ACRE ADALITICAL LAB	URATORIES LID. 852 B. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE(601)253-3158 FAX() dited Co.)	04) 253-1716
44	ASSAI CERTIFICATE B.C. Ministry of Energy & Mines (Van) File # A204115	A A
SAMPLE#	No Cu Pb Zn Ag ^{ir} Ni Co Mn Fe As Sr Cd Sb Bi Ca P Cr Mg Al Na K W Hg	Au** gm/mt
SI TS-02-FOR-01 TS-02-FOR-02 TS-02-FOR-03 TS-02-FOR-04	<pre><</pre>	<.01 .06 .15 .004 .03 .47 .014
TS-02-FOR-05 TS-02-FOR-06 TS-02-FOR-07 STANDAR0_R-1/AU-	2.001 .188 13.59 5.39 ¹³ 61.9 .001 .001 .26 3.41 .01 .051 .032 .005 <.01 11.84 .023 .002 .87 1.31 .01 .17<.001 .001 .001 .179 3.82 11.07 ²³ 80.4<.001 .003 .06 9.86 .09 .004 .062 .003 .01 1.32 .043 .001 .45 .93 .01 .21<.001 .001 .001 .310 27.93 12.05 ¹¹ 49.2 .001 .001 .12 3.31 .01 .018 .073 .010 <.01 4.59 .015<.001 .61 .86 .01 .11<.001 .002 .1 .091 .842 1.30 2.36 101.6 .026 .026 .08 6.59 .93 .029 .047 .160 .03 1.36 .109 .025 .98 .85 .16 .41 .003 .001	.18.004 .70.02 .52.015 3.44
	5=0 GROUP 7AR - 1.000 GM SANPLE, AQUA - REGIA (HCL-HNO3-H2O) DIGESTION TO 100 ML, ANALYSED BY ICP-ES. AG** & AU** BY FIRE ASSAY FROM 1 A.L. SAMPLE.	
	- SAMPLE TYPE: ROCK R150	
DATE RECEIVED: SEP	27 2002 DATE REPORT MAILED: (UK 11/02 SIGNED BY	D B.C. ASSAYERS
	EREMORE	10) mill
	VUNDE TOP	(VISCOUC
	SGCOM	
		0 0
		e
		r c
	Jom Schoola	
All results are considered	d the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.	Data KFA V

VBS -> FOREMULE Tom Schwetz Nov. '02

Galena Lead Isotope Analysis from Foremore.

Janet E. Gabites, Geochronology Laboratory, U.B.C. November 2002

A sample from the the Foremore deposit was analysed for lead isotopic composition. The data have been plotted on a ²⁰⁷Pb/²⁰⁴Pb v. ²⁰⁶Pb/²⁰⁴Pb diagram in Figure 1. Alldrick et al., (1987) defined clusters of lead isotope data in the Stewart mining camp that represent Jurassic and Tertiary mineralization. These clusters have been added to Figure 1 for reference.

The Foremore sample does not fall into either of the Stewart clusters, but is less radiogenic than the Jurassic cluster. This indicates that the mineralization is likely to be older than Jurassic.

Analytical Techniques

A hand-picked galena crystal was washed, then dissolved in 2N hydrochloric acid. Approximately 10-25ng of the lead in chloride form was loaded on a rhenium filament and isotopic compositions were determined using a modified VG54R thermal ionization mass spectrometer. The measured ratios were corrected for instrumental mass fractionation of 0.15% per mass unit (Faraday collector) based on repeated measurements of the N.B.S. SRM 981 Standard Isotopic Reference Material. Errors reported in Table 1 were obtained by propagating all mass fractionation and analytical errors through the calculation..

Figure Captions

Figure 1a: ²⁰⁷Pb/²⁰⁴Pb v. ²⁰⁶Pb/²⁰⁴Pb diagram of analysis from Foremore. For reference, clusters defined by Alldrick et al., (1987) have been added.

References

- Alldrick, D.J., Gabites, J.E., and Godwin, C.I., 1987. Lead isotope data from the Stewart Mining Camp (104B/1). B.C. Geological Survey Branch Geological Fieldwork 1986, 93-102.
- Godwin, C.J., Gabites, J.E., and Andrew, A. 1988. LEADTABLE: A galena lead isotope database for the Canadian Cordillera. *B.C. Geological Survey Branch* Paper 1988-4. 188p.
- Godwin, C.J. and Sinclair, A.J., 1982. Average lead isotope growth curves for shalehosted zinc-lead deposits, Canadian Cordillera. *Economic Geology*, Volume 7, pp. 675-690.

		Lead 19000	pe Anal	ysis of Sam	ole from	Foremore			
206Рь/] 204Рь ⁽	Pb64 % err	207РЬ/ 204РЬ	РЬ74 % erт	208Pb/ 204Pb	Pb84 % err	207Рь/ 206Рь	РЬ76 % егт	208РЬ/ 206РЬ	Pb86 % err
18.4142	0.04	415.587	5 0.0	6 38.087	9 0.09	0.8465	0.022	2.0684	0.043

Notes: Analysis by Janet E. Gabites, Geochronology Laboratory, Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, B.C.

All ratios corrected for isotopic fractionation (0.15% for Faraday collector), based on repeated analyses of NBS981 lead standard.

Mineral analysed is galena

	ACME ANALYTICAL LABOR (ISO 9002 Accredi	RATOR ted	RIES Co.	LTD	•	852	Ε.	HAS'	FING	s st	. VA	NCOI	JVER	BC	V62	A 1R6	5	PI	IONE	(604) 253	3-31	58 E	'AX (604)2	53-1716	5
	AA								ASS	AY (CER	TIF:	ICA'	TE													
1	AA		<u>B</u> .	.c. 1	Mini	stry	r of	Er	erc	IX &	Mi	nes	<u>(v</u>	an)	F	ile	#_A	204	115								Å
				Ge	ologic	al Surv	vey Br	anch	,, Var	ncouvei	r BC V	V6Z 20	G3 \$	SUDMI	tted I	oy: 10	n G. 9	schro	eter								
	SAMPLE#	Mo	Cu	Pb	Zn	Ag**	Ni	Co	Mn	Fe	As	Sr	Cd	Sb	Bi	Ca	Р	Cr	Mg	Al	Na	к	W	Hg	Au**		
		%	%	%	%	gm/mt	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	gm/mt	1	
See. 1	SI	<_001<	.001	< 01	< 01	< 3<	001<	001	<.01	<_01	<_01<	<.001<	<.001<	.001	<.01	. 15<	.001	-002	<.01	-02	.65	.01<	.001	<.001	<_01		
	TS-02-FOR-01	.001	.127	.03	.06	23.9	.003	.004	.19	23.62	.01	.024<	<.001	.001	<.01	9.50	.079	.001	1.78	2.75	.01	<.01<	.001	<.001	.06		
	TS-02-FOR-02	4.001	.415	6.99	18.47	119.4<	.001<	.001	.27	3.51	.01	.021	.100	.006	.01	7.41	.026<	.001	.42	.71	.02	.10<	.001	.004	.15		
	TS-02-FOR-03	4.001<	.001	2.71	.02	5.9<	.001<	.001	.67	.72	<.01	.042	.001	.001	<.01	18.52	.056	.001	.10	.24	.01	.25<	.001	<.001	.03		
	TS-02-FOR-04	4.001	.188	32.21	10.56	130.3	.001	.001	.16	4.12	.01	.022	.066	.012	<.01	5.43	.016<	.001	.91	1.00	.01	.07<	.001	.001	.47		
	TS-02-FOR-05	001	100	17 50	E 70	61 O	001	001	26	7 / 1	01	051	072	005	- 01	11 9/	027	002	87	1 21	01	17	001	001	19		
	TS-02-FOR-05	2.001	170	7 92	11 07	80 /	.001	.001	.20	0.94	.01	.051	.052	.005	01	1 32	0/3	001	.07	03	.01	- 1/-	001	.001	. 10		
	TS-02-FOR-00	1 001	310	27 03	12 05	1/0 2	001	.003	12	3 31	.07	018	073	010	< 01	4 59	015	001	.45	86	.01	114	001	002	52		
	STANDARD R-1/AU-1	.091	.842	1.30	2.36	101.6	.026	.026	.08	6.59	.93	.029	.047	.160	.03	1.36	.109	.025	.98	.85	.16	.41	.003	.001	3.44		

GROUP 7AR - 1.000 GM SAMPLE, AQUA - REGIA (HCL-HNO3-H2O) DIGESTION TO 100 ML, ANALYSED BY ICP-ES. AG** & AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE.

DATE RECEIVED:

FOREMORE

Data AFA VIA

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

	<u>B.C.</u>	<u>Ministr</u> Geological Su	rvey Bran	ich., Va	ancouver	BC V6Z	263 S	Submi tt	ed by: I	om.G.S	chraete	Ċ					
SANPLE#	No Cu P % %	b Zn Ag** % % gm/mt	• Ni (Co Mn X X	n Fe 6 %	As S %	ir Cd X X	Sb X	Bi Ca % 2	ар К. %	Cr %	Mg Al % %	Na %	K %	W Hg % %	Au** gm/mt	
SI <.0 TS-02-FOR-01 .0 TS-02-FOR-02 <.0 TS-02-FOR-03 <.0 TS-02-FOR-03 <.0	001<.001 <.0 001 .127 .0 001 .415 6.9 001<.001 2.7 001 .188 32.2	1 <.01, 1 <.3 3 .06 23.9 9 18.473,19.4 1 .02 5.9 1 10.56 130.3	3<.001<.00 9 .003 .00 4<.001<.00 9<.001<.00 3 .001 .00	01 <.01 04 .19 01 .27 01 .67 01 .16	 <.01 23.62 3.51 7.72 6.4.12 	<.01<.00 .01 .02 .01 .02 <.01 .02 <.01 .04 .01 .02	24<.001 24<.001 21 .100 52 .001 22 .066	.001 < .001 < .006 .001 < .012 <	.01 .1 .01 9.50 .01 7.4 .01 18.55 .01 5.4	5<.001 0.079 1.026< 2.056 3.016<	.002 <. .001 1. .001 . .001 .	01 .02 78 2.75 42 .71 10 .24 91 1.00	.65 .01 .02 .01 .01	.01<.0 <.01<.0 .10<.0 .25<.0 .07<.0	01<.001 01<.001 01 .004 01<.001 01<.001	<.01 .06 .15 , .03 #	014 014
TS-02-FOR-05 TS-02-FOR-06 TS-02-FOR-07 STANDARO R-1/AU-1	001 .188 13.5 001 .179 3.6 001 .310 27.5 091 .842 1.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 .001 .0 4<.001 .0 2 .001 .0 6 .026 .0	01 .26 03 .06 01 .12 026 .08	6 3.41 6 9.86 2 3.31 8 6.59	.01 .05 .09 .00 .01 .01 .93 .02	51 .032 04 .062 18 .073 29 .047	.005 < .003 .010 < .160	.01 11.8 .01 1.3 .01 4.5 .03 1.3	4 .023 2 .043 9 .015< 6 .109	.002 .001 .001 .025	87 1.31 45 .93 61 .86 98 .85	.01 .01 .01 .16	.17<.0 .21<.0 .11<.0 .41 .0	01 .001 01 .001 01 .002 03 .001	, 18 ,0 .70 ,0 .52 , 3.44	004 02 015
	GROUP 7AR Ag** & AU* ~ SAMPLE 7	- 1.000 GM SA BY FIRE AS TYPE: ROCK R1	AMPLE, AQ SAY FROM 50	IUA - RE 1 A.T.	EGIA (HC SAMPLE.	L - HNO3 - H	120) DIC	GESTION	to 100	NL, ANA	LYSED 8	ICP-E	s.				
DATE RECEIVED: SEP 27 20	002 DATE	REPORT MA	ILED: (Oct	11/0	2 s	IGNED	BY.	2. h		. TOYE	, C.LEO	⟨G, J.	WANG;	CERTIFI	ED 8.C.	ASSAYE
						1992											
					/]				~ _	_		
					/					J	OR	EN	101	RE	-	(.0)	-170
										F	ort	EN S	101 G	RE Z	me	(D)	5000
										J	ort	EA	loi G	RE Z	me	(D)	5000
										J	ort	EAS	G	RE Z	me	(D)	5000
										J	oR	EAS	G	RE Z	me	(Di	5000
										J	or	EAS	G	RE Z	me	(Di	5000
										J	or	ENS	G	RE Z	me	(Di	500

ACME AN (19 ACME	NALYTICAL LABOI 50 9002 Accred:	RATOR	Co. B.	LTD) C. 1 Ge	• Mini ologic	852 stry al Surv	E. H of /ey Bra	AST: / Ene nch,,	ING ASS Brg , Var	S ST AY (<mark>y &</mark> icouver	VA CERT Mir BC V	NCOU FIF: 168 /67 20	ICAT	BC TE an) ubmit	V62 F: ted t	A 1R6 ile by: Ton	# A I G. S	PH 204 chros	ONE	(604)) 253	-315	8 F	AX ()	604)25	3-1716 AA
	SAMPLE#	Mo %	Cu %	Pb %	Zn %	Ag** gm/mt	Ni %	Co %	Mn %	Fe %	As %	Sr %	Cd %	Sb %	Bi %	Ca %	P %	Cr %	Mg %	Al %	Na %	K %	W %	Hg %	Au** gm/mt	
	SI TS-02-FOR-01 TS-02-FOR-02 TS-02-FOR-03 TS-02-FOR-04	<.001< .001 <.001 <.001< <.001<	.001 .127 .415 .001 .188	<.01 .03 6.99 2.71 32.21	<.01 .06 18.47 .02 10.56	<.3< 23.9 119.4< 5.9< 130.3	.001<.1 .003 .0 .001<.0 .001<.0	001 < 004 001 001 001	.01 .19 .27 .67 .16	<.01 23.62 3.51 .72 4.12	<.01< .01 .01 <.01 .01	.001< .024< .021 .042 .022	.001< .001 .100 .001 .066	.001 .001 .006 .001 .012	<.01 <.01 .01 <.01 <.01	.15< 9.50 7.41 18.52 5.43	.001 .079 .026< .056 .016<	.002 .001 .001 .001 .001	<.01 1.78 .42 .10 .91	.02 2.75 .71 .24 1.00	.65 .01 .02 .01 .01	.01< <.01< .10< .25< .07<	.001< .001< .001 .001< .001<	.001 .001 .004 .001 .001	<.01 .06 .15 .03 .47	
• • • • •	TS-02-FOR-05 TS-02-FOR-06 TS-02-FOR-07 STANDARD R-1/AU-1	<.001 <.001 <.001 .091	.188 .179 .310 .842	13.59 3.82 27.93 1.30	5.39 11.07 12.05 2.36	61.9 80.4< 149.2 101.6	.001 . .001 . .001 . .026 .	001 003 001 026	.26 .06 .12 .08	3.41 9.86 3.31 6.59	.01 .09 .01 .93	.051 .004 .018 .029	.032 .062 .073 .047	.005 .003 .010 .160	<.01 .01 <.01 .03	11.84 1.32 4.59 1.36	.023 .043 .015< .109	.002 .001 .001 .025	.87 .45 .61 .98	1.31 .93 .86 .85	.01 .01 .01 .16	.17< .21< .11< .41	001 001 001 003	.001 .001 .002 .001	.18 .70 .52 3.44	

GROUP 7AR - 1.000 GM SAMPLE, AQUA - REGIA (HCL-HNO3-H2O) DIGESTION TO 100 ML, ANALYSED BY ICP-ES. AG** & AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. - SAMPLE TYPE: ROCK R150

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data / FA

	B.C. MINISTRY OF ENERGY & MINES (VA Geological Survey Branch 300 - 865 Hornby St. Vancouver, BC V6Z 2G3	N)	Inv.#: A Date: O	204115 ct 15 2002
QTY	ASSAY		PRICE	AMOUNT
7 7	ASSAY2 @ R150 - ROCK WASH IN BETWEEN @		18.28 4.68	127.96 32.76
		CAD \$		160.72
ample NIT	es submitted by Tom G. Schroeter PRICE REFLECTS 15% DISCOUNT			а с м
ample NIT OPIE	es submitted by Tom G. Schroeter PRICE REFLECTS 15% DISCOUNT ES 1 FAX 1 E-DATA 1			
OPIE	es submitted by Tom G. Schroeter PRICE REFLECTS 15% DISCOUNT CS 1 FAX 1 E-DATA 1			
OPIE	es submitted by Tom G. Schroeter PRICE REFLECTS 15% DISCOUNT CS 1 FAX 1 E-DATA 1			