Dr. E. A. Gorarson, Chiaf Geologiet, ottewa.

- storie ho phopenty - 1969 aEpORT -

The enclosed report by J. hriz was prepared es a recult of one week of field wors on the Storle property during July, 1969, folloved by several weoks of office study and re-compilation of eariler records, aups and gections. Fart of thet office study related to detailed air photo geoiogicei interpretation of the Storie and adjoining Rex group areas, the resuits of which will be subaitted as a separate report. The latter study reinforced the thesis thet numerous fault to eresent and have a considerable bearing on the derree of ajoybdente ainertilzation.

The concept of north-northwesteriy-diping
"ore Bands" with barren or waste rock between or bordering then has again been retained. Fet another concest has been added andor onlarged upon in this 1969 report, viz. that the moderataly-dipping contact area botween rock undts dosignated " 2 " \& "3" is an inportent locus of minerelization particularly when cut by the more steepiy dipaing EwE-trending foult and fractur: zones. hdditionel drili core assaging was done which filied certain gaps and heiped to substantiate that concept. Sowewhat modified outlines
have thus been designeted for the ore zones.
As a result of thls re-study and adeitional assayg, new tonnage and grade cilculations are presented. The drijl-indicated reserves available to open-pit minirg have bean increased to 27 mililion tons of 0.115% Mos_{2}, with a weste to ore ratio of 0.88 . Total potential iniferred resarves are suggested as 93 million tons of the same grade. The gross value of this deposit is sigaificant, and justifios a furtion stage of drilling and/or bult sampling on surface or underground. Thet woris will be required before a depenciable reasiblifty study caia be made.

R. C. Hacdomald

RCM/vg
ces W.H. Callahan

TADE OF CONTMTS

Pege
IHTRUDUCTIUN 1
LITHOLOGY \& ETRUCTME 2
KILERALLZATION 6
DRILI CORE RECOVERY 12
 13
FUTURE EXPLORATLO R ROGRGM 17
APPGDIX

1. Summary Reviow of Drill Core a Logs
2. Assay lesuits 1969 sampling
3. Comparlson of Ore Ennds 2963 k 2969 Reports
4. Core liecovery in Ore Eands
MAPS
ritle
Roale fapho.1. Storiono Ore Bundgs Outline of pits forFonnege Estimates $1^{\prime \prime}$ w 100° AXL-EC 30-10A
5. Storle Xo: StructuralContours, units $2 \& 3 \quad 2^{6}=100^{1}$ aXia-BC 30-11
6. Storie Mo: StructuraiGeologic Nap of Drilled $I^{\prime \prime}=300^{\circ}$ AXL-BC 30-8AArea.
SECTLOUS
u-S Vertical Sections, Lithology \& Ninaralization18E, 22E, 26E, 30E, 34E, 3 38E.

STORIE MO PHOPERTY - 1969 REPORT

By S. F. Ariz

INTRODJCTIOA

One weex was spent on the storie ko property by the writer and an essistant in mid-july 1969 immediateiy after surveyirg the Rex clains. A reviev Was made of arill coros mostly from 1964,165 , sna 166 drilling, with emphasis on lithology and inineralization. Elgaty-three full core samples wore tasen fron 8 bulos mostiy in the Center ore Zone to flll-in gaps or increase the width and/or griade of the ore bends previously reported.

Additional field traverses were made for correletion of core information with surface geology and also to correate betwean storie and gex general geology.

This Year's report patiy revi ges the 11 thology and structure as previously viewed, and facludes new coleuletions of arlih-inalcsted ore reserves based on the sune concept of "ore Dands" used in the 1968 report. In addition, rough estimates of total inferred ore potentiki are made, firstly, basaci on tha ora band feat of anaerial deposits, and secondiy, on conbined ore bands and contact redated blanaet type ho deposits.

Agein conslderable offort nas been exerted to finin fuxther insight on the subject of locaitzation of aineral1zation in the property.

A brief study of past drili core recovery in mineradized rocs was done.

CITHOLOGY \& STKUCTURE

Review of drill cores and 2085 this year provides edditional informition to further define the three classes of intrusive rocke in the property previousis reported. Eaphasis was givon to deterialne the rock contacte in the drill holes and their surface correlutions, and aso other broador fextures and relationships that holp to distinguish the rocks types better. (Refer to May 30-8k and li-E Vortical Eections 28E to 26E.)

Unit 1. - This quertz monzonite is cominantiy light greensh grey, with a moderately porphyritic texture (1.e. ralntively smal orthoclese and plagiociaze phenocrysts In a median-to fing-grained matrix). It is found in the northuest bide of the proparty, and its main contact with underiying unit 2 trenas $\mathrm{HE} / 40-450 \mathrm{NW}$. Locelly 14 exhibits ecui-gramiar texture and may be confused with Unit 2 west of the property. Its slight greenish color way be due to finu-grained hornblende in the matrix.

Unit 2. - This guriz monzonite has e relativaly Migh forronsegesien (mostiy blotite) content, is nomally Vory coarse-grained, and ilght pinish gray, but erces into orhyritic texture not far from the contacts. The porphyrithe phese has phenocrysts or orthocluse and fower plegiochase and blotite plates, in a aedum-grifned matrix that patains the light pinisieh-grey coior of this rock. Flow thadiag texture was noted in two joceilios near the main Gontat where the rock changes from oful-grandiar to porphyritic.

Unit 2 is an 800 ft . wide bend oriented $\mathrm{ug} \mathrm{E}-\mathrm{cid}$ crossing the center of the proyerty, and in cross section is yedge-shased, the thicunes graduelly increasing to the weat.

Unit 3. - This Unit has deeper pink color, and is a porphyry consisting essentially of ciuartz and κ-and tiafeldspar phenocrysts in a fine-gr loed matrix of the seme composition, which was eerlier eppropriately culled Gustz-Felc-spar-Porphyry." Along the trenches and in the drillholes, it is observed that farther eway from the contact tio matrix of the rocs gradueily increases in grain size to between finemand mediun-grain nearly aprokching the size of the phenocryste, and the deep yina color grodually becomes lighter. Thie rocz is exposed on surface by the trenches on the 40i-and 42 -igrid lines end by the eccess roed down to DH-6 wnd -7 sites alone the steap south siope facing Lang Creos. Sixcept for the wiln contact Detwent Juft 1 and 2, no furtiner work was deamed necersary to check the ocuurronces of ofther rocas as sadier bends or interflugers in each other.

The contact between Units 1 and 2 is exposed on surface in four places:
8) $2100^{\prime} \mathrm{N}$ of the citap, at the W buns of the i^{2} Elowing dry crees to Grante Creen.
b) $500{ }^{1} \mathrm{~N}$ of $\mathrm{DH}-18$, on s shaijow witarpes.
c) On the ridge s of DA-25, co-oridiates 50., 18 E . Here the contact 1 s cut by e lerge iow tronding fault in the eenter failt zone. It is aparent that the south wail doved down reletive to the north will by come undeteralned mort distance.
a) 2301 of Dii-44, dong the steep ciffe facing Ling Creps.

In thee outcrope undt 2 graces frow its normal very coarso-Erainod teaturn lato porghyritio texture not fur froz tho contact, and miso axilbits in two naces tha fiow banine cantwaed above.

In the drill holes the same charactaristics of the coatact ag indicated aithough in some holas the gratetional iorjhytitic border of Unit 2 is practioaliy sibsent. Howevor, the flow burdirg texture is prestat.

The main contact of Unit 2 with undt 3 on the surfece stown in 1968 0wp $30-8$ is now sichtiy revised at indiceted :n 1967 Naps 30-8A and 30-11. Proviousiy, minio contact snowed Unit 2 in contact with Lester bunde of Onit 1 , but thix year's raviem indicates that whet had boen ehown as Unit - is wctually a shichtiy consear grishad varizty of Jnft 3. Thore are two locsthons wherg this contret way be observed indirectiy on the surface:
 The contict 1 s tonav-covergd but unit 3 outcrops about bo bevow ahong tixa vatariage, ank unit 2 has outcrop atout 50 avovo that jobnt on the sand waterpass. E日e (raps 30-2 (1964) \& 30-8A.
2) At the tronch/access rust between Du-zi and Da-buo Tha trench wh wot dagy ghougt to expose the taiby-covarac contact ebolit 100^{\prime} ó of Di-2, bat tuans of unit 3 are fount ondy up to the ayrokiwate location of time contact. This position os tua contuct t.se bern costomfnod uiso by using aridi faterce.tions int Ditwh, -15 , end \rightarrow -

The rock: ex, osed abong the access rosd to Hij-6 ard -7 about 300 fast akay from the contact ara J Lt 3 iatil flue to modiun exubug matrix abi may be considered to rearosent
the normat taxture of this rock undt. The deoper ink color of enis rocin nenter the contact mey be reluted to

groinnent maina xnobs of unit zoutcropging on the
 1ne sianil areat wong tho 42 E jine, contined with observations

 area east of the 42 E grid inne is ail Unit 2. It ta inferred trat tha contact coincloes with a ztrong inaesannt k-A at the lowest section of this smadi valoy or saddis. (Eee Nay 30-82.)

Driji hoies jocetions of tha uper $\%$ lower contadet of the contral Unit 2 are gumatrized 1 napendix 1 and
 ajoront stricturaj zigndficance of the contact betwaen

 Intervian. The eontours indscuta that the contact is a
 The trase of the crest of the contact arca (iroas to ii) veses thru Di-1, $-2,-15$, and -27 , than turns slightiy du
 Tha crast has a plange or ajeroximotaly -30° froa the surfacn at EL. 5150', to Dif-27, at 4.500' contour, than Satteng sraduaily at -10° unti: roaching the 4700° contour
sad resumas its -30° or 25° arop farther sorthwast. it the oust side of the crest, the slope becomes gteng in the vicinity of Di-9. To tise west, the surfice secise to siope tround -30° in a Whi direction at the west yide of the 20 E grici inne, although lnforadion is ratiner insufficient to nesume that tue contact extands fartaer whi with the $\operatorname{sunc} s$ s.ope.

KINERALIZATION

Efghty-three fuli core semiles wert tometi froat S driji hoies to fili-in gaps or increase the size of the ore bands. The naw assay results including check assays and eversges are shown in Appencix 2.

With these new figures and seain using a cut-ofe Rricie of 0.07% foce , the averages fer aech ore band were computed. The results are shown in apendix 3 whoch include those of 1968 for comparison. The overinl net result is an Increse in size of the ore bands sisgnt decrease of made It e few mandar bands, but approsiaciv increade in erade
 L: In ore banc C-3 in Dimé 7 , In whic: widta was inoroased by 8. Ct. to 404 fe and tion avarago graco exatig incressed ir $\quad 0.097$ to $0.578, \mathrm{Hos}_{2}$.

The center ore zone Le silghtiy wider this yeur. The natn footwail ans bunathatald of the zont are morsed

The rootwail of ora pand C-1 in DA-4 ocinciden uith thet in DEif5 at the naxt eaction wot, in twe plane of projection $N 80^{\circ} \mathrm{E} \Omega$

 furthor wort to tig two succeedins sogetans (w-d Yortacad

 freshar rook.

34E, whife the meximuin horizontal E-W leneth is about 2000 ft . betweed Erid 11 nes 36 E \& 16 E , and the aif length is approximately 700 \&t. Our past dirililag woris may be considered to heve roughly explored this zone from the 36 E to the 26 E 11ne or a lenget of 1000 ft ., which is 30 名 of tha totad inferred iength.

The nengingwall and footwall of the lerger ore bond in DH-26 and -33 are also shown in the vertical sections and Kep 30-10a. Projections of the walis to the next vertical
 passing through at 200 ft. ciepth in Dif- 23 , snd the hangingwall at 400 ft. depti in DH-32. The first 100 ft. In Dil-23 way be affocted by surface weatherlng which is a comon observetlon in frill cores from the center ore zane. Thit may then masit the possibilfty of occurrance of ore above this projectec footwal. uH-32 shows soine good ore near the bottom of the noie. 2his azy be used as besis to sugecet thet the hangingwali of the ore zone pasees through this section. Eence, ore way be precent deepar relow the bottom of this hode. An ideaj drili site to checs this ore sone would then be at co-ordinatas 26E, 56 id between Dil-23 and Dif-32. Further extension of this ore band to the next ast Verticel section seems unianejy becuzse Dti-2g does not indicete this possiblidty.
Projections to the rext section woet from Di-26 may
finisate a possibility that the ore bind las a steej piunge
to the weat if the better mineralization near the bottoms of DA-37 and DE-34 are considered to be the upper part of the extension of this ore band. An alternative posaibility is thet the ore may terminate before the 28 s jine.

Based on the above interuretations the north ore band may then be inferred to have the following anximuan dinensions: thicaness, 200 ft ., width long dip, $700 \mathrm{ft} .$, sud B-ii horizontel longth, 2200 It.

Etudy regarding the occurrences of ore in the drill holes within the ore zones sugest that good ore occurs in the contact zone of rock undtg 2 wid 3 . In Unit 2, moiybdenite ocears es filifigs in ciuartz veiniets, smail aisses and dissamates associated with quartz veiniets or partially sLifelficd volalot wals, and also es thin flilings or films in hairine fractures. This mode of mineralization is also found in unf 3 beiow the contact but, in adaltion, disseminated molybdenite occurs deper in relatively iresiner rocis away from fractures or quartz veiniets. This was observed In most of the drinh cores from the center ore zone, and on the surface, in the trench along the 40 N grid line. The best drill holo example 19 Di- E 7 where the contsct pesses through the mid-section of 404 st . wide of $0.179 \% \mathrm{MoS}_{2}$ ore the best driline results so far obtalnad.

The above obsarvatlons sugeest the possibility of "bianict type" moisbdendim nernizethon fyong the contact where smallar fructuros reluted to distension are more litely
to be found. The "ore basds" concept previously suggested mag be $4 p_{i}$ iicebl onily in rocks furtiner above the contect where the dominant etructural control of aiferailaation 15 aparentiy fault zones.

With regards to depth extensions of mineralization, Dif-27 may be uged to ludicate twe naximum apparent thicaness of pormbry type nineralization. This hole shows a 404 ft . section of ore at 0.175% Nos 2 with the contact of Units 2 \& 3 jassibe through the aldise. It/may then be thought that the asximum infts of porphyry mineraifation is 200 ft . b bove and below the contact. For pusposen of rough estimations of ore potentiad $1 / 2$ of the maximus apparant thiconess, or 200 feet whil be used as an sverage thicaness dimention.

The parpendicular diatinco from the contact between Units 2 \& 3 to tho structureily deepest anown ore may be Indirectiy deterained from Dh-1 (assuaing thst no peuting ocourred) by measuring fram the 0.13 ore near 100 ft. to the contact surface above Dti-1 es projected fron DSi-15. (cee kis section 30E). This measures about 500 foet. The Wpernost occurrence of ore in Nore bandsm may be at the hangingwail side of band i-4 in Dts-26 (See fis Section 2aE). This is aro:nd 600 ft. Ebove the contcct at elevation 5240 ft.

There seans to be a relutionship betweon slope of the contact and ainerailzation. hap 30-11 shows that the best and widest ore drliled is in the crestid wone of the erched contsot where the sope is rather araduad. The eastern
inmit of minerelizetion coinclies roughly in pieces where the aloje of the contact steapans (-450) as in the vicinity of DH-9, DH- 26 , an DE-29. Fin enstern liwit of tme porphyry or blanket ore zone then tay be outlined by drawing dine connecting points: $40 \mathrm{~N}, 32 \mathrm{E}, 50 \mathrm{~N}, 38 \mathrm{E}, \mathrm{ma}$, $64 \mathrm{~N}, 30 \mathrm{E}$.

Due to ingufficient drililne Laformation et depth chis Jnft $2-3$ contact 310 reation 14 not applied to roughiy outilne the westorn ilsift of bianket ore zone $2 s$ cone on the atet side. The 510 e 18 moderate nere $\left(-30^{\circ}\right)$. However, trench 40 shows ifferalization to extend to about 300 ft . west of $\mathrm{DA}-1$, end outcrops tend to indicate minerajization
 western ilmit of blancet minerifzation may then be outinmed by connecting these two points and oxtending the inne further ivi.

The ovaraji foture of the ore zone is ther a blanaet H\&ss 200 ft. uvarsge thicaness along tho contact zone, sbout 1600 st. wide ans 2000 ft long, aithough further extension to the northwest aspeaxs to bo eqood poselbility. With respect to the contict surface, the bianket ore zone would then seew to occur fiche the flatish gection of the crextal arch mestiy along the west ejda of the crest, eaneriniy trending wh or follaving tho creztid trend.

DRILL CORE BECOUSEX

A study of drili core recorary was made to compere provious deilligg methods usad. EX standard mothod wes used for $D H-1$ to 18 and $B Q$ wirine for DH-18-A to 48. The study wes confined to ore bands whare the rock is highiy altered end brecelatod and core recovary it nost important. Iniormation was obtuined froa the graghic logs of the 29641965 reports, and the descristive logs of the 1966 复 2968 reports. The ramults are tabulated in Agpendix 4 in ascending order of percent core recovery from the lovest to the highest. The core recoveries shown are welghted averages for each ore band In the corresponding drill role.
bX core recovery is disapointingly low The rirst
 for 868 feet. The Lovert recovery ie a7\% for 232 feet of ore band unide the haghest in this group is 63 for 40 feat of ore band.

EQ core recovery for the next group of 13 ore bends If the 11 yt has an overail welehted average of 85 . This is
 grouj is 63% for 272 Peet of orm bind in Dif-28, while the highest is $99, \mathrm{For}^{8} 0$ feet of ore bend in Li-22. The widest ore band is in DH-2l and averaged 86% core recovery for a widh of 412 reet ard the second wident ore bend of 404 feet evarised 81\% recovery.

The IX assay vilues are therefors questionable and are not truly represuntativa of the sampied sections. On the
other band, $S Q$ core recovery is fair end could be taken with some conflaence aithough recovery in the nelghtorhood of 90, is deatrabie in this typ of ore ampled.

The f , holes were drisiad along or near the footwall side of the Center Ore zone. Ore grade figures used in the tonnage cilculations for the foothall holes tre thersfore questinamble. Fevertheless thase figures are use in the calculetions for comparison with thoss of last year's ore potontial. It is however suggested that chack driling for grede be done in the EX-drillod area, this thas using NQ wireline method. It should be anticipated that with due care in erililng, core recovery will be sienificantiy increased.

TONNAGE GREDE ESTHETES

The sume procedure uned in the 1969 Report to estinata drill indianted ore petential is applied an thas report. The two open pits with wills to -550 derine the ore raserves ond are shom in the $1-8$ verticel sections and Xaj 30-10k. Sio estinetes are mecie on the South Ore Zone because the "ore kardg" ure narrou and waste-to-ore ratlo is epperentiy high. The cricuiations are shown in tabulated form on the foilohine pege, using a "ciasity fector" of 12 cu. ft. par ton.

Conjared to jest year's caiculations the wost 1:nortiant changes are in Ore blocis II \& ILI of the ưain pit, and some ore bands in do. 2 Pit. The blegest change is in Ore Band C-3, Elock II, where the everage grade was increased to 0.178 and the tomage sore than doubled.

- 14 -

The total dribl-indicated ore portential of the two pits combined is 27 rililion tons wits an averaze grade of 0.215 Ho s2 and a waste-to-ore ratio of 0.68 . These represent an increase of 5.3 miliion tone and fuprovement in average grade by 0.006 MoE 2 over last yeurg fizures.

TOANAGEGGRADP FCmLHATES, 1969

$\begin{aligned} & \text { pre } \\ & \text { cind } \end{aligned}$	$\begin{gathered} \text { End } \\ \text { East } \end{gathered}$	$\begin{gathered} \text { Area-zq } \\ \text { Hest } \\ \hline \end{gathered}$	$\begin{aligned} & \text { ft. } \\ & \text { Aves. Ares } \end{aligned}$	Avg. Lergth	cu.ft. Vojume	Tons	$\begin{aligned} & \text { Est. } \\ & \text { Mos2 } \\ & \hline \end{aligned}$	1000 Tons x 苟 MOS_{2}
C-1	111.180	122,080	126,630	330	33, 487,900	3,207,000	.131	420.117
C-2	5,026	5,606	5,316	34.5	1,834,250	153,000	. 200	15.300
C-3	64,770	73,660	6),215	365	23, 4'?9, 175	1,990,000	. 097	195.020
C-4	3,600	4,300	3.750	340	1,343,000	112,000	. 077	3.624
[-5	2,720	3,200	2,960	340	1,006,4,00	84,000	. 090	7.560
6-6	3,100	3,800	3,450	345	1,290,250	99,000	. 072	7.128
C-7	1,000	1,250	$\pm, 125$	355	399,375	33,000	.170	5.610
					LOC. $20 T$	$\begin{aligned} & L E \\ & 5,673,000 \end{aligned}$.116	659.359

ROCS II

C-1	62,700	82,500	72,600	355	25,773,000	2,308,000	. 091	220.028
C-3	118,250	149,8:0	134,035	365	43,910,000	4,075,000	. 278	725.350
1 Col	12,600	42,400	27,000	400	10,800,000	900,000	. 076	68.400
k 12					ELOCK TUTAT			

ALOCK III

18. 1 PIT, NORTH ZONE

$8-14$	8,700	23,500	12,100	480	5,323,000	444,000	. 089	39.516
H-3	3,2\%	12,600	10,360	520	5,387, 200	463,000	. 093	41.664
$1-6$ 15	27,040	41,600	34,320	540	18,532,300	1,634,000	. 134	225.656
- -5	1,200	1,500	1,300	565	762,750	63,000	. 03	5.040
戓-6	1,300	2,800	2,050	560	- 280,000	96,600	. 11	10.560
1-7	300	2.400	d, 100	555	61.2.500	507,000	. 11	55.390
- -8	500	2,000	750	535	401,250	32,000	. 10	3.300

Fot: tons in p1ts (fron 1968 Roport) - 50,961,000

* * to-tomors ritio $\frac{23,204,200}{27,057,000}$ or 0.88

Based on the ore band concept, but disregaraing open pit layout the folioning are rowgh estiastes of total inferred orepotentidy which inciudg drill-incicated ore.

ORE ZONE	$\begin{gathered} \text { Avg } \\ \text { Thickness } \\ \text { Pt } \\ \hline \end{gathered}$	$\begin{gathered} \text { Avg } \\ \text { Width } \\ \text { It } \\ \hline \end{gathered}$	$\begin{gathered} \text { AVE } \\ \text { Length } \\ \hline \end{gathered}$	Miliion Tcne
Centor	420	700	2000	42
North	200	600	1200	12
Others	$\begin{aligned} & \text { (Smaller } \\ & \text { to main } \end{aligned}$	ore bend or bend	edjsce	2

Hence, tha totai inferred ore potentiai is 63 inilion tons. It is assumed that the average grede of this ore is $0.115 \%_{H_{2}}$ which is the suerage grece of drill-1ndicatad ore.

If the orebody is thought of as a combination of the "ore bands" and "blanket type" deposits, the totel inforred ore potential (also inclualiz drill-indictted ore) is estimatod es follows:

TYPE OF DSVOCIT	$\begin{gathered} \text { ivg } \\ \text { Thiciness } \\ \text { Ft } \end{gathered}$	$\begin{gathered} \text { ave } \\ \text { widen } \\ \hline \text { Ft } \end{gathered}$	$\begin{gathered} \text { Avg } \\ \text { Length } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Minion } \\ & \hline \end{aligned}$
Elanket Tyje	200	1500	2000	50
Horth Ore Zone Bands	200	400	1200	8
Center Ore zone Eonds	420	500	2000	35
	TOThis $\quad 93 \mathrm{H}$			

The total inferred ore potentid would then be 93 miliion tona. Agsin, it is assumed that thia has on everage erade of $0.315 \% \mathrm{MOE}_{2}$.

