Schwetter 888335

SURF INLET GOLD PROJECT PRINCESS ROYAL ISLAND, B.C.

EXTRACTION OF GOLD FROM MILL TAILINGS AND MINE WASTE: PRELIMINARY TESTING

METALLURGICAL ASSESSMENT

PREPARED FOR FLEET DEVELOPMENTS LTD.

ΒY

GARY HAWTHORN, P. ENG.

(reccl -

CONTENTS

PAGE

1.	SUMMARY	1
2.	INTRODUCTION	2
3.	DESCRIPTION OF SAMPLES	3
4.	DISCUSSION OF TEST RESULTS	4
5.	PROCESSING ASSESSMENT	8
6.	CONCLUSIONS AND RECOMMENDATIONS	9
7.	METALLURGIAL INVESTIGATION	10
	 7.1 Summary of Test Results 7.2 Cyanidation Test - Mill Tailings 7.3 Flotation Test - Mill Tailings 7.4 Cyanidation Test - East Surf Composite 7.5 Flotation Test - East Surf Composite 7.6 Flotation Test - West Surf Composite 	10 11 13 14 16 18
8.	REFERENCES	19
9.	ASSAY CERTIFICATE - PLANT TAILING SAMPLE	21
10.	PROFESSIONAL QUALIFICATIONS	22

1. SUMMARY

The mine waste dumps and the mill tailing at Surf Inlet probably contain in excess of \$10 million in recoverable gold and silver.

The testing indicates that flotation will produce a concentrate containing 4-6 oz/t Au. This material may be either sold directly or leached on-site.

Additional testing will be required to determine the optimum metallurgical operating conditions, or the relative economics of flotation and cyanidation.

Future testing will investigate whether alternative hydrometallurgical techniques will enhance the overall recovery relative to cyanidation.

2. INTRODUCTION

The Surf Inlet property was previously mined in the periods of 1917 to 1926 and 1940 to 1943, leaving a substantial tonnage of flotation tailing (order of magnitude estimate $0.5 - 1.0 \times 10^{\circ}$ tons) grading .03-.05 oz/ton Au and mine waste (order of magnitude estimate $0.5 - 1.0 \times 10^{\circ}$ tons) grading approximately 0.1 oz/ton.*

Processing during these periods consisted of crushing/grinding/gravity/flotation to produce an auriferous pyrite concentrate for sale to smelters.

Available literature suggests that:

- feed grade was 0.3 0.6 oz/ton Au;
- recovery was approximately 92%;
- tailing losses were 0.03 0.05 oz/ton Au;
- the concentrate contained approximately 2.5% Cu and 6 oz/ton Au;
- the concentrate represented approximately 9 11% of the original feed weight;
- the mineralization was refractory to the cyanide process.
- * See Shearer, J.T.; Jan. 15/86: "Report on Preliminary Sampling of Tailings and Stockpiles at the Surf Inlet Mine".

3. DESCRIPTION OF THE SAMPLES

Nominal Description	Number of Samples	Sample Identification
Mill Tailing	20	See attached Assay Cert.
Mine Waste Rock	3	East Surf 1 - A to C
Mine Waste Rock	3	West Surf 1 - A to C

Average Sample Weight 8 Kg

Sample Preparation

Tailing

Equal volumes were removed from each of the twenty sample bags and composited to provide a laboratory feed sample of approximately 15 Kg.

Mine Waste Rock

All six samples were jaw crushed to -6 mm(1/4") and two composites were prepared (East Surf/West Surf), utilizing the entire samples.

٠

4. DISCUSSION OF TEST RESULTS

Sample	(Compo.	Grade (oz/t)
	_	<u>Au</u>	:	Ag
A - PLANT TAILING	:	• .060	•	063
B - E SURF COMPO 1	I-A/C	.067	•	29
C - W SURF COMPO 1	I-A/C	.151	•	20

* During the periods 1917-1926 and 1940-1943, the ore was ground to 90% -220 mesh and 45-55% -200 mesh, respectively. The plant tailing was reported to be .03-.05 oz/t Au.

Field sampling of the plant tailing in Nov. 1985 (20 samples .046-.084 oz/t, average .060 oz/t Au) indicate that natural classification of the tailing in the disposal system has left an enriched coarse portion adjacent to the outfall.

The portion of the tailing which flowed into the lake will likely be both finer and lower grade than the sample material.

Sample	Test	<u>Tailin</u>	g_oz/t	Reco)	Rough Conc G		TLG. Sizing % -200 M
		<u>Au</u>	Ag	<u>Au</u>	<u>Àg</u>	<u>Au</u>	Ag	<u></u>
A	F	0.47	.03	23.5	27.3	1.09	0.85	10.0
Α	С	0.42	.084	30.0	nil			10.0
В	F	0.18	.080	78.8	57.9	1.03	1.69	66.5
В	С	0.47	.33	29.9	nil	-		56.7
C	F	0.31	.02	83.2	88.5	3.33	3.34	44.1
	F -	FLOTAT	ION	C -	CYANII	NOITAC		

SUMMARY OF TEST RESULTS

* Note: (1) recoveries in this summary have been computed using assays of the composites and the test tailings.

COMMENTS

- 1. The rougher concentrate grades ranged 1.0 to 3.3 ounces of gold per ton. It is expected that the final concentrate would duplicate 4 to 6 ounces of gold per ton achieved by the previous operation.
- 2. There is a reasonably consistent gold to suphide ratio which resulted in good quality flotation concentrate grades.
- 3. Due to a very fine gold distribution in a sulphide matrix and/or discreet gold minerals, the flotation concentration method is more effective than cyanidation.
- 4. It may be possible to process the flotation concentrate by an alternative hydrometallurgical technique. This may enhance the economics of the operation by producing a bullion on-site rather than having to incur the high cost of transporting and marketing a flotation concentrate.

Techniques which may be worthy of consideration include: thiourea leaching, bio-oxidation/cyanidation. These are still in the experimental stage and plant scale technical and financial feasibility have not been demonstrated.

5. Flotation concentration is sensitive to the degree of grinding, as evidenced by the following comparison:

GRIND <u>% -200 M</u>	FLOT. TAILS Auoz/t
10	.047 LAB
44	.031 "
66	.018 "
46	.029 PLANT 1940

6. Recovery by cyanidation was technically not as attractive as was flotation concentration. However, the sales revenue from marketing bullion is appreciably higher than that obtained from flotation concentrate: typically 99% vs 85%.

LABORATORY CONCENTRATE ANALYSIS

NOTE: Rougher Concentrate Only						
	WEST SURF COMP.	EAST SURF COMP.				
S	22.4%	8.0%				
Cu	1.39%	Not Assayed				
Fe	25.5%	13.7%				
INSOL	37.4%	64.4%				
Au	3.33 oz/t	1.03 oz/t				
Ag	3.34 oz/t	1.69 oz/t				

٠

5. PROCESSING ASSESSMENT

A preliminary financial evaluation has been prepared based on the following assumptions:

- 1) Flotation concentrate only
- 2) Feed Grade .1 oz/T
- 3) NSR = 85% contained gold value
- 4) Capital Cost in the \$2,000,000 range
- 5) Mining Rate 200 tons/day
- 6) Gold Price \$450 CAN

Operating Cost Estimate:

	FUNCTION	\$/TON	\$/MONTH
¥	Stockpile Recovery and Haulage Supervision Mill Operators Miscellaneous Labour Power (40 kwh/t @ \$.25/kwh) Grinding Media Miscellaneous Supplies Tailing Disposal	$\begin{array}{c} 2.00 \\ 4.00 \\ 1.00 \\ 0.50 \\ 10.00 \\ 1.25 \\ 1.50 \\ 1.00 \end{array}$	12,000 24,000 6,000 3,000 60,000 7,500 9,000 6,000
		21.25	127,500

Projected Cash Flow:

Life NSR (3 Opera	ed Mine Waste ((years) \$/ton) ting Cost (\$) al Cost Allowar	2.7 28.7 21.3	400,000 5.4 28.7 21.3 5.0	600,000 8.2 28.7 21.3 3.3
	REVENUE; re Taxes/Interent)	est) -2.30	2.40	4.10
TOTAL	(\$)	-500,000	1,000,000	2,500,000

* NOTE: Power costs were based upon typical data from diesel-electric operation in remote locations. This high cost may provide some incentive to rehabilitate the hydro-electric facilities.

There is no suggestion that 200 t/d is an optimum rate.

6. CONCLUSIONS AND RECOMMENDATIONS

The testwork shows that flotation concentration is technically feasible for the extraction of gold from mill tailing and the mine waste dumps.

The percentage recovery obtained by straight cyanidation was not as high as that obtained by flotation. (Flotation 23.5% to 83.2%/Cyanidation 30%). Some combination of flotation followed by cyanidation after regrinding may enhance the economics of the operation. This will be the subject of future testing.

Additional laboratory testing must be undertaken to determine:

- Whether flotation followed by regrinding and cyanidation is economically superior to producing a flotation concentrate for sale.
- The relationship between the grind and recovery in flotation.
- The optimum conditions for cyanidation.

If the revenue from flotation and cyanidation is low relative to the contained Au content, it may be appropriate to perform additional leaching tests using thiourea and bio-oxidation.

7. METALLURGICAL INVESTIGATION

7.1 <u>Summary of Test Results</u>

Sample		-	<u>Composite</u> <u>Au</u>	<u>Grade</u> <u>Ag</u>	2
	ailing Composition Composition		.060 .067 .151	.063 .29 .20	
	Tailing	Recover	y Concen		Tailing

		oz/	ton	%	%	Grad	e	Sizing
Sample	<u>Test</u>	Au	Ag	Au	<u>Ag</u>	<u>Au</u>	<u>Ag</u>	<u>(%-200M)</u>
-								
A	F	.047	.03	23.5	27.3	1.09	0.85	10.0
A	С	.042	.084	30.0	nil	-		10.0
В	F	.018	.080	78.8	57.9	1.03	1.69	66.5
В	С	.047	.33	29.9	nil	_	_	56.7
С	F	.031	.02	83.2	88.5	3.33	3.34	44.1

F - Flotation - rougher flotation C - Cyanidation

7.2 Metallurgical Investigation - Details

Plant Tailing - Cyanidation

GRIND: Nil

•

LEACH: 500 g.24 hr/33% Solids

TIME	ADDITI NaCN	<u>Ca(OH)</u> 2	$\frac{\text{NaCN CONC}}{g/1}$	<u>Initial</u>	<u>PH</u> Final
0	1.0	0.2	1.0	9.4	
2		-	0.9	11.8	
24		_	0.8	11.7	

REAGENT CONSUMPTION

<u>Kg/t</u>

NaCN	0.4
Ca(0H) ₂	0.4

NOTE: - High natural pH of 9.4 - In future testing add only 0.1 g Ca(OH)₂ per 500 g sample.

METALLURGY

	Au	Ag
TAILING	.042 oz/t	.084 oz/t
FEED	.060 oz/t	.063 oz/t
EXTRACTION	30%	nil

٠

FRACTIONAL SCREEN ANALYSIS (Test Tailing)

MESH	<u>% Wt.</u>	<u>Oz/Ton</u>
		<u>Au</u> <u>Ag</u>
35	19.5	.029 .17
65		
	34.9	.034 .05
100		
	15.9	.032 .12
150		
	19.7	.029 .02
200		
	10.0	.032 .10
	100.0	(.042) (.084)

7.3 Plant Tailing - Flotation

GRIND: Nil

CONDITION: 2 Minutes

FLOAT: To completion 8 Minutes

REAGENT: Potassium Anyl Xanthate AF 65 Natural pH

METALLURGY

	<u>% Wt</u> .	<u>Oz/Ton</u>		Dist.	- 1%
		<u>Au</u>	Ag	<u>Au</u>	Ag
CONC. TAILING	1.3 98.7	1.092 .047	.85 .03	23.5 76.5	27.3 72.7
FEED	100.0	(.061) .060	(.041) .063	100.0	100.0
REAGENTS	ADDITI POIN		AD]	DITION g/1	
ΡΑΧ	COND FLOAT			130 390	
AF 65	COND			250	

7.4 East Surf 1A to C Composite

•

CYANIDATION

GRIND: 500 g/4 minutes 50% Solids

LEACH: 24 Hr/33% Solids

TIME	ADDIT: NaCN	<u>ION (gm)</u> <u>Ca(OH)</u> 2	$\frac{\text{NaCN} CC}{g/1}$	NC. Initial	pH <u>Final</u>
0	1.0		1.0	9.6	
24	-	_	0.8	10.2	

REAGENT	CONSUMPTION	<u>Kg/t</u>	
	NaCN Ca(OH) ₂	.4 .2	

METALLURGY	Oz/t			Dist.	Dist.	
	g	Au	Ag	Au	Ag	
PREG SOL'N TAILING	1100 463.5	.028 .047	.035 .33	55.4 44.6	21.5 78.5	
FEED	463.5	(.121) .067	(.42) .29	100.0	100.0	

.

() DENOTES CALCULATED VALUE

FRACTIONAL SCREEN ANALYSIS - TAILING

MESH	<u>%Wt</u> .	• Oz/ton	
		Au	Ag
65	4.4	.031	.16
100	13.5	.034	.17
150	25.4	.046	.06
200	56.7	.052	.51
	100.0	(.047)	(.33)

•

7.5 East Surf Composite - Flotation

GRIND: 1000 g/12 minutes/50% Solids

CONDITION: 2 minutes

FLOAT: To Completion/6 minutes

REAGENTS: - Potassium Amyl Xanthate

- Cyanimid A.F. 65

- Natural pH 9.4

AF 65

METALLURGY

	<u>% Wt.</u>	Oz/tc	n	Dist.	
		Au	Ag	Au	Ag
CONC. TAILING	6.1 93.9	1.032 .018	1.69 .080	78.8 21.2	57.9 42.1
FEED	100.0	(.080) .067	(.18) .29	100.0	100.0
REAGENTS		•			
	REAGENT	ADDITION POINT		$\frac{\text{QUANTITY}}{g/t}$	
	PAX	CONC.		130	

FLOAT.

COND.

390

200

FRACTIONAL SCREEN ANALYSIS - TAILING

MESH	<u>% Wt.</u>	Oz/tor	1
		Au	Ag
65	2.3	.036	.28
100			
	6.9	.006	.02
150			
	24.3	.006	.02
200			
	35.7	.015	.06
325			
	30.8	.032	.15
	100.0	(.018)	(.080)

7.6 West Surf Composite - Flotation

GRIND: 1000 G/6 minutes/50% Solids CONDITION: 3 minutes FLOTATION: To Completion: 8 Minutes REAGENTS: PAX AF 65 Natural pH

METALLURGY

	<u>% Wt.</u>	Oz/ton		<u>Dist 1%</u>	
		Au	Ag	<u>Au</u>	Ag
CONC. TAILING	4.41 95.59	3.33 .031	3.34 .02	83.2 16.8	88.5 11.5
FEED	100.0	(.177) .151	(.166) .20	100.0	100.0

SCREENING: 44.1% -200 Mesh

Note that the E. Surf Compo was ground for 12 minutes to 66.5% -200 Mesh

REAGENTS: As in 5.4

8. REFERENCES

- (1) Maconachie, R.J. 1940 Research on Surf Inlet Tailing
- (2) Report of the Minister of Mines, 1918 F.40

ASSAY REPORT

SAMPLE	AU	AG
DESC.	OZ/TON	OZ/TON
H1A	0.049	0.09
H1B	0.055	0.06
H1C	0.055	0.03
H1D	0.053	0.09
H1E	0.055	0.06
H1F	0.055	0.06
H1G	0.052	0.03
H1H	0.052	0.06
H1I	0.055	0.06
H2A	0.058	0.09
H2B	0.065	0.06
H2C	0.064	0.06
H2D	0.064	0.09
H2E	0.064	0.09
H3A	0.067	0.09
H3B	0.084	0.06
H3C	0.064	0.06
H3D	0.075	0.03
H3E	0.075	0.06
H4 .	0.046	<u>0.03</u> 0.063
	0.000	0.007

CERTIFICATION

I, Gary William Hawthorn, of the District of North Vancouver, Province of British Columbia, hereby certify as follows:

- 1. I am a Registered Professional Engineer residing at 3650 Emerald Drive, North Vancouver, B.C.
- 2. I graduated with a Bachelor of Science in Mining Engineering from Queen's University in Kingston, Ontario in 1964.
- 3. I have practiced my profession continually since graduation.
- 4. I have no interest, direct of indirect, in the claims of Fleet Developments Ltd. or in the Company nor do I expect to receive any such interest in the future.
- 5. The attached report is based on a study of materials supplied by the company in December, 1985.
- 6. I consent to the use of this report in or in conjunction with a prospectus or in a statement of material facts relating to the raising of funds for this project.

DATED at Vancouver, British Columbia this 4th day of February, 1986.

Gary W. Hawthorn, B.Sc.

73FLEETM

CERTIFICATION

I, Gary William Hawthorn, of the District of North Vancouver, Province of British Columbia, hereby certify as follows:

- 1. I am a Registered Professional Engineer residing at 3650 Emerald Drive, North Vancouver, B.C.
- 2. I graduated with a Bachelor of Science in Mining Engineering from Queen's University in Kingston, Ontario in 1964.
- 3. I have practiced my profession continually since graduation.
- 4. I have no interest, direct of indirect, in the claims of Fleet Developments Ltd. or in the Company nor do I expect to receive any such interest in the future.
- 5. The attached report is based on a study of materials supplied by the company in December, 1985.
- 6. I consent to the use of this report in or in conjunction with a prospectus or in a statement of material facts relating to the raising of funds for this project.

DATED at Vancouver, British Columbia this 4th day of February, 1986.

Gary W. Hawthorn, B.Sc.

73FLEETM

CERTIFICATION

I, Gary William Hawthorn, of the District of North Vancouver, Province of British Columbia, hereby certify as follows:

- 1. I am a Registered Professional Engineer residing at 3650 Emerald Drive, North Vancouver, B.C.
- 2. I graduated with a Bachelor of Science in Mining Engineering from Queen's University in Kingston, Ontario in 1964.
- 3. I have practiced my profession continually since graduation.
- 4. I have no interest, direct of indirect, in the claims of Fleet Developments Ltd. or in the Company nor do I expect to receive any such interest in the future.
- 5. The attached report is based on a study of materials supplied by the company in December, 1985.
- 6. I consent to the use of this report in or in conjunction with a prospectus or in a statement of material facts relating to the raising of funds for this project.

DATED at Vancouver, British Columbia this 4th day of February, 1986.

Gary W. Hawthorn, B.Sc.

73FLEETM