(1) gold mineralization in the Main 1 to 3 zones is hosted by lahars and lesser amounts of felsite while the North Vein is hosted by trachyte. These mineralize zones trend east/west with the Main 1 to 3 zones capped by carbonaceous mudstone in a geological
environment similar to the Republic Camp in Washington State and are of the same age. $\rightarrow \frac{\text { Klondike }}{\text { Sanpoil }}$
(2) mineralization in the Main 1 to 3 zones occurs in a silicified zone that is greater than 900 m long, +200 m to +500 m down dip and about 100 m wide, representing a large system. It is present in quartz veins and to a lesser degree in quartz veinlets and in pervasively silicified rock and occurs in tabular shaped bodies that are generally sub parallel to bedding. Veins and veinlets are variously banded, multistaged, brecciated, vuggy, chalcedonic to opaline and often contain adularia, all indicating a low sulfidation system.
(3) gold grades in the Main 1 zone, from 29 intersections, average 2.58 ppm Au (uncut)and range from $2.61 \mathrm{ppm} \mathrm{Au} / 4.52 \mathrm{~m}$ to $4.46 \mathrm{ppm} \mathrm{Au} / 44.24 \mathrm{~m}$ with eight high grade intersections($18.80 \mathrm{ppm} \mathrm{Au} / 2.88 \mathrm{~m}$ to $277.87 \mathrm{ppm} \mathrm{Au} / 0.56 \mathrm{~m}$)in the deeper, central part of the zone that may represent a feeder system. In the Main 2 zone there is one intersection of $7.12 \mathrm{ppm} \mathrm{Au} / 2.93 \mathrm{~m}$ that is open to depth and to the east: The Main 3 zone shows 11 intersections that average 2.33 ppm Au and range from $0.94 \mathrm{ppm} \mathrm{Au} / 6.90 \mathrm{~m}$ to 3.19 ppm $\mathrm{Au} / 15.60 \mathrm{~m}$ with the zone open at relatively shallow depths $(100 \mathrm{~m}$ to 150 m$)$.
(4) the best gold grades in the North Vein occur in three zones, open to depth, with grades of $16.80 \mathrm{ppm} \mathrm{Au}(2$ holes $), 19.45 \mathrm{ppm} \mathrm{Au}(3$ holes) and 20.34 ppm Au (3 holes) with the vein typically about one meter in thickness.
(5) the Main 1 to 3 zones are enveloped by large halos of greater than 0.10 ppm Au. This halo is much smaller than the hosting silicified zone.
(6) drill targets exist in the feeder zone area of the Main 1 zone, below and along strike of the Main 2 zone and beneath the Main 3 zone.

MHO
September 25, 2003

SUMMARY OF AN EVALUATION OF THE VAULT GOLD PROPERTY

This report summarizes the results of an evaluation of the Vault gold property in early Tertiary volcanic and sedimentary rocks of south-central B.C. and makes recommendations as to the next phase of exploration.
(1) a detailed evaluation, primarily of the drilling($41,704 \mathrm{~m}$ in 176 holes), of the Vault gold property in south-central B.C. was done. It focussed on the distribution of gold values greater than 0.10 ppm , alteration, structure and the distribution of the mudstone unit.

The purpose of this evaluation was to check the previously indicated reserves and to see if additional potential exists. To do this all the alteration and much of the available structural data were digitized and added to the previously digitized data on rock units and analyses. These data were then plotted onto 20 north/south sections, spaced 50 m apart(from 150 E to $1,100 \mathrm{E}$), at a scale of $1: 1,000$ by Terracad Drafting. This scale was used to show all of the mineralized system from the North Vein to the Main 1 to 3 zones. Most of the data on the sections are readable, however, some of the analyses are difficult to read as the analysis interval is often less than 0.50 m with values overlapping so I have removed the individual values from the sections and have annotated the significant gold intersections onto each section. Section 100 is hand drawn as it was not computer plotted. The drill logs show the gold values to be in ppm i.e. geochemical and not assays so with the siliceous matrix the assays could be 10 to 15 percent higher.

In addition to the evaluation of the principle mineralized areas the drill logs from the South area, about 900 m to the south of the Main 1 zone(Plate 1), were also examined but only one value above 0.10 ppm gold was found(hole $72453-0.22 \mathrm{ppmAu} / 0.16 \mathrm{~m}$ in a silicified breccia). Also, there are no zones of significant silicification, except in hole 72427 where 30 m were encountered.
(2) one zone with probable reserves is indicated Main 1-) 1.55 million tonnes of 2.58ppmAu- uncut and calculated using the sectional method). In the North Vein there are three zones, open to depth, with grades of $16.80 \mathrm{ppm} \mathrm{Au}(2$ holes), 19.45ppm $\mathrm{Au}(3$ holes) and $20.34 \mathrm{ppm} \mathrm{Au}(3$ holes)over a typical thickness of one meter(Plates 1 and 2, Tables 1 and 2). The Main 1 to 3 zones occur along a distinct east/west trend, perhaps representing the trend of the original feeder.
(3) the mineralization in the Main 1 to 3 zones occurs mainly in quartz veins, and to a lesser degree in quartz veinlets and in pervasively silicified rock, hosted by lahar and lesser amounts of felsite, and occur in the sections as tabular shaped bodies that are generally sub parallel to the bedding. These mineralized bodies are often immediately adjacent to a faulted contact with the underlying trachyte and are enveloped by broad halos of greater than 0.10 ppm gold values. These halos are also tabular in shape, with a average height of 160 m and a thickness of 45 m , and occur from sections 150 E to 950 E and then from 1050 E to the end of drill testing on section 1100 E . The 0.10 ppm gold
contour encompasses the mineralized zones and contains about 15 million tonnes of mineralize rock. On section 750 E there are mineralized quartz breccias one of which grades $7.00 \mathrm{ppmAu} / 5.60 \mathrm{~m}$ (hole 72401)that appear to be perpendicular to the tabular, mineralize bodies i.e. dips about 45 degrees to the north, that could represent the original feeder system. Similar features, but less obvious, occur on sections 700E and 800 E . A rotation of 45 degrees of the stratigraphy to the original flat lying position results in a vertical dip of this postulated feeder system. It possible that the high grade veins discussed in part 4 are also part of this feeder system.

Veins and veinlets in the mineralized zones are variously banded, multistage, brecciated, vuggy, chalcedonic to opaline and often contain adularia, all indicating an epithermal low sulfidation system.

The mineralize zones, and their associated gold halos, are stratigraphically below the carbonaceous mudstone unit(extends at least from 100 E to 1100 E), usually by several tens of meters but the silicification can carry up to it or in some cases into it. Zones of silicification are much more extensive than the mineralized zones or the associated zones of greater than 0.10 ppm Au .
(4) higher grade intersections(+18ppmAu)in the Main 1 z ρ ne occur primarily in quartz veins from sections 600 E to 900 E but mainly in sections 750 E and 800 E (Table 3 and Plate 3). Values range from $18.80 \mathrm{ppmAu} / \mathbf{2 . 8 8 m}$ to $277.86 \mathrm{ppmAu} / 0.56 \mathrm{~m}$ and represent, most likely, short discontinous veins. However, on sections 750 to 800 E they may be part of the same quartz vein, as shown on Plate 3 which is a composite section of all the high grade intersections.
(5) the mineralization in the Main 1 to 3 zones occurs in a silicified zone that is greater than 900 m long, +200 m to +500 m down dip and about 100 m wide, representing a large system..
(6) The Main 1 zone is cut by northerly trending post mineral faults which, in steps, drops the zone from a high of about an elevation of 265 m in the western part of the zone to a low of 100 m in the east(Plate 4).
(7) Delta Geoscience did an gradient IP survey on lines $800 \mathrm{E}, 900 \mathrm{E}, 1000 \mathrm{E}$ and 1100 E from 300 N to 200 S covering the east end of the Main 1 zone to the Main 2 zone(see attached sections and plans). Data were plotted on real depth sections from the surface to , 500 m below the surface. The Main 1 zone is on sections 800 E and 900 E and is identified as a resistivity low while the trachyte is a resistivity high. This is peculiar as the Main 1 zone occurs in a area of moderate to strong silicification which should be a resistivity high but maybe the mudstone is conductive and is masking the signature of the underlying silicified zone.

Line 1100 E , over the Main 2 zone is difficult to interpret. It would be instructive to have a meeting with Delta Geoscience to compare their results with the drill section information.
(8) the potential on the property exists in the Main 1,2 and 3 zones as well as down dip on parts of the North Vein(Plate 1). In the Main 1 zone, potential exists in possible feeder zone beneath the central part of the present reserves(sections 700, 750 and 800)as indicated by apparently cross cutting mineralized zones and by the open 0.10 ppm Au contours and silicified zones.

Potential also exists in the Main 2 zone as represented by the intersection of 7.12 ppm $\mathrm{Au} / 2.93 \mathrm{~m}$ in hole 72471 (section 1100 E), however, it is 500 m below the surface. It is open both down and up dip on the section as well as to the east into a flat pasture area and is associated with the same zone of silicification, broad halo of $+0.10 \mathrm{ppmAu}(60 \mathrm{~m}$ wide) and faulted lahar/trachyte contact as seen in the Main 1 zone. It is possible that faulting could bring it closer to the surface further to the east but the post mineral faulting that is well documented in the Main 1 zone to the west strongly suggests that the system is getting deeper to the east, Potential could also exist at shallower depths i.e. 250 m below the surface at the intersection of the projected North Vein and the lahar unit if it exist in this area.

The Main 3 zone occurs from section 100E to 450 E and shows 11 intersections of interest(Table 2)from $0.94 \mathrm{ppmAu} / 6.90 \mathrm{~m}$ to $3.19 \mathrm{ppmAu} / 15.60 \mathrm{~m}$ with a typical width of 3 to 4 m . It is 45 m to 200 m below the surface and shows the same features of alteration, structure and broad halo of +0.10 ppm gold values as seen in the Main 1 and 2 zones but no high grade gold values were intersected. There is not enough data to calculate a reserve for this zone. The zone is cut off to the east on section 500 E and to the west by holes 82780 and 82781 so the potential is down dip but it would have to show an increase in grade and thickness to offer any serious potential.

The North Vein has three zones with good gold grades and true thicknesses of about one m that occur at relatively shallow depths(50 m to 130 m below the surface) and are open to depth(see part 2). It is possible to see perhaps doublingthe tonnes.
(9) it is recommended to: (i) determine what tonnes of say $16 \mathrm{~g} /$ tonne gold in the North Vein would be required to make a viable mining operation and similarly how many tonnes of say $3 \mathrm{~g} /$ tonne gold(underground bulk mining)would it take. This would suggest the best type of target to go after; (ii) relog the best mineralized intervals in the Main 1 zone(holes 72408, 72422, 72433, 72434, 72444, 72446 and 82712), Main 2 zone(hole 72471) and Main 3 zone(holes 82784 and 82785)to get a better handle on the style of mineralization; (iii) map and compile geological information to the east of the Main 2 zone and down to the Dusty Mac showings to get the large picture of possible potential in this area, (iv) review the Delta Geoscience IP data, for the appropriate drill sections, to see if resistivity surveys might be helpful in identifying mineralized zones in untested areas. In this regard it would be instructive to collect mudstone samples from the Inco drilling(holes $72410,72408,72417,72457$ and 72467 on section 800 and hole 72471 on section 1100E) and to test them for conductivity with an ohm meter, (v) make a digitized version of the present geological map(1:4,000)and (vi) select drill targets on the Main 1(see sections 700, 750 and 800), Main 2(see section 1100E) and Main 3(see sections
$200 \mathrm{E}, 250 \mathrm{E}$ and 300 E)zones and other areas of geological interest that might arise from the regional compilation.

Attachments

(1) Table 1- Vault Main Zones(1 to 3)Au and Ag Analyses, Table 2- Main 1 Zone Reserves and Table 3-High Grade Gold Intersections in the Main 1 zone.
(2) Plate 1-Geology of the Vault property($1: 4,000$), Plate 2-Longitudinal section of the North Vein, Plate 3- Composite Section of the High Grade Gold Intersections in the Main 1 Zone and Plate 4-Longitudinal Section of the Main 1 to 3 Zones.
(3) Drill Sections 100E to $1100 \mathrm{E}(21)$.
(4) IP sections and plans from Delta Geoscience

M. J. Osatenko

September 25, 2003

Table 1

Vault Main Zones(1 to 3)Au and Ag Analyses

Hole \#	From(m)	To(m)	Length(m)	Au(ppm)	Ag(ppm)	Au/Ag	Host rock	Alteration ${ }^{2}$	Comments
38898	373.10	385.70	12.60	1.74	0.8	2.17	bx,lahar,qv,sst	6	qvs stk
PDH3	54.90	67.10	12.20	1.05	4.2	0.25	lahar	6	
72401	267.00	272.60	5.60	7.00	10.7	0.65	bx,lahar,qv,sst	6	mult qv,py
$72408{ }^{*}$	314.56	342.50	27.94	4.82	9.1	0.53	lahar,qv	6	qvs@35-60(wh-blk),vuggy silica, qvs(wh-grey-brown@40,55,60,vuggy
	329.60	337.96	10.76	8.36	19.5	0.43	lahar	6	silica(38.50ppmAu/1.5m)
72414	408.90	411.30	2.40	2.70	8.9	0.30	qv,lahar	5	py, qvs@50-70
72415	357.02	400.1	43.08	1.34	4.4	0.31	qv,lahar	6	qvs(wh-blk)@70-80,qv@70,30,80
	379.05	389.55	10.50	3.14	7.4	0.42	lahar,qv	6	vbx(60.35ppmAu/0.30m)
72416	297.95	318.22	20.27	1.10	2.6	0.42	lahar,qv,felsite	5	qvs@50-70,qv@30,50(wh-grey-bk)
72417	433.30	450.80	17.50	1.36	1.3	1.05	lahar	5	qvs@30-60(wh-grey)
72419	354.73	358.75	4.02	3.06	12.3	0.25	bx,lahar,qv,sst	5	py,qvs
72422	276.15	353.85	77.70	3.03	6.20	0.48	qv, bx,lahar	6	qvs(wh-blk)@40-60,qv-vuggy
	303.55	314.00	10.45	12.71	15.30	0.83	qv, qvbx	6	qv mult(wh-grey),py
72423	309.16	414.31	5.15	2.73	18.3	0.15	lahar, bx,qv	6	qvs(wh-grey)
72433	285.25	316.00	30.75	2.11	5.60	0.38	lahar,qv,bx	6	qvs(wh-blk)@35-70,vuggy silica,py
	285.25	293.93	8.68	4.23	9	0.47	lahar,qv	6	qvs(wh-blk)@35-70,vuggy silica,py
72434	345.60	348.89	3.29	2.25	7.90	0.28	qv	6	py,opal,qv@60
	364.77	373.22	8.45	1.81	7.2	0.25	qv,lahar	6	py,opal,qvs(grey-blk)
	391.60	435.84	44.24	4.46	9.7	0.46	lahar,qv	6	rare qvs,vuggy silica,py,
	404.65	415.11	10.46	7.65	15.4	0.50	lahar,qv	6	qvs(wh)@20-70,qv(27.8ppmAu/0.6m)
	420.58	424.14	3.56	7.79	9.9	0.79	lahar	6	py,vuggy silica
	459.74	462.60	2.81	4.64	8.5	0.55	felsite,lahar	6	py
72436	364.55	367.70	3.15	1.47	4.9	0.30	qv,lahar	6	qvs,py
72439	335.03	343.45	8.42	2.56	5.4	0.47	lahar,qv	6	qvs(grey-blk)@20,30,py,vuggy silica,qv@30,opal
	359.21	366.95	7.74	2.41	3.6	0.67	qv, trachyte	6	qvs(grey)@40-60,py,vuggy silica
	402.90	414.40	11.50	1.32	3.8	0.35	lahar	6	qvs(grey)@40-70,py
72440	164.41	185.67	21.26	0.83	3.3	0.25	lahar,qv	5	qvs(grey),py,qv@20-30 and 70
	400.51	453.06	52.55	1.57	4.6	0.34	lahar,qv, felsite	6	qvs(wh-grey)@15-50,py,qv@35-45
	436.14	441.63	5.49	5.04	10.1	0.50	felsite,qv	6	qvs(wh-blk)@30-60
72441	427.81	433.87	6.06	2.96	7.6	0.39	lahar,qv	6	qvs,py,qv@15-30

Table 1(Cont'd)

72441	449.06	453.34	4.28	2.58	10.2	0.25	qv,lahar	6
72442	389.46	404.42	14.96	7.70	13.9	0.55	qv,lahar	6
	396.44	399.32	2.88	18.80	47.00	0.40	qv	6
	434.11	441.29	7.18	1.83	12.3	0.15	felsite,bx	6
	448.64	456.69	8.05	2.33	9.2	0.25	qv,lahar	6
	541.33	541.55	0.22	269.30	178.4	1.51	qv	6
72443	462.69	462.91	0.22	27.25	22.1	0.81	qv	6
	466.23	473.69	7.46	2.66	2.8	0.95	lahar,sst,bx	5
	487.57	496.44	8.80	2.49	3.4	0.73	lahar,bx,sst,qv	6
72444	393.00	397.52	4.52	2.61	8.4	0.31	qv	6
	434.97	448.98	14.01	2.78	5.1	0.55	qv,lahar,felsite	6
72446	257.94	273.73	15.79	1.53	4.3	0.36	qv,lahar	6
	302.06	308.81	6.75	1.26	2.6	0.46	qv,lahar	6
	337.73	351.69	13.96	4.00	4.1	0.98	felsite	6
72449	213.53	327.13	113.60	1.81	4.0	0.45	qv,bx,lahar,fel	6
	220.98	235.40	14.42	4.40	10.7	0.41	qv,bx,lahar	6
72450	164.00	166.12	2.12	1.62	1.4	1.16	andesite	6
	281.96	286.58	4.62	5.60	8.8	0.64	qv,bx,lahar	6
72457	330.15	336.79	6.64	2.70	3.3	0.82	qv,lahar	6
72460	218.54	263.66	45.12	2.33	3.8	0.61	qv,fel,bx,lahar	6
	256.89	263.66	6.77	5.80	6.2	0.94	qv,bx,lahar	6
72461	230.49	261.09	30.60	1.13	2.6	0.43	fel,bx,lahar,st	6
72462	237.87	253.29	15.42	2.93	4.8	0.61	qv,lahar,ult	6
72463	260.33	289.98	29.65	1.61	2.2	0.73	qv,lahar,fel	6
	300.04	300.77	0.73	11.95	6.5	1.83	lahar	6
72464	303.07	304.03	0.96	23.64	9.7	2.44	mudstone	6
72465	287.25	287.81	0.56	277.87	337.3	nd	nd	nd
	295.00	298.96	3.96	3.62				6
72470	268.95	272.68	3.73	3.35	5.4	0.62	felsite	6
72471	505.48	508.41	2.93	7.12	6.6	1.08	bx,qv	6
82702	206.05	214.40	8.35	1.87	13.0	0.14	lahar	6
82709	151.48	152.68	1.20	3.98	6.2	0.64	lahar	6
	215.85	217.95	2.10	3.69	5.6	0.66	bx	6
82711	254.00	257.28	3.28	1.52	2.5	0.61	lahar,bx	6
							6	

qvs(grey-bik)@30 qvs(blk)@30-60,py,qv32.8ppm/0.9m mult qv qvs@20,60,80 qvs@80, qv@55,30 qv(wh) qv(wh-blk)
qvs,py
qvs@15,vuggy silica qv@40,vuggy silica py,qus
qv@20,py
qv@30,py,qvs(grey)@60,70
qvs(grey-blk)@30-60,py
qvs(wh-grey)@30-60,opal,py
qvs(wh-grey)@30,py,opal
no comments
qvs,py
qvs(stk),py,qu@30
qvs(wh-pink)@30,py,opal
qvs(wh-blk)@30,qv@30,70,90
qvs(grey-bk),py
qvs@45,py
qvs(grey)@20-75,py
qvs@20
opal,bxqvs
nd
qvs(grey)
qvs(grey)@50
py,qus(grey-blk)
py
qus,py

Table 1(Cont'd)

82711	269.56	271.56	2.26	5.12	7.7	0.66	qu,bx,lahar	6
82712	240.61	256.13	15.52	3.15	3.5	0.90	felsite,qv,lahar	6
82777	86.63	88.97	2.34	1.70	4.7	0.36	qv	6
82778	127.37	142.97	15.60	3.19	10.7	0.30	qv,bx,lahar	6
82779	126.77	129.87	3.10	1.95	17.6	0.11	qv	6
82784	124.73	128.3	3.57	3.10	12.1	0.26	bx,and	6
82785	151.5	158.4	6.9	3.86	16.4	0.24	qv,bx	6
$83-4$	64.00	68.00	4.00	1.85	6.2	0.30	trachyte	5
* high grade intersection(+18ppmAu)								
2-5(weak silicification), 6(moderate to strong silicification)								

qVs,py qvs@50-80,qv@60,56.41ppmAu/0.49m
py
qv(wh)
qvs(wh)@45-55
py qvs(wh-blk)

Table 2

Main 1 Zone Reserves

* Au values done by geochemical method and are not assays. Since the host rock is siliceous the assay values could be 10-15\%higher.

Table 3

High Grade Gold Intersections in the Main Zone 1

| Hole\# | Section | From(m) | To(m) | Length(m) | Au(ppm) | Host Rock | | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

nd- no data

