ALYTICAL CHEMISTRY	CONTINU	Jellon	カ	;2, 13,					
-ES LABORATORY	enea	PROJECT 75		giounty-tale-	quarks-polymeia	quanty—talc -carbonets.	quentes-magnissi - Cavidaonati	Jeller Mager	the state of the s
1PLE NO: 104N 8.59518	859 104N00859 8 .59 519	104N 859 7 £ -520 -521	// -522	// -523	// -524	// -525	// -526	104N 85 9 527	104N 8 59 503
02	0. 33	9.8 36.5 8.02 0.01 8.85 0.61 3.84 5.41 8.0 1.5 3.5 3.5 8.17 0.12 4.6 24.7 6.9 6.95 8.01 0.01 8.05 0.03	34. 8 9. 91 9. 54 7. 11 2. 9 4. 6 9. 13 35. 4 9. 63 9. 91 9. 91	56. 6 0. 02 1. 41 4. 33 0. 8 3. 2 0. 09 25. 3 2. 65 0. 01 0. 03	38. 1 0. 01 0. 78 6. 74 0. 9 5. 3 0. 11 29. 9 4. 45 0. 01 0. 03	41. 5 1. 63 14. 6 9. 31 0. 10 12. 5 4. 62 3. 53 0. 99	41. 3 0. 10 1. 97 6. 98 3. 3 3. 3 0. 11 28. 9 6. 47 0. 01 4. 8	43. 0 0. 01 0. 91 7. 42 1. 8 5. 1 0. 07 39. 3 0. 21 0. 01 0. 02	3. 69 0. 04 0. 82 4. 81 0. 0 4. 5 0. 18 19. 2 28. 3 0. 02 0. 12
27 2: 0.5 05 2: 0.14 2: 0.72	2. 22	4.5 25.9 3.01 0.01 3.24 0.16	20. 7 0. 01 0. 02	4. 1 0. 02 0. 00	18. 9 0. 01 0. 58	4. 3 1. 20 1. 30	11. 2 0. 01 0. 00	0. 4 0. 02 0. 03	43. 0 0. 02 0. 37
PPM: 70 PPM: 0.8 PPM: 45 PPM: 41 PPM: 83 PPM: 6 PPM: 36 PPM: 36 PPM: 300 PPM: 380 PPM: 3.3 PPM: 3.3	3. 0 31 58 15 49 740 120 12 60 110 9. 1	26 29 4 2	10 0.1 100 960 48 4 2100 9 38 0.1	0 0.2 55 1400 26 5 990 7 27 0.3	50 0.3 81 1700 33 4 1300 9 42 0.1	1480 1.8 37 360 390 110 110 7 200 2.0 70	20 0. 3 80 2100 78 7 1400 1 60 0. 3 60	30 0.1 110 2800 77 6 1700 5 41 0.1 83	70 0.6 60 1400 18 5 1200 97 59 0.3 120
OTALS 99.1	98.4 1	91.1 101.6	102. 4	100.5	102. 1	101. 4	101. 8	103. 0	100. 4

^{*} ALL ANALYSIS BY ICP, EXCEPT FEO, H2OT, CO2T, CO2, C, S AND LOI BY CHEMICAL METHODS.
* FE203 IS CALCULATED USING FE203#FE203T(ICP)-1.11134*FE0(VOLUMETRIC).

MMENTS

Note: This ICP analysis is based on a total dissolution before the different finished.

^{*} ICP-MJ1 DATA ARE OBTAINED ON 0.5 G OF SAMPLE FUSED WITH LITHIUM METABORATE, DISSOLVED IN 5% HNO3 AND DILUTED TO 250 ML.

ICP-TR1 DATA ARE OBTAINED ON 1.0 G OF SAMPLE (ACID + FUSION OF RESIDUE) DISSOLVED IN 10% HCL AND DILUTED TO 100 ML.

LOCAL GEOLOGY

IN THE ATLIN AREA THE MOST STRIKING ASPECT OF GOLD MINERALIZATION, AS SEEN IN OUTCROP EXPOSURES, IS ITS ASSOCIATION WITH QUARTZ AND A PERVASIVE CARBONATE ALTERATION ENVELOPE.

ECONOMIC CONCENTRATIONS OF GOLD ARE FOUND IN QUARTZ-FILLED TENSION GASHES OR QUARTZ STOCKWORK-LIKE VEINLETS WHICH MAY PINCH AND SWELL OR DISAPPEAR BOTH ALONG STRIKE AND DOWN DIP. PROBABLY OF GREATER IMPORTANCE ARE THE PERSISTENT QUARTZ-VEIN SYSTEMS OF UP TO 1 - 2 m IN WIDTH TRACEABLE IN SOME CASES FOR 2 km ALONG STRIKE. FINE CHALCEDONY IS SOMETIMES PRESENT AS RIMS ON BRECCIA FRAGMENTS OR AS OPEN SPACE FILLINGS IN THE VEINS AND ADJACENT ALTERATION ENVELOPE. ALL OF THESE QUARTZ SYSTEMS OCCUR IN AND AROUND FAULTS AND/OR SHEARS OR CONTACTS BETWEEN ULTRMAFICS, ANDESITES-GREENSTONES OR DYKES. THIS COULD BE INTERPRETED AS INDICATIVE OF FLUID CONDUIT CHANNELING OF MINERALIZING HYDROTHERMAL? SOLUTIONS.

CARBONATIZATION IS MOST OBVIOUS IN THE ULTRAMAFIC ROCKS ALTHOUGH IT IS ALWAYS ALSO PRESENT WHERE THE VEINS CONTACT ANDESITE OR GREENSTONE. USING A TERM DEFINED BY SOVIET GEOLOGISTS SUCH AS GOUCHARENKO (1970), BOYLE (1979) DESCRIBED HEAVILY CARBONATIZED, SERICITIZED AND PYRITIZED ULTRAMAFIC ROCKS AS LISTWANITES. RECENT WORK BY BUISSON AND LEBLANC (1985) USE THE SPELLING LISTWAENITE. IN OUR OPINION THE TERM SHOULD NOT BE USED IN THE ATLIN GOLD CAMP. THE TYPICALLY INTENSELY CARBONATIZED ULTRAMAFICS ARE QUARTZ-TALC-CARBONATES WITH MINOR GREEN CHROMIUM MUSCOVITE (MARIPOSITE-FUCHSITE?) AND CHROMITE BUT THEY CONTAIN VERY LITTLE PYRITE.

THE ALTERED ULTRAMAFICS SHOW A WIDE DIVERSITY OF MINERALOGICAL, TEXTURAL AND COMPOSITIONAL DIFFERENCES WITHIN THE ATLIN TERRANE. THE COMPLEXITY IS OBVIOUS ON THE LOCAL PROPERTY OR VEIN SYSTEM SCALE, HOWEVER, A GRADATIONAL ALTERATION ASSEMBLAGE IS PROPOSED. IMMEDIATELY ADJACENT TO THE QUARTZ VEINS ARE THE SUBORDINATE LITHOLOGIES MARIPOSITE?—CARBONATE TO QUARTZ—CARBONATE. THEY ARE FOLLOWED BY A BROADER ALTERATION ENVELOPE OF QUARTZ—TALC—CARBONATES AND TALC—CARBONATE ROCKS IN CONTACT WITH SERPENTINITES OR RELATIVELY UNALTERED DUNITES AND PERIDOTITES. THE MAJORITY OF CARBONATES PRESENT ARE Mg, Fe AND Ca RICH (IN ORDER OF ABUNDANCE) BUT OVERPRINTING OF THE ALTERATION ASSEMBLAGE AND QUARTZ OPEN SPACE FILLING WOULD INDICATE COMPLEX AND PERHAPS EPISODIC MINERALIZING EVENTS.

SOME PRELIMINARY ORE MINERALOGY AND LITHOGEOCHEMICAL INVESTIGATIONS OF THE VEINS AND ALTERATION ASSEMBLAGE ARE ALSO SHOWN IN THIS POSTER.

THE GLACIAL GEOLOGY OF THE TERRANE IS COMPLEX AND IS REFLECTED IN THE DIVERSE TOPOGRAPHY. THOSE FEATURES WHICH ARE OF PARTICULAR INTEREST TO THE PRESERVATION OF GOLD-BEARING PLACER GRAVELS AND THE UTILIZATION OF LAKE SEDIMENT GEOCHEMISTRY FOR REGIONAL GOLD PROSPECTING ARE AS FOLLOWS:

- 1) CONTINENTAL GLACIERS MOVED UP THE MAJOR VALLEYS, RESULTING IN PONDING FOLLOWED BY DEPOSITION OF LACUSTRINE SEDIMENTS AND THEN ICE SHEET DEBRIS. THE GLACIERS RAFTED OVER FROZEN SEDIMENTS AND/OR SCOURED THE VALLEYS (BLACK, 1953; MILNER, 1983).
- 2) EXTENSIVE DEPOSITS OF GLACIOFLUVIAL SEDIMENTS AND TILL FORMED AS THE GLACIERS RETREATED. THESE DEPOSITS CAN REACH DEPTHS OF OVER 100 METRES (BLACK, 1953).
- 3) ISOSTATIC REBOUND AND REROUTING OF RIVERS ACCOMPANIED THE GLACIAL RETREAT. THIS RESULTING IN THE INCISING OF STREAMS AND THE REWORKING OF MANY OLDER SEDIMENTS. EXTENSIVE STREAM CAPTURE AND ABANDONMENT OF FORMER STREAM CHANNELS IS EVIDENT. MUCH OF THE DRAINAGE PATTERN DISRUPTION HAS RESULTED IN LOW-LYING SWAMPY AND LAKE COVERED AREAS ESPECIALLY ALONG THE TESLIN SUTURE ZONE ON THE EASTERN BOUNDARY OF THE ATLIN TERRANE (AITKEN, 1959).

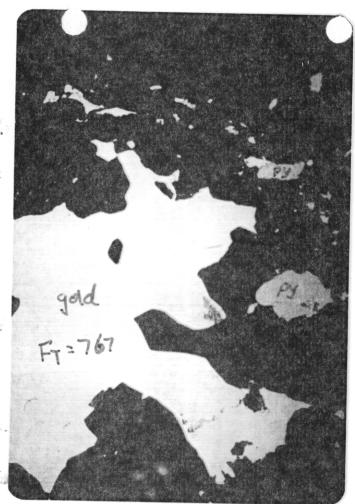
LITHOGEOCHEMISTRY

CACHE CREEK AND ATLIN INTRUSION ROCK SAMPLES (162) OF VARYING COMPOSITION (META-ANDESITE, GABBRO, SERPENTINITE, PERIDOTITE, DIABASE) AND ALTERATION (GREEN-MICA RICH QUARTZ-CARBONATE, I.E., LISTWANITES, TALC-MAGNESITE, QUARTZ-Mg-Fe-Ca CARBONATE, QUARTZ-VISIBLE GOLD VEINS) WERE ANALYZED FOR THALLIUM, PALLADIUM AND PLATINUM. LITTLE OR NO THALLIUM OR PLATINUM WAS DETECTED IN THE ROCKS OR VEINS. PYRITE ABUNDANCE AREA NATURAL ALLOYS OF OSMIUM-IRRIDIUM AND RUTHENIUM IN NUGGET FORM WERE REPORTED BY HARRIS AND CABRI (1973). OUR PLACER INVESTIGATIONS CONFIRMED THE PRESENCE OF SIMILAR NUGGETS (GRAINS) IN THE FOUR CREEKS STUDIED.

BOYLE (1982) REPORTS THAT THE AVERAGE CONCENTRATION OF GOLD IN ULTRABASIC ROCKS IN 4 PPB. BUISSON AND LEBLANC (1985) INVESTIGATED GOLD IN CARBONATIZED ULTRAMAFIC ROCKS AND THEY REPORT GOLD VALUES IN LISWAENITES OF 0.02 - 1 PPM WHILE THE ASSOCIATED ULTRAMAFIC ROCKS CONTAINED 5 - 100 PPB GOLD. THEIR INVESTIGATION OF SEVERAL GOLD-BEARING LISTWAENITES FROM THE UPPER PROTEROZOIC AND ALPINE OPHIOLITE COMPLEXES SHOWED THEM TO BE UNUSUALLY GOLD-RICH ROCKS (10 - 100 FOLD). OUR DATA DOES NOT SUPPORT THESE FINDINGS.

CARE WAS TAKEN NOT TO INCLUDE SAMPLES WHICH CONTAINED ANY QUARTZ VEINS OR VEINLETS. THE 18 RELATIVELY UNALTERED ULTRAMAFIC ROCKS HAD GOLD CONTENTS (X = 1.7 PPB) RANGING FROM <1.0 - 9.3 PPB WHILE THE 43 CARBONATE-ALTERED-LISTWANITE ROCKS HAD AN AVERAGE GOLD CONTENT OF FIFTEEN QUARTZ-CARBONATE VEIN SAMPLES WERE COLLECTED FROM THREE MINERALIZED TO THE QUARTZ-YEINS THEMSON 0.0094 - 216.0 G/T AND AVERAGED 21.8 PPM. WHOLE ROCK GOLD/SILVER RATIOS ARE HIGHLY VARIABLE AND MAY REACH AS HIGH AS 12 OR AS LOW AS 0.02

FURTHER PERTINENT LITHOGEOCHEMICAL DATA IS SUMMARIZED IN THE FOLLOWING TABLE:

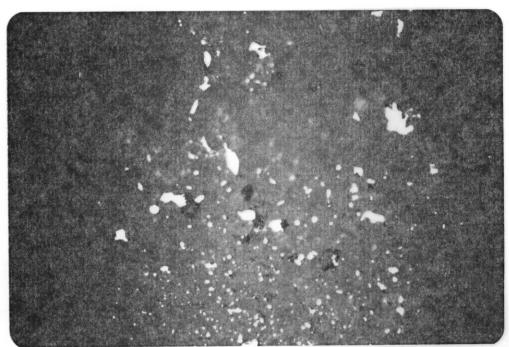

	Au ppb	Ag ppm	Pb ppm	As ppm	Bi ppb	·Cu ppm	Zn ppm	Co ppm	Ni ppm	Cr ppm	CaO %	CO ₂ T %	K ₂ O %	MgO %
UNALTERED ULTRAMAFICS										raminalina (producero estado e				
n = 18														
\ddot{X}	1.7	<0.5	11.0	7	<5.0	19	68	97	1917	2199	0.49	1.9	0.04	37.7
RANGE MIN MAX	<1.0 9.3	<0.5 0.7	20.0	36	<5.0 <5.0	3 52	48 110	87 110	1700 2200	690 3400	0.03 2.48	0.2 9.3	0.06	34.8 41.4
CARBONATE- ALTERED ULTRAMAFICS				-										No. of the Control of
n = 43														
\bar{X}	5.3	<0.5	13.0	64	<5.0	24	68	68	1202	1645	3.05	4.9	0.37	27.0
RANGE MIN MAX	<1.0 75.5	<0.5 0.8	71.0	630	<5.0 <5.0	110	18 140	18 100	90 2200	110 2900	0.07 25.80	16.2	0.01 3.62	1.7
QUARTZ, QUARTZ- CARBONATE VEINS					Production of the second control of the seco				The Desirement of the Second Section					H-Miller Community
n = 15	ppm		%											
\overline{X}	21.83	26.8	0.83	289	122	85	25	13	37	18				
RANGE MIN MAX	.009	<0.5 49.9	8.00	2300	<5.0 1216	1 460	1 180	58	240	2 75	NA NA	NA	NA	

HESE DATA SHOW THE REMOVAL OF Mg AND Ca, CO2, K ENRICHMENT DURING THE PROCESS OF CARBONATIZATION OF ATLIN INTRUSION ULTRAMAFIC ROCKS.

Cu, Zn, Co, Ni, Cr REMAIN RELATIVELY UNCHANGED DURING THESE HYDROTHERMAL PROCESSES. OF IMPORTANT NOTE TO THE EXPLORATIONIST IS THE DIMEWHAT BROADER HALO OF Au-As-Hg ENRICHMENT IN THE ALTERED SAMPLES AND THE OBVIOUS Au-Pb-As-BI ASSOCIATION WITHIN THE QUARTZ VEINS. URTHER EVIDENCE FOR THESE GEOCHEMICAL CHARACTERISTICS IS REVEALED IN THE MINERALOGICAL SECTION OF THIS POSTER.

#1

Kellon pocket i com. senera. Reserve. and Oreck Allin BC. vill.core.sample. helarge is egula - blet. Yelectrumio > 400 microns by 400 microns losted in white quests Kin. Light gray Valel in right is printe with changaxis width of 80 wicrons. It and the malle-pyrite grai. beve it have since it is It on the exterior of. to pyriti grains. The lectum- in homogene. a composition. The hope Web, the electronwell. ynite and the decision winds



lection in quarte down.

electron in quarte down.

electron of the contract queles a side of the for furness of Nels 8.

n the electron. at letter see the interpretate Dichosions.

Dissuminated I'm and I lecture grains inquests.

2.

Jellowjacket Claim #1 Consua Resources Pine Creak Atlin BC Drill.core sample The large uregular blob of electrum is 20 400 microns by 400 microus hosted in white quarty vein. Light gray Valeto on right is purite with along axis width of 80 microha. It and the smeller pyrill grain above if have associated gold on the exterior of be pyriti grains The electrism is homozonous in composition. The large dels, the electrum with pyrite and the disseminated election in quarky shown below love on average 76.6 % An and 23.3% Ag for fineness of 766.8. No copper or other common golders ociated trave elements are contained in the electrum at levels of defection of the microprope. Inclusions in the electrum are not noted in these mounds.

Disseminated micron sized electrum grains inquarty.
The electrum after release from the quarty by cold It dissolution shows it to be of a poacus, spongy filigred texture.

Electrum on exterior and interior fracture of pyrite grain presented electrum in quartz. All photos are at some magnification as sizes quoted for the fine photo.

Gersdorffits (N: P.S.) is present as discrete grains in these mounts. It is up to 3.7% enriched in Slo (antimum) on delected on the microprobe.

Chromite grains and green chromium mica one present on frankries in the quarty.

All micropule analyses by Dr. D. Harris G.S.C.

Electrum on exterior and inserior practices of pyrite grains. Disseminated electrum in quartz. All photos are at some magnification as sizes quoted for the frist photo.

Gersdorffite (Ni PSS) is present as discrete grains in these mousts. It is up to 3.7% enriched in Slo (antimony) as defected on the microprobe.

Chromite grains and green chromium mica are present on fractures in the quarty.

All microprobe analyses by Dr. D. Harris G.S.C.