1980 PROPERTY REPORT

TITLE

AUTHOR

DATE

COMMODITY

LOCATION-Area

-Mining Division

-Coordinates

-NTS

Erie Creek Property -Diamond Drilling

S.E. Parry, M.Sc.

December, 1980

Mo, Cu, W

11 km northwest of Salmo, B.C.

Nelson

Latitude 49°25'N Longitude 117°20'W

82 F/6

AMAX VANCOUVER OFFICE

TABLE OF CONTENTS

	SUMMARY	1
	CONCLUSIONS	3
	RECOMMENDATIONS	3
	INTRODUCTION General Statement Location and Access Claims Physiography Property History	4 4 5
-	1980 DIAMOND DRILL PROGRAM General Statement EC-80-2 EC-80-3 EC-80-4 MacIntyre Re-Assay Program	8 8 9
	DISCUSSION OF RESULTS1	.1
	APPENDICES	
	Appendix I - 1980 Diamond Drill Logs II - Apalytical Re-Assay Results of MacIntyre Drill	

- II Analytical Re-Assay Results of MacIntyre Drill Core Samples
- III Drill Hole Sections

ILLUSTRATIONS

Figure	1 .	· Location Map	1:250,000after page	4
-	2 ·	· Claim Map	1:50,000after page	4
	3 -	Geological Map	1:2,000in pocket	
	4 -	Section Along D.D.H. EC-80-2	1:1,000after page	8
	5 -	Section Along D.D.H. EC-80-3	1:1,000after page	8
	6 -	· Section Along D.D.H. EC-80-4	1:1,000after page	9

SUMMARY

This report presents results of a three hole diamond drill program conducted in May and June, 1980 on AMAX's Erie Creek Mo-W-Cu property. This claim group, located 10 km northwest of Salmo, B.C. in Nelson Mining Division (82 F/6), consists of June 1-7 claims and 21 reverted crown grants.

Drill hole EC-80-2, inclined westerly from a site on the east side of Erie Creek was drilled to a depth of 331 metres to test for Mo mineralization underneath Erie Creek. It intersected interdigitated felsic and mafic dykes of the Eocene Erie Creek dyke swarm. A weak molybdenite bearing quartz vein stockwork was encountered in early biotite quartz monzonite dykes. The best mineralized section was 32 metres between 250 and 282 metres grading .03% MoS₂. Copper tungsten, lead and zinc were weakly anomalous throughout the core.

Hole EC-80-3, inclined westerly from the west side of Erie Creek was drilled to a depth of 166 m to test for W-Cu mineralization beneath similar mineralization exposed in adits in this area. The hole intersected the same dyke assemblage as in EC-80-2. Scheelite and molybdenite were identified on fracture surfaces. Tungsten analyses ranged from 50 to 1000 ppm W. The best section was eight metres of 380 ppm W (0.05% WO₃) from 36 to 48 metres. A two metre sample of hydrothermal crackle breccia at 118 metre depth contained 0.48 oz/ton Ag, but was unsupported by adjacent samples.

Hole EC-80-4, a westerly inclined hole drilled to a depth of 115 m, was spotted to test for tungsten mineralization south of EC-80-3. The hole encountered hornfelsed argillite cut by felsic and mafic dykes. As well, calc-silicate bands were intersected between 5 and 22 metres depth. This section averaged 0.06% WO₃ with the scheelite, minor molybdenite and chalcopyrite present along fractures. Peak analyses of the latter were 0.05% MoS₂ and 0.09% Cu.

Reanalysis of MacIntyre split drill core failed to corroborate their assays of 280 feet of 0.115% MoS_2 and 60 feet of 0.150% MoS_2 in holes 69-5 and 70-6 respectively. Our analyses indicate grades of 0.05% MoS_2 for the former, and 0.07% MoS_2 for the latter.

Cost of the 1980 program was \$77,840.00 of which \$33,903.87 has been applied as assessment to bring all claims up to a common expiry year of 1985.

CONCLUSIONS

All high priority drill targets have been adequately tested. A zoned Mo-W-Cu system has been defined in bedrock, with discontinuous sections averaging 0.05% MoS₂, 0.04% WO₃, and 0.05% Cu. Trace silver occurs in discontinuous breccias post-dating other mineralization.

Low priority targets remaining are:

- 1) a possible blind stockwork deposit more than 1,000 feet below the valley floor, with higher grade (>.4% MoS_2 equivalent) Mo-W-Cu mineralization.
- 2) low grade W in calc-silicate hornfels on the west side of Erie Creek.
- 3) silver-bearing hydrothermal breccia beneath Erie Creek.

RECOMMENDATIONS

I recommend no further work be done at Erie Creek at the present time. The property is currently in a low cost holding position, but the possibility of joint venture participation by one or more of our competitors currently active in the Salmo-Nelson area should be considered.

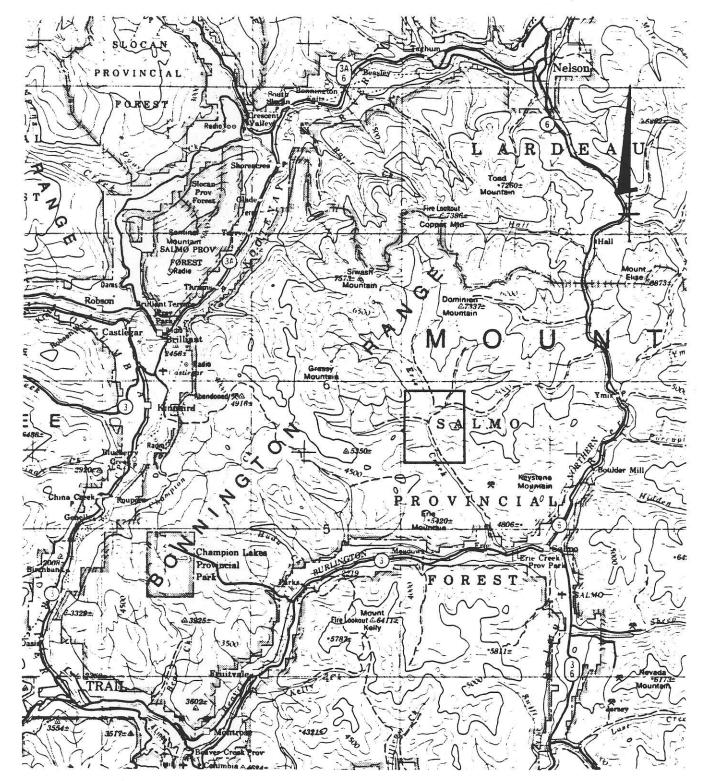
INTRODUCTION

General Statement

This report presents results of a 1980 diamond drill program on AMAX's Erie Creek property near Salmo, southeastern British Columbia.

The 1980 program was the culmination of work begun in 1976 on Erie Creek property. Geological, geochemical and geophysical surveys (Allen, 1976; Hodgson, Parry and LeBel, 1979) and one 452 metre diamond drill hole (Kyba 1979) succeeded in outlining a concentrically zoned Mo-W-Cu-Pb-Zn porphyry system, centered on the Erie Creek dyke swarm of Eocene age. The 1980 diamond drill program was designed to test this porphyry system beneath Erie Creek valley and along the west side of the valley.

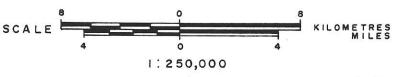
Project supervision was by S.E. Parry, assisted by G. Lelyk. Results of the first hole, EC-80-2 were submitted as assessment on the claim group.

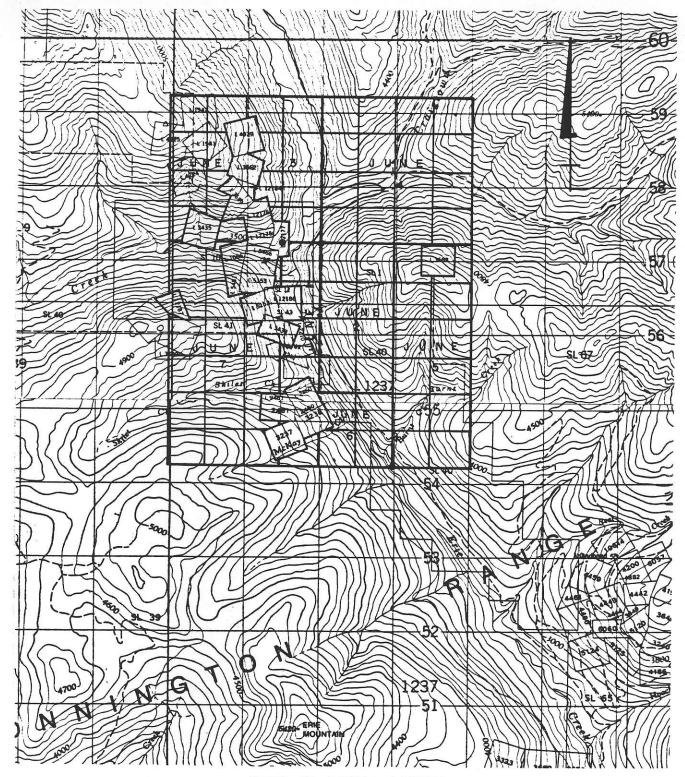

Location and Access

The property is located 11 km northwest of Salmo, British Columbia at 49°25'N latitude, 117°20'W longitude, in the Nelson Mining Division (NTS 82 F/6). The property is reached by a well maintained logging road which meets provincial highway 3A, 3 km west of Salmo, adjacent to the Selkirk Motel.

Claims Data

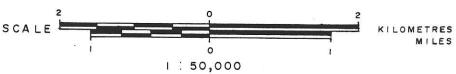
The property consists of June 1-7 claims staked on behalf of AMAX of Canada Limited, and 21 reverted crown granted claims. Data is summarized in Table I.


The property has recently been fringe staked on the west and east sides by prospector Stu Barkley. Some of these


AMAX OF CANADA LIMITED

ERIE CREEK PROPERTY

LOCATION MAP


F/G. / N. T. S. Ref. 82 F3&6

AMAX OF CANADA LIMITED

ERIE CREEK PROPERTY

CLAIM MAP

F/G. 2 N. T. S. Ref. 82 F 3 & 6 claims, and others within the general vicinity of the property are being explored by Cominco, Shell and Asarco. A large claim block extending from the eastern property boundary to the town of Ymir on the Salmo-Nelson highway is rumoured to be the subject of a Cominco-Shell joint venture at the present time. Finally, a large block of claims has been staked this year south of the property to cover old Pb-Zn showings. The claims extend along highway 3A from Salmo to the Selkirk Motel, and extend to within 2 km of our southern property boundary. The Erie Creek property is at the geographic center of the currently staked area.

Physiography

The claims cover the slopes and valley of Erie Creek between 915 metres and 1,400 metres. Topography is steep but not rugged. Outcrop is abundant above alluvium and till that cover the lower slopes and valley of Erie Creek.

Mixed conifer and deciduous forest covers the property. Locally, thick patches of slide alder cover the slopes.

Property History

An account of exploration conducted during 1979 by AMAX and in previous years by AMAX and others, is provided in an AMAX report by Hodgson, Parry and LeBel (1979).

Based on information from programs described in this 1979 report a 452 metre NQ-BQ drill hole (EC-79-1) was completed in the fall of 1979, located at 1+90N, 1+80W. This hole intersected quartz-molybdenite veining in biotite quartz monzonite dykes. The best assay results were 36 meters of .07 % MoS₂ from 164 to 200 meters.

TABLE I

Claims	Record or Lot No.	No. of Units	Expiry Date
June 1	223	4	June 21/85
June 2	224	8	June 21/85
Rosa	859	1	Nov. 23/85
Belle	860	1	Nov. 23/85
Florence	861	1	Nov. 23/85
Bully Boy	862	1	Nov. 23/85
Rockford	863	1	Nov. 23/85
Ontario	864	1	Nov. 23/85
Maude S	865	1	Nov. 23/85
Ben Hassen	866	1	Nov. 23/85
Arnold	867	1	Nov. 23/85
St. Louis	868	1	Nov. $23/85$
Westminster	FR. 869	1	Nov. 23/85
Eddie	870	1	Nov. 23/85
Louise	871	1	Nov. $23/85$
Monte Carlo	907	1	Dec. $15/85$
Homestake	908	1	Dec. $15/85$
Dora	909	1	Dec. $15/85$
Copper King	910	1	Dec. $15/85$
Good Enough	911	1	Dec. 15/85
Drum Lummon	912	1	Dec. $15/85$
Gordon	913	1	Dec. 15/85
Nelson	914	1	Dec. $15/85$
June 3	1017	16	April 18/85
June 4	1018	16	April 18/85
June 5	1019	12	April 18/85
June 6	1020	6	April 18/85
June 7	1021	18	April 18/85
		101	

Finally, relogging of the MacIntyre drill core in 1979 indicated similar concentrations of molybdenite to that seen in our drilling. Doubt was cast on the validity of the +.1% MoS₂ intersections quoted in their reports.

1980 DIAMOND DRILL PROGRAM

General Statement

Three NQ-BQ holes were drilled between May 7th and June 18th, 1980 for a total of 612 metres (figure 3). The purposes of the drilling were to a) test for molybdenite mineralization underneath the overburden covered Erie Creek valley, and b) to test for scheelite-molybdenite mineralization underneath the previously untested west side of the valley, where soil samples analyzed in 1979 returned values up to 50 ppm W.

Hole EC-80-2 was continuously split and sampled in four meter sections. Holes EC-80-3 and 4 were split and sampled in two meter intervals over mineralized sections of core. An additional two meter sample was taken every ten meters throughout the remainder of these holes.

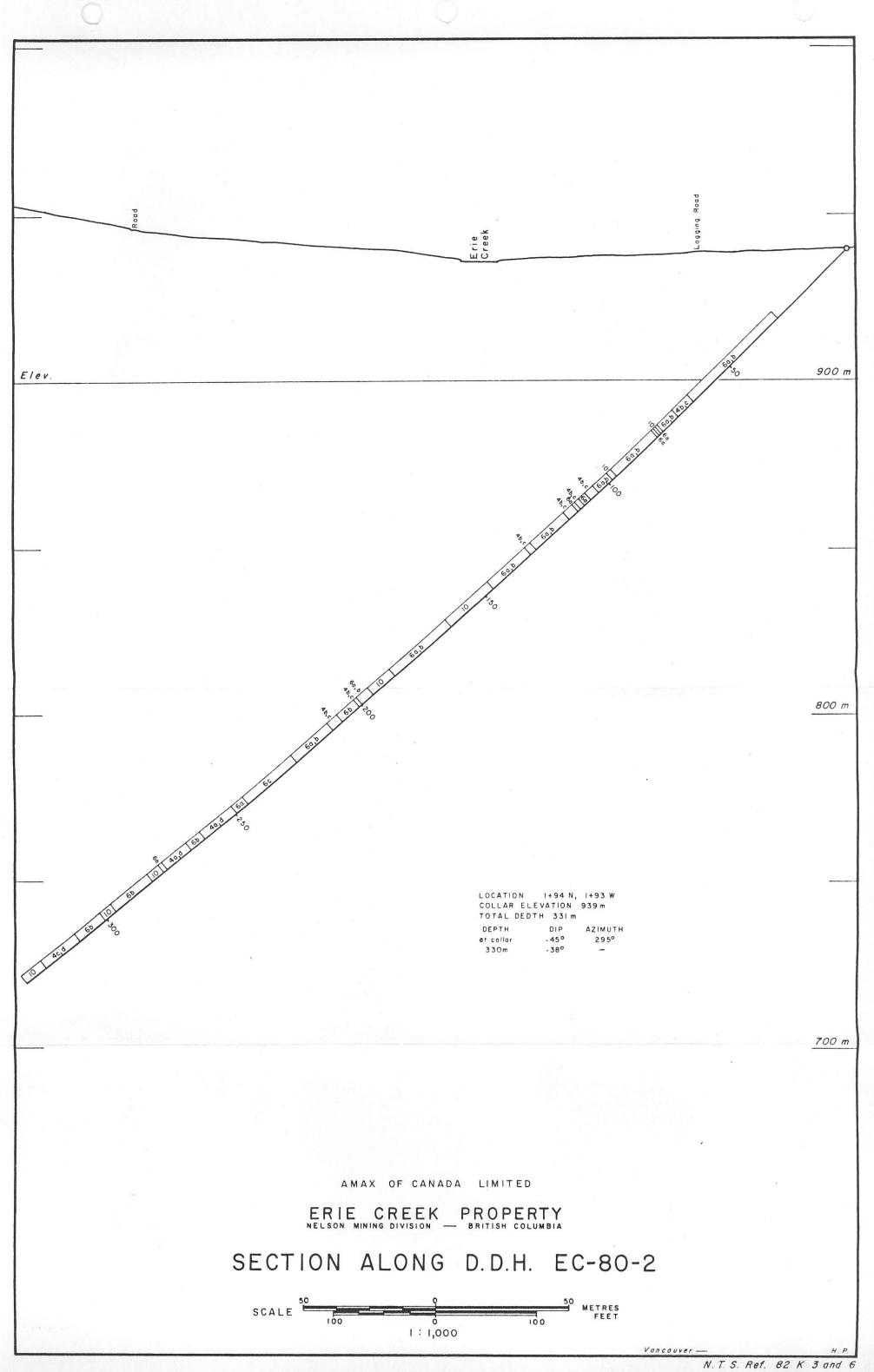
All samples were submitted to Rossbacher Laboratories for assay preparation and geochemical analysis for W, Mo, Cu, Pb, Zn and Ag and one in 10 samples was submitted for Au analysis. Samples anomalous in Ag were later resubmitted for assay analysis.

As a final check on the MacIntyre assays from 1969 and 1970 drilling, the remaining split core from holes 69-5 and 70-6 were submitted for assay, to corroborate previous drill intercepts of +0.1% MoS₂ as reported by MacIntyre.

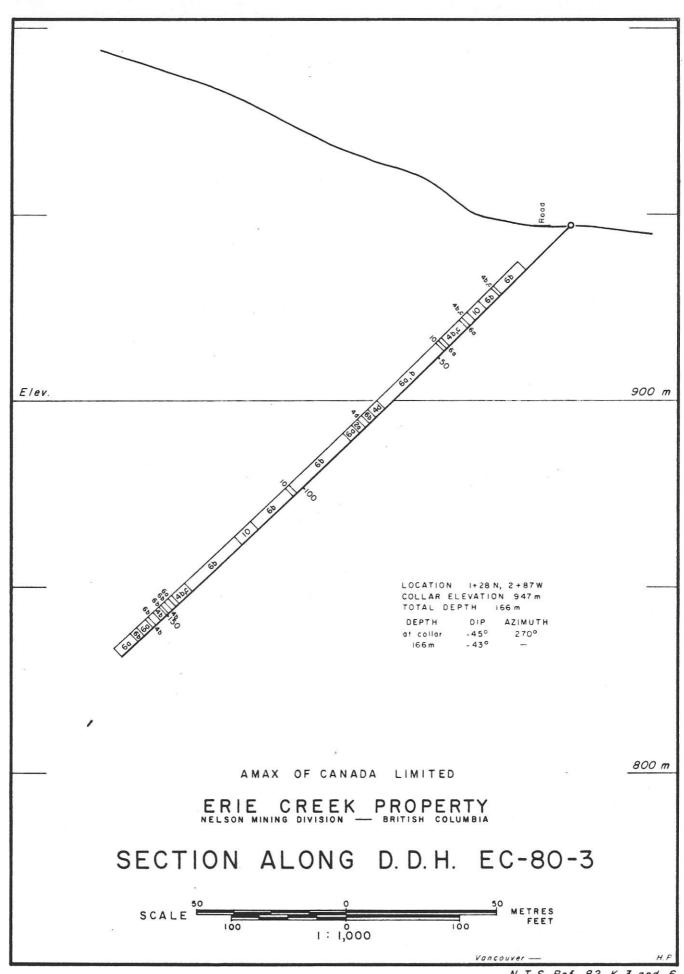
The drill contract was awarded to Phil's Drilling of Lac La Hache, B.C., who used a Longyear Super 38 drill. Core recovery was better than 98%. However, daily footage averaged less than 50 feet per day due to the hard, blocky nature of the rock and the inability of the contractor to maintain two complete shifts on the drill.

Diamond drilling costs from the contractors invoices were \$62,622.33, or \$31.20/foot including mobilization, demobilization and drill moves.

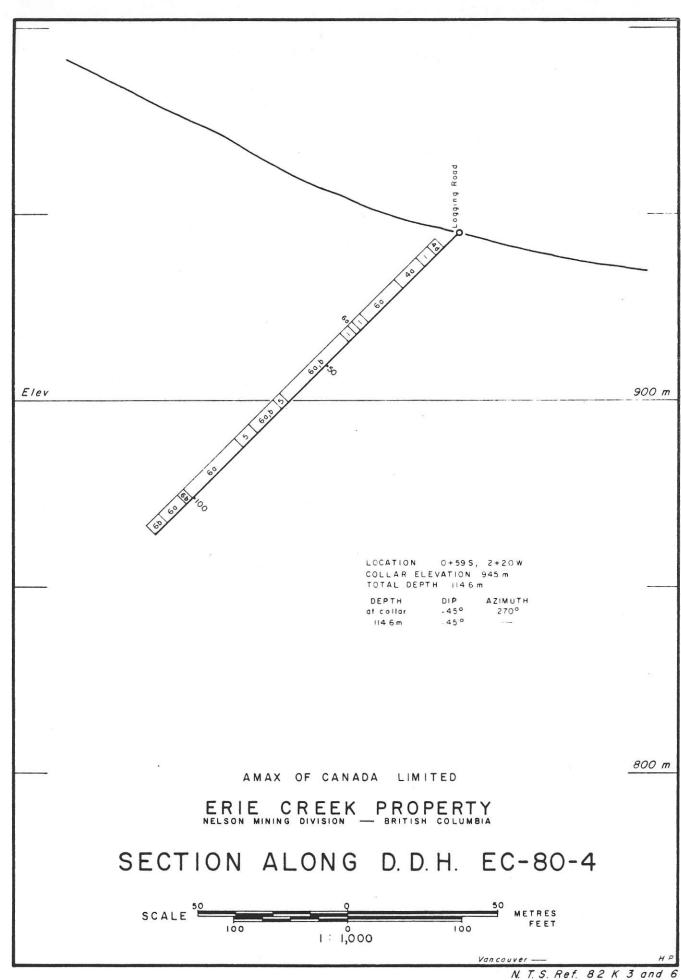
EC-80-2


This hole was drilled for 331 meters at 295° azimuth, -45° dip (figure 4) to test for Mo mineralization under the alluvium-covered Erie Creek valley. The hole intersected complexly interdigitated felsic and mafic dykes of the Eocene Erie Creek dyke swarm. Stockwork molybdenite mineralization was encountered in early biotite quartz monzonite (BQM, Unit 4) dykes, cut by younger composite dykes of feldspar porphyry (FP, Unit 6a) and quartz-feldspar-biotite porphyry (QFBP).

Chalcopyrite, scheelite, pyrite and pyrrhotite were present as thin films on fractures in both ages of dykes. Short, discontinuous sections of hydrothermal crackle breccia, characterized by a chlorite-actinolite and/or biotite matrix encompassing sericitized fragments were intersected crosscutting the dykes. Minor chalcopyrite, weakly argentiferous galena and sphalerite occur in the breccia matrix.


Analytical results indicate the best mineralized section was 32 metres of 0.032% MoS₂ from 250 to 282 meters. The highest single values for copper and tungsten were 1,180 ppm and 300 ppm respectively. Trace silver was detected in isolated two metre analyses of crackle breccia.

EC-80-3


This hole was drilled at azimuth 270°, dip -45° to a depth of 166.4 meters (figure 5). It was designed to test for tungsten-bearing stockwork mineralization under the west side of the Erie Creek valley (figure 3).

T. S. Ref. 82 K 3 and 6 F/G. 4

N. T. S. Ref. 82 K 3 and 6 F/G. 5

N. T. S. Ref. 82 K 3 and 6 FIG. 6 The hole intersected the same dyke assemblage as EC-80-2, but encountered only trace amounts of molybdenite in the early biotite quartz monzonite dykes. No two consecutive samples assayed greater than 0.02% MoS₂. Tungsten values ranged from 50 ppm W to 1,000 ppm W, with the best continuous section being eight meters of 0.05% WO₃ from 38 to 46 meters, in biotite quartz monzonite dykes. Copper was generally enhanced relative to EC-80-2, but was very erratic. The highest two meter assay was 0.28% Cu, with the average value being about 0.05% Cu.

A single two meter assay of crackle breccia at 118 meters assayed 0.48 oz/ton Ag.

EC-80-4

This hole was drilled at azimuth 270° , -45° dip, to a depth of 116.4 meters (figure 6). It was spotted to test for tungsten mineralization on the west side of the valley, south of EC-80-3 (figure 3).

The hole appeared to intersect a zone of less complex dyking, possibly approaching the western boundary of the dyke swarm. BQM, FP and QFP dykes were encountered cross-cutting siliceous to argillaceous dark purple hornfels, part of the Jurassic Hall Formation (Unit 1). From 5 to 22 meters, light pink to green bands of calc-silicate hornfels were interbanded with the purple hornfels, and were cross-cut by biotite quartz monzonite dykelets. From 22 meters to the bottom of the hole only rare remnants of hornfels remain, as slivers between quartz feldspar biotite porphyry, feldspar porphyry and minor biotite quartz monzonite dykes.

Molybdenum was present in trace amounts in the sections analyzed. A two meter sample at six meter depth

contained 0.05 % MoS_2 . Copper values were similar to those in EC-80-3, the highest single analysis being 0.09% Cu. Individual Mo and Cu analyses were not supported by adjacent analyses.

Tungsten in the form of blue and yellow fluorescing scheelite was present along fractures in the calc-silicate hornfels and biotite quartz monzonite dykes from 5 to 22 meters. This 17 meter section contained 0.06% WO₃.

MacIntyre Re-Assay Program

Results of our re-analysis of MacIntyre holes 69-5 and 70-6 failed to corroborate their results (Appendix II). Although the exact length of our samples could not be determined due to the deteriorated state of the core, an average of nine core boxes (about 225 feet) of hole 69-5 analyzed averaged 0.05 % MoS₂, versus 280 feet of .115% quoted by the MacIntyre report. Similarly an average of three core boxes (about 75 feet) of hole 70-6 analyzed averaged 0.07 % MoS₂, versus the MacIntyre intercept of 60 feet of 0.150% MoS₂. MacIntyre also reported that a 100 foot composite sample in 69-5 assayed 1.2 oz/ton Ag. Our silver analyses of this interval were all less than 0.1 oz/ton Ag.

DISCUSSION OF RESULTS

Diamond drilling by MacIntyre (Appendix III) and AMAX has defined a zone of molybdenite mineralization centered on Sandy Creek, which contains sporadic sections of 0.05% MoS₂ associated with early biotite quartz monzonite dykes. Higher grade sections within this Sandy Creek Zone were not confirmed by re-analysis of MacIntyre drill core. The zone apparently ends to the west near the EC-80-2 drill hole collar.

The zoning of mineralization suggested by the 1979 soil sampling program was confirmed in bedrock by diamond drilling, and apparently centers on the Sandy Creek zone. Tungsten and copper are present in a surrounding zone, and appear to be similar in grade to the molybdenum. Unlike the other metals, tungsten as scheelite may be partly concentrated in calc-silicate hornfels as well as in Eocene dykes.

Silver-bearing galena and sphalerite may in part or in whole post-date zoned Mo-W-Cu mineralization, since the hydrothermal crackle breccia in which they occur cross-cuts all other mineralization and rock types. The actinolitic matrix to the breccia is identical to some dump samples from numerous adits on the west side of Erie Creek valley suggesting by their large areal extent a possible exploration target for Ag in a large unexposed breccia zone. However, all our previous assay samples from adit dumps in the area of interest west of Erie Creek returned less than .75 oz/ton Ag.

APPENDIX I 1980 DIAMOND DRILL LOGS

DIAMOND DRILL RECORD

Core Size	NQ-BQ	Coring Metho	d	Drilling Contractor Phi	1's Drilling Co. Ltd
				Logged By: _	S.E. Parry
		Total Depth	331m	Completed Drilling	May 19, 1980
		Collar Elevation	939m	Commenced Drilling _	May 7, 1980
			1 + 93W	Dip at Collar	-45
Hole No.	EC-80-2	Co-ordinates _	L 1 + 94N	Bearing at Collar	295
PROPERTY	ERIE CREEK	Project Nu	mber <u>794</u>		

	Sur	vey Summa	ry	Pertinent	Assay Data	Pertinent o	Geology
Depth	Dip	Bearing	Method	Interval	% MoS ₂	Interval	Rock Type
330	-38 ⁰	- ,	Acid Test	250-282	0.032%	0-29.3m 29.3-226.2 226.2-244.8 244.8-331	Overburden BQM, QFBP, FP dykes Intrusive breccia BQM, QFBP, FP dykes

Foc	tage	Core	%	мт	NERA	177	ልጥፐሶ	N			ASSAYS		Remarks
	ters)	Rec		Mo	PyPo	Co	Soh	Prac	, Mo	Cu	W	Sample	
0	Ţ			MU	TYLU	UD	Joen	Xe.D.	110	Cu			0-29.3 Coarse overburden with lenses of calcrete
28				 		†	 		1	 	 		
		1		1			1-	0	 			 	
-30	bx	broker	t			1		3	132	104	1	65101	
	QFBP	core	90		.1%	.13	1	1		1	1	T	29.3-32.2 Quartz Feldspar Biotite Porphyry (QFBP) Breccia
-32	FP				Py			3					- locally megaporphyrite with 20% .1-2cm feldspar pheno
	QFBP							30					often broken. 10% "pop-out" quartz eyes (they can be
34					-5%	-5	4	30	54	174		65102	removed from the rock intact) and 7% biotite phenos ma
0.6	FP		100		4. 1%	4.1	*	3					light grey, siliceous, aphanitic to fine graind. Most
36								2					phenos.broken, giving rock a breccia appearance.
-38		blocky	80				Sch	2					-poorly veined, no appreciable mineral.
-36								2	d				32.2-32.9 Sparse Feldspar Porphyry (FP)
40			100					4	15	244		65103	-dark grey black with 5% corroded lcm feldspar phenos.
						tr		4		<u> </u>	<u> </u>		-cuts across QFBP but also present in QFBP as inclusion
42-	QFBP				.5%	Сру	Sch	1	<u> </u>		<u> </u>		N.B FP & QFBP are dark and light phases of composite
					Py			1			ļ		dykes from report '79.
-44								13	51	1960.		65104	32.9-34.7 QFBP - Similar to 29.3-32.2 but feldspar smaller, usua
			85				<u> </u>	3	<u> </u>				unbroken Matrix aphanitic. Well developed quartz vein
-46				ļ			ļ	3	ļ		<u> </u>	ļ	stockwork QVs .1-2mm wide, randomly orient
	FP				.1%			_1				ļ	No alteration around veins, which are barren.
48		Groun						1	ļ		ļ		34.7-26.2 FP - contains QFBP inclusions.
						ļ	411	12	54	314	ļ	65105	36.2-46.6 QFBP - Similar to 29.3-32.2 but feldspars smaller, les broken, altered yellowish - white (clay or sericite?)
-50							\$ch		 				
	OFF							11	ļ			(510(to 2% Py + Po as disseminated and fracture coatings.
52	QFBP				.5%	ļ <u>'</u>		9 10	1 .	128		65106	, , ,
			100		.34			10			ļ	 	weakly fractured, veined. QVS up to .2mm wide.
-54												ļ	46.6-47.2 FP - brecciated contact with QFBP. 47.2-63.1 QFBP - more fractured, finer grained than above QFBP d
		block	У			tr-			ļ		ļ	(5107	
-56						05%		$\frac{4}{3}$	<u> </u>	102	<u> </u>	65107	Above QFBP dyke.
						Сру		<u>3</u>			ļ ———		48.1-48.3 - intensely bleached, (silicified) porphyritic, texture gradually obliterated
-58 -				tr						<u> </u>	ļ 	-	
				Mo				11		1.	 	(5100	1 fracture/cm with white 1mm alteration selvage,
-60					 			7		162		65108	
61											<u> </u>		- numerous black partially resorbed FP fragments trace Mo in 0.75 mm QV at 62.3 with Pyrrhotite, Cpy
												-	- suggests this is an early QFBP dyke.
												-	- suggests this is an early QFBF dyke.
					l i		- 1				ł		'

Foc	tage	L	%		NERA						AY DA	TA	Remarks		
		Rec	Rec		РуРо				Мо	Cu	W	SAMPLE			
62	QFBP							5					63.1-64.6 FP Numerous QFBP inclusions		
-02				trMo			tr	6					- trace scheelite in veins along dyke contacts.		
64	FP							1	296	824		65109	64.6-70.1 BQM - dark to medium gray with local subporphyritic		
					Ţ			4					sections. Numerous hornfels inclusions		
		Blocky	-					2				1	- up to 10% .055mm biotite grains		
66					. 1-5	. 05	*	24					well fractured with strong quartz veins stock, veins		
	BQM			tr		1		>30	760	200		65110	to lcm, dark grey sugary quartz. Veins much wider tha		
-68 -				€85¥	,	<u> </u>		>30	1		l	- 	those in quartz vein stock mapped in BQM on surface.		
		Groun	83		Po>Py	1		>30	1				Nb- QFBP dukelet trucates quartz-molybdenite vein in one		
70 -	-			-		 	1	5	1	1			place, but a second dykelet contains quartz-molybdeni		
				ļ — —			 	13	32	176	i	65111	veins. Quartz-clinopyroxenite-pyrrhotite veins freque		
72						.01	В	1 2		1,12		 	crosscut quartz-molybdenite veins.		
	FP				 	 	!	3	 	 -		 	- Clinopyroxenite most common in QFBP and BQM-up to .		
74	111	Block	,					0				-	very fragmented.		
	 	2200			 	 	 	9		174		65112			
76			100		 	 		4	1 70	11/7		103112	70.1-103.5 FP-OFBP Composite dyke. As mapped on surface, the dar		
			100	tr				10	 			 	 and light phases show both sharp and gradational cont dykes contain numerous PQM fragments up to 0.5m in 		
78 -	BX	CHL- ACT		tr_02		-	_	 	 -			-	thickness, equigranular 10% biotite		
	FP BX	BX BX		.024	<u> </u>	.01	<u> </u>	15 30					QFBP usually contains 1-2cm megacrysts of feldspars s		
-80		 _			-	 	-	ļ	140	130		65113			
	FP	Mod. Broke			ļ		├─	7					ilar to these in FP, but uncorroded veining weak, occasional tracesscheelite		
-82		втоке	11					11							
							<u> </u>	4	-		-	ļ	93.4 white rhyolite fragment, trace molybdenite		
84	OF'BP				.15			7		४७		65114	77.9-78.2 & 79.2-79.8 - breccia-pink, anphamtic fragments, matri		
	FP						tr	7	 			ļ	chlorite (up to 15% matrix) trace disseminated molybd		
-86-	0777							7					96.0-100.0 - trace scheelite in dry fractures and ve		
	QFBP							5	 			ļ	up to 1mm wide in QFBP and FP @ 450 to C.A.		
-88			100			.01	8	_5	7	232		65115	No This series of dykes shows local chlorite-actinolite		
								9				-	fracture zones (breccia zones) - each contains weak		
-90	FP	₩ª₹ē						5					molybdenite mineral, along fractures and in grey quartz		
								_1					veins - associated with clinopyroxenite in a few		
92								1	92	360		65116	locations. Best zone 98.0-99.5.		
- 7 L								9		0					
94							tr	9							
	-							25							
95															
								-				 			
						$\neg \neg$						 			
		1	ļ	- 1	1 1					ı		1 1			

Foot	tage	Core	1		NERA					ASS	AY DA	TA	Remarks
_		Rec	1	Мо	Py+Ro	Cpv	Sch	rrac vein	Мо	Cu	W	SAMPLE	
				tr				16					103.5-107.6 BQM-subporphyritic to equigranular, 10% biotite
96	FP			tr		. 05	\$ tr	1	292	274		65117	
95								28					-103.5-105.8 -poor core recovery, possible fault
78	CHL-ACT	+				tr							-drillers hit high pressure water seam
100	QFBP	to	100				tr	>30	100	640		65118	- buff - yellow alteration of feldspars, chlorite-actinolite
200		Block	<u></u>				1	29	<u></u>				along fractures at lower contact.
102	FP	<u> </u>			.5%	.05	tr tr	10	<u></u>				- intense quartz vein Stwk up to 15% of rock composed of gre
					<u></u>			>30			ļ		quartz veins up to 1cm in width, molybdenite as
L04				<u> </u>	<u> </u>		1		66	274	<u> </u>	65119	wall coatings in veins.
		Groun		ļ			1	>30			[107.6-109.5 FP-massive, poorly fractured, pyrrhotite mainly on frac
106	BQM	Core	63%	tr	.18	tr		20			<u> </u>		tures.
				Мо		<u> </u>		17	<u> </u>				109.5-111.9 BOM-weak quartz vein stock, mainly single ton veinlets
1 08				<u> </u>	-		tr		59	1220		65120	weak alteration of feldspars (yellow-buff), chlorite-
	FP	L		<u> </u>	1.59	.05	6	11				-	actinolite along fractures, biotites purple-brown.
110		Mac-		<u> </u>			1	13	<u> </u>				111.9-112.9 FP, moderately fractured, strong purplish hornfelsing
	BQM	Mas- sive			< 019	tr	tr	3					of matrix
112				M.				30	180	560		65121	-trace scheetite along tractures at 00 45 to 0/ ap
	FP	·			.5%		tr						to 1mm wide slight yellowish fluorescence.
114	- PC:	·	100	·			<u> </u>	9	<u> </u>	<u> </u>			112.9-115.6 BQM-subporphyritic-identified as BQM on basis of fractur
	BQM				.1%		<u> </u>	13				1	and biotite content
:16	OFBP					05%	4	25		660		65122	115.6-128.6 FP-QFBP composite dyke - alternates between two rock
	FP				اا		L	19	L			 	týpes frequently.
118					.5%		·	6					-weak yellow (argillic?) alternates of feldspar phenos
	QFBP							10				65123	in QFBP sections.
120					 			9	7	600		03123	-127.7-128.6 -OFBP(?) with moderate quartz vein stwk., trace
					 			9					molybdenite with trace molybdenite in FP
122	FP				ļļ		-	8				-	immediately overlying it. Nb - this section could be porphyritic BQM
												1	MD - CHIS SECTION CONTO DE POLÍMITATE DÓM
					<u> </u>			ļ	<u> </u>				
\rightarrow													
												 	
												1	N n
					 								ne e e
					<u> </u>								l d
1					<u> </u>							1	WO.
					 							1] rh , ∞
	1	ļ	1	ļ	ı İ	İ	1	ŀ	1	,	1	1 1	

Foo	tage	Core	%	мт	NERA	LIZZ	ATIO	N		AS	SAY D	ATA	Remarks
	_	Rec	Rec		Py+R				Mo		W	SAMPLE	
1.22	QFBP			1	7 110	(CE)	, 5511	13		- <u> u</u>		J. I. I. II	128.6-130.1 BQM-a few aprilic dykelets crosscut the BQM,
امد	FP							10	30	248		65124	is greyish white with up to 1% biotite with 1 grey
. 24		Mas- sive					tr	18					scheelite quartz vein/cmBQM looks very similar to
عدا		to	100		.5%	.059	8	2					QFBP, have doubts as to how accurately the two rocks ca
26		weakl					tr	2					be differentiated.
28	·	broke).					10	85	292		65125	130.1-135.5 FP-Chlorite-actinolite breccia at 130.3-130.5. No rota-
20	OFBP							19					tion of fragments - FP separated by chlorite-actinolite
20	BQM			tr	.1%	.01	\$	25					selvages along fractures.
30	FP							3					-dyke generally massive, strong purplish hornfels color
32								5	37	180		65126	-contacts with BQM sharp but brecciated at≈900 to C.A
12							tr	13					-fragments of BQM in FP matrix
34	·							2					*-trace scheelite at 127.3 in lmm quartz-scheelite vein
J -								6					@ 45 ⁰ to C.A.
36								6	18	390		65127	135.5-138.6 QFBP Gradational contact with overlying FP - feldspar
-	OFBP]		6					partially resorbed, up to 2cm, yellow weak argillic
38								11		<u> </u>			alternates - less than 2% biotite, weak fracturing wit
30		I	100		1%			20					weak chlorite slips 138.6-142.2 FP Numerous clasts of OFBP 142.2-144.9 QFBP-1 chlorite-actinolite fracture/5cm, 5% biotite,
40					.5%	.05%		2	11	236		65128	142.2-144.9 QFBP-1 chlorite-actinolite fracture/5cm, 5% biotite,
40	FP							2					moderate fracturing, scheelite on dry faces @ 600 to
42								1					C.A. cut by chlorite actinolite fractures
-								23					144.9-145.9 FP Massive, weak chlorite alternates
44	OFBP						tr	25	5	266		65129	145.9-147.1 QFBP Gradational with FP, numerous FP fragments
								14			_		147.1-162.7 Chlorite-actinolite breccia
46	FP		[2					Dark galena chlorite with medium galena actinolite
	QFBP							7	1				needles along fractures and as matrix to QFBP BQM
	CHL ACT				t			30	22	252		65130	and aplite fragments and host rock. Clearly postdates
	BX	very		r.0	<u>.</u>	2%		30					OFRP
150	1	broken	90]		30					inalcopyrite, pyrite, pyrrhotite in matrix and alon
							tr	30					fractures altering matrix and fragments.
52									48	820		65131	-Bleached white alteration selvage along some fracture
. 32		i).5%			20					especially where breccia appears to die out. Molybdeni
54			100			.05		7					in veinlets mainly in thin aplitic fragments of
4								25					hragain 10 h
56									37	1160		65132	-Numerous pyrrhotite and pyrite gobs within chiorite
													matrix - possible trace sericitic alteration along £
\perp													margins of some QFBP and BQM fragments. Feldspar phenos weakly altered - margin constitutes 30% of
		1								1			phenos weakly altered -matrix constitutes 30% of rock, veins up to 0.5cm wide

Foot	age	Core	%		INER			_			SAY D	ATA	Remarks
1.E. <i>6</i>		Rec	Rec	Мо	Py+R	Сру	Sch	veir	Мо	Cu	W	SAMPLE	
L56	i						tr	12					Chorite-actinolite breccia (cont'd)
				I	0.5%	5	sch	26					-breccia in gradational contact with FP at 162.7
L58 ⊹- I		Mas- sive	100				1	24	1	1			-1 chlorite/actinolite every 0.5m throughout following
	KET TSK					005	\$	>30	9	458	1	65133	dyke section, but rock not a true breccia
	BX					1	1	>30	1	1			*-Chlorite-actinolite breccia clearly later than FP dyke
				0,05%	1%	1	tr	>30		1		1	159.8-162.7 -fragments mainly a bleached grey/white
162								>30		1		1	could be altered BQM or QFBP - 0.05% Mo trace scheelit
								4	+	1180		65134	in Pyrrhotite veins in this section in dry fractures,
ŀ 64					<u> </u>			13	<u>-</u>	1.00		1	and occasional veins within the fragments
		Mas- sive			0.5%			18		1	i		-vein counts misleading - at least 4 chlorite-actinolity
66	FP						1	7		1	<u>'</u>	1	"veins" every m up to 15cm wide, comprising up to 15% of
	FP.		100			05%		1	36	426		65135	rock, and carrying up to 10% pyrrhotite locally, 1%
68 -							 	15	<u> </u>	120	 	1	shalcopyrite FP fragments contain carbonized
								2		1		1	hornfels fragments.
170	QFBP						tr	5					162.7-169.8 FP - Numerous QFBP inclusions, one chlorite/actinolite
							 	15	5	96		65136	zone every 0.5m - have irregular to subparallel walls
72	-							16					with pyrite, pyrrhotite, -up to 1% carbonized clasts of
						.01%		<u> 16</u>		 			hornfels(?)-irregular shapes
174		<u>-</u>				<u> </u>	tr	4			<u> </u>		-most fractures are biotite-pyrrhotite fractures, some
	$\neg \neg$				0.2			- 7	4.	494		65137	with trace chlorite
76								23	<u> </u>	17			169.8-187.3 QFBP-generally massive, strongly porphyritic 3-5% bio-
30					Py+Po			12			·····		tite as 1mm to 0.5mm phenos.
. 78 −								5					-local patches of yellowish alteration of feldspar pher
								4	78	200		65138	185.1-185.5 -Biotite breccia-up to 20% black biotite as
80								14		ال			matrix to rotated, angular QFBP fragments up to 3cm
			100			.01%		8					long-contacts at 55° to C.A.
183	OFBP							3					183.9 -trace molybdenite in zone of bleached QFBP stro
- 1	אַר אַר	 		tr				7	20	242	25	65139	ly altered, yellowish feldspar phenos - yellow=sericit
184		·			f		tr	12			<u> </u>		molybdenite clearly related to sericitic alteration of
						-		11	_				QFBP, but only present in singleton veinlets in these
1 86							tr	19				 	
	100									288	30	65140	areas -scheelite also proximal to same altered zones, and or n
Г <u>өө<mark>сн</mark></u>	BX							/ 30	• T	ol DD	رو	1 33140	as a filling along pyrite bearing fractures at 175
								-		 	<u> </u>	 	-Pyrite content equals pyrrhotite content in this of
+												 	dyke up to contact with breccia
										 			-several hornfelsed fragments present.
										 _		ļ	-several hornfelsed fragments present.

ootag			%				ATIO	_			SAY D	АТА	Remarks
,	R	ec	Rec	Мо	Py+R	Сру	Sch	veir	Mo	Cu	W	SAMPLI	
	İ	Ĭ			0.29			13	Ī				187.3-194.2 Chlorite-actinolite breccia Weakly developed over a QFBP
CH	H						tr	28					dyke. Chlorite-actinolite matrix comprises 5% of rock
Bx			100		<u> </u>			30	 	 	1		Molybdenite, scheelite with sericiti ation of feldspar
Ma	s- ve			039	1%	. 3%	 	30	10	820	15	65141	phenos in "fragments," scheelite and shake pyrite pr
wea				.036	1.2	 	tr	30	110	070	13	03141	sent in matrix with up to 25% pyrrhotite locally
Era					-			25	 		 		no foreign fragments in matrix, minor hornfels fragment
tur	ea				0.29	05	-	4	 	 	 	<u> </u>	in OFBP fragments.
					0.2	1.03	<u> </u>		<u> </u>		 		~ -
						ļ	L	9	4	998	15	65142	Strong series of parallel fractures @200-450 to C.A., to lcm thick, surrounded by sericitized QFBP (sericite
QF	'BP							6			<u> </u>		to 1cm thick, surrounded by sericitized QFBF (sericite
						<u></u>		10 15			1		mainly in phenos).
							tr	15		<u> </u>			189.4-193.1 Intense sericitic and chlorite-actinolite
ВО	M	T	100					15	22	500	70	65143	terations. Up to 0.3% chalcopyrte, .03% molybdenite
- - <u></u> D\							tr	18			1		trace scheelite-molybdenite mainly along dry faces but
OF	'BP							17				1	occasional disseminated grains in sericitized rock, scl
2-								15		 		 	elite & chalcopyrite disseminated in pyrrhotite-chic
	<u> </u>	-			0.5	_		- 7	10	-	-	65144	ite-actinolite sections
	tt?Gro					05%		?	10	200	35	03144	
						.03.						ļ	Nb This is most intense yellow-buff alteration encountered
QF	BP							2				ļ	in any drill hole logged, including MacIntyre core 194.2-199.6 OFBP-Feldspars up to 2cm, sericitic alteration along
	<u> </u>				Py>Po		tr	3				ļ	
									303	154	20	65145	fractures 1/m, chlorite-actinolite along fractures 1/m
BÇ	QM		100					30					Numerous FP inclusion
				0.08				30				1	199.6-200.0 BQM-Medium grained, subporphyritic 10-20% biotite, weak
							tr	30					chloritized trace sericite in phenos.
FP	,			0	1%	.05%		12	220	134	30	65146	200.0-207.1 QFBP-highly variable section, numerous FP inclusion
					-			13		 • •		1	201.0-205-Highly sheared with 1-2cm stringers of bioti
BÇ	M	$\neg +$		0.05	0.2	b		30		 			and chlorite @ 800 to C.Aup to 20% of rock.
 	- 	-+						30				 	Matrix bleached feldspar phenos locally obliterated
+	Mas siv	- 							/	11.1	160	65147	Fault zone 204-206 Abundant chlorite, sericite, bioti
	SIV	e				.02		30 25	470	164	160	03147	(actinolite?)
	_			tr								ļ	,
 		_ -						23					207.1-210.6 BQM-2 phases, with local assimilated contacts
QF	PBP	1	100			i		8					207.1-208.0-Medium grained subporphyritic BQM-20% biot
			I					23	25	198	30	65148	
													with biotite-chlorite fractures.
													208.0-210.6-Feldspar porphymitic QM-aphanitic to
												1	
1													3
				1				I				F	than 2% biotite. Up to 0.1% molybdenite in quartz

Foot	age	Core	%	М	INEF	ALI:	ZATI	ON			SAY D	ATA	Remarks
20		Rec	Rec	Мо	Py+Pc	Сру	Sch	vein Frac	Мо	Cu	W	SAMPLE	
20	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						Π	7					veins and along biotitic fractures. Very similar in appearance to
				1	1	1	I	5	1			 	some QFBP dykes, but lacks quartz eyes and has the strong quartz
22 (OFBP	Mas- sive	1	1		.02		13	 			 	vein stockwork
	·	weakl	ļ —			1	 	11	14	136	45	65149	,
24		frac.	90%	 	 	 	tr	2	14	134	42	 	210.6-212.1 FP Strong hornfels locally, strong chloritic-actinolity
	FP		-		-	 	 	10				 	alteration of matrix
26		-	 -	<u> </u>		├	 	>30			 		
Tr	1 t r11-	-		\	20		<u> </u>	<u> </u>	170	216	70	65150	212.1-217.9 BOM-medium grained, 10% biotite Moderate quartz vein
28	itru-	ļ		. 05	. 2%	ļ	ļ		170	216	70	62120	stock-most veins 0.5-2mm wide, of grey sugary quartz.
ВУ	<u> </u>	ļ			İ	ļ		26					
30				ļ		ļ	tr	19					- trace-0.05% molybdenite in lmm quartz veins.
				tr>.02	<u> </u>	.02		>30					-several small FP dykelets brecciate and crosscut BQM
32								13	156	160	55	65151	215.9-217.9-BOM highly brecciated, section composed of
3Z								18					50% FP dykelets
34							Γ	26					-trace molybdenite in equigranular BQM only
74					. 2		l	>30					
			100					>30	140	152	70	65152	217.9-224.5 QFBP Very complex section-includes sharp fragments of
36			100					30	7-40	172	,,,	00102	BQM, dissipated fragments of darker QFBP, FP
_ _		Mas- sive						>30					210 2-210 7 blooghed white/grow aphanitic fragments p
38		2146						16			-		219.3-219.7 bleached white/grey aphanitic fragments, p sibly white rhyolite
				L								ļ	-chlorite-actinolite fracture 1/m, very weak alteration
40		abort		tr :02		.02		22 14	90	80	35	65153	of feldspars.
		short				.02							Of ferdspars.
42		roken						>30					
_		sectio	ns					.19					224.5-226.2 FP Weakly fractured, matrix strongly chloritized at
44								l f	135	90	65	65154	lower contact. Trace scheelite in veins @ 900 to C.A.
			100		<.19	5		6					
علعم	OFBP						tr	1					226.2-244.8 Intrusive Breccia Much more heterogenous than chlorit
	icode							13					actinolite breccia, mixed fragments from 1cm to 50cm
Po	orph							>30	32	76	35	65155	of QFBP, FP, BQM, Aplite, QFBP predominates-50-60%
48							tr	>30				<u> </u>	-up to .02% molybdenite mainly in aplitic BQM fragment
50 B	ОМ			005	.2%	+~		>30				 	but also as vein in weakly hornfelsed dark black matri
50 (a)	pli-			405	. 4 3	CT		> 30					at 227.8
- -	_tlc	<u> </u>	100						100	136	65	65156	
52			100					730	194	T 20	65	02120	fine grained to estimate-similar to FP matrix
54													ragments angular, usually equ
													contacts, comprise 60-75% of rock
													-matrix contains 5% feldsparphenos up to 2cm, may be
1	1	l l				 	١	1	ı	1		į į	PD intructive metalica

Foo	tage		%		INEF						SAY DA	ATA	Remarks
		Rec	Rec	Мо	Py+Po	Сру	Sch	veir	Мо	Cu	W	SAMPLE	
254	вом								138		85		Intrusive Breccia (cont'd) Up to 10% chlorite locally in matrix and
256	Apli-			0.05	.29	tr		>30				65157	crosscutting veinlets. Scheelite in veinlets up to 1mm wide.
\$50			100					>30					
750								>30					244.8-248.8 QFBP Numerous FP fragments, 10% of fragments moderately
محة	GEBP												chloritic (up to 10% judging by colour)
260	BQM.	Short							178	212	45	65158	248.2-248.4 dyke hornblende porphyritic-Up to 1% euhedral
200	(PPl)	broke	1	0.05		tr							.5-1.5mm hornblende laths, randomly oriented
		sec- tions				to							chlorite fragments indicate this is a very late dyke,
362						Q02		9					post-breccia. NB lack of pyrite and Pyrrhotite,
364								5	69	228	65	65159	, hornblende laths, large (2cm zoned feldspars.
?64	QFBP				. 2-5			18					Possible new dyke type)
366								>30					248.8-261.8 BQM-less than 3% biotite in an aphanitic, aplitic matrix
200			100		L			730					-subporphyritic, up to 1% 0.5cm qhosty, yellow buff
36.0	вом								200	278	85	65160	alteration feldspar phenos.
268	(EP)			0.05			Mo.						-rock intensely fractured - 1/cm -pyrrhotite-pyrite-bio-
:70				to		tr	Sch						tite-chlorite slips. veins-1/3cm of grey sugary quartz,
. 70				0.1%		to							up to 3 mm wide
:72					. 2-,5	.02			218	220	200	65161	-Molybdenite mainly in quartz veins but occasionally
./2													along dry fractures.
124			95%				.02						-1 singleton pyrrhotite vein/m with abundant Cpy
274							"Mo"	\Box					-Scheelite in veinlets up to 1mm wide at 450 to C.A.
276							Sch		152	172	75	65162	258.1-258.3 QFBP dykelet
													261.8-266.6 QFBP Well developed FP margins, gradational with QFBP,
278	FP												with chloritic patches
	HLACT												Numerous FP fragments also, rock weakly fractured
280	віот		100	Q05	.25		tr		156	296	55	65163	-contains 1 large molybdenite bearing BQM fragment. 266.6-276.8 BQM-aplitic matrix, locally subporphyritic less than 28
.00	вх												DIOLICE
282 -						to							-1 chlorite fracture up to lcm wide every 20cm - largest
502		}				.02%		25					fractures have white to yellow alterations selvage Molybdenite in quartz veins and on dry fractures 1/10cm
284	OFBP		t	rMo				29	63	352	140	65164	estimate 0.05 to 0.1% molybdenite, best mineral section
204							Er Sch	24					seen so far
386								18					-Pyrrhotite and biotite bearing fractures with minor H
			į	trMo	.2-,5			22					chalopyte , scheelite crosscut molybdenite vein-0
ممد			100			tr		21	14	160	15	65165	lets, fractures
288						to		8					
290						.02		15					("Mo" Sch) lengter best Section 180 far as grant of 0 00
2 30													-same veins contain molvhdenite. brown biotite.

00	tage		%		INEF					ASS	AY DA	TA	Remarks
		Rec	Rec	Мо	Py+Pc	Сру	Sch	yeir	Мо	Cu	W	SAMPLE	
:90 7					<u> </u>		i	5					BQM (cont'd) -Scheelite varies between blue and yellow fluorescence,
					.2%	tr	1	7	9	124	15	65166	yellow accounts for 60-70% of the grains present. Both colours some
92	QFBP		100		.5 _%	to	1	13					times visible in same vein
					Py≃Po	02	tr	8				 	
94		Mas- sive	· · · · · · ·		 	-	sch	21					276.8-277.3 FP lower contact gradational with breccia
	CHLACT				 	1	1	29	16	212	35	65167	
-	BIOT			tr		. 05		>30					277.3-282.1 Chlorite-actinolite-(biotite) breccia Similar to above
98	вх			€8 ₂ 9			sch	>30				·-	sections with black patches of matrix indicating biotite
98						trt	_	29					-weakly developed breccia, little or no rotation of frag
0.0					.2%	.02		10	6	148	55	65168	ments
0 0 					to.		<u> </u>	15				1	-QFBP and FP bleached white, porphyritic texture obliter
	QFBP		100		1 2 2			22					ated up to 1m from end of actual breccia
02							 	5				 	-bleaching appears mottled at margins, gives rock
		Mas- sive						6	14	152	60	65169	appearance of aplite
04				tr				12			<u></u>	1 2 2 2 2 2	-Molybdenite present in lmm grey quartz veins, 1/20cm,
						tr		>30					estimate 0.05% molybdenite
06		1			0,2 to	to		13				1	282.1-295.0 QFBP
					0.59	. 02	blue		31	168	110	65170	-upper and lower contact gradationally altered into
108							sch	>30					chloritic-actinolite-(biotite) breccia with patchy blea-
	вом		100	.029			.02	>30					ched white areas
10	~				i		Yel-						-rock weakly veined predominately near contacts
							MO Sch						-numerous FP inclusions, dykelets also present near con-
											•		tacts. Trace blue fluorescing Scheelite in 1mm quartz
												·	284.0-287.0 Weak bleaching, trace molybdenite in 0.5mm
													grey quartz velns. 295.0-298.5 -Chlorite-actinolite-(biotite) breccia -biotite comprises up to 5% of matrix
\dashv													-fragments vary from pure white, silicified to QFBP with
_													only weakly bleached (silicified) patches
												 	-trace to 0.02% molybdenite in quartz veins 2/m
					 								-FP fragment or dyke 296.5-297.5
-											1	 	-clinopyoxenite up to .05% in breccia
													-trace blue fluorescing scheelite in FP fragment/inclusion
-													at 297.5
_									 		 -		Nb -probably similar in origin, but more intense than
-				· /=									
\exists							-						section 187.3-194.2-molybdenite grade similar in 295.0-298.5 also
\dashv													section 187.3-194.2-molybdenite grade similar in 295.0-298.5 also O o
-												-	The second secon

ootage	Core	%				ZATI			AS	SAY D	АТА	Remarks
	Rec	Rec	Mo	Py+R	Сру	Sch	reir	Мо	Cu	W	SAMPLE	
10 BQM			. 02 €		1	1	30					298.5-308.8 QFBP-highly variable texture, subporphyritic to megapor
QFBP		100		. 29	è		>30	92	208	300	65171	phyritic, up to 25 ragged-edged FP inclusions
1.5						tEo	>30					-local minor bleached patches, bleached white selvages
BQM	Mas- sive		tr		tr	02%						along fractures, some with chlorite-actinolite
14				1	to	T						305.1-305.8 chlorite-actinolite-(biotite) breccia-only
QFBP					.02	Sch	>30	145	232	85	65172	chloritic fractures, rest of zone is bleached white QFT
BQM							>30					trace molybdenite -upper and lower contacts of dyke have lm of FP
QFBP			tŧo				>30					-1% BOM fragments in dyke also, up to 20cm wide
BQM			.02				>30					-Pyrrhotite-chalogyrhe veins, fractures 1/50cm
20 FP					tr		>30	168	232	150	65173	308.8-321.4 MixedBOM and OFBP-Numerous dyklets of FP bearing , irr
		100		1 8 ^P	to	1	>30					megaporphyritic QFBP crosscut breccia
BOM CHL-ACT-GX			.02		.05		>30					Nb-up to $.02_{ m Some}$ BQM may be fragments within larger QFBP units BQ
OF BP				.2%			6					molysche- sections contain less than 5% biotite, have aphantic,
24							26	59	:00	75	65174	elite in equigranular or subporphyritic texture, and are intens
CHL-ACT-BIO	,						>30					vage=pear
BX						'Mo'	•					tures, Pyr-fracture/2cm and ore quart-(molybdenite) vein (grey
OFBP			.02tc	,	tEo	sch	4					bearing sugary quartz) up to 2mm wide/10cm. Biotites weakly fractures &
28			.05%	.2%	.02		16	36	312	20	65175	quartz-molybaloritized, feldspars in QFBP section yellow-buff mod
CHU ACT DID	,						>30					103 of erately sericitized.
30 Bx		100					>30					103 of scheelite erately sericitized. scheelite fluorescing blue. 319.3-321.4 Chlorite-actinolite-biotite breccia with 0
вом							>30					molybdenite in quartz veins section alterations of fel
END												spars-10% of rock locally
32 END OF HOLE												321.4-330.2 Chlorite-actinolite-(biotite) breccia with QFBP section
												-unit mainly marked by bleached white moderately frac-
												tured rock with up to 10% chlorite-actinolite along
												breccia-like fracture zones. Alterations symmetrically
												extends away from these zones, apparently altering QF
												-sections marked QFBP on log appear later than breccia
												with only weak fracturing, no alterations and sharp c
												tacts with breccia-dykes weakly flow aligned (?) as
	ı											denoted by feldspar phenos
												330.2-331.0 (END OF HOLE) BQM Weakly chloritized along fractures
												bleached adjacent to fractures. Subporphyritic, up to
												5% biotite
											 	70
					1	1					 	

DIAMOND DRILL RECORD

PROPERTY _	ERIE CREE	K Project Numbe	r <u>794</u>		
Hole No.	EC-80-3	Co-ordinates	L1+28N	Bearing at Collar	270°
			2+87W	Dip at Collar	-45°
		Collar Elevation	947 m	Commenced Drilling	
		Total Depth	166.4 m	Completed Drilling	
				Logged By:	S.E. Parry
Core Size	NQ-BQ	Coring Method _		Drilling ContractorP	hils Drilling Co.

	Sur	vey Summa	ΣΥ	<u>Pertinent</u>	Assay Data	<u>Pertinent Geology</u>			
Depth	Dip	Bearing	Method	Interval	%	Interval Rock Type			
		,		118-120 m	0.48 oz-ton Ag	16.5-166.4	Alternating BQM and composite QFBP-FP dykes		

Foo	tage	Core	%	Mine	Mineralization ,								Remarks
1 4	_	Rec	Rec	Mo	Pv&P	b Co	Sch	rein Erac	s Mo	Cu	W	Samp1	0-16.5 overburden
T-0		Ground		1			1	3					16.5-25.0 quartz feldspar biotite porphyry (QFBP) composite dyk
1.0			100	İ	0.19	Tr		10	33	232	50	65176	
18	QFBP				Pos P			9					Phenos (1 mm) up to 10% feldspar phenos (up to 1.5 cm
	<u> </u>	Massiv	6	4	1	01	1	15			<u> </u>		euhedral to partially resorbed euhedral 2% round glas
2 0—		to	<u> </u>	1		1.2.	1	11	28	192	70	65177	quartz eyes (1-4 mm),
-		mod.					n s	ch 6				3.77	-generally massive weakly fractured
22		broker					"Mo"	1		380	200	65178	-5% inclusions and/or dykelets of sparse feldspar por
24				Tr,M	•			15	-	1 200		J 7 7 1	(FP), dark black 1% euhedral feldspar phenos to 1.5
								7	80	172	130	65179	-(border phase to composite dyke)
0.6	ВОМ							14					-up to 1% actinolized 5 mm clots locally, may be re
/0 -	- 4					Tr		9	45	232	55	65180	plagioclase phenos.
20					0.12	+		5	1			1	-feldspar in QFBP locally weakly altered to yellow-b
28	QFBP		100		V /	.01		5	68	328	70	65181	colour
30								8					-1 oxidized fracture/50 cm
3 U									106	320	90	65182	-trace molybdenum in grey QVS at 15° to core axi
20						T		18				22101	23.7-23.8 3 cm wide quartz vein with trace -05%
32	Alt'd				. 2-5				120	2840	65	65183	molybdenum
	Brecci	а			r-1				1211	ZUSU		103163	-mineralized structures include: 1)chlorite-biotite-
)4					Sph			> 30	58	320	150	65184	actinolite fractures with pyrrhotite, chalcopyrite (
36	ВОМ			-		.02		>30			-		2) QVS @ 0-15% to C.A. with trace molybdenum, tur
•	777	mod.	100	.02%	.2to	 		19	72	380	70	65185	(1/m) 3) QVS @ random orientations into pyrrhotite.
38	Alt Rx			to		.05		>30					chalcopyrite.
38				.05%									tungsten, molybdenum only in local trace amounts,
													chalcopyrite up to .01%. Nb - sulfide content definit
													lower than in hole 80-2.
	·												25.0-26.8 biotite quartz monzonite (BQM)
													-medium and porphyritic to equigranular, dark grey
													-up to 15% 5 mm grains of biotite phenos of feldspar
													1 cm comprise up to 0.5% of rock.
												 	-biotite weakly chloritized.
													-tungsten, molybdenum in QVS at 0-15% to C.Apossib
													sheeted vein system which cross-cuts BOM & OFBP -
													tungsten as molybdo scheelite in 80% of veins
												1	(yellow fluorite)
													-chalcopyrite on chlorite-biotite bearing fractures
												 	with pyrrhotite, pyrite
		L										L	with pyrinotice, pyrice

Footage	Core	%								***		Remarks
_	Rec	Rec				T	1			Ĭ		26.8-31.9 QFBP 5% FP sections
												-megaporphyry-feldspars zoned, to 2.5 cm
												30.0-31.9 locally bleached white (silicified)
												-one molybdenum-tungsten quartz vein at 0-20° to core
												axis/metre
												trace to 1% pyrrhotite, pyrite in these veins, mainl
												along fractures within veins parallel to vein walls.
										·		
										,		
								L				
						Ĺ.						
				·		<u> </u>		<u> </u>				
					<u> </u>							
											<u> </u>	
						<u> </u>						
	·											
							<u> </u>		<u> </u>	<u> </u>		
												2
												ā
												a contract of the contract of
												1
												C _n
												·
1	ı I		l			r	t I		l	ł	1 .	1

Foo	tage		%	Mir	iera]	liza	tior	ì vei		Assa	y Data		Remarks		
38		Rec	Rec	Mo I	y&Pc	CDY	Sch	of rac	s SMo	Cu	W	Samp1	31.9-35.2 Altered Breccia (Alt'd Bx)		
50				1		1		>30	154	230	280	65186	-zoned alteration bleached white silic zone 31.9-33.2		
40			100	.02		. 02		>30					-sericitic yellow- mottled alteration and frac		
40				to	,2	to	Мо	>30	52	360	140	65187	selvages 33.2-34.8		
42	BQM			.05	to	.05	Scl)30					-bleached silic zone 34.8-35.2		
72					.5			>30	97	348	120	65188	-sharp upper contact a) 20° to core axis between two		
44					Po>P	У		>30					alterations.gradational lower contact silicic alterati		
				1				>30	60	256	1000	65189	gra dational outward into unaltered rock		
1.6	FP						Tr	20					-brecciation only developed in sericitic zone with one		
-10	BQM			.05		4		22	92	760	70	65190	fracture /5 cm, no rotation of fragments.		
48	Alt bx			1	.5		to	>30					-sericite alteration may be restricted to feldspar		
				7	to	0.1%	.02	\$ 21	170	252	150	65191	porphyry host rock		
50	OFBP		100	.02	1%		Sch	27					-chalcopyrite-sphalerite present in veins up to 0.5 cm		
30				•		+		15	26	400	45	65192	wide with 10% carbonate, 5-20% chlorite actinolite(?)		
52								4					trace molybdenum in some veins and in dry fractures, gr		
								4					sugary quartz veins		
54					.2	.02		5					-estimate 0.2% chalcopyrite in breccia with sericitic		
1					to	to		13					alteration		
56					.5%	Tr		21					-trace scheelite (yellow fluorescing) in dry and		
								12					pyrrhotite(?) bearing fractures, and along fractured		
58								13					margins		
30	QFBP			TrMo			.02	27					35.2-46.6 BQM		
60					1%	. 2%		> 30					-dark grey to medium grey, medium grained subporphyrite		
00													equigranular		
													-up to 15% weakly hornfelsed, chloritized biotite grai		
													-strong quartz vein stock quartz grey, sugary, prefere		
	i												tially oriented at 20-30° to core axis.		
													36.5-37.5 feldspar porphyry dyke, moderately fractured		
													with one pyrrhotite-chalcopyrite fracture /5 cm.		
													37.5-37.9 altered breccia, similar to 31.9-35.2, zoneo		
													also		
													-trace sphalerite, chalcopyrite		
													45-45.6 feldspar porphyry, moderate fracture		
													quartz vein stock in BQM-up to .05 molybdenum-		
		i											-trace scheelite on fractures which crosscut feldspar		
													porphyry, yellow fluorescing		

Foo	tage		%		nera						Assay	Data	Remarks
60		Rec	Rec	Mo F	о &Р у	Сру	Sch	rac	s Mo	Cu	W	sample	46.6-47.6 altered breccia-host rock to breccia is feldspar porphy
								18	5	364	25	65193	and BQM
62					Tr	Tr		12					-no internal sericite zone in this section but matrix to
- 02			100		.1	to		23					breccia contains trace sericite in association with
64		massi	ve.		to	.02		15					pyrrhotite-chalcopyrite blebs.
					.5			18					-intensely fractured moderate silic rock. Up to 15%
66								15					chlorite-actinolite-sericite between angular slightly
- 00								8					rotated fragments from one cm to 4 cm in size
68	QFBP						Tr	7					-chalcopyrite, pyrrhotite in blebs and along fractures
						Tr	Sch	21					up to one chalcopyrite
70						to		16					-one barren grey sugary quartz vein/5 cm-no molybdenum
-70	BQM						Tr	28	24	400	150	65194	noted, trace scheelite along fractures
72				Tr			Sch	23					47.6-69.9 QFBP - two distinct types
- , _	QFBP		100					6	102	252	65	65195	47.6-50.5-m-gaporphyritic, but could be porphyry BOM
-74				.1		7	rSc						fine grained matrix with 5-10% biotite, 10-15% feldspar
7.4		massiv	re	7	ጥ					1360	25	65196	phenos up to 1.5 cm 1-2% quartz eyes trace blue fluorito
76	BQM			. Q5	0,5%			>30					scheelite
70	augit	2			Po≫P	У		10					-trace to .02% molybdenum in weakly developed quartz ve:
78	porhpy	ry			1%	.05	lrScl	n 18					stock - veins up to 0.75 cm wide, frequently truncate
70	FP					ተ		8					each other at 90°
-80	!				12%	Tr	lr Scl	1 3					-up to .1% chalcopyrite in chalcopyrite-pyrrhotite veins
- 00		broker				to		10			•		and pure chalcopyrite veins
- 82	QFBP		100			.02		15					-chalcopyrite veins cross-cutting molybdenum veins and
02													cross-cut molybdenum on chlorite fractures
		·											50.5-64.8-aphanitic matrix, feldspar up to .5 cm and
													comprise 10-15% of rock 5% round glassy quartz eyes-
													usually massive, weakly fractured
•													59.2-60.0-weakly to moderately silicified QFBP felds
													epidotized trace sericite along fractures and in matrix
													one grey quartz vein/5 cm trace molybdenum chalcopyrite-
													pyrrhotite up to 1% along fractures
													-trace scheelite, molybdenum in pyrrhotite veins with
													blue fluorescing scheelite
													Nb - scheelite changes from yellow to blue fluorescent from BOM c
													to QFBP/alteration breccia at 46.6
													64.8-69.9-megaporphyritic, sharp contact with more
													altered fine grained material - up to 20% feldspar
· I	l i	ı I	ſ	l	ı	ı	l	. 1		I		l . !	porphyry fragments.

Footage	Core	%			·····		 		Remarks
	Rec	Rec	T		T	T			69.9-71.5 BOM-aplitic, 1% biotite, weakly fractured
									-trace scheelite in QVS at 70° to core axis
									-QVS barren of molybdenum
									71.5-74.1 QFBP-megaporphyry weakly breccia
						1			-trace molybdenum, tungsten in QVS 1/m at 5-10° to core
				1	1				axis up to 1 cm wide
					1			, 1	-numerous hornfels inclusions tungsten as white coloure
									yellow fluorite scheelite
					1				74.1-76.1 BQM - aplitic possibly silicified
				1		1			-strongly veined with grey QVS at 10-20° to core axis
				1		1			-up to .05 molybdenum, .1 chalcopyrite in veins and alo
			 1	1	1	1			fractures
			 1		1				-veins constitute up to 20% of rock,late carbonate
									fractures cross-cutting molybdenum veins @60° to core a
									12 hornfelsed metasedimentary inclusions
									76.1-77.8 Augite Porphyry(Aug. P.)
					1				-up to 25% actinolized augite phencs 2 mm in diameter
									-matrix massive to weakly foliated @80° to core axis,d
						1			green (chloritic) in colour. becomes increasing dilated
									by QFBP towards base, finally represents fragments in a
									QFBP dyke trace scheelite as disseminated grains and on
									fractures
									77.8-80.9 feldspar porphyry, num erous augite porphyry inclusions,
				<u></u>					matrix veins locally to QFBP. sharp lower contact. loca
									quartz porphyritic
				<u> </u>					80.9-100.9QFBP-massive, weakly fractured, up to 3% biotite, unalte
									trace yellow-buff sericitic alteration of feldspar phen
									adjacent to fractures, alteration increasing with depth
									-2% feldspar porphyry dykelets or fragments-matrix 20%
									chlorite-actinolite alteration
									-weak epidote alteration of phenos also
					T]			-trace molybdenum, tungsten in sugary grey QVS (1 cm wide
									at 0-10° to core axis ½ m
									-up to .02% chalconvrite, pyrrhotite pyrite up to 2
	i								0.5 in feldspar porphyry inclusions
									-tungsten as blue fluorite scheelite in quartz veins
									and on dry fractures
									-80% of fractures in QFBP have cream coloured carbonate

Footage	Core	%										Remarks
	Rec	Rec										100.9-102.8 altered breccia-weakly developed-biotite in minor
												chlorite alteration along fractures as 1.4 cm selva
					T	1					1	fragments or host rock QFBP-pyrrhotite + chalcopyri
					1	1		 	 			on fractures rock only 10-15% altered slight bleach
					 	1		 		 	 	of fragments.
		<u> </u>		 	╁	1	\vdash	 	 			
				 	 	+-	-	+-	 	 	 	
					╁	 	 	 	 	ļ ———	-	
	-			 	╂	 	1-	 	 		-	
				 	-	┼	 	├		 	 	
				 	-		 	 		 	 	
			<u> </u>	ļ	ļ	ļ	ļ	ļ	<u> </u>	ļ	 	
			 			 	 	-		<u> </u>	 	
			<u> </u>		<u> </u>	ļ	ļ		 	ļ		
					<u> </u>	<u> </u>	<u> </u>		<u> </u>		_	
					ļ	<u> </u>		<u> </u>			<u> </u>	
					<u> </u>			L		<u> </u>	<u> </u>	
<u> </u>												
										i		
	·					1			<u> </u>			
										<u> </u>	 	
						-	 			<u> </u>		
				<u> </u>			-		 -			
					 	 	-		 		 	
						 	 -	<u> </u>			 	
. 					-		 				ļ	
				<u> </u>	 			ļ				
				 	 	ļ				<u> </u>		
					<u> </u>					ļ	ļ	
										ļ		
					<u> </u>							
					<u> </u>	L						
	l											
												· · · · · · · · · · · · · · · · · · ·

Foc	tage	Core	Rec Rec Mo Py&Po CpySch fr	Min	iza	tion	·•		As	say D	ata	Remarks	
0.0		Rec	Rec	Мо	y&P	φ Cp	Sch	fra	ns rsMo	Cu	W	Sample	102.8-116.5 QFBP-varies from subporphyry to megaporphyry up to
O.								22					inclusions dykelets of feldspar porphyry 0.5%-1% ro
84	1	nassiv	e100		. 2%	Tr		16					rose tinged quartz eyes. up to 8% biotite
-0-1						to		23					-trace molybdenum tungsten in quartz veins, fractur
06	QFBP					.02		5					at 0 to 150 to core axis - grey sugary quartz veins
-00						1		8					· · to 1 cm wide
88						7	rScl						-weak yellow buff alteration of feldspar strong
00				[rMo				4			,		chloritization of feldspar porphyry material-up to
ΛΛ								12	1				of matrix appears to be chlorite with up to 3%
90-		<u> </u>						6	8	400	45	65197	pyrrhotite as blebs and along fractures
92	1						\vdash	7					-106.2-110.4-weak to moderate quartz vein stock sig
	n	assiv	2		. 2%	7	rScl	<1					to that in BOM-molybdenum seems restricted to vein
~ .	1		100					10					parallel core axis
94_								11					-112.9-116.5-weak to strong quartz vein stock, moly
~ _								7				<u> </u>	in 0-15° QVS still
96-	1			-				11			-		Nb - shallow angle quartz veins cut the earlier quartz vein st
						Tr		7					-blue fluorite scheelite present along dry fractur
8						to		2				†	pyrrhotite veins to 104.0
						.02		5					-yellow fluorite molybdenum-scheelite in quartz ve
100						_	rScl		5	192	65	65198	stock and 5-15° veins 110 to 116.6
100	Alt'd	Вх		·	. 5%			30ر	<u> </u>			102120	116.5-120.3 altered breccia-progressively silicified OFBP
±UZ								23					117.3-5 cm of light green clay, then sharp contact
1U4	QFBP?		100		.2%	Т	rScl						@600 to core axis with intensely silic.rock, no
104								18					original texture
106								25					-rock brecciated with 15-35% vuggy coarsely
: 00								25					QVS and earlier (?) grey QVS, rest is silic host ro
100			1	rMo		Tr		>30					≈90% quartz
108 -						to		>30			· · · · · · · · · · · · · · · · · · ·		-up to 10% yellow buff sericite along fractures, i
						.02	-	>30					crystalline and possibly pseudomorphing feldspar p
110				rMo				18					with clear fluorite quartz and topaz?
	n	assive						>30					-molybdenum in QVS at 50 to core axis, in dry frac
112							Trto					1	at 60° to core axis-associated in 5° veins in the
				ГтМо			.02					1	nyrrhotite chalconyrite
114							_	>30					pyrrhotite, chalcopyrite -chalcopyrite mainly in pyrrhotite bearing fracture @60° to core axis also in chlorite fractures along
							Sch					<u> </u>	060° to core axis also in chlorite fractures along
116			100						178	356	35	65199	contact of hornfelsed feldspar porphyry fragments
	Alt'd			.05	-			x30	1/0	الاد		255	at 181.2
118	 						ļ	,,,,					=Nb-no tungsten seen in breggia

Foc	tage	i .		Mine							say Da	ta	Remarks
118		Rec	Rec	Mo I	y&Pc	Сру	Sch	rac	is Mo	Cu	W	\$ample:	120.5-139.1 OFBP-highly variable section from subporphyry to
-110	Alr'd			1	,	IrGa	1	>30	125	2440		65200	
120	7	nassiv	e 100	.05	.2	Tr		>30	0.48	oz/t			molybdenum in megaporphyry sections
	 	to		F		to		>30		720		64901	-weakly altered feldspar pheno-yellow-buff sericite
122		broken				.02		12					alteration
-106	QFBP							8					· 120.5-121.5 mostly megaporphyry, one gney quartz vein/
124								10					20 cm 5% feldspar porphyry
-124							Tr Mo	22					121.5-123.8-subporphyry, massive to weakly fracture wi
-126							Sch	22					pyrrhotite and chalcopyrite on fractures
-120				Tr				>30					123.8-130.1-megaporphyry with 2% BQM inclusions trace
128				Мо			1	>30					molybdenum on fractures at 30-40° to core axis and in
-140								17					grey quartz veins, 1/10 cm, up to 1 cm wide
-130					.2			21					-local patches of weak silic, both contacts sharp
130			100			Tr		19	7	500	150	64902	130.1-139.1 porphyry with 1% pink quartz eyes, massive
120						to		6					with one quartz vein/m, trace sericite along fracture
132						.02	Tr	13					with pyrrhotite, chalcopyrite. 1 cm of feldspar
10/								14					porphyry at upper contact 0.5 m at lower contact
134	r	nassiv	2					12					-biotite moderately hornfelsed to brown-purple colour
126		to						17					in entire section
136-	ł	roken					个	24					139.1-144.1 BQM-equigranular, fine grained with 5-10% brown, horn-
-138							Tr	14					felsed biotite, weakly foliated, weakly to medium
130							Sch	24					fractute
140			100	Τr		Tr		27					-trace scheelite in fractures at 30-600 to core axis
	BQM			Мо	.2	to		12	364	500	30	64903	-trace molybdenum, tungsten in quartz veins, 1/m trace
142					to	.02		16					.02% to .05% chalcopyrite in fractures @45° to core ax
					.5%	to		19					144.1-145.0 feldspar porphyry-massive in inclusions of BQM
144				1		.05	rScl	23					145.0-147.3 QFBP-megaporphyry; moderate quartz vein stock
I 4:4	FP					Tr		8					147.3-148.2 BQM-could be inclusion in dyke
146	QFBP		100		.2	E0.0	2	24					-up to 12% biotite 5% along fractures
140													-trace molybdenum quartz veins
													V
													ne
													et
											. ,		i o
							 						O PT.
													9
•	i	1		ı			ı I			1		1 !	l l

Foo	tage		%		nera			_	T		ssay D	ata	Remarks
- 146		Rec	Rec	Mo 1	y&Pc	Сру	Sch	rein	s Mo	Cu	W	Sample	148.2-148.8 QFBP-megaporphyry, one quartz vein/30 cm, barren of
-140	QFBP							15					molybdenum
148	ВОМ	1		TrMo	.1	Tr	不	26					-trace chalcopyrite along fractures, trace scheelite
	OFBP	nassiv	e100		to		Tr	>30					along chlorite bearing fractures
- 150	BQM				.2	to	Sch	>30					148.8-150.5 BQM-equigranular to subporphyry with aplitic groundma
							*	28	48	308	20	64904	very weak quartz veins biotitic and late carbonate
152	QFBP				.02			24					fractures, possible chlorite on a few fractures
	BQM			TrMo				23					-trace scheelite along chlorite bearing fractures
154	<u> </u>	1			1			12					150.5-152.0 QFBP-megaporphyry, up to 8% biotite weakly chlorite
	FP							12					hornfelsed
- 156								10	<u></u>				152.0-153.2 BQM-equigranular, medium grained up to 10% biotite
			100					23	<u> </u>				-very weak quartz veinigless than 1/m with trace
- 158				ГrМо				17	<u> </u>				molybdenum
	QFBP							12	<u> </u>				153.2-156.8 feldspar porphyry-weakly chlorite matrix less than 5%
160				4		Tr		23					QFBP inclusions-indistinct outlines
					.1			25					156.8-159.5 QFBP-megaporphyry weak fracturing trace molybdenum in
-162	FP			TrMo	to	to		20					.75 cm quartz vein at 158.4 068° to core axis $0-15^{\circ}$ to
		nassiv	e		.2			9					core axis-trace molybdenum in quartz veins 1/2m-1%
- 164						.02		11	-				chlorite-actinolite in patches up to 2 cm long
									58	348	20	64905	159.5-166.4 feldspar porphyry up to 10% inclusions of QFBP, 1%
166								25					BQM fragments multiple feldspar porphyry dykes here-
			100					17					chilled contacts
- 168	END								<u> </u>				-trace molybdenum in BQM fragments at 161.1
	OF								<u> </u>				Nb - pyrrhotite/pyrite content lower in bottom of this hole than
	HOLE	·											in 80-2.
											··		
													
													D S
													1ee
													<u>п</u>
													٠ <u>٠</u>
	ļ												o n
			İ			l	1						·
	'	•	•	,	•	'	•	•	•	'		• •	•

APPENDIX II ANALYTICAL RE-ASSAY RESULTS OF MACINTYRE DRILL CORE SAMPLES

MACINTYRE DRILL CORE - RE-ASSAY

69-5

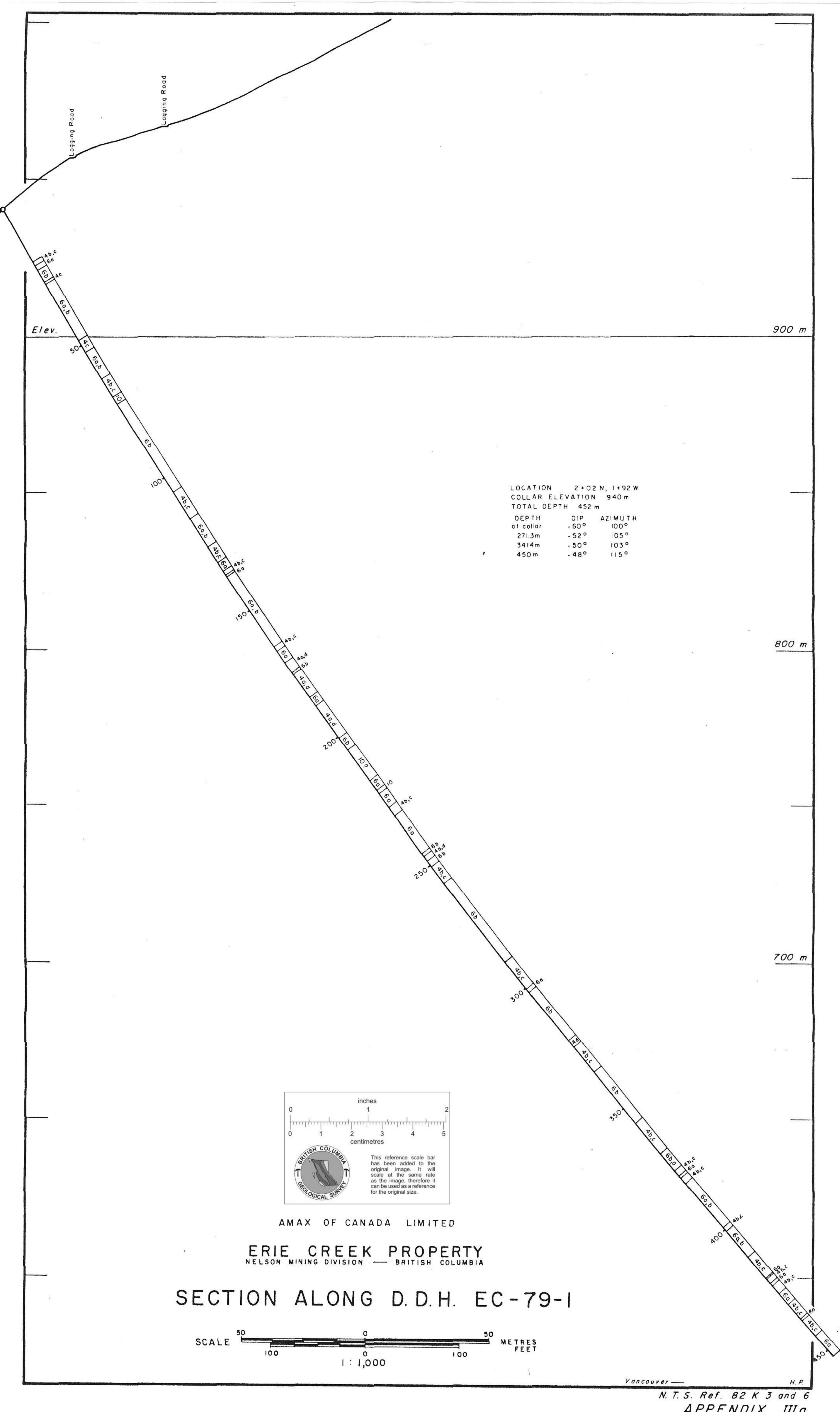
Sample No.	<u>Mo</u>	(parts per million) Cu	<u>w</u>	Ag
64924	89	880	55	1.0
64925	130	920	60	1.0
64926	208	580	140	0.8
64927	102	580	85	0.6
64928	578	460	90	0.2
64929	127	480	300	0.6
64930	442	410	200	0.2
64931	114	380	45	0.4
64932	476	440	200	0.4
64933	49	308	50	0.4
64934	680	640	200	0.6
64935	300	340	150	0.2
64936	18	480	65	0.2
64937	38	370	20	0.2
64938	77	260	55	0.2
64939	754	308	70	0.2
64940	592	352	190	0.4
64941	218	480	300	0.6
64942	100	312	65	0.2
70-6				
64943	420	620	200	0.4
64944	500	400	80	0.2
64945	372	1,580	150	1.4
64946	46	960	70	0.6
64947	57	1,060	70	1.0
64948	85	840	55	0.8
64949	370	760	150	1.0
64950	238	660	40	0.8

APPENDIX III
DRILL HOLE SECTIONS

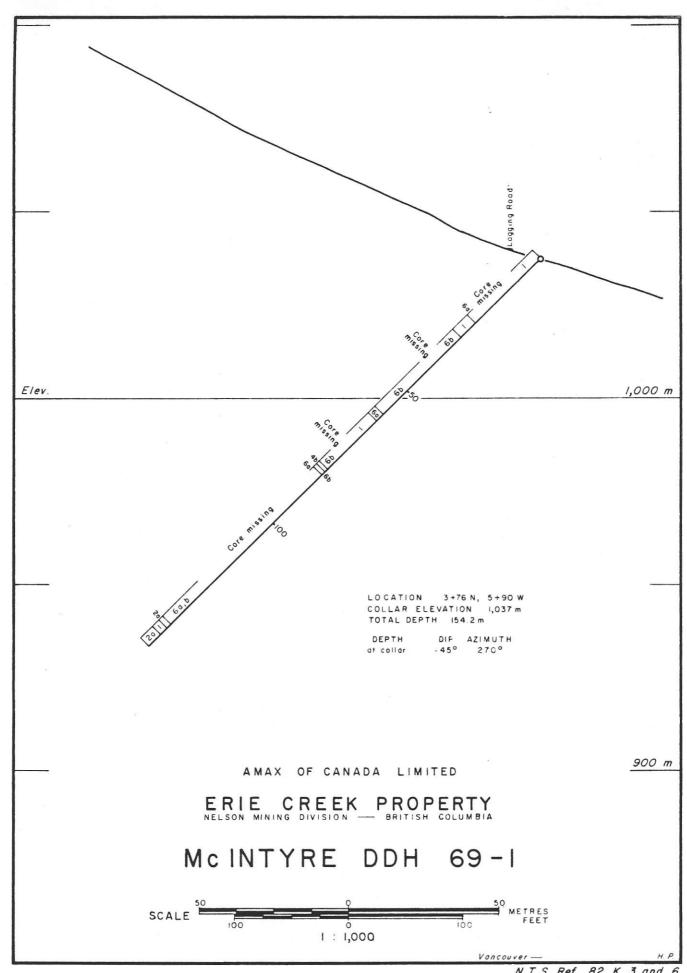
DIAMOND DRILL RECORD

PROPERTY	ERIE CREEK Project Nur	mber <u>794</u>		
Hole No	EC-80-4 Co-ordinates	L0+60S	Bearing at Collar	270°
		2+20W	Dip at Collar _	-45 ⁰
	Collar Elevation	945 m	Commenced Drilling	
	Total Depth	114.6 m	Completed Drilling _	and the second second second second second second second second second second second second second second second
	•		Logged By: _	S.E. Parry
Core Size _	NQ-BQ Coring Method	i	Drilling Contractor Phi	l's Drilling Co.

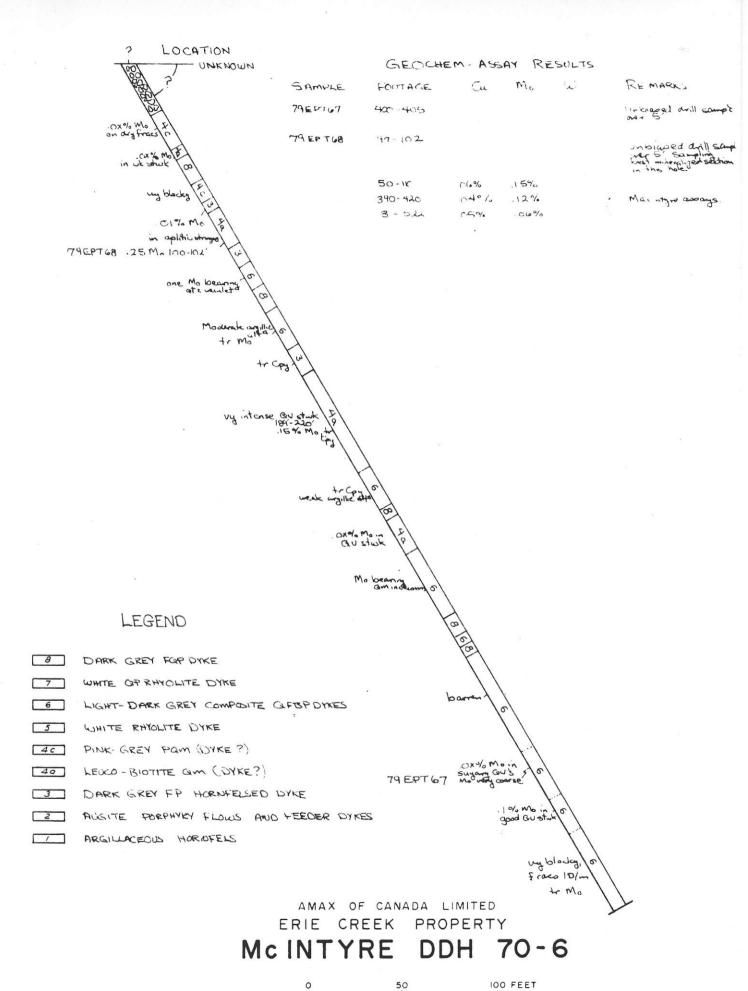
1	Su	vey Summa	ΣΥ	Pertinent As	say Data	Pertinent	Geology
Depth	Dip	Bearing	Method	Interval	% WO3	Interval	Rock Type
				5.0-22.0 m	0.063	5,0-22.0	Alternating calc- silicate hornfels or skarn, and BQM dykes
					,	22.0-114.6	Composite QFBP-FP dyke with minor BQM dykes

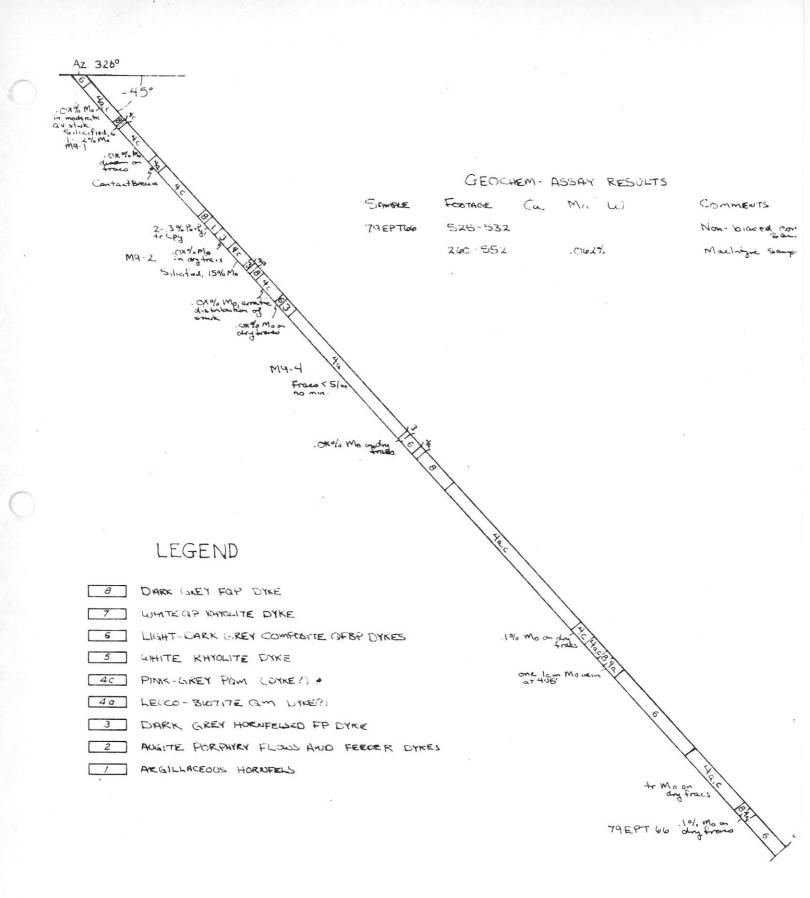

Foo	tage		%	Mi	nera	liza	tio	n		A	ssav D	ata		Remarks
5		Rec	Rec	Мо	Py&Pc	Сру	Scl	reir	S Mc	Cu		Sample	0-5	Overburden
	BQM		不	不						360		64906		"Aplitic Biotite Quartz Monzonite"
	aplite	broke	30%	.05	1.2	.02				370		64907		-locally subporphyry, usually very fine grained, slight
R				1.	1			>30	1					sugary texture
				-		П	BŚcł		28	540	300	64908		-highly fractured with molybdenum along dry and pyrrhot
10	Hfels				,5		Tr	1						bearing fractures B9ch= Hue fluorescing scheelite.
	skarn				to		to	>30	46	920	300	64909		-0.5% pegmatite patches with irregular contacts, quartz
-12-		_			1%	.02	.0:	> 30						grains up to 1 cm long
14			100		PoNP	וע		>30	64	400	400	64910		-lower contact highly irregular, almost parallel core a
	BQM			Tr			Tr	>30					8.2-12.7	Hornfelsed and Skarned Metasediments (HFEL, SKARN)
14	aplite)		to	. 2%		Sch	>30	70	400	300	64911		-first core of this unit
16		nassiv	e	.02	Po P	y 0	1	>30						-two alterations of the argillaceous sediments
10		to						>30	78	460	140	64912		1) hornfels-dark purple brown colouration, more strongl
18		roken				l ·	r 10	2 15						developed along fractures
10						\coprod	Мо	>30	92	780	1400	64913		-up to 0.5% pyrrhotite
- 20 -								730						2) skarn-varying dark green and light pink bands,
20			100				Sch	23	22	308	150	64914		apparently zoned around chlorite-actinolite bearing
- 22				V				>30						fractures, veins. no calcite found
- 22	FP						Tr	8						-up to 0.5% pyrrhotite, .02% chalcopyrite along fracture
24					. 2	.02	Sch	23						at acute angle to veins
						Ш		11						pink may be garnet, green appears to be interveining
- 26								3						chlorite-actinolite bands
							Tr	10						10-4-strong chalcopyrite along contact of BQM fragments
- 28							Sch	10						and in tension gashes at 90° to core axis
			_					9						-foliation at about 50° to core axis
- 30	FP		100				<u> </u>	11						-trace to .02% scheelite as blue fluorexim grains along
								12	7	400	130	64915		veins and pyrrhotite bearing fractures
- 32 -		l				\mathbf{V}	Tr	9					12.7-22.0	BQM (Aplitic)
							Sch							-up to 1% coarse grained pegmatite patches 1% hornfelse
														and early feldspar porphyry fragments (?)
														-rock fine grained at 12.7 medium grained at 17.3
														-molybdenum in quartz veins at 15° to core axis, also
														on random, lensy fractures -weak yellow-green sericite along one fracture/metre
														-weak yellow-green sericite along one fracture/metre
														19.3-20.0 inclusion of dark green/pink banded skarn.
														hornfels, weakly fractured trace calcite present ,
														not in fractures but in banding
														·

Footage	Core	%	T					W1 4.				Remarks
-	Rec			<u> </u>		T	Т			1	1	-biotites (up to 2%) weakly hornfelsed to brown colour
												-hornfelsing of BQM noted as selvage around white quar
												veins up to 2 mm wide
											<u> </u>	
						1						
									1	1	1	
									1			
					1		1	1				
									<u> </u>	1		
				1		1					1	
											1	
							T				1	
									1	1		
										1		
	·											
			-							<u> </u>		
								<u> </u>		1		
												
										 		
										1		
										 	 	
		ا	·					:		1	1 .	·

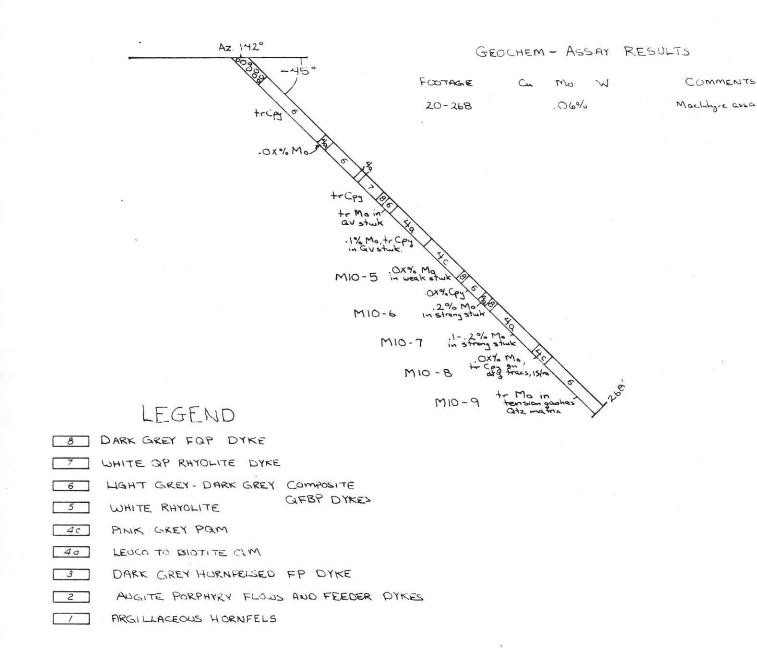

Foo	tage	Core	%	Mi	nera	liza	tion	1		As	sav Da	ta	Remarks
2.2		Core	Rec	Мо	v&Pc	Cpv	Sch	eins	Мо	Cu			22.0-34.0 feldspar porphyry with numerous OFBP inclusions, dykelet
-32	<u> </u>	massiv			y>Po			>30					(composite dyke) 23.0-BQM inclusion
2.4	FP	ground						>30					23.2-23.8-hornfels with weakly skarned sections trace
- 34		nassiv			1 - 10	to		>30					calcite
26	HF &					.02		23					24.0-2 cm wide pyrrhotite-pyrite actinolite vein at 20°
30	(skarn	b						11				1	· core axis
38	FP					\sqcap		14				1	-matrix to feldspar porphyry weakly chloritic, hornfelse
-38						Tr	Tr	11			,		where chlorite absent
	HF &						Sch					1	-Nb-chlorite may be actinolite in matrix
40	skarn	b			1	\sqcap		>30		800	130	64916	-QFBP inclusions have fuzzy, partially resorbed contacts
			100		L	1	J.	22	1	333	+30	37720	-33.3-strongly hornfelsed with at least 20% chlorite-
42	FP .		100		*	木		6				 	actinolite
	QFBP				₹.1			3				<u> </u>	-QFBP comprises up to 25% of dyke rarely in sections
-44	3				1.0.2	Tr		2				1	longer than 30 cm
		ŊQ			y>Po			1					-feldspar porphyry sections contain 1% actinolized clots
46		BO			7-10			-	 			1	up to 1.5 mm diameter, probable relict biotite phenos
		DQ		rMo	 			3	 			 	34.0-42.0 hornfels with weak Skarn Beds
-48 -			100	1110				3					-less than 10% actinolite-garnet skarn (?)
			100				<u> </u>	0				 	beds-strong fractures with bleached white selvages seen
-50									20	348	15	64917	restricted to white rhyolite dykelets, 2/m, and to green
								2	20	340	<u> </u>	04217	actinolite bands in skarn like sections
-52								3				 	-fractures contain actinolite, pyrrhotite
	QFBP							2				<u> </u>	37.5-38.2-feldspar porphyry dykelet, 2% actinolized clot
54	4. 51				.1%			2					· · · · · · · · · · · · · · · · · · ·
					• 1/6	Tr		3				 	up to 0.75 cm in diameter 39.9-40.2-altered breccia-intensely fractured in
56			100			11		4					actinolite, pyrrhotite, pyrite, chalcopyrite along
			100					- 4 5				 	fractures trace galena
-58 -								<u>ر</u> 5					-rock bleached away from fractured zone, trace yellow-
								3					
-60 -									20	27.0		64918	green sericite along fractures 42.0- QFBP-feldspar porphyry composite dyke
									30	310	15	164918	
62								4					-weak yellow-green alteration of feldspar phenos in QFBP
						Tr		5 6		<u> </u>			sections
-64					.1%	11		3				 	-trace molybdenum in quartz vein with pyrrhotite at 2000
	1. 2 4 - 1) h ==	100		/							 	to core axis at
-66- Y	/hite	kny	100		1 4 5			16				 	42.0-42.9-feldspar porphyry, low phenocryst content
					Ру≯Р	D							(<1%)
						<u> </u>						ļ	42.9-57.3-QFBP weakly aftered reldspar locally mega-
·													porphyry 1% feldspar fragments 57.3-58.0-feldspar porphyry

Foc	tage	Core	%	М	iner	aliz	zati	on		A	ssay I)ata	Remarks
66		Rec	Rec	Мо	Po Py	Сру	Sph	veins racs	Мо	Cu	W	Sample	65.0-66.0-white rhyolite fragments moderate barren gua
-00	OFBP						Tr	16					vein stock
-68	FP	Broken	100		.1	Tr	Sch	9				Ţ	66.0-69.4-feldspar porphyry, weakly fractured to 10%
					Py > Pc			3					actinolite in matrix, dyke locally hornfelsed
70								13					69.4-71.8-QFBP-megaporphyry with dark grey matrix
70	QFBP							3	9	336	20	64919	
72					J.			3					-trace chalcopyrite in actinolite-bearing veins fractu
-,_ -					不			2					71.8-77.0-feldspar porphyry medium grey a transition
74	FP				.2	Tr		3					phase between feldspar porphyry 80% of phenos are up t
- / 4					Py n Pc			7					2 cm, partially resorbed feldspars
-76						.02	tr	4					77.0-80.7-White Rhyolite-pure white colour, up to 0.5% biotitecut
70					1		Мо	4					numerous 2-20 cm wide feldspar porphyry/QFBP dykelets.
70	vhite			Tr	不		Sch	>30					less than 1% 2 mm quartz eyes
70	hyo.				. 2-5			24					-intensely fractured, with one grey, 1 mm quartz vein/
-80				1	y a/ Po			>30					3 cm
- 00			100	Tr	1		Tr	>30	38	272	75	64920	-trace molybdenum, up to .05% chalcopyrite along the v
82					1		Sch	12					and along dry fractures (chalcopyrite only on fracture
- 02	FP							11					-fractures contain pyrrhotite, actinolite, chlorite?
84								13					-one 1 cm wide pyrrhotite-actinolite vein /50 cm
04								11					80.7-114.6(end of hole) QFBP/feldspar porphyry composite dyke
-86								12					80.7-100.9 feldspar porphyry, 3% feldspar phenos, 86.0
-00					.2			8					86,2 weak actinolite alteration of matrix
00						Tr		4					-up to 1% dark black fragments, probable feldspar porp
88					Po \$ P			7					material
00						.02		7					-one carbonate fracture/30 cm, up to 1 mm wide
-90								20	4	240	15	64921	
0.0								11		7 50		V-721	
92			100					5					
			100					12					
94	FP							10					
							Tr	11			· · · · · · · · · · · · · · · · · · ·		
96							, ,						
					$\vdash \vdash \vdash$		ocn	7					
-98												 	
												-	
					 								
					 								
			1						- 1				

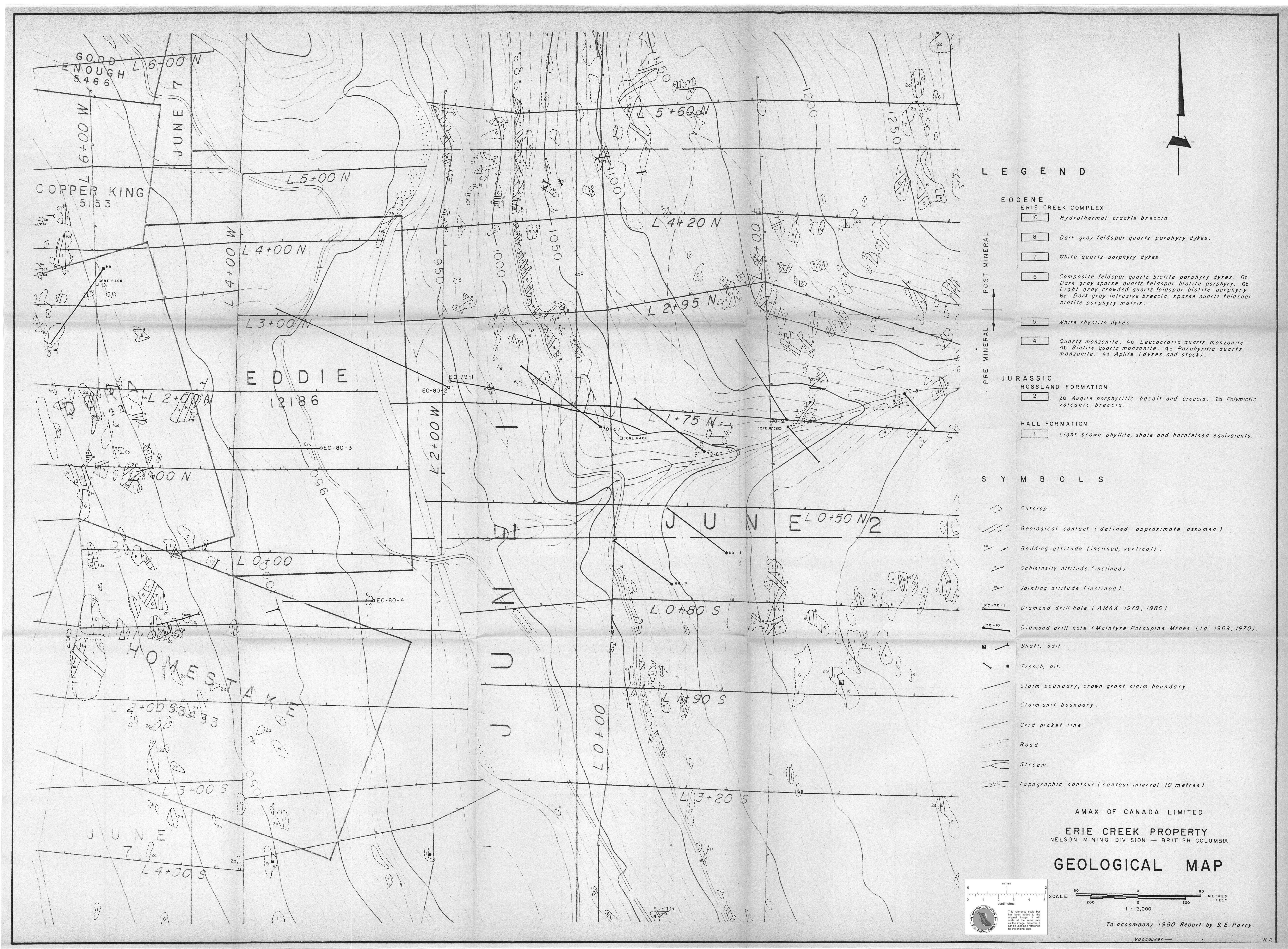

Footage		Core Rec	% Rec	Mineralization							Assay	Data	Remarks
				Мо	Py&P	рСру	Scl	rac	s Mo	Cu	W	sample	100.9-103.1-OFBP-subporphyritcin places intensely
98								7					fractured (sheared?) 102-103 with biotite and pyrite
100	FP		100		.2	Tr		21					along fractures
100					PosP	y to		7	12	400	50	64922	103.1-109.9-feldspar porphyry
100		1				.02		23					-weakly fractured except 109.0-109.9 where rock is a
102	OFBP	ground			1			>30					crackle breccia with quartz filled fractures, slicke
10/								>30					on some faces. 2% pyrite along the fractures
104							Tr	19					-lower contact marked by 10 cm wide barren quartz ye
							Sch	14					at 20 ⁰ to core axis up to 1% pyrrhotite in feldspar
106	FP							10					porphyry adjacent to vein
	- 1.5							6					109.9-114.6 QFBP
L 08		 	100	1			Tr	23					-looks very fresh, several phases of OFBP dyke
			-				Sch						109.9-113.4-medium grey feldspars are most prevelant
.10					.2	Tr		16	33	460	300	64923	pheno
	QFBP				Po≈F			15					113.4-114.6-light grey/white, pinkish quartz eyes a
12	- ÇE DE				1	.02		13					most abundant, matrix fine to medium grained
					 	1		21				 	-weak bleaching along fractures 1/m
14				 	 	 		72					- one barren quartz vein @ 150 to core axis/metre un
	-		TU	ii.									I Una
END	T]			\neg		1	1	1		1		-chalcopyrite mainly along actinolite bearing fract
OF											1		-weak breccia of dyke at 144.4-144.5
OLE		1	1	1		1	+-	 	1	- 	1		
VIII.	1		1	1	<u> </u>	1	1	1	1	1			
				1	\dashv	1	1	+	1	1	1		
	 	1	╅──	1-	+	 	†	 	+	+	 		
	 	+	1-	+		 	+	1	┪	+-	 		
	1	+	1	+	_	+	+-	+-	+	+-	 		
	-		+	+	_	+	1	+-	+-	+-	 		
	+			-}		+		+-		 	 		
	 		-		_	+-			+-		╂		
				+		+			+		┨──		
	-			+	+-	+		+	+	 	+		
	+	_	┼—	-		┼				-		<u> </u>	
			╂			+-	-		┨	+	 	_	
			-		_	┼	+		 		 		
	 					-			 	 	 		
			 	+		-	-	-	 	-	 		
		_	 	-			 	 	 	-	1		
		1		1	Ţ	1	1	1	1		1		


APPENDIX IIIa

N.T.S. Ref. 82 K 3 and 6 APPENDIX III b


N.T.S. Ref. 82F 3 and 6 APPENDIX III C

AMAX OF CANADA LIMITED
ERIE CREEK PROPERTY


Mc INTYRE DDH 70-9

0 50 100 FEET

AMAX OF CANADA LIMITED ERIE CREEK PROPERTY Mc INTYRE DDH 70-10

0 50 100 FEET

