - 1/4" (0 75 deo/CA sample TS. No Fluorescence NOTE: 444 - 449 - 5' Interval analite _ sampled for AU +3
					powdered			
459 00 139 90	473 50 144 32	Laminated argilite with varied abundance Interbed sitistone One or other locally predominate	approx 65 deg lo CA	Folation 20 - 25 deg/CA (Weak cleavage) 464 Small shear zone	dz (carbonate) 2" @ approx. 60 deg/CA @ 459.2	py in wall rock associated veins	py weak medum coarse loc 2-3% associated vein	Leminale range in thickness from 1/8" - 2"
473 50 144 32	476 00 145.08	Laminated argilite / argilite silistona cut by mineralized giz veins	approx. 65 deg/CA	Folintion 20 deg to CA Weak cleavage	qiz veins see remarks	ру sp pb	py fine to medium associated with veins	473.5 - 474 glz vein 6° @ 55 deg/CA 474.5 0 5° glz / (carbonile) @ 70 deg/CA 474.5 approx 12° glz / (carbonile) @ 15 deg/CA Irregular loc paralel to CA PYRITE
								V141722 SAMPLED FOR ASSAY pb an AU ag CU
476 00	484 00	Laminated argilite	approx 55 deg/CA	foliation 20 deg/CA	see remarks	Traces py	РУ	Varied abundance argilite vs sity argilite. Poorly developed graded bedding locally.
143.08	147 52	ergifeceous sitstone	approx 60 deg/CA	(wesk cleavage)			sparse, scattered coarse	40, 45, 60, 70 deg 60 deg/CA Sides of widest vein not parallel to
484 00 147 52	486 25 148 21	Limey argilite sillstone. Grading to fine imay sandstone. Lime ends about 3° above base of sandy bed	approx. 60 deg/CA	v weak foliation			py fraces coarse at top	
485 25 148 21	499 00 152.10	3" noncelcereous sandstone at top. Laminated argiitte / sity	60 / 65 deg/CA	v weak foliation	494 ntz (carbonate)	- :	py weak fine / medium	494 (3) veins, 1/4 to 1/2" (+), spprox. 60 deg/CA
1 499 60	1277 00	ergilite. Bottom 6" sendstone		0 15 deg/CA				SAMPLE 103-151 AU 134
152.10	389.23							
499 00 152 10	514.00 156.67	Interbedded gradallonal medium and coarse sandstone grading into and out of Gril. Few more argillaceous intervals Shale interbed @ 504.5'	@ 50 deg	Incipient foliation	dz (b. 503.5 3/4" (b. 25 deg/CA (b. 504.5 skims core livCiness? (b. 507.1/4" 45 deg/CA (b. 509 inegular (b. 512 eprox 1/5" (b. 45 deg/CA intersecting 1/4" (b. 20 deg/CA	-	py sparse	Gril has locally conspicuous blue qiz pebbles
514.00	534.00			9 8				Medium sandstone 521.5 - 526 becoming coarser
156.67	162.76	Interbedded Gril Medium Sandstone	@ 60 dep/CA @ 70 dep/CA	Weak foliation visible on bedding	516 5 - 517.5 dz Messive @ 15 deg/CA		ry weak Fine / medium	grained towards base of interval.
			g us appen		524 qtz skims edge of core	-		Medium / coarse sandstone 530 - 534 525 - 528.5 (5) dz veiniets spaced approx. 1' apart 1/2' to 2' Barran varied orientations
					eve fullarite			
534 00 162 76	540.00 164.59	Coarse sendstone grading	@ 50 deg/CA	Weak foliation	See Remarks	py (pb)	py traces	Shows both gradational and sharp contacts between
		to grit cut by qt2 veins.		epptox, 13 degram			medium	534 - qtz 2" @ 45 deg/CA py fracture controlled and clusters.

1.1

1

535 - 538 ofz 1° @ 15 dep/CA weak disseminated py clusters ends @ 538' @ 45 dep/CA

NOTE: Sample 534 - 539 dz veins and grits wall rock Au +34 because of v. weak mineralization

Interval		10 1	Libology	fieddog	Structure	Vein	Subhides in Veins	Sulphides in Sedments	Remarks
feel	10	Teel	CHINO Y	USUNINY		La constante de la constante d			
642 50	10 1	metres 547 50	gril to top of interbed	approx. 50 deg/CA	-	atz (carbonate) @ 646 3/4" @ 10 dea/CA	barren	pyrile sparse fine	Gril to approx, 1/4" conspicuous blue quartz gril
122.03	1	<i>121 30</i>	from there on clast supported less argliaceous few narrow finer sandy interbeds			sightly diffuse margins			
647 50 197 36		655 50 1 <i>99 80</i>	ellemating sequences of graded o graded beds from fine at top to gradually	approx 60 deg/CA	weak cleavage approx. 80 deg/CA?	ctz (carbonate) @ 650 1/2" wide 75 deg/CA vuggy @ 650 wide	berren	nyrile sparse fine to medium	[Pipe dope fluoresces blue / while]
			coarser to Grit sharp bedding boundary between base of Grit to fine underlying sandstone		locally visible	approx, 20 deg/CA runs approx, 12" @ 652 1/2" wide approx, 25 deg/CA carbonate	ь barren		
655 50		661 00							Interval ends in thin argilite partings in coarse
199 80		201 47	predominantly Gril stemating coarse and liner grit <1/4" to 1.0" Few short linder infervals of coarse 55 / grit & argillaceous parlings	approx. 70 deg/CA	-	656 (Jz 1/2" @ 35" CA few smail difuse dz veln 658 5 1/4" @ 10 deg/CA 659 2" @ 50 deg/CA	barren trace py	pyrile sparse fine / med	erginceous 59 / gnt few smail diffuse quartz veinlets in Grit not recorded
661 00 201.47		680 50 207.42	Grit / coarse grit fairly uniform interval grits approx 1/4° conspicuous bit quartz Darker bands indicate >argiliaceous content	approx. 60 deg/CA We	wesk foliation on broken core ends	few nerrow 1/8° - 1/4° qtz veiniets	trace pry (pb)	traces line py	
680 50		704 00							Angular / lensoldal shale fragments "rip-up clasts" @
207 42		214 58	Grit matrix supported Interbeds more argitaceous matri finer grits grading to coarse grits	approx 60 deg/CA Ix and/or	weak foliation approximately parallel to CA7 15 deg to CA	691 qtz / cerbonete 1/4* approx. 20	0-	fine pyrite slightly coarser and more ABD in argilite	684, 687, 688, 698 incorporated in Grit Vein more calcareous than most to this point @ 691*,
704 00		717.00	Gril to "coarse sandstone"	-	folation / cleavage 10 deg to 15 deg	704° qlz 3° approx. 50 deg/CA	-	traces line py	Non calcareous conspicuous blue quartz grits to approx. 1/4"
214.00		210.04	(darker) of Interval Grading to Grill at base . Finer argilite 55		lo CA				Bruce noted disseminated arsonopyrite in argitte 55 / Grit
							,		716-717 above brecclated vein . Note: Assenopyrite in wai rock above vein system, v. fine disseminated arsenopyrite could easily be missed. If this interval carries values, similar intervals above shouth be RECHECKED!!!!! Five andiacours sanddones.
717.00		719.00	more abundantly argillaceous	-	broken veined by dz / carbonale	717 qiz / carbonate breccla at top	erseno pyrile "v. palchy"	pyrile 2-3% s(senopytile	Disseminated arsenopyrite in argifaceous 55 / Grit and in argitite. Also fracture controlled in quartz / carbonate vein
719.00		722.00		*1				6 - 8% loc	Less abundantly mineralized than wall rock. Arsenopytte
219 15		220.07	quartz (carbonate) contains irregular screens / mass of argillaceous wall rock	505	-	Massive 719 - 722	ersenopytile pytile mainly in argilaceous screens	arsenopyrite pyrite in argliaceous screens in qiz	occurs within argifile
722.00		724.00	fine / medium argilaceous	epprox. 50 deg/CA	weak foliation	dtz @ 724 1/4" @ spprox, 80 CA			Material in quartz
220.07		220.68	minor Grit		approx. 20 deg/CA				
724 00		728.00	medium to coarse	approx. 80 CA7	- 200 - 110 	atz 2-1/2" @ 45 deg/CA @ 726" cerbonele		disseminated py poss	727' some fine disseminated arseno
220.68		221.89	argillaceous sandstone					arseno in small amounts @ 727*	
728.00		736.00					222	decominated my week	Arsenopyrite not noted in liner interbeds or in argilite
221.65)	224.33	Gift with Interbeds fine / medium and coarse sandstone, argilaceous small	2 - 2			-	In finer inter beds	Conspicuous blue qtz to 7-1/4*

Interval	lo	Lithology	Bedding	Structure	Vein	Subhides in Veins	Suphides in Sedments	Remarks
Teel metres 736 60 224 33	to feel to metres 750 00 228 60	Grit fairly uniform coarse with pebbles to 1/2" conspicuous blue and		-	(5) qtz vehiets < 1/8" to 1/4" @ varied attitude	traces cpy in wall rock arisecni to velniet @ 744	v. weak disseminated py disseminated py in rip ups	ergillte rip ups @ 743 end 745
750 00 228 60	755 00 230 12	nne gu: finer gril with interbed finer sandslone interbeds 751 - 752	approx 60 deg/CA	foliation @ 15 deg	diz 752 approx. 5" @ 60 deg/CA diz 754 approx. 2-1/2" @ 30 deg/CA	traces of py black smear	trace fine py	carbonale and sericite associated with qtz veins
755 00 230 12	759.00 231.34	dense siliceous zone et top becoming argillaceous at bottom 1.5'	-	-	756.5 rdz / carbonate 2" thick @ 50 deg/CA (2) smaller	disseminated py al vein marg	-	Silicified zone cut by quartz vein @ 756 5'. Drusy / Vuggy fractures
759 00 231.34	769.00 234.39	Incure questrile pale ergileceous matrix fine / medium grained few darker argilaceous patches / saddes on core short interval (11) Grit near base of int.	-	foliation approx. 25 deg/CA	768 qiz 1/4° @ 80 deg/CA	-	weak disseminated py	Few narrow vuggy open fractures
769 00 234 30	791 00 241.10	eternating fairly thick sequences of gradation from fine / medium argilaceous sandstone through coarser sandstone grading finto grit conglomerate cycles 10 to 15'	epprox. 50 deg/CA	follation approx. 20 -25 deg/CA	¢t2 1/4° @ 772 @ 60' CA	-	v, sparse fine py	
791 00 241.10	826 00 251 76	Gril / med / coarse 55 showing varied abundance of disseminated gril scattered livin argifaceous laminee	-	fotetion @ 30 deg/CA cleavage 30 deg/CA	qiz vein 791.3 1/2" @ 35 deg/CA , qiz vein 607 1/4" @ 25 deg/CA	-	v, sparse fine py	Shows strong foliation / cleavage, Fractures filled with drusy dz. Drusy crushed zones locally siliceous
826 09 251.76	844.00 257.25	Interbedded sequences of fine argitaceous sandstone generally through medium to coarser lass argitaceous 55 into grift with waited aburdance and faccous of grift, thin And faccous for grift, thin And faccous for grift, thin	арргод. 30 deg/CA	foliation @ 20 deg/CA local crushed intervals approx, 35 deg/CA	qtz 929/5 12" (§ 80 dep/CA local contented qtz 641.5 1/2" contented	PY	traces line py	Local crushed intervals
844 00 257 25	662 00 262.74	Interbedded Grit and medium to coarse grained 55 where grit become sparser 55 tight to med gray siliceous 855 becomes darker, grit more conspicuous	- 	folation 20 deg/CA	qiz 844 3 1' @ 50 deg/CA qiz 845' difiuse '1-1/2' @ 45 deg/CA qiz @ 85 deg 2' 70 deg/CA vuggy	minor coarse pb py	-	- *
862.00 262 74	871.00 265.48	approx. 4' of Grit poorly sorted matrix supported weakly ergiteceous matrix followed by coarse - medium sandsione with ergiteceous matrix shale rip-up clasts '(7) et	spprox. 60 deg/CA	folisiion 30 deg/CA	qtz *1/2* @ 869.5 30 deg/CA 869.5 30 deg/CA 869.5 - 871 approx. 8 1/8* qtz stingers various orientations	- 1 22.	Treces fine-med py	Generally becomes finer, derive toward bottom of Interval, but with thin giz vehicles. More abundent py neer shale clasts cleaves along foliation
871 00 265 48	874 50 266.55	Grit, creckled, filled with giz et lop of intervel grit to 1/4" -	-	foliation 40 deg/CA	qiz 1/2" @ 872 65 deg/CA	coerse pry	traces Rne-med py	Blue giz eyes visible even in sitclifed material Sample 871-873 troken, giz filled zone, including py rearing veln - Au + '34

more siliceous then 862'

Interval	10	Lithology	Bedding	Structure	Vein	Suphides in Veins	Subhides in Sedments	Remarks
lee!	to feel							
674 50	894 00	medium-coarse sandslone		fehalion	874 5-879 approx. qtz veinlets	_		Cleavage fairly well-developed
266 55	272 49	weakly argillaceous matrix, a		IOUBIION	Irregular approx. 75 deg to CA	-		
		few shale / silly rip-up clasts		30-35 deg/CA				
		gredes greduely into matrix			c/z '879' < 1" irregular, diffuse, some	_	traces	py more abundant in "rip-up clasts"
		supported Grit			carbonate, sericite		fine-med py	
		1/4" foliated			qtz '1" @ 882 approx 80 deg/CA. v. dilluse	_		Minor carbonate in veins reacts with cold HCL only when powdered
					qtz '1/2" @ 884 30 deg/CA	-	sparse	
					dz '2" @ 884.5 diffuse crackle	trace pb, pry	med-coarse py	
					rilang rdz "2-1/2" @ 886 40 deg/CA			
					smell vugs	-		
					qtz 889.5 kreguler stringers to 1/4"	- 1	891' = 1% fine-med disseminated py	py becoming slightly more abundant toward base of Interval 889-894
		•			qiz '2" @ 892 3 75 deg/CA vugs, minor carbonate	-		Carbonale forms "nails head" crystals in open spaces. Also described up hole AT ?
894 00 272 40	914 00 278 59	coarse sandstone et top of interval grades into grit	-	foliation argitaceous 20-35 deg/CA ERR	qiz '1/4" @ 895, 85 deg/CA	py, pb, sp	sparse med- coarse py	py becomes sperser lowerd bottom of Interval
		matrix, poorly sorted, millio 1/4"	eous	5" or "7" folds indicated	qtz '1/2" @ 898 diffuse	-		A few shale rip-up clasts present in this interval
				by some veins	qtz /1.4° @ 901' erprox. 35 deg/CA (deformed)			
					ctz *1/2" () 903' 90 deg/CA minor vugs, cerbonate	_	-	Several diffuse, discontinuous veinlets or qtz "sweats" are not described as veins.
					qlg '1/4" @ 905 30 deg/CA	-	-	Veins at approx. 30 deg/CA follow foliation planes
					qtz *1/4+ 1/2" @ 907 90 deg/CA two velnets with minor cerbonate	-	-	-
					907-909 4 1/8-3/8" diz velniels approx. 35 deg. CA deformed	-	-	-
					909 5 2 1/4" veinlets one with minor carbonate 85 deg/CA and 30 deg/CA		-	Crosscuting relationship indicates the carbonate bearing 85 dep/CA vein is later

Internet.		Libelan	Dathor	Sinches	Vein	Subbides in Veins	Subvides in Sedments	Remarks
feel	In feel	Linoiogy	Bedand	Siructure	Ven	- outride in cent	301-002 11 000-10103	
914 00 278 59	to metres 920 00 280 42	Grit foliated, argilinceous matrix, poorly sorted, grit to *1/2 " thin interberts of fine-med sandstone	approx. 50 deg/CA	foliation 25-35 deg/CA	qiz "1/2" @ 915.5 85 deg/CA vuggy	sparse fine- med py	- "	
					qtz "1" @ 916 65 deg/CA vuggy	-	2 — 1	7
					. qtz '1/4" @ 918' 90 deg. CA, mind	-	-	grit has variable argilaceous matrix (i.e., lighter and darker sections)
920 00	934 00	fine-med sandstone	approx. 50 deg/CA	foliation 30 deg/CA	qtz '1/4" @ 922 80 deg/CA minor	py, med-coarse	traces of fine	Blue giz eyes which characterize the coarser rocks up hole are present, but rare
280 42	284 68	med gray colour (greywacke) argillaceous or slaty parlings along		= clesvage	qiz '1/4" @ 925 80 deg/CA minor	-	-	A few shale rip-up clasts Rock appears sliceous in places, but retains medium gray colour and staty partings
		Totalion - argrectory mains			qtz "1/8-1/4" @ '924-934, ali in 30 deg/CA (Il foliation)			ξ
934 00	944 00	med-coarse sandstone	-	foliation 35 deg/CA	qtz '2" @ 935 5 approx, 35 deg/CA II foliation	(GA)	sparse line-	Integular black argitite or slate inclusions probably present shale rip-up clasts
284.68	207.73	poorly sorted with some grit-si. clasts medium gray colour (greywacke) weakly '(7) argitad	ze	= cleavage	5		approx, '2% near	and the second
		metrix - perts along foliation			qtz '2" @ 937 60 deg/CA buggy. v. minor cerbonete	-	veins possible trace chelco @ '937'	by concentrated on togenou heaves
					dz 11/4 @ 937.5 approx. 60 deg/CA. two	-34		934-939 sampled Au+34 V141734 includes several small qtz veins.
					carbonate diz '3/4" @ '938 5 80 deg/CA minor carbonate	-	Ξ.	939-942 contains most the "rip-up clasts" and few qtz veins
					qtz *1/4* @ 939 approx. 45 deg/CA irregular	-	-	-
					935-944 c/z '(3) 1/8-1/4" 35 deg. CA '(8 foliation)	-	-	-
944 00 287.73	951 50 290.02	coarse sandstone to Grit poorly sorted, grit up to "1/4" foliation, argliaceous matrix.	epprox. '50 deg/CA? (value)	foliation 30 deg/CA	qtz *1/4* @ 945 30 deg/CA	-	trace fine- med py	Blue qLz eyes still present
		thin interbeds of med grained sandstone			dz '1/2" @ 946 90 deg/CA	-	locally approx. 2%	Shale clear (7 at '951' occupies '7.1" of the core had
	÷						@ '948 near vein	sides not persiel A- doesn't look like bedding
951 50 200.02	959 00 292.30	coarse sendstone to Grit poorly sorted arti to "1/4" foliated, less	not detectable	foliation 40 deg/CA	qiz '1/4' @ '953 80 deg/CA	-	trace of fine- med py enhedral up to '2% either	- .
		ergfleceous matrix then					side of vein '6" m 958	

Interval	lo	Lithology	Bedding	Structure	Vein	Suphides in Veins	Sulphides in Sedments	Remarks
feel lo	Teel							
959 00 to	964 00	coarse-med sandstone	not detectable	foliation	qtz '(15) '1/8-3/8" @ 959-960.5 -		Trace of fine-	Rip-up clasts argilite, irregular but generally deformed and dragged along foliation planes @
292 30	293 83	foliated little argilaceous matrix		40-50 deg/CA			med py enhedral	962.5-964.
					qtz '(2) '1/8-1/4 irregular disp, pinched 961-963		959-960.5	cunitz posidates the argilite clasts + deformation of argilite
964 00	974 00	coarse-med sandstone	, not detectable	foliation	qtz *1* wide *8-shaped open space drilling		Trace of py	More foliation, fracturing again more pronounced 1969-974
293 83	296.88	fokated small amount of			enhedral (crystals) '964-967.5 '10			
		ergillaceous metrix		45-50 deg/CA	oleg to citz '1" irregular '80 deg/CA @ 968		968-969	
					qtz 11/8-1/4 open space filling 10 deg/CA @ 968 alz 11" irreauler @ 969.5			
		3			dz '(2) '1/4-1/2" @ '973, 65 deg/CA			
974 00 296 68	979 00 298.40	coarse sandstone poorly sorted up to 10% *1/8-1/4* grit	-	well developed foliation '40 deg/CA	qtz *1/8* 30 deg/CA @ 976.5 -		few fine disseminated blue diz eyes 1/4" '975-977	
979.00	983.00	gril poorly			-			Rip-up clasts of argilite sheared along foliation @
			-	foliation '25-	-		82 44	979-982 5 the diz eyes throughout section disseminated
298 40	209.62	soried to poorly soried coarse sandstone argilisceous matrix		40 deg/CA			36 2	occasionsBy
963 00	988 50	grit poorly	-	foliation	qtz '(4) '1/6" to 1/4" attitude		disseminated fine py	Occasional blue of eyes
209 62	J01.20	sorted		35 deg/CA	dz 11/4" '60 deg/CA @ 984		< 1%	Note: 15 degr.A dz ven onsets 30 deg. Intersection each other at approx. '50 deg
					atz 1/8" 15 deg/CA @ 984.5-985			
					open space filing			
					dz 1/8" 30 deg/CA @ 985			
					giz '3/8" 35 deg/CA @ 986.5			
					qtz '1/4" irregular attitude due to offsetting			
988 50 Joi 29	1006 00 306.63	v. poorly sorted grit metrix more srgilite	-	foliation 40-50 deg/CA	qtz '(3) '1.8" 80 deg/CA @ 990.5 -	a.	med-coarsa enhedral crystals If py to '5 deg In '3' wide band @ 990	Many ergilaceous rip-up clests
1006 00	1011.50	grit poorly			qtz '1/2" '70 deg/CA @ 1007		tota fina cont-1	srd#ite band '(10" along CA) approx, '30 dep/CA contacts to drit . Blue diz eves '1/4" dia 40 1010
306.6J	308.31	sorted with qtz and white dat clasts up to	vegne 70 deg/CA 7	poony developed foiletion approx, '25 deg/CA			of py	annan a fu i sua de star ur ar 6 lais

Interval	10	0	Lithology	Redet	vd	Sinchre	Vein	Sublydes in Veins	Sublydes in Sedments	Remarks
feel	lo fe	eel	Currony	0000	1		× 3m			
metres	to me	elres				fatalian mad	atz '(2) '1/8-1/4" 80 deg/CA @		fine mad much	Binney dia to share planes
1011 50	101	19 00	coarse sand-	-		Ionation mod-	1012	-	tine-med py is	Muscovite in snear planes
308 31	310	0 59	stone to grit			moderate-wei			ennedrai crystais	1013-1014 band or np-up class of arginite
			gradational			developed 40	qtz '(2) '1/8" 80 deg/CA @ 1016		and as deformed crystals	
			changes top			deg/CA			(one observed	
			 bottom to gnt 				qtz '1/8' '80 deg/CA @ 1017		with including dig	
									crystal paper auton-	
									appears to	
									places up to '1%	
									A 1013 1014	
									Q 1013-1014	
									fine my < 11%	
									disseminated along fotation	
									@ 1016-1018	
									8 1010-1010	
1019.00	103	23.00					d+ 10 18 35 deat & @ 10 14			
	104		eril .			foliation	Intervals	-	odd speck of	Blue of eves from '1020-1023.
110 50			U 1	-		decreasing	@ 1018 1077	-	the "floe enherical	
310.50	31					from lop of	Q1018-1022		crystals)	
				* C		section 35 deg			0,100,0	
						CA				
1023 00	103	34 50								pyrilization concentrated around the vein; some by
			coarse-med	vague '30 deg		poorly-mod	qtz 1/8-1/4 40 deg/CA @ 1027.5		-	crystals occur right within vein, but at no
311.81	31	5.32								greater concentration than in the immediately adjacent
			greined send-	to CA? (not		developed				wal rock
							qtz '(carbonate?) v. weakly			
			stone	coincidental	<u>5</u>	foliation '30 deg	reactive with	py med-coarse	pry med-coarsa	
				to foliation		lo CA	HCL) '1/8" 80 dep/CA @ 1030	enhedral	enhedral	
				attitude)						
							qtz to '1/8" '30 deg/CA @ 1032			
							1011-1014			
							1033-1034			
1014 50	101	18 50					ntz.carbonala? "US" 70 dan/CA @			pyritization concentrated '4" either side of year no py
	.0.		fine arit '1/8" clasts	veque '30 deg		poorly de-	1038	-	pry med deformed	within voin
315 32	31	6 53	few grains '1/4" mod	CA? 'tegain not		developed			crystals	
			sorted	coincidental to		fointion 30				
			070002.005	foliation)		deg/CA				
										a na na mfarain na na ma
1038.50	104	45.50					qfz '(-cerbonete) '(2) 1/4" @			Pyrilization restricted to a '1' section with most of
			coarse sand-	-	2	poorly de-	1038.5 70	-	pry med-fine	pyrilization in 6"
310.53	31	8.67	stone mod-poorly			developed	deg/CA		disseminated up to '3%	
			sorted with clasts to '1/8"			foialion 40				
						deg/CA	qtz '3/8" 70 deg/CA @ 1041			
							de andressie Vibili MT 70 destCA			
							The second secon			

qtz '1/8' 40 deg/CA @ 1042.5 qtz-carbonate "1/8" 75 dep/CA @ 1045

3" either side

med deformed vein & wall rock 3" either side

Interval	_ 10	Lithology	Bedding	Structure	Vein	Supplides in Veins	Sulphides in Sedments	Remarks
feel metres 1045 50 318 67	lo feel to metres 1049 50 318.89	med grained poorly sorted grit	contact to sandstone 30 deg/CA	v weak foliation '40 deg/CA	-	-	-	A v. lew blue qiz eyes
1049 50 318 89	1054 50 321.41	erpilaceous / sandslone mixed	conlect Irregular	foilation highly Irregular (shearing)	- ,		sev py coarse crystals @ 1050 showing shear- strain deformation	Misinich on core tube recovered '3" 10" of core, core misshapen, rounded
1054 50 321.41	1060 50 323.24	v coarse grained sand- stone, poorly sorted	-	foliation poorly developed 30 deg/CA	ntz-carbonate 11/8° 80 deg/CA @ 1056	-	sev dry crystels either side of vein	Dark gray d/z grains making up the coarse material
1060 50 323 24	1066.00 324.92	med grained sandstone well sorted	fairly distinct 20 deg/CA	foliation poorly developed except at top '18" of section 40 deg/CA	r(z-cerbonete *1/4* 80 deg/CA @ 1063.5 r(tz-cerbonete *1/4* 75 deg/CA @ 1066	-		-
1066 00 324.92	1073 00 327.05	V coarse grained sandstone & grit poorly sorted	-	weak foitetion 35 deg/CA	rtz '(2) 1/h-1/2" tregular, 2" apart approx 80 deg. CA @ 1070.5 rtz-carbonate '1/4" 35 deg/CA @ 1072	-	- *	Development of muscovile infoliations, chlorite 7 clasts up to 1/4" cla
1073 00 327 05	1079 00 328 88	med greined sand- stone fairly well sorted, med-grey In colour / some dark grey diz clasts clastic material	-	mod developed fotelion 30 deg CA contect with gril sbove 10 deg/CA	qiz *1/4-1/2* 50 deg/CA @ 1077.5 qiz *3/4* 80 deg/CA @ 1078.5 qiz crystals coarse, veln sightly drusy		line grained disseminated << 1% py through section pref in foliations, med grained disseminated py @ 1078-1079	

feel Io feel Cricking Cricking <thcricking< th=""> <thcricking< t<="" th=""><th>leg CA - fine-med enhederal py 6° either side Q qtz vein CA Q fine prained disseminated pry <1% 1082.5 3.5 sent of py, pb enhedral district and distribution and py control of the of of the of</th><th>Top If section again ground slightly '(loss '1/4-1/2') Tri-directional open space filling qtz veining 1) 15 deg/CA 55 deg 2) 30 deg/CA 55 deg 70 3) 80 deg/CA 40 deg Piece of core taken for office '1081.5-1083 Rock surrounding vein is barren '(loo title mineralization + too small vein to sample)</th></thcricking<></thcricking<>	leg CA - fine-med enhederal py 6° either side Q qtz vein CA Q fine prained disseminated pry <1% 1082.5 3.5 sent of py, pb enhedral district and distribution and py control of the of of the of	Top If section again ground slightly '(loss '1/4-1/2') Tri-directional open space filling qtz veining 1) 15 deg/CA 55 deg 2) 30 deg/CA 55 deg 70 3) 80 deg/CA 40 deg Piece of core taken for office '1081.5-1083 Rock surrounding vein is barren '(loo title mineralization + too small vein to sample)
I metres fo metres gl2c-carbonale*1/2-3/4* 70 c 1075 00 1080 50 grit gl 1080 328 88 332 38 - v weak gl 1080 deg/CA 1080-1081 rlz-carbonale*1/4* 40 deg/CA rlz-carbonale*1/4* 85 deg/1082 deg/CA 1080-1081 rlz-carbonale*1/4* 85 deg/1082 rlz-carbonale*1/4* 85 deg/1082 dlz 1'3) 1/4* 30 deg/CA @ 1083 rlz 1'3) 1/4* 30 deg/CA @ 1083 rlz 1'4* 10 deg/CA @ 1083	depCA _ fine-med enhederal py 6" either side Q qt vein CA Q fine grained disseminated pry <1% 1082.5 3.5 tent of py, pb enhedral district and distribution of the of of a	Top II section again ground sightly '(loss '1/4-1/2') Tri-directional open space filling qtz veining 1) 15 deg/CA 55 deg 2) 30 deg/CA 55 deg 70 3) 80 deg/CA 40 deg Piece of core taken for office '1081.5-1083 Rock surrounding vein is barren '(loo III/a mineralization + loo small vein to sample)
320.00 322.50 (dep/CA (dep/CA 1080-1081 (dep/CA 1080-1081 (dep/CA	Q qt vein CA Q fine grained disseminated pry <1% 1082.5 3.5 vent of py, pb enhedral	Tri-directional open space filling qtz veining 1) 15 dep/CA 55 deg 2) 30 dep/CA 55 deg 70 3) 80 dep/CA 40 deg Piece of core taken for office *1081.5-1083 Rock surrounding vein is barren '(too little mineralization + too small vein to sample)
qtz-carbonate *1/4" 85 dep/ 1082 qtz *13) 1/4" 30 dep/CA @ 1 qtz *1" 10 dep/CA @ 1083 qtz *1/4" 30 dep/CA @ 1083	CA @ line prained disseminated pry <1% 1082.5 3.5 sent of py, pb enhedral	1) 15 deg/CA 55 deg 2) 30 deg/CA 40 deg Piece of core taken for office *1081.5-1083 Rock surrounding vein is barren '(too title mineralization + too small vein to sample)
حمد (1002 مربع 1/4" 30 dep/CA (1003 مربع 1/4") مربع 1/4" (1003 مربع 1/4" (1003 مربع 1/4") (1003 م	disseminated pry <1% disseminated pry <1% 3.5 vent of py, pb enhedral et i file of et e	3) 80 deg/CA 40 deg Piece of core taken for office '1081.5-1083 Rock surrounding vein is barren '(loo itile mineralization + loo small vein to sample)
dz '(3) 1/4" 30 dep/CA @ 1083 dz '4" 10 dep/CA @ 1083 dz '1/4" 30 dep/CA @ 1083	3.5 Peri of py, pb enhedral d 154 of of a	Piece of core taken for office '1081,5-1083 Rock surrounding vein is barren '(too title mineralization + too small vein to sample)
qtz *1*10 deg/CA @ 1083 qtz *1/4* 30 deg/CA @ 1083	3.5 vent of py, pb enhedral — difference and the of oto	Rock surrounding vein is barren '(loo iitile mineralization + too small vein to sample)
dz 1/4" 30 deg/CA @ 108.	3.5 rent of py, pb enhedral — at 154 of at =	Rock surrounding vein is barren '(loo illie mineralization + too small vein to sample)
	py, pb enhedral -	* loo small vein to sample)
diz-Cemponite 3 ⁻ deveopm stickensides on one vein '35 deg/CA	vela ud.	
diz-carbonale vein 13/4" 80 @ 1086	deg/CA 6" either side of vein med grained enhedral	Core may have been ground at 1084 slightly (loss approx, 1/2")
qtz-cerbonals *1/4* '(2) 70 d @ 1089.5	deg/CA Py	
1090 50 1104 00 med-coarse grained q/z-carbonals 1/4" 70 deg/ - fotation '25 1091 332 38 336 50 sandstore grading deg/CA varies	CA @ py disseminated fine-med grained enheckal	Start of rhythmic bedräng-top of sections start with fine-med sandstone '+/ arginte "rtp-up clasts" and anding with a relatively short gradational section of
to a basel grit from mod-poor development	@ 1089-1091	grit
	py interations @1099-1101	
1104.00 1112.50 new sandstone foliation guite 1104.5	A @ py med grained	Rhythmically bedded unit similar to above
336 50 339.09 grading-coarse poorly de- grading to basal grit developed throughout section	In top 5" of section	and the section of the state of the state of the section.
dz-carbonate 1/8-1/4" 75 d @ 1109	bg/CA py fine grained 6" either side of vein 02 1109	"rip-up clests"
1112 50 1126.50 med sandstone ctz-cerbonate 1/2" 10 deg/	CA@	argilite at upper contact may or may not be "rip-up
- upper contact 1112.5 339.09 343.36 grading-coarse.	- disseminated py in	bedding attitudes measured carifer in hole, however, bedding attitudes measured earlier in hole, however, basal arcifice surgests either "rig-up das" hoery
sandstone ending or dispectively and the grained of the grained of the grained of the sail of the grained of the grained of the sail of the grained of the g	1114.5 for 5*	or judaposition during shearing metamorphism

.

positioned / argilite

Intervent to Lindogy Lindogy <thlindogy< th=""> Lindogy <thlindogy< th=""> <</thlindogy<></thlindogy<>	Blue q/z eyes @ 1131 Start of rhythmic bedding in section above. Blue q/z eyes @ 1142-1144
item	Blue qiz eyes @ 1131 Start of rhythmic bedding in section above. Blue qiz eyes @ 1142-1144
343 36 345 95 sandstone dz-carbonate 1/4-3/4" kregular < 70 deg/CA @ 1124.5-1125.5 1135 00 1186 50 pry med up to 345 85 36 fe either side of 1134.5 3% 67 either side of 1134.5 1135 00 1186 50 grit predominantly - fohallon poorty 1135 01 1186 50 grit predominantly - 1135 02 1186 50 - fohallon poorty 1110 uniform. clasts to mod formed 1146 vary in colour 1148 5 to mod formed	Start of rhythmic bedding in section above. Blue qiz eyes @ 1142-1144
1135 00 1188 50 pry med up to 3% 6" either side of 1134.5 veins 1135 00 1188 50 grit predominantly grit predominantly - foiation poorly 345 95 362 25 high grit to melriz tatto, unit feirly uniform, clasts to mod formed very in colour to mod formed 1146	Blue qtz eyes @ 1142-1144
1135 00 1188 50 dz-carbonale veins 75-85 dcg/CA py occasional grit predominanity - fokalion poorty (1) 3/8*@ - fine grained 345 85 362 25 high grit to matrix to mod formed 1146 crystals (trare) uniform. clasts dz vein 1/8-1/4* 15 deg/CA @ through sec	Blue qiz eyes @ 1142-1144
grit predominantly - tomology (1/30 grit predominantly - tomology) (1/30 grit predominantly - time grained 345 95 362 25 high grit to malifiz to mod formed 1146 crystals (nere) uniform. clasts dz vein 1/8-1/4" 15 deg/CA @ very in colour 1146 5 py disseminated close to	
uniform. clasts ctz vein 1/8-1/4" 15 deg/CA @ py disseminated close to 1148 5 py disseminated close to	
Very in colour	
Series of diz carbonale veinets from v. dank 1/2-1/4* 40-50 deg/CA: 1%	Blue d/2 eyes @ 1115.5 and again @ 1169.5- 1169.5-1170.5
(1) @ 1136; (2) @ 1137.5; (1) @ gray qtz to pre- (1) at 1139.5; (2) @ (1) at 1139.5; (2) @ 1140; dominantly med (1) at 1141; (2) at 1141.5; (1) @	
grey qtz-clear qtz 1142; (1) @ 1143; (2) @ 1144; (1) @ 1145 5	
and while chertz (1) @ 1149; (2) @ 1149; (1) @ argikite < 1% @ 1153.5	2
(J) @ 1150.5; (I) @ 1150.5; (I) @ 1153:	
(1) @ 1154.5; (1) @ disseminated 8" sec py 1155.5; (1) @ 1160.(2) @	
1160 5; fine-med approx. 1% (1) @ 1161; (2) @ 1163; (1) @	
1165; (1) @ 1166; (1) @ 1166	

.

Q 1156

qtz vein 3° wide ((nue width) 15 deg/CA @ 1158-1159 qtz 1/2° drusy 45 deg/CA @ 1152.5

qtz-cerbonele 1/4" @ 1171 80 deg/CA

qlz veins 1/8-1/4" 40-50 deg/CA: (1) @ 1174; (1) @ 1174 5 (2) @ 1175; (1) @ 1176; (1) 1180; (1) @ 1185.5; (1) @ 1187.5

Interval	lo	Lithology	Bedding	Structure	l Vein	Sulphides in Veins	Sulphides in Sedments	Remarks
i metros i 188 50	to feel to metres 1201 00	med grained	-	folletion in short	ntz-veiniel 1/8" 40 deg/CA @ 1184.5	•	disseminated fine grained	
J62 25	366 06	sandstone-tarry coarse grit -melange unit showing much		section of med grained sandstone 35 deg/CA	ntz 1/2" drusy cryptocrystaline 80 deg CA @ 1188.5		coarse grain py	
		deformation and just apositioning of the rock types			diz 1/8" @ 50 deg/CA itley @ 1192		6" section @ 1188 5 approx. 1%	
							1197 5 and 6" section @ 1199	
1201 00 366 06	1209 00 368 50	med grained sandstone coarser lowards end of section	-	foliation poorly developed	qiz 1/8" 30 deg/CA @ 1204.5	-	-	1209 core slightly ground loss < 1/2"
1209 00 368 50	1215 50 370.48	grit	-		qtz-carbonale 80 deg/CA @ 1112	.	-	4.5' of core recovered, loss @ 1213-1214
1215 50	1224 50		C.		gtz-cerbonate 1/8" 80 deg/CA @			Falsa da la dadutura
370,48	373.23	gril poorly	in capping	peak foliation	1215.5 dz-carbonate 1° 80 ded/CA Ø		py 6" sec line	Episode in Iolanons
		sorted capped by med grained sandstone	sandstone approx. 15 deg/CA	50 deg/CA	1216 cryplocrystelline. drusy		med @ 1215.5 and 6" fine-coarse	1219 core rounded at start of run '(no perceptible loss)
1224 50	1235.50				diz-carbonate 1/4" 80 deg/CA @		/////	P-14-11-11-1-1-0-0-11
373 23	376.58	med grained	-	developed	1224.5 drusy	-	ny 6° section fine-med enhedral	1224 core ground loss up to 1/2"
		sandstone '(lop) lo grill med-coarse grained sandstone, poorly sorted '(most of section) / a basel sandy grill		40 deg/CA	dz-cerbonale 1/8" 70 dep/CA @ 1229		disseminaled qiz @ 1224.5 py fine-coarse < 6° @ 1229	1229 core ground loss < 1/2" 1234 core ground loss < 1/2"
1235 50	1252 00	de dharle hadded		foliation v	diz-cerbonate 3/4" 80 deg/CA @	_	ov 3" eilber	1239 core ground loss < 1"
376 58	381.61	unit standby / 5' of	-	weakly formed in	1231	-	side of vein @	1244 core ground loss < 1/2"
		med grained sand- stone grading to		sandstone mod- moderately developed In grit 70 deg/CA	dz-ceroonate 3/8" 70 deg/CA (g 1245.5 dz veidets 1/8-1/4" 70 deg/CA:		1237 disseminated fine ground < 1%	1259 rlp-up clast of argilite
		grit		an Burn i sa an Brann	(1) 1/2" @ 1246.5; (4) @ 1248, (1) @ 1249.5; (1) @ 1250; (01) @ 1252			

otz-cerbonate 80 deg/CA 1/2" @ 1250.5 -----

12.2

[

1

1

000

1

1

133

(11)

Interval	_	lo	Lithology	Bedding	Structure	Vein	Sulphides in Veins	Suphides in Sedments	Remarks
feet metres 1252 00 381 61	10	feet metres 1262 00 384 66	myltwnic bed / v small (2) cap of coarse grained gril sandstone followed by faitly coarse (1/4" classis) gril	_ 1 ²¹	poorly-moderately developed foliation 70 deg/CA	qtz-carbonale 1/4* 75 dep/CA @ 1152.5	-		Rip-up clasts of argilite @ 1261 core ground 1254 loss < 1/4" core ground 1259 loss < 1/2"
1262 00 384.66		1277 00 389 23	mela grit grit clasts v. Indistinci	-	poorly moderately developed 70 deg/CA	qtz- 3/4° 80 deg/CA @ 1262 qtz-carbonnie 1/2° 80 deg/CA drusy @ 1273	-	disseminated py 1262-1264.5 (see sec above) disseminated py 1274-1275.5	Rip-up clasts of pyritised arginite @ 1269-1277 Core Ground: 1262-1264 rec. 1º 10°
1277 00 389.23			End of Hole			qiz 1/8"		enhedral < 1%	1269-1274 rec: 4' 9" 1274-1277 rec: 2' 2"

MINEQUEST EXPLORATION ASSOCIATES LTD.

DRILL LOG - CORE

HOLE NO DDH 96-2

CLAIM BLO	OCK CODE:	VMR	
NTS:	82K15	UTM:	
CLAIM NAM	AE:	L8215 L418	
LOCATION	- GRID NAM	IE:	MINE GRID
GRID N:	10550N	GRID E:	1600E
SECTION	1600E	ELEV:	6000 LEVEL
AZIM:	225 DEG.	LENGTH:	
DIP:	- 75	CASING LEFT?	NO
CORE SIZE		MQ	
CORE STO	RÁGE:	ON SITE WITH	PORTION
		IN PARSON, BO	<u>}</u>

-

DRILLING CO:	ADVANCED DRILLING				
STARTED:	OCTOBER 20, 1996				
COMPLETED:	OCTOBER 21, 1996				
PURPOSE	TO REPEAT GOLD				
Contrast in a second	INTERSECTION				
CORE RECOVERY: GOOD					
LOGGED BY:	D. CUKOR				
DATE LOGGED:	OCT. 20 TO OCT. 21				
ASSAYED BY:	BONDAR-CLEGG				
LAB REPORT NOS.:					

SURVEY

DEPTH	AZIM	DIP	DEPTH	AZIM.	DIP
		NO	NE		

Interval	lo	Lithology	Bedding	Structure	l Vein	Suphides in Veins	Sulphides in Sedments	Remarks
feel metres DDH 98-02	lo feel 10 metres LENGTH	248 FT. (75.59 M) COORDINA AZIMUTH: 225 DEG.	TES. 10+550N, 1+600E (16	00E CROSS SECTION) ICLINATION: -75				STARTED: OCTOBER 20, 1996 STOPPED. OCTOBER 21, 1996
000	38 00 11.58	UNIT O ARGILLITE]					5
3 00 0 91	17 00 5 18	"Turbidiles sequence" argilite	70 deg/CA distinct	50 deg/CA foilated strangely developed	giz - broken rounded pebbles @ 4.5'	sp, pb 2% combined	disseminated py med - coarse enherini some preterence towards bedding	6 - 8 Henvily folinted, broken 10 - 12 Heavily folialed, broken
17 00	27.50	Turbidites sequence" argilite	75 deg/CA	40 - 50 deg/CA	qtz-carbonale	-	disseminated py	19.5 - 22 Soft sediment deformation Inc. crenulated laminate
5 18	8.38	with ankerite porphyroblasis	distinct	foliation moderate weak	1/4" 25 deg/CA @ 17.5 - 18.5		med-coarse enhedral again some preference to bedding	24 - 24,5 Soft sedment deformation - sign
27 50 8 38	36 50 11 13	"turbidies sequence" ergilite with ankerite porphyroblests much more individual lendnee colour featurel, grein size variation then above	85 deg/CA	40 dep/CA * fokalion moderately developed	-	-	same as above less py	
36 50 11 13	38.00 11.58	massive ergilite to thinly bedded ergillte	85 deg/CA	-	qtz cerbonele 1/4" @ 15 deg/CA		disseminated medium-coarse enhedrat at top of section	
38 00	68 50 20 88	UNITN LIMESTONE]					
38 00 11.58	68 50 20.88	Imestone melbly	ineguler leminse	60 dep/CA foliation moderately developed	celcile 1/4" 50 deg/CA @ 38.5	-	py fine grained massive - mesh textured in calcite laminae @ 55.5	Irregularly laminated to thinky bedded with lighter colours more calcille fraction grading to more argitite laminae
					1/8 - 1/4 carbonate-sp	sp	fine grain py	Soft sediment deformation cacific ("ght coloured) to marky (dark gray) leminee, deformation includes lode casts, crenulated folding and liquid escept
					sp veln 15 deg/CA @ 57 - 57.5		minor disseminated ground vein @ 57.5	traces @ 58.5 - 65.
							disseminated fina grained py replacement of more calcite Inmines and coarse disseminated py through section	'n

)

lerval lo	Lilhology	Bedding	Structure	Vein	Sulphides in Veins	Sulphides in Sedments	Remarks	
feel to fee		1						
erres to men	<u>ra</u>							
8 50 248	O UNIT MV ARGILL	ITE						
///////////////////////////////////////								
8 50 75 5	o menty engilite	not distinct	moderately	-	-	disseminated med-coarse		
0 66 23 0	sectments	10 degran	approx, 60 deg/CA			whole section		
						· · · · · · · · · · · · · · · · · · ·		
						laminae (0,69, (0,71		
						0.0		
						replacement mineralization @		
						med grained sp restricted		
						primarily to more calcific; leminae		
						pb fine grained -		
						iaminae 1/4° @ 72 with 40% (sp		
						& pb)	Sample V/141773 6" replacement (7) disconalis (7)	
							Sample V141774 4" (40% pb) replacement pb + py	
							Sample V141775 2" replacement sp & pb 1 * 2 lami	
							Sample V141775 8" replacement po a py approx 4" Sample V141777 8" blobar grade liben section above	
							approx 10%	
							Sample V141778 1' section diagenetic (7) py	
							mostly by approx 5%	
						(14))	Sample V141780 4" section of diagenetic (7) py	
			EQ deals	dis unio 8°, dantu	ED	ny med-coarse	Overturned bedding (7)	
2301 28	6 turbidites secuence	laminations	fotation quite	cryptocrystalline	coarse grained	along granulated		
		faint, generally	well developed	@ 84.5 80 deg/CA(7)	2% >< minor pb	faminae and as		
						"disgenetic"		
95.00 174	00						Hairine vehicles of qiz +/- carbonate (does not fizz)	
	argillte, enkertte	80 - 5 deg/CA	50 - 55 deg/CA	qtz-carbonate 1/2"		dis py coarse grained	cannot powder mineral-velniets too thin;	
28.96 53.	4 porphyroblests	faird thick	foliation quite	35 deg/CA @ 96.5		in section	Veniets parallel to toration,	
		beds	weil beveloped	gtz-carbonate 1/4 - 1/2"		top 5' of section		
				20 deg/CA @ 124				
				qtz-cerbonete 1/4"				
6				30 deo/CA @ 135			Hairine to 18" vehicles gtz 20 deg/CA in addition to parallel to foliation abovs (0, 119 - 140	
				qtz-carbonate 1/2" 25 deg/CA @ 143		py disappears	Soft sed deformation 6" section @ 127	
						almost completely		
				qlz-cerbonete 1/2"		149 - end of	Soft sed deformation 6" section lighter coloured, si	
				25 deg/CA @ 159		section	coarser,	
	9 ²			qtz-carbonate 1/4"			108 . 174 Eau Januara of Tables aslayed material	
				70 deg/CA @ 165			to show up - gradelion to turbidites	
							sequence below.	
174.00 192	50		50 do - 15 A	hat the surface of				
5104 44	hybidiles sequence	80 deg/CA leminae	foliation well	nalnine veining 50 deg/CA	3. 	grained py cube		
	et alfaile		developed	throughout section		coarse	Slump features 175 - 176, soft sed def 184 - 192.5	
(1) (2)			60 da-100	de andreast- 16 de años es est		med grained	Soft sed def	
192 50 191 58 67 60	.50 turbidites sequence 20 art transition -	75 deg/CA laminae	foliation moderately	dis-cerbonete 25 degrCA @ 194	-	disseminated py		
	distinct thickening		developed			 And a star star star star star star star st		
	of laminas to bade							
Interval	lo	Lithology	Bedding	Structure	Vein	Subhides In Velns	Sulphides in Sedments	Remarks
-----------------	------------------------------	---	----------------------	--	---	--------------------	--	---
feel	lo leel				And an an an and an			
197 50 60 20	to metres 221 00 67 36	turbidites sequence ankerite porphyroblasis	75 deg/CA Isminae	55 deg/CA foliation well developed	qtz 1" 80 deg/CA @ 203 pinetres splay?	-	v. mre med or coarse py disseminated	213 - 218 Core grained, round loss 4" 218 - 223 Core grained, round loss 2" 223 - 228 recover 100%
								228 - 283 loss 1.2" 233 - 248 recovery 100%
					ntz 6" 80 deg/CA	minor	minor disseminated	
					@ 216.5 another splay	sp	side of vein 6"	
					dz 2° veln (somewhat ground up) another splay?			Sample V141765 37 py alteration above vein Sample V141766 67 grz vein Sample V141766 67 py alteration below Sample V141786 67 py alteration above Sample V141789 27 vein Sample V141789 47 py alteration below
221 00 67 36	224 00 68.28	fine grained sandstone with rip up cleasts of ergilite entrained within foliation planes		epprox. 45 deg/CA foliation weakly developed	-	-	-	v. muddy sandslone - poorly sorted.
274 00	230 00	turbidites sequence	70 deg/CA	60 deg/CA	-		disseminated py	
68 Z8	70.10	ergillie, enkerite porphyroblesis	feint - moderate	moderately developed foliation		ii.	increasing at end of section	
230 00	248 00	turbidites sequence	70 deg/CA	55 deg/CA	diz 70 deg/CA	ру	py med.	
70 10	75 59	ergille; much less ankerite & smaller porphyrohissis then above better developed laminations	870 8 1	foliation moderately to well developed	5" @ 230	coarse - medium	either side of vein	

248 00 75 59

End of Hole

1

11111

1.1

-

DRILL LOG - CORE

CLAIM BLO	CK CODE:	VMR			
NTS:	82K15	UTM:			
CLAIM NAM	E:	L8215 L418			
LOCATION	- GRID NAM	AE:	MINE GRID		
GRID N:	10550N	GRID E:	1600E		
SECTION	1600Ë	ELEV:	6000 LEVEL		
AZIM:	225 DEG	LENGTH:			
DIP:	- 60	CASING LEF	r NO		
CORE SIZE	:	MQ			
CORE STOP	RAGE:	ON SITE WIT	H PORTION		
		IN PARSON 8	VANCOUVER		

DRILLING CO:	ADVANCED DRILLING
STARTED:	OCTOBER 22, 1996
COMPLETED:	OCTOBER 22, 1996
PURPOSE	TO REPEAT GOLD
	INTERSECTION
CORE RECOVER	Y: GOOD
LOGGED BY:	D. CUKOR
DATE LOGGED:	OCT. 22
ASSAYED BY:	BONDAR-CLEGG
LAB REPORT NO	S.:

HOLE NO DDH 96-3

SURVEY

DEPTH	AZIM	DIP	DEPTH	AZIM.	DIP
-		- NO	ONE		

-

erval	lo	Litiology	Bedding	Structure	Vein	Sulphides in Veins	Sulphides in Sedments	Remarks
el to	metres							
00-03	LENGTH	60 FT (18 29 M)						
		AZIMUTH 325 DEC	TES. 10+550N, 1+600E (1600E	CROSS SECTION				
		A2100111 223 0EG.	HIGENO	HON TO DED.				
0 00	39 00	UNITO ARGILLITE	-1					
0 00	1109							
1 00	32 50	banded argilite						8-12 argilite marty , 6" sections of imestone @ 8", 6"
			70 deg/CA	poorly to moderately	qtz - cryptocrystallina	-	coarse to med, enhedral	section of limestone @ 9 5'
0 30		v dark gray to						Both sections of imestone veined with carbonate (mostly
		medium over bands	tock cleavede moud peacing	developed bu deg/CA	drusy 1-1/2" piece		py developed preferentially	1 - 4 Anherite porphyroblasts
		1/16" to 1-1/2"			vein) C 5.5		local bands, sections up to	15 - 18 hairine fine calcite veintets approx. 15 deg/CA
		Burbidites sequence marty						Soft sedment deformation crenulated laminas - calcite
							2% notable bands;	Sgitt coloured @ 16, another @ 18.
		with lighter coloured					(1) 70 deg/CA @ 13	Ankerte porphyroblasts 19 - 32.5 ankerte porphyroblasts
		Dends more smey					(2) 70 degCA (0 19	Son seamen delamaton @ 21, @ 24, @ 24, and @ 50.
							(1) 70 deg/CA @ 21.5	
							(3) 70 deg/CA @ 27	
33 60	\$9.00	maashes malling fachiet	folgt hadding 10 days (* *	medanticle developed 40 double				Anhardra 32.6 - 57
8.81	11 40	maanuo mBento .acutat.	rain become to degrad	moderately developed 49 deg/CA	GE - CODONNO	-	menor py in section	ramaina da.u - di
					the reaction of sere		(3) @ 33	Soft Sed deformation 38 - 39
							(1) @ 35	
							(1) @ 36.5	
30 00	00 50	UNIT N LIMESTONE						
11 89	24 54	and the second	_1					
10.00	80.50	Emerican banded	verteble ennuer	_	and the underland		ashadad da	Soft and deformation 41 - 42
11 89	24 34	showing soft sediment	value approx.	-	cacce vering:		BIBHOOD CIT	Soft sed deformation: @ 44 (3" section) crenulated
			60 deg/CA		Inequiler 1/4" @ 39 - 40		medium-coarse	lemination, lode cast (right way up)
		deformation, mineralized						@ 47.6 (3" section cremulated lamination, lode cast -
		**************************************			(2) calcho - ap	op 30% coarse	grained py	(nors way up)
		replacement type.			60 deg/CA 1/2" wide	po 20% coarse grained do 36	G 40 - 44	52-57
					sp-pb	comes frinning fill an	replacement type	
					dimost messive with		med. grained	
41.00		LILLE BATTER PRO	1		20% celcite & limestone		dis py 4" section	
16 76	10 20	MINERALIZATION					@ 43.6 up to 16%	
							py replacement type	
							med - fine greined	
							dis (massive elong	
							bedding planes) in	
							1.5' section (2 44 - 45.5	
							py enhedral, med grained	
							(probably elagenetic) (2 56 - 57,	
							planes,	
							nternetiti Nationalesse	
					calcite "sweat"		ersono py	
					medram in georgevia		this lath like crystals	
							6" sections @ 55	
						an - adaba	ara ana an da	- 71, @ 76 - 78,
						py, pb inequier	leth-like up to 50%	
						1" splayed vein	@ 57 - 60	
						@ 57.6	fest R of section	
							mineralization	
						sp - calcito	decreases	
						0136	al environ environment	
						and the second	and a second	

APPENDIX II

LIST OF SAMPLES COLLECTED

APPENDIX II

LIST OF SAMPLES COLLECTED

Sample No.	DDH	Interval From (ft)	Interval To (ft)	Interval Length (ft)	Interval From (m)	interval To (m)	Interval Length (m)	Sampled by:	Current Location
V14175 1	96-1	956.50	959.00	2.50	291.54	292.30	0.76200	D.C.	Bondar Clegg Lab
V141752	96-1	959.00	960,50	1.50	292.30	292.76	0.45720	D.C.	Bondar Clegg Lab
V141753	96-1	989.00	992.00	3.00	301.45	302.36	0.91440	D.C.	Bondar Clegg Lab
V141754	96-1	992.00	996.00	4 00	302.35	303.58	1,21920	D.C.	Bondar Cleog Lab
V141755	96.1	996 00	999 00	3.00	303 58	304.50	0.91440	DC.	Bondar Cleog Lab
V 141755	30-1	330.00	333.00	5.00	000.00	004.00	0.01440	0.0.	
V141756	96-1	1054.00	1057.00	3.00	321.26	322.17	0.91440	D.C.	Bondar Clegg Lab
V141757	96-1	1057.50	1060.50	3.00	322.33	323.24	0.91440	D.C.	Bondar Clegg Lab
V141758	96-1	1060.50	1064.00	3.50	323.24	324.31	1.06680	D.C.	Bondar Clegg Lab
V141759	96-3	5.25	5.75	0.50	1.60	1.75	0.15240	D.C.	Bondar Clegg Lab
V141760	96-3	13.00	14.50	1.50	3.96	4.42	0.45720	D.C.	Bondar Clegg Lab
V141761	96-3	18.50	19.00	0.50	5.64	5.79	0.15240	D.C.	Bondar Clegg Lab
V141762	96-3	21.00	22.00	1.00	6.40	6.71	0.30480	D.C.	Bondar Clegg Lab
V141763	96-3	30.50	31.50	1.00	9,30	9.60	0.30480	D.C.	Bondar Clegg Lab
V141764	96-2	3 7 5	4.25	0.50	1.14	1.30	0.15240	D.C.	Bondar Clegg Lab
V141765	96.2	4 25	4 75	0.50	1 30	1.45	0 15240	DC.	Bondar Cleco Lab
¥141705	30-2	7.23	4.75	0.00	1.00	1.40	0.10240	2.0.	2011221 01033 200
V141766	96-2	16.50	17.00	0.50	5.0 3	5.18	0.15240	D.C.	Bondar Clegg Lab
V141767	96-2	17.00	17.50	0.50	5.18	5.33	0.15240	D.C.	Bondar Clegg Lab
V141768	96-2	17.50	18.50	1.00	5.33	5.64	0.30480	D.C.	Bondar Clegg Lab
V141769	96-2	34.00	35.00	1.00	10.38	10.67	0.30480	D.C.	Bondar Clegg Lab
V141770	96-2	54.75	55.25	0.50	16.69	16.84	0.15240	D.C.	Bondar Clegg Lab
V141771	96-2	56.50	57.50	1.00	17.22	17.53	0.30480	D.C.	Bondar Clegg Lab
V141772	96-2	59.00	59.50	0.50	17.98	18.14	0.15240	D.C.	Bondar Clegg Lab
V141773	96-2	71.00	71.50	0.50	21.64	21.79	0.15240	D.C.	Bondar Clegg Lab
V141774	96-2	71 50	71 75	0.25	21.79	21.87	0.07620	D.C.	Bondar Clego Lab
V141775	96-2	71.75	72.00	0.25	21.87	21.95	0.07620	D.C.	Bondar Clegg Lab
1444776	06.2	72.00	72 60	0.50	21.05	22.10	0 15240	D C	Bonder Cleca Lah
V 14 1770	06.2	72.00	72.50	1.00	21.85	22.10	0.10240		Bondar Clegg Lab
V 141777	90-2	72.50	73.50	1.00	22.10	22.40	0.30400	D.O.	Bondar Ciego Lab
V 14 1770	90-2	73.50	74.00	1.00	22.40	22.11	0.30400	D.C.	Bondar Clegg Lab
V141//9	90-2	74,00	75.00	0.50	22./1	22.00	0.15240	D.C.	Bonder Cleas Lab
V141780	90-2	75.00	75.50	0.50	22.00	23.01	0.15240	0.0.	Bondai Clegy Lab
V141781	96-2	83.50	84.50	1.00	25.45	25.76	0.30480	D.C.	Bondar Clegg Lab
V141782	96-2	84.50	85.00	0.50	25.76	25.91	0.15240	D.C.	Bondar Clegg Lab
V141783	96-2	85.00	85.50	0.50	25.91	26.06	0.15240	D.C.	Bondar Clegg Lab
V141784	96-2	202.75	203.25	0.50	61.80	61.95	0.15240	D.C.	Bondar Clegg Lab
V141785	96-2	216.00	216.50	0.50	65.84	65.9 9	0.15240	D.C.	Bondar Clegg Lab
V141786	96-2	216 50	217 00	0.50	65 99	66 14	0.15240	D.C.	Bondar Cleog Lab
V141787	96-2	217.00	217 25	0.25	66 14	66 22	0 07620	D.C.	Bondar Cleog Lab
V141788	96-2	218 50	218.90	0.40	66 60	66 72	0 12192	D.C.	Bondar Cleon Lab
V141789	96.2	218 50	219 10	0.20	66 72	66 78	0.06096	D.C.	Bondar Cleoci Lab
V141700	96.2	210.00	210.10	0.40	66 78	66 90	0 12192	0.0	Bondar Clegg Lab
V141701	06.2	270.10	230.00	0.40	60.05	70.10	0 15240		Bondar Cleon Lab
4141131	30-2	223.50	200.00	0.00	03.00	70.10	0.10240	0.0.	0011001 01033 200
V141792	96-2	230.00	230.50	0.50	70.10	70.26	0.15240	D.C.	Bondar Clegg Lab
V141793	96-2	230.5 0	231.00	0.50	70.26	70.41	0.15240	D.C.	Bondar Clegg Lab
V141851	96-3	38 10	39.70	1 60	11 61	12 10	0.48768	D.C.	Bondar Cleoo Lab
V141852	96-3	39.70	43.00	3.30	12.10	13.11	1.00584	D.C.	Bondar Cleog Lab
V141853	96-3	43.00	44 20	1 20	13 11	13.47	0.36576	D.C.	Bondar Cleon Lab
V141854	96.3	44 20	45 20	1 00	13 47	13 78	0 30480	D.C.	Bondar Cleou Lab
V121855	06.2	45 20	45 70	0.50	13 79	12 02	0 15240		Bondar Cleon Lah
V 17 1000	30-3	-0.20	-0.70	0.00	10.10	10.00	0.10240		

~

.

.

-

.

•

.

APPENDIX III

LABORATORY REPORTS

Bondar Clegg Inchcape Testing Services	Certificate of Analysis
MINEQUEST EXPLORATION ASSOCIATES LTD. MR. ROBERT LONGE/D.LUKOR #715 - 475 HOWE STREET VANCOUVER, B.C.	
V7W 1J5	
+ + +	+
Deader Class & Comment	
Bondar-Ciegg & Company Lid. 130 Pemberion Avenue, North Vancouver, B.C., V7P 2R5, Canad	a

Tel: (604) 985-0681, Fax: (604) 985-1071

Bondar Clegg Inchcape Testing Services of Analysis NT: MINEQUEST EXPLORATION ASSOCIATES LTD. PROJECT: VMR PAGE 1 EPORT: V96-01953.4 (COMPLETE) DATE PRINTED: 22-NOV-96 ELEMENT Augrav ΡЬ Zn AgGrav A LE PCT PCT PPM UNITS PPM L 2.72 3.86 <0.17 96.0 ·4 ·141777 0.40 54.4 1.74 2.06 4 141779 4 V141782 <0.17 6.7 0.14 3.74 <0.17 ³4 V141792

....

Bondar-Clegg & Company Ltd. 130 Pemberion Avenue, North Vancouver, B.C., V7P 2R5, Canada Tel: (604) 985-0681, Fax: (604) 985-1071

e of British Columbia

Certificate

Bondar Clegg Inchcape Testing Services

......

1

1

Certificate of Analysis

: ENT: MINE	QUEST EXPLOR	ATION AS	SOCIATES L	TD.		PROJECT: VMR						
EPORT: V96-	01953.4 (CC	MPLETE)		••••••		DATE PRINTED: 22-NOV-96 PAGE 2						
5 NDARD	ELEMENT	AuGrav	AgGrav	РЪ	Zn							
InnE	UNITS	PPM	PPM	PCT	PCT							
B Base Met	al Ref.	•	-	8.23	2.96							
i ber of An	alyses	•	-	1	1							
lean Value		-	-	8.230	2.956							
Standard Dev	istion	-	-	-	•							
epted Val	ue	•	•	8.28	3.04	· · · · · · · · · · · · · · · · · · ·						
A SYNTHETIC	STD	3.26	15.3	•	•	······						
ber of An	alyses	1	1	-	-							
n Value	•	3,260	15.30	•								
tandard Dev	iation	•	-	-	-	•						
Annepted Val	ue	3.43	17.1	-	-							
						· ·						
		•••••		••••••••••••••••••••••								
-												
		••••••										

Bondar-Clegg & Company Ltd. 130 Pemberion Avenue, North Vancouver, B.C., V7P 2R5, Canada Tel: (604) 985-0681, Fax: (604) 985-1071

Registered Asseyet, Province of British Cohundra

avir, rivedugst Exelocation Association PROJECT: VMR DATE PRIMITED: 22-MOV-66 PALE 3 Init ELEMENT AUGrav Asgrav Pb 2n DATE PRIMITED: 22-MOV-66 PALE 3 Init ELEMENT AUGrav Asgrav Pb 2n DATE PRIMITED: 22-MOV-66 PALE 3 Init ELEMENT AUGrav Asgrav Pb 2n DATE PRIMITED: 22-MOV-66 PALE 3 Init ELEMENT AUGrav Asgrav Pb 2n DATE PRIMITED: 22-MOV-66 PALE 3 Init ELEMENT AUGrav Asgrav Pb 2n DATE PRIMITED: 22-MOV-66 PALE 3 Init ELEMENT AUGrav Asgrav Ph PM PCT PCT PCT PCT Init: 0.17 96.0 2.72 3.69 DATE PRIMITED: 22-MOV-66 PALE 3		Boi Inch	nda capo	e Tes	leg	g Servi	ces				of Anal	ficat ysis
№ ELEMENT AUGrav PD 2n JRR UK115 PPM PCT PCT 1777 <0.17 96.0 2.72 3.66 lifeste 2.79 3.69	INT: MINEC	UEST EXPLOR	ATION ASS	SOCIATES L'	rD.			PROJ	ECT: VMR PRINTED: 22-N	DV-96	PAGE 3	
1777 v. 0. 17 90.0 2. 72 3. 85 Lises 2. 79 3. 89 Bondar-Cleg & Company Ld.	°LE 	ELEMENT UNITS	AUGrav PPM	AgGrav PPM	Pb PCT	Zn PCT						
Brodar-Clegs & Company Ind.	1777 Licate		<0.17	96.0	2.72 2.79	3.86 3.89						
Bondar-Citeg & Company Lid.												
Bodar-Cieg & Company Lid.												
Bondar-Citeg & Company Ltd.												
Bondar-Citeg & Company Ltd.												
Bondar-Clegg & Company Ltd.												
Bondar-Ciegg & Company Ltd.												
Bondar-Clegg & Company Lid.	•											
Bondar-Clegg & Company Lid.												
Bondar-Clegg & Company Lid.	····· ··· ····					···· ··· ··· ··· ··· ··· ··· ··· ··· ·						
						Bondar-Cle	gg & Company Li	d.				

G___he__hai Lab Report

+

+

+

+

NUMBER OF

LOWER

EXTRACTION

METHOD

ANALYSES DETECTION

REPORT: V96-01947.0 (COMPLETE)

CLIENT: MINEQUEST EXPLORATION ASSOCIATES LTD.

.

PROJECT: VMR

36

ELEMENT

۲.

· •

1

		Cchclcal Lab Report						
UNKNOWN								
		DATE PRINTED	: 20-NOV-96					
NUMBER OF ANALYSES	LOWER DETECTION	EXTRACTION	METHOD					
37	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA					
37	10 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA					
37	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA					
17	1 DDM	UCL .UNOT (3.1)	UNDER COUR DEACHA					

Au30	Gold	37	5 PPB	Fire Assay of 30g	30g Fire Assay - AA	37 Sc	Scandium		37	5 PPM	HCL:HNO3 (5:1)	INDUC.	COUP	. PLASMA
AURCHI	Gold Reweighs	4	5 PPB	FIRE ASSAY		38 Ta	Tantalum		37	10 PPM	HCL:HNO3 ()	5:1)	INDUC.	COUP	. PLASMA
AuGrav	Grav. Gold Overlimit	3	0.17 PPM	FIRE ASSAY	FIRE ASSAY	39 Ti	Titanium		37	0.01 PCT	HCL:HNO3 (5:1)	INDUC.	COUP	. PLASMA
Aq	Silver	37	0.2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	40 Zr	Zirconium		37	1 PPM	HCL:HNO3 (3:1)	INDUC.	COUP	. PLASMA
AgOL	Silver, semiquant.	0	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA										
Çu	Copper	37	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA	CANDLE	TYPEC		e170	EDACTIONS				Inve	MADED
CUOL	Copper, semiquant	1	0.1 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	3/4// CL									
Pb	Lead	37	Z PPM	HCL:HNO3 (3:1)	INDUC, COUP, PLASMA	D DRI	LL CORE	37	2	- 150	37	CRUSH	ONLY		3
Zn	Zinc	37	1 PPM	HCL:HNO3 (3:1)	INDUC, COUP. PLASMA							PULVER	LIZATION		3
ZnOL	Zinc, semiquant	7	0.1 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA							CRUSH/	SPLIT & F	ULV.	34
Mo	Molybdenum	37	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA										
Ni	Nickel	37	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA										
						REMARK	S: ZINC AND ARS	ENIC CONCE	NTRATI	ON >1% WILL ENH	IANCE				
Co	Cobalt	37	1 PPM	HCL:HNO3 (3:1)	INDUC, COUP. PLASMA		TUNGSTEN AND	CADMIUM R	ESULTS	RESPECTIVELY.					
Cd	Cadmium	37	0.2 PPM	HCL:HNO3 (3:1)	INDUC, COUP. PLASMA		THEREFORE, TU	UNGSTEN AN	D CADM	IIUM RESULTS WOL	ILD				
Bi	Bismuth	37	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASHA		BE GREATER T	han true v	ALUES.	THANK YOU, TSH	l				
As	Arsenic	37	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA										
Sb	Antimony	37	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	-									
Fe	Iron	37	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASHA	REPORT	COPIES TO: MR.	ROBERT LO	NGE/D.	LUKOR	INVOICE	10: MR.	ROBERT LO	NGE/D	LUKOR
Mn	Manganese	37	1 PPM	HCL:HNO3 (3:1)	INDUC, COUP. PLASMA										
Te	Tellurium	37	10 PPM	HCL:HNO3 (3:1)	INDUC, COUP. PLASMA										
8a	Barium	37	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA										
Cr	Chromium	37	· 1 PPM	HCL:HNO3 (3:1)	INDUC, COUP, PLASMA										
V	Vanadium	37	1 PPM	HCL:HNO3 (3:1)	INDUC, COUP, PLASMA										
Sn	Tin	37	20 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA										
v	Tungsten	37	20 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA										
La	Lanthanum	37	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA										
ÂL	Aluminum	37	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA										
Ma	Magnesium	37	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA										
Ca	Calcium	37	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA										
Na	Sodium	37	0.01 PCT	HCL:HNO3 (3:1)	INDUC, COUP. PLASMA										
κ	Potassium	37	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA										
Sr	Strontium	37	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA										
Y	Yttrium	37	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA										
Ga	Gallium	37	2 PPM	HCL:HNO3 (3:1)	INDUC, COUP. PLASMA										
Li	Lithium	37	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASHA										
Nb	Niobium	37	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA										

REFERENCE:

ELEMENT

SUBMITTED BY: UNKNOWN

. .

CLIENT: MINEQUEST EXPLORATION ASSOCIATES LTD.

REPORT: V96-01947.0 (COMPLETE)

١

' G	che	cal
La	b	
Re	port	

DATE PRINTED: 20-NOV-96 PAGE 1A

PROJECT: VMR

• • •

SAMPLE	ELEMENT	Au30	AuRewi	AuGrav	Ag	AgOL	Cu	CUOL	Pb	Zn	ZnOL	Мо	Ni	Co	Cd	Bi	As	Sb	Fe	Mn	Te	ßa	Cr	۷	Sn	W	La	AL	Mg	Ca	Na	K
NUMBER	UNITS	PPB	PPB	PPM	PPM	PPM	PPM	PCT	PPM	PPM	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PCT	PCT	PCT	PCT
y - 141851		23			2.3		59		17	49		2	43	27	<0.2	<5	216	25	4.13	1464	<10	41	32	7	<20	<z0< td=""><td>6</td><td>0.62</td><td>1.70</td><td>4.71</td><td>0.04</td><td>0.30</td></z0<>	6	0.62	1.70	4.71	0.04	0.30
Y-141852		32			0.3		14		39	28		<1	19	9	<0.2	ر ې	122	<5	1.86	1376	<10	24	12	4	<20	<20	7	0.39	1.04	>10,00	0.02	0.20
Y - 14 1853		815	720		8.3		1999		6366	>10000	4.7	<1	14	6	336.9	<5	1826	>2000	5.47	2855	<10	19	40	4	<20	<270	3	0.29	0.89	5.17	0.01	0.15
Y - 14 1854		1550	1622		1.5		25		204	730		<1	14	2	7.0	14	6129	35	>10.00	1388	12	8	59	7	27	<20	15	0.23	0.25	1.72	0.01	0.12
Y - 141855		790	1013		20.3		>10000	1.0 :	10000	>10000	9.1	<1	4	8	669.6	< 5	2277	>2000	4.96	1703	<10	21	50	4	<20	<741	Z	0.33	0.93	3.58	0.02	0.17
¥ - 14 1856		346	377		9.4		67		2768	626		<1	25	9	5.8	<5	1021	117	3.80	4781	<10	32	27	5	<20	<20	7	0.48	1.17	9.79	0.03	0.26
Y - 14 1857		13			<0.2		10		21	43		<1	6	3	0.2	<5	63	<5	0.80	921	<10	15	5	2	<20	<20	9	0.24	0.49	>10.00	0.02	0.12
Y - 14 1858		14			<0.2		45		125	530		<1	12	6	3.9	<5	78	62	1.07	778	<10	13	8	2	<20	<20	9	0.21	0.42	>10.00	0.01	0.11
Y - 141859		2536			5.1		1249		4167	>10000	>15.0	<1	Z	2	>2000	<5	152	>2000	1.16	1744	<10	9	17	2	36	>2000	2	0.13	0.31	7.13	<.01	0.06
Y-141860		<5			<0.2		11		17	172		<1	9	4	1.0	<5	35	5	0.98	568	l <10	12	6	2	<20	<20	8	0.18	0.64	>10.00	0.01	0.10
																									•		_					
Y - 14 186 1		10			<0.2		36		103	3109		<1	10	4	25.3	\$	28	50	0.89	607	^r <10	17	5	2	<20	<20	. 8	0.27	0.63	>10.00	0.02	0.13
Y - 14 1862		147			<0.2		10		31	42		<1	13	6	<0.2	<5	326	9	1.18	668	8 <10	18	8	2	<20	<20	7	0.27	0.74	>10.00	0.02	0.14
Y - 14 1863	;	10000	•	55.00	1.5		61		662	132		3	10	2	<67.0	15	>10000	188	>10.00	1149	> <10	12	13	2	28	<20	3	0.14	0.19	>10.00	<.01	0.07
y - 14 1864		723			0.6)	8		273	1413		<1	7	4	10.6	<5	1765	45	1.40	Z435	i <10	13	7	2	<20	<20	8	0,20	0.41	>10.00	0.01	0.10
Y • 141865	;	10000		140.30	50.1		608		3613	9419		3	8	<1	<268.3	23	>10000	433	>10.00	717	* <10	8	23	4	41	38	14	0.12	0.06	2.56	<.01	0.06
		10000		/0 E/	כ כם		1177		1413	5817		,	10	4	<40 B	10	>10000	639	7.87	632	· <10	8	24	5	26	29	18	0.11	0.10	1.67	<.01	0.06
1-141000	2	7705	,	47.J4	1 /	•	11		268	2017		~1	0	4	<0.2	-5	6701	7	1 63	1047	7 <10	13	6	2	<20	<20	10	0.14	0.61	>10.00	0.01	0.08
1-141867		2202			1.4	•	17		101	-+7 20		~1	14	4	1 5	-5	1002	, 17	5 72	387	2 <10	0	10	4	<20	<20	0	0.10	0.83	>10.00	<.01	0.06
1-141868		712			1.1	•	17		2150	7173		4	17	7	57 3	21	5632	534	>10.00	2710	10 - <10	, 0	15	2	35	26	,	0.11	0.37	7.60	<.01	0.06
T-141869		2100			2.y		46		2486	>10000	3.4	- <1	21	5	212.3	8	4612	824	8.75	229	7 <10	11	19	3	<20	<146	z	0.13	0.48	4.13	<.01	0.07
1-1410/0		2723	,		7.1		40		2100		2			-		-								_								
Y-141871		169)		1.4	•	61		959	715		<1	13	5	4.8	<5	445	287	2.10	129	7 <10	11	6	2	<20	<20	6	0.14	0.91	>10.00	<.01	0.07
Y-141872		51			12.0)	2347		8122	>10000	3.9	<1	8	7	264.6	<5	268	>2000	1.46	1110	5 <10	8	6	1	<20	<199	6	0.10	0.56	>10.00	<.01	0.05
Y - 141873		24	,		0.3	6	10		31	99		<1	10	5	0.4	<5	65	10	1.07	77	<10	9	5	1	<20	<20	8	0.12	0.66	>10.00	<.01	0.06
Y - 141874		15	i		0.8	3	21		14	91		<1	25	11	0.3	<5	74	7	2.10	61	7 <10	15	6	3	<20	<20	5	0.19	1.16	>10.00	0.01	0.11
Y-141875		6			1.9	>	30		38	107		<1	15	6	0.4	< 5	35	24	1.43	79	5 <10	12	5	Z	<20	<20	6	0.16	0.86	>10.00	0.01	0.09
¥. 1/ 1974		19			0.7	7	26		15	37		<1	44	18	<0.2	<5	106	8	3.44	53	7 <10	19	8	3	<20	<20	Z	0.24	1.52	4.81	0.01	0.13
Y-1/1977		50	- >		111.1	1	260	I.	>10000	>10000	2.8	<1	16	4	202.9	6	271	118	3.81	276	2 <10	12	47	2	230	<105	<1	0.14	0.91	1.97	<.01	0.08
1 - 14 10/7 V-1/1079		29			3	7	10	I	1039	210		<1	10	4	1.7	<5	28	5	1.38	175	3 <10	8	4	2	<20	<20	7	0.10	0.87	>10.00	<.01	0.06
(- 14 10/0 v. 1/ 1070+		20	, 1		0.1	5	10		27	20		<1	20	7	<0.2	<	70	6	1.71	123	5 <10	15	7	2	<20	<20	6	0.17	0.82	>10.00	0.01	0.09
1 · 14 18/9A		20	, ,		0.	, ,	17	,	ت ج ج	61		<1	30	13	0.3	- 5	74	Я	3.13	167	7 <10	<u>1</u> л	13	3	<20	<20	3	0.24	1.59	7.86	0.01	0.13
t - 14 18/9		5	2		0.0				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	51		- 1							5.15	101	10											

•

`

REPORT: V96-01947.0 (COMPLETE)

SAMPLE	ELEMENT	5	ŝr j	Y	Ga	Li	ND	Sc	Ia	Ti Zr
NUMBER	UNITS	PF	m P	PM I	PPM	PPM	PPM	PPM	PPM	PCT PPM
Y-141851		120	4	<2	1	<1	<5	<10	• <.0 1	3
Y-141852		329	6	<2	1	<1	< 5	i <10	.01	i 1
Y - 14 1853		135	2	<2	<1	<1	1 <5	i <10) <.01	2
Y - 14 1854		39	<1	<2	<1	1	<	i <10) <.0'	12
Y - 14 1855		84	2	<2	<1	<	I <	i <10) <.0	12
Y - 14 1856		222	3	<2	: 1	<	1 <	5 <10) <.0	1 2
y - 14 1857		551	5	<2	<1	<	1 <	5 <10) <.0	1 1
y - 14 1858		708	3	<2	! <1	< (1 <	5 <10) <.0	1 1
Y - 14 1859		166	1	4	<1	<	1 <	5 <10) <.0	12
Y - 141860		501	5	<2	! <1	i <	1 <	5 <10) <.0	1 1
Y - 14 1861		581	7	<2	! <1) <	1 <	5 <10) <.0	12
Y - 14 1862		552	5	<2	! <1	<	1 <	5 <10) <.0	12
Y · 14 1863		315	3	<2	! <1	i '	1 <	5 <10) <.0	1 <1
Y · 14 1864		549	4	<2	! <1	<	1 <	5 <10	0 <.0	12
Y - 141865		64	<1	<2	? <1	1 3	z <	5 <10	0 <.0	1 <1
Y-141866		58	<1	7	7 <	1 <	1 <	5 <1	0 <.0	12
Y - 14 1867		545	5	<	2 <	1 <	1 <	5 <1	0 <.0	12
Y - 14 1868		353	4	<	2 <	1	2 <	5 <1	0 <.0	12
Y-141869		158	1	<	2 <	1 <	1 <	5 <1	0 <.0	12
Y-141870		95	1	<	2 <	1 <	1 <	5 <10	0 <.0	12
Y-141871		387	5	<	2 <	1 <	1 <	5 <1	0 <.0	12
Y - 14 1872		398	4	<	2 <	1 <	1 <	5 <1	0 <.0	12
Y - 14 1873		549	6	<	2 <	1 <	1 <	5 <1	0 <.0	12
y - 14 1874		259	5	<	2 <	1 <	1 <	5 <1	0 <.0	12
Y-141875		415	6	<	2 <	1 <	1 <	5 <1	0 <.0	1 1
Y - 141876		95	3	<	z <	1 <	1 <	5 <1	0 <.0	1 1
Y-141877		44	2	<	2 <	1 <	1 <	5 <1	0 <.0	1 2
Y - 141878		448	8	<	2 <	1 <	1 <	5 <1	0 <.0	1 1
Y - 141879A		356	5	<	2 <	1 <	1 <	5 <1	0 <.0	1 2
Y - 141879		162	4	<	2 <	1 <	1 <	5 <1	0 <.0	1 2

G. She...Sal Lab Report

PROJECT: VMR DATE PRINTED: 20-NOV-96

PAGE 1B

۰.

1

Lab Report

000 1567 . 140

CLIENT: MIN	equest expl	LORATIO	N ASSOCIA	ATES LT	D.																					PROJEC		AU.96					
REPORT: V96	-01947.0 (COMPLET	TE)																							DATE I	PRIN	TED:	20-N(W-96	PA	GE	ZA
SAMPLE	ELEMENT	Au30 /	AuRew1 Ai	JGrav	Ag Ag)L CuCu0	L Pb	Zn	ZnOL	Мо	Ni	Co	Cd	. B i	As	Sb	Fo	e M	n	1e	Ba	C	r	v	Sn	¥	La	AL	Mg	j Ca	Na	s 1	ĸ
NUMBER	UNITS	PP8	PPB	PPM	PPM PI	м ррм рс	t ppm	PPM	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCI	PP	M P	PM	PPM	PPI	m pi	PM I	PPM	PPM	PPM	PCT	PC	PCT	PCT	PC	1
Y • 14 1880		12			0.2	30	12	30		<1	36	13	<0.2	د	81	8	3.47	118	2 <	10	23		7	3 ·	<20	<20	3	0.32	1.6	4.78	0.02	2 0.10	6
Y - 14 1881		18			0.3	45	14	46		1	53	26	<0.2	7	115	<5	5.58	102	0 <	10	21	14	4	4 ·	<20	<20	2	0.28	1.7	5 2.61	0.02	0.15	5
Y-141882		16			0.6	34	8	18		<1	43	14	<0.2	ব	178	12	3.80) 119	0 <	10	25	1	0	4	<20	<20	3	0.34	1.4	5 2.51	0.02	2 0.1/	8
Y · 141883		18			<0.2	12	11	23		<1	38	15	<0.2	<5	127	<5	3.8	3 210	4 <	10	19	1	2	3	<20	<20	2	0.24	1.9	5 4.24	0.01	0.1	3
Y - 14 1884		186		1	59.8	135	>10000	>10000	1.7	Z	25	5	116.3	8	1079	203	6.3) 48	9 <	10	4	11	6	2	64	<210	<1	0.07	0.2	0.70	<.01	0.0	3
Y - 14 1885		77			28.8	211	6459	2234		<1	25	8	18.4	6	446	148	5.6	685	0 <	:10	13	2	6	4	<20	<20	3	0.20	2.2	3 5.71	<.01	1 0.1	0
Y - 14 1886		9			0.2	36	13	35		<1	48	15	<0.2	7	86	7	4.4	7 170	0 <	10	25	1	4	5	<20	<20	3	0.35	1.9	5 2.55	0.03	5 0.1	6

· · · ·

REPORT: V96-01947.0 (COMPLETE)

SAMPLE	ELEMENT	1	Sr	Y	Ga	Li	Nb	Sc	Ta	Ti	Zr
NUMBER	UNITS	P	PM P	PM	PPM	PPM	PPM	PPM	PPM	PCT P	PM
y - 14 1880		93	3	<2	<1	<1	<5	<10	<.01	<1	
Y - 14 188 1		58	Z	<2	<1	<1	<5	<10	<.01	1	
Y - 14 1882		70	2	<2	<1	<1	<5	<10	<.01	1	
Y - 141883		76	3	<2	<1	<1	<5	<10	<.01	<1	
Y - 14 1884		24	<1	<2	<1	<1	<5	<10	<.01	<1	
y - 14 1885		136	5	<2	! <1	<1	i <5	i <10	<.01	z	
Y - 14 1886		58	z	<2	! <1	<1	i <5	i <10	<.01	1	

Guuche....cal Lab Report

PROJECT: VMR DATE PRINTED: 20-NOV-96 PAGE 28

Bondar-Clegg & Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681

.

.

1

Geochemicar Lab Report

DO FCT . LAIP

CLIENT: MI	NEQUEST EXP	LUKATIO	N A2200	IAIES C	. 10.																					PROJE		ALMC .				
REPORT: V9	6-01947.0 (COMPLE	TE)																							DATE	PRIN	IED:	20-NO	v-96	PAC	ie 3/
STANDARD	ELEMENT	Au30	AuRew1	AuGrav	Ag	AgOL	Cu (CUOL	Pb	Zn	ZnOL	. Mo	Ni	Co	Cd	Bi	As	Sb	Fe	e Mr	n To	e Ba	a Cr	· v	/ Sn	W	La	AL	Mg	Ca	Na	к
NAME	UNITS	PPB	PP 8	PPM	PPM	PPM	PPM	PCT	PPM	PPM	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCI	PP	1 PPI	M PPI	1 PPI	I PPM	I PPM	PPM	PPM	PCT	PCT	PCT	PCT	PCT
ANALYTICAL	BLANK	<5	-	-	<0.2	-	<1	-	3	1	-	· <1	<1	<1	<0.2	<5	<5	<5	<0.01		i <1	0 <	<1	<1	<20	<20	<1	<.01	<.01	<0.01	<.01	<.01
ANALYTICAL	BLANK	5	•	•	<0.2	-	<1	-	<2	<1	•	<1	<1	<1	<0.2	<5	<5	<5	<0.01	 <b< td=""><td> <1 </td><td>0 <</td><td>1 <</td><td> <1</td><td><20</td><td><20</td><td><1</td><td><.01</td><td><.01</td><td><0.01</td><td><.01</td><td><.01</td></b<>	<1	0 <	1 <	<1	<20	<20	<1	<.01	<.01	<0.01	<.01	<.01
Number of	Analyses	2	-	-	2	-	2	-	2	2	-	· 2	2	2	2	2	2	2	i	2 7	2 7	2 7	2 7	2 2	2 Z	2	2	2	2	2	2 Z	2
Mean Value	:	4	•	•	0.1	-	0.5	-	2	0.9	-	0.5	0.5	0.5	0.1	3	3	3	0.00	i i	2 1	5 0.5	5 0.5	6 0.5	5 10	10	0.5	.005	.005	0.005	.005	.005
Standard D	eviation	2	-	-	-	-	-	-	1	0.6	-	• •	•	-	•	-	-	-	•	-	3	-		• •	•	-	-	•	-	-	-	-
Accepted V	alue	5	5	0.005	0.2	.005	1	<.01	2	1	<.001	1	1	1	0.1	2	5	5	0.05	5	1.0	1.0	1	I 1	1.01	0.005	.01	<.01	<.01	<.0001	<.01	<.01
														•																		
Gannet Sta	ndard	204	-	-	-	-		-		-			-	-	•	-	-	_		. .	-		- .		•	-		-	•	-	· -	-
Number of	Analyses	1		-	-	-	-	-	-	-				-	-	-	-	-		•	-	-				-	· -	-	-	-	· -	
Mean Value	· · · · · · · · · · · · · · · · · · ·	204	-	-	-	-	-	-	-	-				-	-	-	-	-		•	-					-		-	-	•		-
Standard D	eviation	-	•	-	-	-	-	-	-	-			-	-	-	-	•	-		. .	-	-	-		· ` -	-	· -	-	-	-	· -	•
Accepted V	/alue	206	-	•	-	-	-	-	-	-			•	-	-	•	-	-		-	-	-	-	• •		-	-	-	-	-	· -	-
BCC GEOCHE	M STD 6	-	-	-	0.4	-	128	•	15	139		- 2	130	32	<0.2	5	151	<5	7.1	7 155	3 <1	0	5 18	5 40	s < 20	<20) <1	1.77	2.89	4.13	5 0.01	0.04
Number of	Analyses	-	•	•	1	-	1	-	1	1		- 1	1	1	1	1	1	1		1	1	1	1	1	1 1	1	1	1	1	1	1	1
Mean Value	•	-	•	•	0.4	-	128	•	15	139		- 2	2 130	32	0.1	5	151	3	7.1	9 155	3	5	5 18	5 40	5 10	10	0.5	1.77	2.89	4.13	5 0.01	0.04
Standard D	eviation	-	•	-	-	-	-	-	-	-	•	• •	•	-	-	-	-	-		-	-	•	•	•		-	• •	•	• •	•	• •	-
Accepted V	/alue	-	-	-	0.2	0.2	140	0.01	13	140	0.0	14	135	35	0.1	1	145	1	6.5	0 145	0	-	6 17	0 50	05	12	: -	1.80	2.70	4.00	0.01	0.04
Gannet Sta	andard	1515	-	-	-	-	-	-	-	•			••	• -	-	• -		-		-	-	•	-			-	. .	. -	•	-	· -	-
Number of	Analyses	1	-	•	-	-		-	•.	-		• •		• -	•	•	-	•		•	-	-	-	• •		-	•	-	-	-	• •	-
Mean Value	2	1515	•	-	-	-	-	-	-	-	•	• •	•	-	-	-	•	-		-	-	•	-	• •		-	•	-	-	-	• •	-
Standard D)eviation	-	•	•	-	-	-	-	-	-			•	• •	•	-	-	-		-	-	•	•	•		-	· -	-	-	-	• •	-
Accepted V	/alue	1590	-	-	-	•	-	-	-	-				-	-	-	-	-		-	-	-	-			-	• -	-	• •	-	• •	-
BCC GEOCHE	M STD 5	-	-	-	0.9	, -	79	-	45	86		- <1	32	2 16	<0.2	<5	10	\$5	4.1	5 72	3 <1	0 16	4 4	5 11:	3 <20	<20) 7	2.96	5 1.98	1.05	0.05	0.29
Number of	Analyses	•	•	-	1	i -	1	-	1	1		- 1	1 1	i 1	1	1	1	1		1	1	1	1	1	1 1	1	1	1	1	1	1	1
Mean Value	9	-	-	-	0.9	, -	79	-	45	86		- 0.5	5 32	2 16	0.1	3	10	3	4.1	5 72	3	5 16	4 4	5 113	3 10	10) 7	2.96	1.98	1.05	0.05	0.29
Standard D	Deviation	•	-	-	-	• •	-	-	-	•		• •	•	• •	•	•	-	-		-	-	-	-	•		-	-	-	-	-	• •	-
Accepted \	/alue	-	-	-	0.7	0.7	90	.009	11	80	0.00	8 2	2 40) 18	0.1	1	8	1	4.7	4 72	0 0.	Z 20	0 5	4 13:	34	. 2	2 5	3.09	1.83	1.08	3 0.06	0.32

REPORT: V96-01947.0 (COMPLETE)

Geochemicar Lab Report

PAGE 38

PROJECT: VMR

DATE PRINTED: 20-NOV-96

STANDARD	ELEMENT		Sr	Y	Gə	Li	Nb	Sc	Ta	Ti	Zr
NAME	UNITS	l	PPM I	PM	PPM I	PPM	PPM I	PPM	PPM	PCT I	PPM
ANALYTICAL	BLANK	<1	<1	<2	<1	<1	<5	<10	<.01	<1	
ANALYTICAL	BLANK	<1	<1	<2	<1	<1	<5	<10	<.01	<1	
Number of	Analyses	Z	2	2	2	2	2	2	2	2	
Mean Value		0.5	0.5	1	0.5	0.5	3	5	.005	0.5	
Standard D	eviation	-	-	•	-	-	•	-	-	•	
Accepted V	alue	.01	.01	.01	.01	.01	.01	.01	<.01	.01	

Gannet Standard	-	-	•	-	-	-	•	-	•
Number of Analyses	-	-	-	-	-	-	-	-	-
Mean Value	-	•	-	-	-	-	-	-	-
Standard Deviation	-	-	-	•	-	-	-	-	-
Accepted Value	•	•	-	•	-	-	-	-	•
BCC GEOCHEM STD 6	70	3	<2	16	1	7	<10	<.01	5
Number of Analyses	1	1	1	1	1	1	1	1	1
Mean Value	70	3	1	16	1	7	5	.005	5
Standard Deviation	-	-	-	•	-	-	-	-	-
Accepted Value	70	3	•	24	2	6	1	.003	5
Gannet Standard	-	-	-	-	-	-	-	-	-
Number of Analyses	-	-	•	•	-	-	-	-	-
Mean Value	-	-	-	-	-	-	-	-	-
Standard Deviation	-	-	•	-	-	-	-	-	-
Accepted Value	•	-	-	-	•	-	-	-	-
BCC GEOCHEM STD 5	38	6	6	20	<1	8	<10	0.19	9
Number of Analyses	1	1	1	1	1	1	1	1	1
Mean Value	38	6	6	20	0.5	8	5	0.19	9
Standard Deviation	-	-	-	-	-	-	-	-	•
Accepted Value	39	9	4	-	1	18	1	• •	9

,

A 1

the second se

CLIENT: MINEQUEST EXPLORATION ASSOCIATES LTD.

REPORT: V96-01947.0 (COMPLETE)

1

,

1

Geochemical Lab Report

PROJECT: VMR DATE PRINTED: 20-NOV-96 PAGE 4A

SAMPLE NUMBER	ELEMENT UNITS	AU30 /	AuRew1 PPB	Augrav PPM	Ag PPM	Agol PPM	Cu (PPM	CuOL PCT	Pb PPM	Zn PPM	ZnOL PCT	Mo PPM 1	Ni PPM I	Co PPM	Cd PPM	B i PPM	As PPM	Sb PPM	Fe PCT	Mr PPM	Te IPPM	Ba PPM	Cr PPM	V S PPM PP	ר א PF	W L. M PPI	ย พ. 1	AL PCT	Mg PCT	Ca PCT	Na PCT	K PCT
Y-141858 Duplicate		14 18			<0.2 <0.2		45 37		125 123	530 488		<1 <1	12 11	6 6	3.9 3.7	≺ 5 ≺5	78 77	62 55	1.07 1.00	778 731	i <10 <10	13 11	8 7	2 <2 2 <2	0 <2 0 <2	.0 ° :0	90 80	.21 .18	0.42 0.41	>10.00 >10.00	0.01 0.01	0.11 0.09
Y - 14 1875 Dupl icate		6			1.9 1.6		30 28		38 39	107 102		<1 <1	15 16	6 7	0.4 0.6	ৎ ৎ	35 38	24 21	1.43 1.47	795 790	i <10) <10	12 12	5 5	2 <2 2 <2	0 <2 0 <2	:0 :0	60 60	. 16 . 15	0.86 0.85	>10.00 >10.00	0.01 0.01	i 0.09 i 0.08
Y-141879 Duplicate		8 8			0.6		17		55	61		<1	30	13	0.3	< 5	74	8	3.13	1677	7 <10	18	13	3 <2	0 <	.0	30	.24	1.59	7.86	0.01	0.13
Y-141884 Prep Duplica	ate	186 169			159.8		135		>10000	>10000	1.7	2	25	5	116.3	8	1079	203	6.30	489	7 <10) 4	116	26	4 <z'< td=""><td>·0 <</td><td>:1 0</td><td>.07</td><td>0.29</td><td>0.70</td><td><.01</td><td>0.03</td></z'<>	·0 <	:1 0	.07	0.29	0.70	<.01	0.03

CLIENT: MINEQUEST EXPLORATION ASSOCIATES LTD. REPORT: V96-01947.0 (COMPLETE)

ELEMENT Sr Y Ga Li Nb Sc Ta Ti Zr SAMPLE NUMBER UNITS PPM PPM PPM PPM PPM PPM PPM PCT PPM Y - 14 1858 708 3 <2 <1 <1 <5 <10 <.01 1 628 3 <2 <1 <1 <5 <10 <.01 1 Duplicate Y-141875 415 6 <2 <1 <1 <5 <10 <.01 1 413 6 <2 <1 <1 <5 <10 <.01 2 Duplicate Y-141879 162 4 <2 <1 <1 <5 <10 <.01 2 Duplicate Y-141884 24 <1 <2 <1 <1 <5 <10 <.01 <1

Prep Duplicate

Guichennical Lab Report

PROJECT: VMR DATE PRINTED: 20-NOV-96

PAGE 48

3

Geochemicai Lab Report

MINEQUEST EXPLORATION ASSOCIATES LTD. MR. ROBERT LONGE/D.LUKOR #715 - 475 HOWE STREET VANCOUVER. B.C. V7W 1J5 +

+

+

+

REPORT: V96-01953.0 (COMPLETE)

CLIENT: MINEQUEST EXPLORATION ASSOCIATES LTD. PROJECT: VMR

`

C.Jch...ical Lab Report

REFERENCE:

SUBMITTED BY: UNKNOWN

DATE PRINTED: 20-NOV-96

			NUMBER OF	LOWER			SAMPLE TYPES	NUMBER	SIZE FRACTIONS	NUMBER	SAMPLE PREPARATIONS NU	MBER
	ELE	MENT	ANALYSES	DETECTION	EXTRACTION	METHOD	•••••					
							P PREPARED PULP	19	4 AS RECEIVED	19	CRUSH/SPLIT & PULV.	19
1	Au30	Gold	19	5 PPB	Fire Assay of 30g	30g Fire Assay - AA						
- 2	Ag	Silver	19	0.2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
- 3	Cu	Copper	19	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	REMARKS: ZINC CONCEN	ITRATION >1%	WILL ENHANCE TUNGSTEN			
4	Pb	Lead	19	2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	RESULTS. T	HEREFORE, TL	JNGSTEN CONCENTRATION			
5	Zn	Zinc	19	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	WOULD BE GR	REATER THAN T	TRUE VALUE.			
6	ZnOL	Zinc, semiquant	8	0.1 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	THANK YOU,	RRD				
7	Mo	Molybdenum	19	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
8	Ni	Nickel	19	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	REPORT COPIES TO: MR	. ROBERT LON	IGE/D.LUKOR	INVOICE	TO: MR. ROBERT LONGE/D.LL	JKOR -
9	Co	Cobal t	19	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
10	Cd	Cadmium	19	0.2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
11	Bi	Bismuth	19	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
12	As	Arsenic	19	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
13	Sb	Antimony	19	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
14	Fe	Iron	19	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
15	Mn	Manganese	19	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
16	Te	Tellurium	19	10 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
17	8a	Barium	19	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
18	Cr	Chromium	19	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
19	v	Vanadium	19	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
20	Sn	Tin	19	20 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
21	W	Tungsten	19	20 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
22	la	Lanthanum	19	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
23	AL	Aluminum	19	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
24	Mg	Magnesium	19	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASHA						
25	Ca	Calcium	19	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
26	Na	Sodium	19	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
27	ĸ	Potassium	19	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASHA						
28	Sr	Strontium	19	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
29	Y	Yttrium	19	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
30	Ga	Gallium	19	2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
31	Li	Lithium	19	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
32	Nb	Niobium	19	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
33	Sc	Scandium	19	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
34	la.	Tantalum	19	10 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
35	Ti	Titanium	19	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
v	75	Zirconium	19	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
	.		••									

Geochemicar Lab Report

CLIENT: MI	NEQUEST EXPLORA	I I ON	ASSOC	IATES L	10.																					PR	OJECI	: VM	ĸ					
REPORT: V9	76-01953.0 (COM	PLETE)																							DA	TE PR	INTE	D: 2	0-NC	IV-96		PAGE	1/
SAMPLE	ELEMENT AU30	A	g Cu	ı Pb	Zn	ZnOL	Мо	Ni	Co	Cd	Bi	As	Sb	Fe	Mn	Te	8a	Cr	v	Sn	W	La A	l Mg	ı Ca	Na	ĸ	(Sr	Y	Ga	Li	Nb	Sc	Ta	Ti
NUMBER	UNITS PPB	PP	- M PPM	e PPM	PPM	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM PC	T PCI	PCT	PCT	PCT	PPM	PPM	PPM	PPM	PPN (PP M I	PPM P	CT
V161766	6	,	0 74	1105	×10000	1 1	6	10	1	84 1	~5	23	<5	<0 01	144	<10	28	572	<1	<20	<20	<1.0.1	ሬበበ	د ۱ ח 10	< 01	0.04	. 7	<1	~2	<1	<1	< 5	<10 <	ល
V141704	0		7 JU 6 76	14	510000		1	4.2	17	<0.2	~	212	6	×0.01	1284	×10	44	70	ч 1я	~20	~20	220	4 0.00 K 1 K7	6 70 T	0.07	0.0	, 17t	4	7	4	<1	-5	12 4	01
V141/0/	4C 105		0 /0	, 10 177	70	•	-1	44	10	-0.2		20/2	77	~0.01	1140	10	5	10	-1	~20	~20	-100	а п.э. а п.э.	7 \10 00	v.07	0.07	205	-1	0	-1	-1	-5	78 -	01
V141770	241	2.	1 17		13		×1 	50	10	105 0	رب ح	1/01	- JJ 4 J	1 11	1107	-10	ر 10	10	- 1	~20	~20	1 0 1	7 0 7			0.07	200	-1	, ,7	-1	~1	~	-10	01
V141771	548	U.	5 15	28	>10000	1.9	· <1	<1	1	105.0	с) .г	1471	12	-0.01	4,240		10	1.2	~	×20	×20	10.1	0.30		<.01	0.07	000		~~	-1		رب حد	10 .	01
V141772	8	۱.	1 1/	19	82		<1	19	(0.5	0	22	8	<0.01	277	<10	IJ	8	2	<20	<20	2 0.3	0 0.7	>10.00	0.02	0.13	192		~2	<1	~1	0	<10 <.	01
V141773	25	1.	4 27	7 65	36		3	52	20	<0.2	<5	268	7	4.13	884	<10	45	29	2	<20	<20	3 0.6	0 1.3	5 3.99	0.02	0.30	J 75	Z	<2	<1	<1	<5	<10 <.	.01 '
V141774	5	173.	9 681	>10000	>10000	7.6	- - <1	1	14	688.0	<5	233	217	5.91	9122	<10	38	40	<1	433	<514	1 0.4	7 2.2	6.88	<.01	0.23	3 109	3	<2	1	<1	<5	12 <.	01
V141775	188	39.	9 12	5 8990	>10000	2.6	- <1	2	5	178.1	<5	387	64	5.59	>20000	<10	28	29	<1	<20	<124	<1 0.4	2 2.80	>10.00	<.01	0.20) 152	3	3	1	<1	<5	13 <.	01
V141776	330	70.	4 175	> 9141	>10000	4.0	<1	4	8	300.7	<5	651	96	7.10	>20000	<10	13	28	<1	<20	<351	<1 0.1	9 2.70	5 >10.00	<.01	0.09	2 129	4	<2	1	<1	<5	17 <.	01
V141777	117	85.	4 120	>10000	>10000	3.9	> <1	<1	7	317.5	4 5	479	117	6.43	13629	<10	25	54	<1	<20	<131	<1 0.3	5 2.3	5 7.82	<.01	0.15	5 104	4	<2	1	<1	< 5	15 <.	01
V141778	84	6.	7 18	3 1897	1619		1	28	11	12.1	<5	358	9	4.58	7404	<10	26	34	<1	<20	<20	1 0.3	9 2.0	3 5.45	<.01	0.20) 117	3	<2	1	<1	<5	<10 <.	.01
V141779	277	64.	4 105	> >10000	>10000	2.2	! <1	37	16	192.2	<5	1325	130	>10.00	7970	<10	33	69	<1	<20	<48	1 0.4	7 2.1	5 5.31	<.01	0.22	2 105	5	<2	<1	<1	<5	27 <.	.01
v141780	20	6.	6 7	7 2137	1701		<1	31	11	11.8	<5	177	7	3.57	4409	<10	32	72	<1	<20	189	2 0.4	4 1.6	5 4.68	· <.01	0.24	i 96	6	<2	1	<1	<5	<10 <.	.01
v141781	41	0.	3 Z	2 75	86	,	3	80	43	<0.2	<5	478	<5	5.76	2549	<10	29	- 38	<1	<20	<20	1 0.4	2 1.9	1 4.39	· <.01	0.22	2 84	2	<2	<1	<1	<5	11 <.	.01
v141782	27	6.	1 238	3 1677	'>10000	3.5	7 <1	·<1	3	299.6	<5	133	192	1.64	972	<10	17	241	<1	<20	<376	<1 0.2	4 0.6	3 1.55	<.01	0.12	2 40	<1	<2	<1	<1	<5	<10 <.	.01
v141783	6	0,	4 2	2 13	5 129)	2	46	18	<0.2	<5	266	12	4.95	2626	<10	30	34	<1	<20	<20	1 0.5	3 2.0	5 5.28	I 0. 01	0.2	7 128	2	<2	<1	<1	<5	<10 <.	01
V141786	76	0.	6 21	0 44	753	5	2	21	3	4.4	<5	229	7	2.14	1610) <18	18	220	1	<20	<20	2 0.2	26 1.1	7 2.85	i <. 01	0.14	4 113	2	<2	2	<1	<5	<10 <.	.01
V141789	126	2.	1 2	7 23	6 141		3	41	14	<0.2	<5	511	17	5.92	3886	s <10	31	104	6	<20	<20	2 0.0	6 2.8	3 6.12	2 <.01	i 0.3	1 278	3	<2	1	<1	7	13 <.	01
V141792	23	2	4 7	7 8'	57	•	2	23	6	<0.2	<5	301	22	3.61	1674	<10	8	245	<1	<20	<20	<1 0.1	3 1.4	1 3.48	8 <.01	0.0	5 176	3	<2	<1	<1	<5	<10 <.	.01

REPORT: V96-01953.0 (COMPLETE)

AMPLE	ELEMENT	Zr
NUMBER	UNITS	PPM
	•	
v141764		Z
v141767		2
v141770		7
v141771		<1
v141772		1
v141773		<1
V141774		<1
v141775		1
V141776		<1
v141777		<1
••••••		•
V161778		1
v141770		
V14177		21
V 14 1700		~1
V141/01		
V141782		<1
v141783		<1
v141786		<1
v141789		<1

Culchunica. Lab Report

PROJECT: VMR DATE PRINTED: 20-NOV-96 PAGE 1B

.

REPORT: V96-01953.0 (COMPLETE)

•

ł

٦

STANDARD ELEM	MENT	Au30	Ag	Cu	Pb	Zn	ZnOL	Mo	Ni	Co	Cd	Bi	As	Sb	Fe	Mn	Te	8a	C	r۱	V Sr	n 1	W L	a /	u	Mg	Ca	Na	κ	Sr	Y	Ga	Li	Nb	Sc	Ta	Ti
NAME UI	115	PPB	PPM	PPM	PPM	PPM	PCI	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCI	PPM	PPM	PPM	i ppi	m ppi	y ppp	i ppi	m pp	M PO	T I	PCT	PCT	PCT	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT
ANALYTICAL BLANK		<5	<0.2	<1	~2	<1	-	<1	<1	<1	<0.2	<5	<5	<5	<0.01	<1	<10	<1	<	1 <	1 <20) <2	0 <	1 <.()1 <	.01	<0.01	<.01	<.01	<1	<1	<2	<1	<1	<5	<10	<.01
Number of Analys	es	1	1	1	1	1	-	1	1	1	1	1	1	1	1	1	1	1		1	1 1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Mean Value		3	0.1	0.5	1	0.5	-	0.5	0.5	0.5	0.1	3	3	3	0.005	0.5	5	0.5	i 0.1	5 0.	5 10) 1	o o.	5.0	05.0	005	0.005	.005	.005	0.5	0.5	1	0.5	0.5	3	5	.005
Standard Deviation	on	-	-	•	-	-	-	-	•	-	-	-	-	-	-	-	-	-		-		•	•	-	•	•	-	-	-	-	-	-	-	-	-	-	•
Accepted Value		5	0.2	: 1	2	1	<.01	1	1	1	0.1	2	5	5	0.05	1	.01	.01		1	1.01	.00	5.0	1 <.0)1 <	.01	<.0001	<.01	<.01	.01	.01	.01	.01	.01	.01	.01	<.01
Gannet Standard		1555	-	-	-	-	-	•	•	-	-	•	-	-	•	-	-			•			-	-	-	•	-	-	-	-	-	-			-	-	•
Number of Analys	es	1	-	-	-	-	-	-	-	-	-	-	•	•	-	-	•		•	-		-	•	-	-	•	-	-	-	-	-	-	-	•	-	•	-
Mean Value		1555	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	•	•	•		•	•	-	- ,	•	•	-	-	-	-	-	-	-	-	•	•
Standard Deviati	on	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-		•	-		-	•	-	-	•	-	-	-	-	-	-	•	-	-	-	-
Accepted Value		1590	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	• •	•	-		•	•	•	-	•	-	•	-	-	-	•	-	•	•	-	•
BCC GEOCHEM STD	4	-	1.0	322	38	286	-	5	47	10	0.6	<5	36	< 5	2.84	641	<10) 58	39	2	8 <20) <2	0	4 0.	B9 1	.34	1.58	0.05	0.16	39	3	Z	: 6	· <1	< 5	<10	<.01
Number of Analys	es	-	1	1	1	1	-	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Mean Value		-	1.0	322	38	286		5	47	10	0.6	3	36	3	2.84	641	5	5 58	3 9	2	8 10	J 1	0	4 0.	89 1	.34	1.58	0.05	0.16	39	, 3	2	. 6	0.5	3	5	.005
Standard Deviati	on	-	-	· -	-	-	-	-	-	-	-	-	•	-	-	•	-		•	-	- ·	•	-	-	-	•	•	-	-	-	-	-	•	-	-	-	•
Accepted Value			0.8	3 290	33	ZS5	0.03	4	4Z	9	0.8	1	30	0.5	2.40	600	0.1	55	58	Ð	9 :	5	1	4 0.	77 1	.34	1.43	0.04	0.14	39) 4	2	: 7	' 1	12	1	0.01

Report

Lab

PROJECT: VMR

DATE PRINTED: 20-NOV-96 PAGE 2A

Cuschunica.

REPORT: V96-01953.0 (COMPLETE)

.

STANDARD	ELEMENT	Zr
NAME	UNITS	PPM
		-1
ANALYTICAL	BLANK	~
Number of A	nalyses	1
<u>Mean</u> Value		0.5
Standard De	eviation	-
Accepted Va	alue	.01
Gannet Star	ndard	-
Number of A	Analyses	-
Mean Value		-
Standard D	eviation	-
Accepted Va	alue	•
BCC GEOCHEI	M SID 4	10
Number of /	Analyses	1
Mean Value		10
Standard D	eviation	-
Accepted V	alue	8

Cuichlical Lab Report

PROJECT: VMR DATE PRINTED: 20-NOV-96 PAGE 2B

ъ –:

1

٦

REPORT: V96-01953.0 (COMPLETE)

SAMPLE NUMBER	ELEMENT UNITS	Zr PPM
V141771		<1
Duplicate		<1

Culich....ica. Lab Report

PROJECT: VMR DATE PRINTED: 20-NOV-96 PAGE 3B

x .

REPORT: V96-01953.0 (COMPLETE)

•

3

SAMPLE	ELEMENT	Zr
NUMBER	UNITS	PPM
V141764		Z
V141767		2
V141770		7
v141771		<1
V141772		1
V141773		<1
V141774		<1
V141775		1
V141776		<1
V161777		4
••••		••
V161778		1
V141770		-1
V141777		~1
V141700		~1
V141781		1
V141782		<1
V141783		<1
v141786		<1
v141789		<1
V141792		<1

•

7

,

Geochemiicar Lab Report

PAGE 1B

PROJECT: VMR DATE PRINTED: 20-NOV-96

.

κ.

CLIENT: MINEQUEST EXPLORATION ASSOCIATES LTD. REPORT: V96-01953.0 (COMPLETE)

,

Ucochemicar
Lab
Report

PROJECT: VMR

DATE PRINTED: 20-NOV-96 PAGE 2A

STANDARD ELEMENT	Au30	Ag	Cu	Pb	Zn Z	2nOL	Mo	NI	Ço	Cd	81	As	Sb	Fe	Mn	Te	e Ba	i Ci	r '	V S	n	W	La	AL	Mg	Ça	Na	K	Sr	Ŷ	Ga	LI	ND	Sc	Ta	Ti
NAME UNITS	5 PPB	PPM F	PM	PPM	PPM	PCT	PPM	PPM I	PPM	PPM	PPM	PPM I	PPM	PCT	PPM	PPM	PPM	I PP	m ppi	m ppi	MF	PPM P	PM -	PCT	PCT	PCT	PCT	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCI
ANALYTICAL BLANK	<5	<0.2	<1	<2	<1	-	<1	<1	<1	<0.2	<5	<5	<5	<0.01	<1	<10	<1	<	1 <	1 <2	0 •	<20	<1 <	.01	<.01	<0.01	<.01	<.01	<1	<1	<2	<1	<1	<5	<10	<.01
Number of Analyses	1	1	1	1	1	-	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Mean Value	3	0.1 0).5	1	0.5	-	0.5	0.5	0.5	0.1	3	3	3	0.005	0.5	5	0.5	i 0.	5 0.	51	0	10 0	.5.	005	.005	0.005	.005	.005	0.5	0.5	1	0.5	0.5	3	5	.005
Standard Deviation	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•		•	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	•	•
Accepted Value	5	0.2	1	2	1 •	<.01	1	1	1	0.1	Z	5	5	0.05	1	.01	.01	i '	1	1.0	1.0	005.	01 <	.01	<.01	<.0001	<.01	<.01	.01	.01	.01	.01	.01	.01	.01	<.01
Gannet Standard	1555	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-		•	-	-	-	-	-	-	-	-	-	-		-	-		-	-	-	
Number of Analyses	1	-	-	•	-	•	-	•	-	•	-	-	-	-	•	•		•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-
Mean Value	1555	-	•	-	•	-	-	-	-	-	•	-	-	-	-			•	-	-	-	-	-	-		-	-	-	-	-	-	-	-	•	-	•
Standard Deviation	-	-	•	-	-	-	-	-	-	-	٠	-	-	-	•	•	•	•	•	•	-	-	-	-	•	-	-	-	-	-	-	•	-	· •	-	•
Accepted Value	1590	•	•	-	•	•	•	-	-	-	-	-	-	-	-	•	• •	•	•	•	-	•	•	-	-	•	-	-	-	-	•	-	•	-	•	-
BCC GEOCHEM STD 4	-	1.0	322	38	286	-	5	47	10	0.6	<5	36	<5	2.84	641	<10) 58	39.	z	8 <2	20	<20	4 0	.89	1.34	1.58	0.05	0.16	39	3	2	. 6	<1	<5	<10	<.01
Number of Analyses	-	1	1	1	1	-	1	1	1	1	1	1	1	1	1	1	1	L	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Mean Value	-	1.0	322	38	286	-	5	47	10	0.6	3	36	3	2.84	641	5	i 58	3 9	2	81	0	10	4 0	.89	1,34	1.58	0.05	0.16	. 39	3	, 2	. 6	0.5	3	5	.005
Standard Deviation	-	-	-	•	-	-	-	-	-	-	-	-	•	-	-	-		•	-	-	-	-	•	-	•	-	-	-	-	-	-	•	-	-	•	•
Accepted Value	-	0.8	290	33	255	0.03	4	42	9	0.8	1	30	0.5	2.40	600	0.1	1 55	58	0	9	5	1	4 0	.77	1.34	1.43	0.04	0.14	39	4	2	7	' 1	12	1	0.01

CLIENT: MINEQUEST EXPLORATION ASSOCIATES LID. REPORT: V96-01953.0 (COMPLETE)

٦

STANDARD	ELEMENT	Zr	
NAME	UNITS	PPM	
ANALYTICAL	BLANK	<1	
Number of A	nalyses	1	
Mean Value		0.5	
Standard De	viation	•	
Accepted Va	lue	.01	
Gannet Stan	dard	-	
Number of A	nalyses	-	
Mean Value		-	
Standard De	viation	-	
Accepted Va	lue	-	
BCC GEOCHEM	I SID 4	10	
Number of A	Inalyses	1	
Mean Value		10	
Standard Do	eviation	-	
Accepted Va	alue	8	

.

· 1

Report PROJECT: VMR

Lab

۱

` •

i joch lica

DATE PRINTED: 20-NOV-96 PAGE 2B

Geochemicai Lab Report

CLIENT: MIN REPORT: V96	EQUEST EXPLORAT	ION ASSOCIA LETE)	TES LID.																			PRO DATI	JECT: E PRI	VMR NTED	: 20)-NO\	1-96		PAGE	3A
									•••••															••••••	• • • • • • •					
SAMPLE	ELEMENT AU30	Ag Cu	Pb Zr	ZnOL 1	lo Ni	Co	Cd	Bi	As Sb	Fe	Mn	Te	8a	Cr	V S	in	W La	a Al	Mg	Ca	Na	κ	Sr	Y	Ga	Li	Nb	Sc 7	la 1	T i
NUMBER	UNITS PPB	PPN PPM	PPM PPM	PCT PI	PPM PPM	PPM	PPM P	PM P	PPM PPM.	PCT	PPM	PPM	PPM	PPM	PPM PP	M P	PPM PPN	I PCT	PCT	PCT	PCT	PCT	PPM P	PPM P	PM P	PM F	PPM P	'PM PF	PM PC	CT
V141771	548	0.3 19	28 >10000	1.9	<1 <1	1	105.8	<5 14	91 12	1.11	4348	<10	10	13	<1 <2	20 <	<20 1	0.13	0.38	>10.00	<.01	0.07	538	<1	<2	<1	<1	<5 <	10 <.(01
Duplicate	551	0.3 17	25 >10000	1.8	<1 <1	1	98.7	<5 14	65 10	1.25	4314	<10	9	12	<1 <2	20 <	<20 1	0.11	0.37	>10.00	<.01	0.07	551	<1	<2	<1	<1	ر ې د	10 <.(J1

CLIENT: MINEQUEST EXPLORATION ASSOCIATES LTD. REPORT: V96-01953.0 (COMPLETE)

,

1

3

SAMPLE	ELEMENT	Zr
NUMBER	UNITS	PPM
V141771		<1
Duplicate		<1

Lab Report

PROJECT: VMR DATE PRINTED: 20-NOV-96 PAGE 38