880363 Babine 93L/M

(Cange February 17, 1992

W.J. McMillan Manager Mapping and Resource Evaluation

Dear Bill,

Attached is the first complete draft of the Mineral Resource Potential of the Babine Mountains Recreation Area. In order to complete this report by the end of the contract (February 14, 1992), 105 hours of overtime were worked between January 13 and February 16, 1992: this can be attributed to the time spent (approximately 3-4 weeks) writing a Geological Fieldwork report in the fall of 1991 which was not called for in the contract.

Also attached are mylar overlays for the 1:50 000 maps to accompany this report. The following arrangement is used:

GEOLOGY MAP

- a) topography base map
- b) geology map (MacIntyre and Desjardins)
- c) structure overlay (MacIntyre and Desjardins)
- d) alteration zones
- e) RGS sample locations / anomalies
- f) lithogeochemical sample locations / anomalies
- g) geophysics: airborne magnetic survey
- h) mineral occurrences

MINERAL POTENTIAL MAP

a) topographic base map

b) final mineral potential map

c) mineral occurrences (not labeled, but designated as occurrence, past producer, or mineral resource with proven reserves with different symbols).

** mineral potential maps for each mineral deposit type considered are also included for your information.

Sincerely,	LOG NO: FEB 281	992 van 2	
Bob Gaba Contract Geologist	ACTION: 40-8 FILE NO: Babine	Range LUG NU: Contra 107	
cc: G. McLaren, R.W.	Smyth, D. MacIntyre.	ACTION: UPS -> Jane FYI -	From Fy
		FILE NO:	

Comments to readers:

a) There is no reference in the text to the 1:50 000 maps that will accompany this report (i.e., a geology map with: RGS sample sites, lithogeochem sites, alteration, geophysics(?), mineral occurrences; and a mineral potential map). All this data is presented in reduced form within the report.

b) A geologic time scale has been added as Appendix D - is this needed?

c) The report so far has no photos - I have thought about putting in a high-level airphoto of the whole study area as a frontispiece (is this a good idea?). Also, a photo of the Big Onion workings on the side of Astlais Mountain. Should some Absolutely, VGS (Feb. 28/92) suitable historical photos from archives be looked for?

d) The Abstract has not yet been written.

MINERAL RESOURCE POTENTIAL

• -

OF THE

BABINE MOUNTAINS RECREATION AREA

By Robert G. Gaba

February 15, 1992

TABLE OF CONTENTS

ABSTRACT

CHAPTER 1 - INTRODUCTION BACKGROUND SCOPE OF PRESENT STUDY PHYSIOGRAPHY AND ACCESS ACKNOWLEDGMENTS

CHAPTER 2 - GEOLOGICAL SETTING

GEOLOGY OF THE BABINE MOUNTAINS RECREATION AREA

■STRATIFIED ROCKS

Hazelton Group

Bowser Lake Group

Skeena Group

Kasalka Group

Upper Cretaceous to Lower Tertiary rocks

PLUTONIC ROCKS

STRUCTURE

CHAPTER 3 - APPRAISAL OF KNOWN MINERAL RESOURCES

EXPLORATION AND MINING: PAST AND PRESENT

MINERAL DEPOSIT TYPES

Porphyry Copper-Molybdenum

The Big Onion Deposit

Silver-rich Polymetallic Veins

The Cronin Mine Basalt-hosted Copper-Silver Veins Polymetallic Massive Sulphides

CHAPTER 4 - POTENTIAL FOR UNDISCOVERED MINERAL RESOURCES

•GENERAL STATEMENT

■GEOLOGICAL MAPPING

LITHOGEOCHEMICAL SAMPLING

■STREAM SEDIMENT GEOCHEMICAL SURVEY

GEOPHYSICAL SURVEYS

MINERAL RESOURCE POTENTIAL

Mineral Potential Classification

Mineral Potential: By Deposit Type

Mineral Resource Potential of the Babine Mountains Recreation Area

CHAPTER 5 - CONCLUDING REMARKS

90 YEARS OF EXPLORATION: ARE THERE STILL UNDISCOVERED MINERAL RESOURCES?
THE BIG ONION DEPOSIT: PART OF BRITISH COLUMBIA'S MINERAL RESOURCE INVENTORY
THE BOUNDARY QUESTION: EQUITABLE MULTI-USE LAND MANAGEMENT

REFERENCES

APPENDIX A:

Chronologic History of Exploration and Mining in the Babine Mountains
 Recreation Area (1866-1991)

APPENDIX B:

Lithogeochemical Analyses

APPENDIX C:

Stream Sediment Geochemical Analyses

APPENDIX D:

■Geological Time Scale

LIST OF FIGURES

LIST OF TABLES

INTRODUCTION

BACKGROUND

The Babine Mountains Recreation Area covers much of the southern part of the Babine Range, 15 kilometres northeast of the town of Smithers in west-central British Columbia (Figure 1). Before the advent of Europeans, the Babine Range marked the boundary between the territories of the Na'doet'en (Babine People) to the east and the Wet'suwet'en (People of the Watsonquah) to the west (L'Orsa, 1990). The name Babine was used by servants of the North West or Hudson Bay Companies in reference to the local Indian custom of wearing a wooden labret or lip-piece in the lower lip (Dawson, 1881).

The region has an exploration and mining history that began early in the century, and has seen precious and base metal production from several mines and prospects. Numerous roads and trails within the recreation area were originally built to access mineral deposits in alpine regions, in many cases the cost of trail building being subsidised by the B.C. government. Many of these trails are still used by mineral explorationists and recreationists alike to access the high country.

The region covered by the recreation area was initially within the bounds of the much larger "Babine Mountains Integrated Management Unit" created in September, 1976 to ensure better land management and to limit the use of allterrain-vehicles in alpine and subalpine terrain. An exception to this ordinance was the creation of a special zone in the Ganokwa Basin to allow for snowmobiling during winter months (Babine Master Plan Study Team, 1991).

The "Babine Mountains Recreation Area" was established in April, 1984 as a step towards formal park status, and encloses approximately 32 400 hectares of

FIGURE 1. Location of the Babine Mountains Recreation Area (parts of 93L/14E,15W and 93M/2W), west-central British Columbia.

terrain that ranges in elevation from 1067 to 2385 metres above sea level. The boundary was designed to exclude most of the peripheral land generally lower than 1370 metres elevation where commercial timber exists, thereby avoiding conflict with the forest industry (Babine Master Plan Study Team, 1991). The boundary at the southern-most part of the recreation area was deliberately positioned to include Astlais ("Big Onion") and "Little Onion" mountains south of Ganokwa Basin, but in doing so unintentionally bisects the Big Onion copper-molybdenum deposit.

The region encompassed by the recreation area is open to continued claim staking and mineral exploration, as provided for in Section 19 of the Mineral Tenure Act. The use of motorized vehicles is strictly prohibited within the Babine Mountains Recreation Area, except under special permit. Snowmobiling, however, retains its special privileges and is still permitted within the Ganokwa Basin.

SCOPE OF PRESENT STUDY

The British Columbia Ministry of Environment, Lands and Parks (M.E.L.P.) has expressed their intent to upgrade the Babine Mountains Recreation Area to full Class A provincial park status to provide for increased protection of its natural resources and to establish official park boundaries. Government policy, however, dictates that land will not be excluded from the mineral exploration land-base before the mineral resource potential is thoroughly evaluated. In accordance with the formal request of the M.E.L.P., the Geological Survey Branch (G.S.B.) of the British Columbia Ministry of Energy, Mines and Petroleum Resources has conducted a mineral resource potential study of the recreation area. The field-based component of the project was carried out by a mobile, helicopter-supported 2-person crew during late July and early August, 1991. Office-based research, compilation and writing continued into early 1992.

The program was designed to augment geological mapping and metallogenic studies in the area by MacIntyre *et al.* (1987) and MacIntyre and Desjardins (1988a, b, unpublished data) of the G.S.B.: their geological map and database were the starting points for the project.

Geological mapping of the northern part of the Babine Mountains Recreation Area which was not included in the previous investigation was also completed, including a small region near the headwaters of Harold Price Creek. Regionally extensive belts of pyritic and limonite-stained altered rocks were examined and sampled. Rocks with anomalous precious metal concentrations, as identified by previous studies (MacIntyre and Desjardins, 1988b), were re-examined and sampled.

Stream-sediment and water samples were collected from 39 sites to supplement the existing Regional Geochemical Survey (R.G.S.) data-base for the area. The methods used to collect and analyze the samples were in accordance with standards set by the R.G.S. program.

Field studies also included examination of selected known metallic mineral prospects and deposits and general prospecting in areas of favourable geology. During the program three previously undocumented polymetallic vein occurrences were found: these are informally referred to as the "Silver King Lake", "Rhyolite" and "Little Joe Lake South" showings. These new showings were mapped in some detail and sampled, the results of which are included in the preliminary report of this study (Gaba *et al.*, 1992)

PHYSIOGRAPHY AND ACCESS

.,

The Babine Mountains Recreation Area is within the southernmost part of the Skeena Mountains. The Babine Range include the discontinuous system of mountains that occupy the area between the confluence of the Babine River with 4

the Skeena River and the confluence of the Morice and Bulkley rivers. The recreation area covers most of the southern part of the Babine Range, sometimes referred to as the "Cronin Range". To the southwest, beyond the valley of the Bulkley River, lies the Telkwa Range of the Hazelton Mountains and to the east is the Nechaco Plateau (Holland, 1964).

The Babine Range is essentially a series of bedrock ridges that have been glaciated and eroded, and incised by creeks that discharge east to Babine Lake or west to Bulkley River, both eventually draining into the Skeena River. Perennial snowfields and glaciers are present at higher elevations, supplying meltwater to alpine lakes and streams.

Timberline is at about 1500 metres elevation, below which the slopes are heavily timbered with spruce, balsam and poplar.

The main access to the region is the Yellowhead Trans-Canada Highway 16, which contours the Bulkley Valley from Houston through Smithers and north to New Hazelton (Figure 1). The Babine Mountains Recreation Area is accessed from Smithers by means of the Babine Lake Road and gravel four-wheel drive roads, which include the Driftwood Creek, Onion Mountain and Cronin Creek-Higgins Creek roads: access to the interior of the recreation area is restricted through the placement of gates at recreation area boundary. An effective network of hiking trails cross the southern part of the area and include the Silver King Basin-Cronin Creek Trail and the McCabe/Lyons Creek-Little Joe Creek Trail system (see Blix, 1977). The northwest part of the recreation area adjacent to Reiseter Creek is accessed by the Reiseter Lakes Trail, whereas the region to the north and east of Reiseter Lakes has no established trails. Helicopter companies operating out of Smithers that hold a valid Resource Use Permit for commercial flight service within the recreation area provide charter service to more remote regions.

ACKNOWLEDGMENTS

Funding for this study was provided by the Ministry of Environment, Lands and Parks (M.E.L.P.). Direction and management were provided by the Ministry of Energy, Mines and Petroleum Resources (M.E.M.P.R.) under W.R. Smyth, Geological Survey Branch (G.S.B.) and G. McLaren, Mineral Policy Branch. W.J. McMillan (G.S.B.) acted as contract administrator.

The author would like to thank P. Desjardins and D. MacIntyre for access to their database and geological maps of the Babine Range, and for their valuable contributions and good company during and after the short but productive fieldbased component of this study. The author also benefited from discussions, field trips, assistance or materials supplied by: G.P. McLaren, P.Schiarizza, W.R. Smyth, W.J. McMillan, R. Lett, W. Jackaman, S. Cook, M.L. Malott, D.V. Lefebure and D.J. Alldrick (M.E.M.P.R.); H. Markides (M.E.L.P.); T.A. Richards, consultant; P. Peto, B. Aelicks and E. McCrossan of Varitech Resources Limited; J.F. Baker of J.T. Thomas Diamond Drilling; C.J. Sampson, geological consultant; and J. L'Orsa, prospector. Stream sediment samples were collected by J. Gravel, Bonaventure Management Services. T. Brooks and L. Ledoux of Canadian Helicopters in Smithers provided safe and punctual helicopter service during field studies.

CHAPTER 2

GEOLOGICAL SETTING

BEOLOGY OF THE BABINE MOUNTAINS RECREATION AREA

The region covered by the Babine Mountains Recreation Area is part of the Stikine Terrane and includes: subaerial to submarine volcanic, volcaniclastic and sedimentary rocks of the Lower to Middle Jurassic Hazelton Group; sedimentary rocks of the Middle to Upper Jurassic Bowser Lake Group and Lower Cretaceous Skeena Group; and calcalkaline continental volcanic-arc rocks of the Upper Cretaceous Kasalka Group. Upper Cretaceous to Lower Tertiary volcaniclastic rocks occur locally (MacIntyre and Desjardins 1988a). Dikes and stocks of intermediate to felsic igneous rocks are Upper Cretaceous to Tertiary in age (Figure 2).

STRATIFIED ROCKS

Hazelton Group

The Hazelton Group is a rock assemblage of continental to volcanic islandarc derrivation and is divided into four formations: the Sinemurian or older Telkwa Formation, the Late Sinemurian to Pliensbachian Nilkitkwa Formation, the Toarcian to Bajocian Eagle Peak formation and the Middle Toarcian to Early Callovian Smithers Formation (MacIntyre and Desjardins (1988a, b; Figure 2).

The Telkwa Formation consists of subaerial and submarine pyroclastic rocks and volcanic flows, with minor intercalated sedimentary rocks, and is the thickest and most extensive formation of the Hazelton Group. The Telkwa Formation within the study area comprises dacitic to basaltic flows and pyroclastic rocks, including massive to amygdaloidal basalt. These rocks are conformably to disconformably overlain by shale, siltstone, conglomerate and minor limestone of the Nilkitkwa Formation. Distinctive brick red to maroon ash, crystal and lapilli tuff and related epiclastic rocks (with subordinate amygdaloidal basalt) of the Eagle Peak formation overlies the Telkwa Formation and part of the Nilkitkwa Formation (to which the Eagle Peak formation was previously assigned). The Smithers Formation includes fossiliferous feldspathic sandstone and siltstone representative of a marine transgressive sequence that onlaps older volcanic rocks: this is seen in the Higgins

	LEGEND
	SEDIMENTARY AND VOLCANIC ROCKS
UPPER CRETAC	EOUS AND LOWER TERTIARY
uKTs	tulfaceous sandstone
UPPER CRETAC KASALKA	EOUS GROUP
uKK2	homblende-leidspar-phyric flows and breccias
UKK1	lahars, lapilli tuffs and conglomerate; epiclastic rocks
LOWER CRETA	CEOUS
SKEENA	
IKS	undifferentiated Skeena Group
IKRA	Red Rose formation: shale, orange-weathering siltstone well- bedded micaceous wacke and conglomerate
ΙKv	Rocky fildge formation: green and maroon phyllitic tuff; minor augite-phyric basalt flows; phyllite
iKĸ	Kitsuns Creek lormation: quartz-chert-peoble conglomerate, sandstone and shale
MIDDLE TO UP	
IIIUUA	
LOWER TO MID HAZELTO	DLE JURASSIC N GROUP
mJS	Smithers Formation: lossililerous leidspathic sandstone, greywacke and siltstone
IJe	Eagle Peak formation: red tuffs and basait flows
IJN	Nilkitkwa Formation: conglomerate.siitstone and shale
TLI	Telkwa Formation: dacitic to basaitic flows and pyroclastic rocks
IJЂ	amygdaloidal basalt flows
	INTRUSIVE ROCKS
LATE CRETACE	EOUS TO EARLY TERTIARY
	rnyolite intrusions
qmp	quartz monzonite porphyry
dr	dionte
qtp	quartz feldspar porphyry
qdp	quartz dionile porprivry

٠

. .

•

Creek area where rocks of the Smithers Formation sit disconformably on amygdaloidal basalt flows of the Eagle Peak formation.

Bowser Lake Group

The Bowser Lake Group is a series of marine to nonmarine sedimentary rocks which conformably overlie the Smithers Formation. Rocks of the Bowser Lake Group within the study area are represented by the Ashman Formation of predominantly Callovian age, the lowermost part of the Bowser Lake Group (MacIntyre and Desjardins (1988a, b; Figure 2). The Ashman Formation consists of dark grey siltstone and black argillite, with lesser feldspathic and quartzose sandstone: these rocks are generally phyllitic and tightly folded, and in the absence of fossils are correlated on the basis of stratigraphic position and lithology.

Skeena Group

The Skeena Group is a conformable sequence of Lower Cretaceous marine and nonmarine sedimentary and volcanic rocks divided into the Kitsuns Creek, Rocky Ridge and Red Rose formations (MacIntyre and Desjardins (1988a, b; Figure 2). These rocks generally do not contain age-diagnostic fossils and are assigned to these formations on the basis of lithology and stratigraphic position. These rocks occur as fault-bound blocks or as isolated exposures that unconformably overlie Hazelton Group (and Bowser Lake Group?) rocks throughout the study area. The Kitsuns Creek formation consists of quartz-chert-pebble conglomerate, sandstone and shale; these rocks are Neocomian (?) if correlation with the type locality is valid. These rocks are overlain by green, red and grey andesitic to basaltic augite phyric flows and related pyroclastic rocks of the Rocky Ridge formation. Shale, siltstone, micaceous wacke and conglomerate of the Red Rose formation sit conformably(?) on volcanic rocks of the Rocky Ridge Formation.

Kasalka Group

Rocks of the Kasalka Group form the core of the study area and unconformably or structurally overlie the Skeena Group and older rocks; the Kasalka Group is divided into a lower and upper division (MacIntyre and Desjardins (1988a, b; Figure 2). The lower division (uKK1) includes heterolithic volcanic conglomerate and breccia, volcanic wacke and tuff, feldspar and augitephyric amygdaloidal and vesicular flows, air-fall lapilli and crystal tuff and associated epiclastic rocks. The upper division (uKK2) is mainly massive flows of hornblende-feldspar phyric andesite with related breccias and subvolcanic intrusions: the contact with volcaniclastic rocks of the lower division is not well exposed but is assumed to be conformable. Rocks of the lower division are probably representative of explosive subaerial volcanism and caldera subsidence, with the upper division a subsequent period of lava eruption and volcanic cone development.

Upper Cretaceous to Lower Tertiary rocks

Two fault-bound panels of bedded tuffaceous and argillaceous rocks northwest of Mount Cronin sit directly on coarse-grained feldspar porphyry (MacIntyre and Desjardins (1988a, b; Figure 2): the contact is an erosional surface and the rocks appear to have been deposited directly onto the porphyry body. These rocks are thought to be Upper Cretaceous or Lower Tertiary in age.

PLUTONIC ROCKS

Igneous intrusions within the study area include rhyolite, diorite and granitic rocks (MacIntyre and Desjardins (1988a, b; Figure 2). These are considered to be part of a suite of Middle Eocene igneous rocks known as the Nanika intrusions (Carter, 1981).

Rhyolite and diorite as dykes and plugs cut rocks that fringe the region underlain by Upper Cretaceous volcanic rocks of the Kasalka Group, centered about Mount Cronin. Rhyolite spatially associated with polymetallic veins along the east side of the study area (such as those at the Cronin mine and Lorraine and Rhyolite prospects) is quite commonly deformed within enclosing Jurassic rocks, suggesting an older age than rhyolite associated with the Kasalka Group. Rhyolite north of Lagopus Mountain and east of Mount Cronin cuts foliated Lower and Upper Cretaceous rocks and therefore post-dates mid-Cretaceous folding and shearing.

Several multiphase intrusions occur southeast of Astlais Mountain, including quartz-feldspar porphyry and quartz-diorite porphyry (exposed at the Big Onion copper-molybdenum property), as well as a large body of diorite.

STRUCTURE

The structural setting of the Babine Range is similar to that of the basin-andrange physiographic province of the southwest United States. The region is dominated by a series of northwest-trending tilted horsts and grabens: downward stepping of blocks occurs towards the northwest, where progressively younger stratigraphic levels are preserved (MacIntyre and Desjardins (1988a, b; Figure 2). Rocks that comprise the fault-bound blocks are characterized by asymmetric to overturned, southeast-plunging open folds that are truncated mainly by northeasttrending high-angle faults.

The earliest phase of deformation was related to regional compression during the Upper Cretaceous, accompanied by folding and uplift. Regional extension is thought to have developed during Upper Cretaceous to Lower Tertiary time, coincident with associated extensive volcanism and stratovolcano development. Compression during Tertiary time caused reverse movement along pre-existing high-angle normal faults, and resulted in upward thrusting and folding of fault blocks. The latest event seems to be the development of major east to northeast-trending faults, also probably of Tertiary age, that truncate and offset the dominant northwest-trending structural fabric of the range (MacIntyre and Desjardins 1988a).

The structural configuration of the region between Mount Cronin and Lagopus Mountain seems to be an artefact of previous volcanic activity during the Upper Cretaceous. The arcuate pattern of inward-tilted block faults spatially coincident with a network of radiating high-angle normal faults may have been the result of volcanic erruption, followed by magma chamber evacuation and collapse (i.e., the formation of a collapse caldera). Dikes of diorite and rhyolite that fringe the centre underlain by Upper Cretaceous volcanic rocks may have been localized along peripheral ring fractures (MacIntyre and Desjardins 1988).

CHAPTER 3

APPRAISAL OF KNOWN RESOURCES

EXPLORATION AND MINING: PAST AND PRESENT

Exploration for base and precious metals within the Babine Mountains has been ongoing since the turn of the century (Appendix**A**). Early efforts were focussed on high-grade silver veins, but access to them was generally difficult. The construction of the Grand Trunk Pacific Railroad line up the Driftwood valley (1910-1914) provided the essential link to economically transport the metal ores to market. Horse trails or rough roads were built to the most promising prospects, and high-grade silver ores were packed out to the railroad at Telkwa and shipped mainly to the smelter at Trail.

By 1950 many of the high-grade deposits had been worked on a small scale and had produced significant quantities of base and precious metals (Table 1). However, at about this time, the extensively developed Cronin mine was complimented by a mill and new mine buildings and began shipping lead and zinc concentrates (also containing considerable gold, silver, copper and cadmium) to Trail, and continued to do so almost every year until it closed in 1974 (Table 1). Significant ore reserves, however, still remain underground at the Cronin mine (Table 2).

The early 1960's saw a resurgence of exploration interest focussed primarily on porphyry copper-molybdenum, particularly at the Big Onion prospect. Considerable work has been done on this property to date, and has outlined important reserves of copper, molybdenum and precious metals (Table 2).

Present-day mineral exploration interest has not diminished: much of the recreation area is covered by mineral claims held in good standing (at the time of writing), and cover all of the previously known mineral prospects and deposits (Figure 3): most of these claims pre-date the establishment of the Babine Mountains Recreation Area. Mineral claim types include: Crown Grants, Reverted Crown Grants, 2 Post and 4 Post claims recorded before the current Mineral Tenure Act of 1988, and 1 Post claims subsequent to the Act. The recreation area is presently open to continued claim staking; mineral exploration requires a permit, with conditions jointly set by the Ministries of Energy, Mines and Petroleum Resources and Environment, Lands and Parks.

TABLE 1

HISTORICAL METAL PRODUCTION WITHIN THE BABINE MOUNTAINS RECREATION AREA*

			~~~~~~~~						
MINFILE #	PROPERTY	PERIOD OF	ORE MINED	GOLD	SILVER	COPPER	LEAD	ZINC	CADMIUN
(093L)	NAME	PRODUCTION	(TONNES)	(grams)	(grams)	( <b>k</b> g)	(kg)	(kg)	(kg)
							ین ا ^{رد} از بر بی بی می بد ای ای بی بی بی بی ا		
125	Silver Pick	1927, 1936, 1938	23	466	209,230	886	420	836	
127	Cronin	1917, 1929, 1951-74	25,838	8,772	8,169,918	10,394	1,367,178	1,517,881	18,012
128	Hyland Basin	1935, 1940	10	342	84,880		3,396	397	
129	Lorraine	1917	6.4		19,448		3,175		
131	Drift	1915-18, 1927, 1971	23		132,779	4,711			
132	Driftwood	1937, 1969	9	93	21,928	109	327	245	
201	Silver King mine	1917, 1927	12	62	41,865	107	3,490	348	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
TOTAL			25,921.4	9,735	8,680,048	16,207	1,377,986	1,519,707	18,012

*For details concerning past production see Appendix A

TABLE	2
-------	---

#### ESTIMATES OF METAL RESERVES WITHIN THE BABINE MOUNTAINS RECREATION AREA

		ور په بند نه نه که در به به به به که که نم به به به که که به به این در به به به این در به به به از به به به ب						
MINFILE #	PROPERTY	RESERVES	GOLD	SILVER	Copper	LEAD	ZINC	Mo82
(093L)	NAME		(g/t)	(g/t)	(%)	(%)	(%)	(%)
124	Big Onion	80 to 100 Mt (inferred) ¹			0.42			0.02
	-	[includes 35 Mt (supergene)] ²	0.064	1.0	0.34			
127	Cronin	42 413 (indicated) ³						
		)160 349 ³	0.3	428.1		7.11	8.12	
		117 936 (inferred) ³						
		45 400 (measured geological) ⁴	N/A	428.1	·	8.0	8.0	
		317 000 (indicated) ⁵	1.7	354.4		8.0	8.0	
		47 200 (unclassified) ⁶	1.7	428	0.16	8	8	
				**********				

¹Stock (1977)

²McCrossan (1991)

³Quin (1987), Table 3 (after E. Livgard, 1972) ⁴Quin (1987), Table 3 (after M.H. Jones, 1977) ⁵Quin (1987), Table 3 (after R.B. Smith, 1984)

⁶MINFILE card for Cronin mine (093L-127)





## **■MINERAL DEPOSIT TYPES**

Mineral deposits and prospects within and adjacent to the Babine Mountains Recreation Area are of three distinct types: porphyry copper-molybdenum associated with quartz-feldpsar porphyry and quartz diorite intrusions, silver-rich polymetallic veins and basalt-hosted copper-silver veins (Table 3). Certain rocks within the study area have potential to contain polymetallic massive sulphides, similar to those at the Ascot prospect (MINFILE 093L-24) between Mount McKendrick and Dome Mountain. There are no known prospects of this type within the study area, but are nevertheless considered as an important deposit type for mineral resource evaluation of the area (Table 3).

The majority of mineral occurrences are silver-rich polymetallic veins (Table 4), many of which are past-producers and form a belt across the central part of the study area (Figure 4). Basalt-hosted copper-silver veins cluster mainly in the southwest, whereas porphyry copper-molybdenum occurs almost exclusively in the south. The north part of the study area is almost completely devoid of mineral prospects (Figure 4).

Detailed geological descriptions (including production and exploration histories) of all mineral prospects within the Babine Mountains Recreation Area are included in the Ministry of Energy, Mines and Petroleum Resources computerized mineral inventory database (known as MINFILE) for the Smithers mapsheet (NTS 093L). This data is available in hard copy printouts or in digital format (standand ASCII format files) on 5¼ inch floppy diskettes from Crown Publications Incorporated, Victoria, B.C.

#### TABLE 3

#### IMPORTANT MINERAL DEPOSIT TYPES WITHIN (AND ADJACENT) TO THE BABINE MOUNTAINS RECREATION AREA

SYMBOL ¹	DEPOSIT TYPE	DIAGNOSTIC METAL ASSEMBLAGE	METALLIC MINERALS	TEXTURES AND STRUCTURES	HOST ROCKS	ALTERATIO
	porphyry Cu-Mo	Сu, Mo; (Au, Ag)	сру, mo, ру, сс, cv	stockwork, breccia, veins, disseminations	<pre>quartz-feldspar porphyry (qfp); quartz-diorite porphyry (qdp); diorite (dr)</pre>	sericitic, propylitic silicic, argillic
	silver-rich polymetallic veins	Ag, (Au), Pb, Zn; Cd, Cu, (As, Sb)	py, sp, gn, cpy, boul, tet; apy, frei, po, (native Au)	simple to complex multiphase quartz- sulphide veins; massive veins; breccia zones; fracture fillings; replacements; disseminations	rhyolite porphyry, dacite (rh); argillite, phyllite (muJA); andesite porphyry (uKK1, uKK2)	silicic
	basalt-hosted Cu-Ag veins	 Cu, Ag, (Au), Pb, Zn	cpy, born, tet; cc, cv, mal, az (sp, gn)	sheeted quartz veins; silicified zones; breccia zones; disseminations; stockwork	amygdaloidal basalt, basaltic tuff, basaltic andesite, volcanic breccia (lJT, lJTb)	propylitic, argillic
	polymetallic massive sulphides ²	Zn, Pb, Ba, Cu; As	py, sp, gn, ba; tet	strata-bound massive lenses; disseminations; fracture fillings	limy siltstone, felsic tuff; argillite (lJN); amygdaloidal basalt (lJT, lJTb)	

¹Different deposit types are represented by symbols on Figure 4 ²Although there are no known polymetallic massive sulphide prospects within the Babine Mountains Recreation Area, this deposit type occurs only 5 kilometres southwest of the study area in similar stratigraphy and is an important mineral deposit type to consider for complete understanding of the mineral resource potential of the region.

Abbreviations: apy = arsenopyrite, az = azurite, ba = barite, born = bornite, boul = boulangerite, cc = chalcocite, cpy = chalcopyrite cv = covellite, frei = freibergite, gn = galena, mal = malachite, mo = molybdenite, po = pyrrhotite, py = pyrite, sp = sphalerite, tet = tetrahedrite.

TABLE 4

KNOWN METALLIC MINERAL OCCURRENCES WITHIN THE BABINE MOUNTAINS RECREATION AREA

	س بن من من من س س من			
MINFILE # (093L)	PROPERTY NAME	DEPOSIT Type	COMMODITIES	PROPERTY STATUS
124	Big Onion	porphyry Cu-Mo	Cu, Mo, [Au, Ag]	developed prospect
125	Silver Pick	polymetallic vein	Ag, [Au], Cu, Zn; Pb	past producer
126	Mert	porphyry Cu-Mo	Cu, Mo, [Ag]	showing
127	Cronin	polymetallic vein	Ag, [Au], Pb, Zn; Cd, Cu	past producer
127A	Upper Showing	polymetallic vein	Ag, [Au], Pb, Zn; Cd, Cu	showing
128	Hyland Basin	polymetallic vein	Ag, [Au], Pb; Zn	past producer
129	Lorraine	polymetallic vein	Ag, Pb; Zn, Cu	past producer
130	Jud	basalt-hosted copper-silver vein	Cu, Ag	showing
131	Drift	basalt-hosted copper-silver vein	Cu, Ag; Pb	past producer
132	Driftwood	basalt-hosted copper-silver vein	Ag, [Au], Cu, Pb, Zn	past producer
138	AG	polymetallic vein	Aq, Pb; Zn	showing
139	Reiseter Creek	polymetallic vein	Cu, Pb; Zn	showing
140	Debenture	polymetallic vein	Aq, Pb, Zn	prospect
165	Shamrock	basalt-hosted copper-silver vein	Ag, Cu	showing
200	Silver Saddle	polymetallic vein	Aq, Au, Pb; Cu	showing
201	Silver King mine	polymetallic vein	Aq, [Au], Pb; Zn, Cu	past producer
249	Native	polymetallic vein	Aq, Pb, Zn	showing
252	Fisher	porphyry Cu	Cu	showing
253	Home	basalt-hosted copper-silver vein	Ag;Cu,Pb,2n	showing
292	Viking	pyrite veinlets	[Aq, Au]	showing
316	Silver King Lake	polymetallic vein	Aq, [Au], Pb, Cu, Zn; Cd	showing
317	Rhyolite	polymetallic vein	Au, Aq, Cu; Pb, Zn, Cd	showing
318	Little Joe Lake South	polymetallic vein	Ag, [Au], Pb, Zn; Cu, Sb	showing

:

and the provide second of the second s





### **Porphyry Copper-Molybdenum**

Although porphyry copper-molybdenum has not been an historically important mineral deposit type within the study area, it is the most promising mineral deposit type presently being evaluated.

## The Big Onion Deposit

The Big Onion prospect, a low-grade large-tonnage calc-alkaline porphyry copper-molybdenum deposit, straddles the southern boundary of the recreation area on south side of Astlais Mountain, 18 kilometres east of Smithers (Figure 4). Access to the property is by the Babine Lake road and a network of four wheel drive roads (established during the 1960's diamond drilling programs) that zig-zag up the creek valley to the shoulder of Astlais Mountain (Figure 5). The main zones of copper and molybdenum mineralization are within the creek valley between 1067 and 1676 metres elevation, with the bulk of the deposit below treeline (approximately 1460 metres elevation). Metal reserve estimates were first calculated by Stock (1977) and utilized 16 712 metres of combined percussion and diamond drill data (Table 2). Subsequent diamond drilling by Varitech in 1991 has been successful in outlining the extent of the supergene (or secondary enrichment) zone as well as the depth of hypogene (or primary) mineralization (McCrossan, 1991). However, much more diamond drilling is required to better define the distribution, grade and tonnage of ore before further development.

Early descriptions of the geology of the Big Onion property include those by Sutherland-Brown (1967) and Schroeter (1977). Mineralization is associated with an irregular northeast-trending stock of quartz-feldspar porphyry (with a core of quartz-diorite porphyry) that intrudes volcanic and sedimentary rocks of the Telkwa and Nilkitkwa formations (Figure 2). The intrusions appear to have been



emplacement along a northeast-trending fault, subsequently transected and offset by younger northwest-trending faults. The southwestern extension of the orebody appears to have been truncated and offset by faulting, whereas the northeastern continuation has yet to be fully assessed.

Hydrothermal alteration zones within and peripheral to the ore body are well-developed (Figure 5): the ore zone is coincident with a propylitic zone, characterized by epidote-calcite-chlorite alteration mineral assemblages, and is surrounded by a phyllic zone, defined by sericite and local quartz stockwork (Stock, 1977). Hypogene (or primary) mineralization consists of disseminated and fracturecontrolled chalcopyrite and molybdenite, associated mostly with the quartz-feldspar porphyry but also with adjacent altered rocks. Supergene (or secondary enrichment) mineralization, most important at the north part of the ore body, consists of chalcocite and covellite (McCrossan, 1991).

Pyrite is ubiquitous within and adjacent to the deposit and locally attains concentrations of 10 per cent. Oxidation of this pyrite by near-surface groundwater, a natural process, produces sulphuric acid which tends to acidify streams that drain the valley and leach metals from the rocks near the surface.

Because of the lack of exposed rock and the extensive overburden to the south and southeast of the deposit, geophysical techniques, such as induced polarization surveys, have been conducted in the search for additional similar mineralization (Figure 5). The anomaly nearest the Big Onion deposit is interpreted to indicate the presence of sulphide mineral concentrations at depth. The anomaly to the southeast is much more complex, but still indicate the possibility for mineralized intrusive or volcanic rocks (Depaoli, 1977). These anomalies are considered to be viable exploration targets, but have not yet been tested.

### Silver-rich Polymetallic Veins

Most of the historical metal production in the study area has come from silver-rich polymetallic veins (Tables 1, 4), with the Cronin being the only deposit large enough to warrant its own milling facilities. Silver-rich polymetallic veins are the most mineralogically complex, and consist usually of two or more base metal sulphide and sulphosalt minerals within a quartz ( $\pm$  carbonate) gangue (Table 3). Metals sought after were primarily silver (contained as a component in some of the metallic minerals), with significant gold, lead, zinc, copper and cadmium.

These veins are commonly discordant to host rocks, irregular in attitude and continuity, and pinch and swell in thickness along their length. These characteristics make economic assessment without underground exploration difficult. In the early days of mining, adits and drifts were put in to follow the veins, and small orebodies were struck where the veins swelled to greater thicknesses. Thus, the very nature of the deposit type dictated the size of orebodies to be found.

## The Cronin Mine

The Cronin mine was the most significant historical producer of metals in the study area (Table 1). The extensive polymetallic vein system was accessed over the life of the mine by workings that extend more than 168 metres vertically and about 220 metres laterally: development on 3 mining levels total about 1160 metres of drifts and crosscuts and 366 metres of raises (Livgard, 1973).

The vein system occurs within a northeast-trending zone that cuts through a rhyolite plug or dome and into surrounding sericite schist, as well as argillite, sanstone and conglomerate of the Middle to Upper Jurassic Ashman Formation (Figure 2). The close association of rhyolite with the veins suggests a genetic

relationship. Veins are up to 0.6 metres thick and up to 75 metres long (MacIntyre and Desjardins, 1988).

Similar mineralization has been exposed on surface on the Homestake claim to the southwest of the Cronin workings: this showing, known as the Wardell zone or Upper showing is regarded as part of the Cronin vein system. In 1975, a surface diamond drilling program designed to test the open-pit potential of the Upper showing (and presumably extensions of veins from the Cronin workings) succeeded in identifying a small high grade orebody, but no large tonnage was outlined (Quin, 1987). Accessible ore remains underground at the Cronin mine: the wide range in reserve estimates (Table 2) reflects the difficulty in assessing this type of deposit.

## **Basalt-Hosted Copper-Silver Veins**

A less prolific although historically important mineral deposit type are the basalt-hosted copper-silver veins (Table 3). These deposits though generally small are very rich in silver and copper: this is evident by the quantity of silver and copper yielded by the Driftwood deposit from only 23 tonnes of ore (Table 1). Mineralization consists of irregular sheeted quartz veins, stringer zones and breccias, within amygdaloidal basalt and flow-top breccia of the Lower Jurassic Telkwa Formation. The veins contain an abundance of copper- and silver-bearing sulphide and sulphosalt minerals as high grade pods and fracture fillings.

Basalt-hosted copper-silver veins are almost exclusively confined to rocks of the Telkwa Formation and may be referred to as strata-bound deposits: they are likely products of hydrothermal activity related to emplacement of the volcanic rocks which host them. Small and relatively abundant copper-silver vein showings of this type are scattered throughout rocks of the Telkwa Formation in the Telkwa and Babine ranges (D. MacIntyre, Personal Communication, 1991).

### **Polymetallic Massive Sulphides**

As previously stated, there are no known polymetallic massive sulphide occurrences within the Babine Mountain Recreation Area, but is an important deposit type to consider for resource evaluation. Southeast of the study area at the Ascot prospect (MINFILE 093L-24), polymetallic massive sulphides are in limy sedimentary rocks of the Lower Jurassic Nilkitkwa Formation (MacIntyre et al., 1987). The sulphide concentrations, which contain abundant base metals but only a trace of precious metals, occur as massive lenses to disseminations within the sedimentary rocks close to the underlying Lower Jurassic Telkwa Formation basalts. Their strata-bound nature and proximity to volcanic rocks suggests a sedimentary depositional environment close to a volcanic-hydrothermal centre. Comparable rock sequences, present within the study area (Figure 2), might also host similar metal concentrations.

## CHAPTER 4

## POTENTIAL FOR UNDISCOVERED MINERAL RESOURCES

#### **GENERAL STATEMENT**

The field-based component of this study gathered information to help assess the potential for undiscovered mineral resources within the recreation area: the data collected augments that from previous studies (e.g., MacIntyre et al., 1987; MacIntyre and Desjardins, 1988a,b). Although the region has been extensively prospected and explored during the past 90 years, there is still the possibility that some mineral wealth has gone undetected during that time. The goal here is to identify areas with significant mineral potential to ensure that the region is thoroughly tested before it is considered for reclassification as park land with no mineral exploration allowed.

The methods used in the field to identify areas of potential exploration interest include: geological mapping; lithogeochemical (rock-chip) sampling of almost all rock types represented in the study area, including zones of altered rocks; stream sediment sampling; and prospecting of regions deemed favourable for mineral deposits based on information gathered from previously published literature and maps, observations in the field, and personal communication with persons engaged or previously engaged in geological fieldwork in the area. Previously published data from geophysical surveys done in the study area were examined and interpreted.

## **GEOLOGICAL MAPPING**

Geological mapping is the fundamental starting point for any mineral resource evaluation program. The purpose of geological mapping is not only to document the nature, distribution and stratigraphical order of rocks, as well as their structural configuration, but also to evaluate their relationship to the various mineral resources which they contain. In this way, the location and distribution of mineral deposits are better understood in the context of their host rocks and structural setting within a regional geological framework. Geological mapping thus helps to define the distribution of rocks that are favourable hosts to mineral deposits (Table 3).

This project was fortunate to have access to recent data and maps, produced by a 1:20 000 scale geological mapping program that covered most of the study area (MacIntyre and Desjardins, 1988a, b, unpublished data), as its starting point. Geological mapping during the present study, therefore, was limited to the northern part of the recreation area which was outside of the previous mapping program. 20

### **LITHOGEOCHEMICAL SAMPLING**

A total of 239 rock samples was collected from the study area during previous (MacIntyre and Desjardins 1988a, b, unpublished data) and present investigations (Figure 6). These samples were analyzed for gold, silver, copper, lead, zinc, molybdenum, cadmium, arsenic and antimony (Appendix B). Of these more than half were taken from regionally extensive pyritic and limonite-stained altered rocks that form spectacular red-brown gossans across the central part of the study area (Figure 7). These zones are essentially bleached sericitic schists and phyllites derived from volcanic and sedimentary rocks of the Upper Cretaceous Kasalka Group. The rocks contain abundant disseminated pyrite, much of which has altered to limonite: oxidation of the pyrite to produce sulphuric acid has probably leached much of the original metal content from the rock. The rocks also exhibit breccia textures and are locally veined by quartz or quartz and epidote. The alteration zones, which are a few hundred metres thick, are semicontinuous for several kilometres along a west-northwest strike. They are coincident with shear zones of probable post-Late Cretaceous age that are truncated by northeast-trending Tertiary faults (Figure 2).

Most of the samples taken from the pyritic and limonite-stained altered rocks contain only background levels of precious and base metals. However, a previously undocumented polymetallic vein (the Silver King Lake prospect: MINFILE 093L-316; Gaba et al., 1992) was found during the course of sampling as well as twelve samples that contain anomalous metal concentrations (considered to be anomalous by visual inspection of the complete lithogeochemical database) diagnostic of silverrich polymetallic veins (Table 3). Further examination of smaller alteration zones of this type to the east resulted in the location of additional new polymetallic veins at the Little Joe Lake South prospect (MINFILE 093L-318; Gaba et al., 1992). Thus,




FIGURE 7. Distribution of altered rocks within the Babine Mountains Recreation Area.

the sampling program confirmed the presence of at least scattered base and precious metal concentrations within the altered rocks. These rocks have not been tested at depth by diamond drilling and might contain more significant metals beneath the generally leached rocks exposed at surface.

÷.

In the north-central part of the study area, scattered exposures of Kasalka Group volcanic rocks are locally very silicic and might define a fault zone along which silicification has taken place (MacIntyre and Desjardins, 1988). However, no metals of interest are associated with these rocks.

Follow-up examination of a site initially sampled in 1987 (MacIntyre and Desjardins, 1988b) resulted in the location of additional previously undocumented polymetallic veins (Gaba et al., 1992). The veins are similar in character to polymetallic veins of the area, but are unique because of they contain abundant gold (partly as native metal - the only locality so far known within the study area!).

Geological mapping by Stock (1977) on and adjacent to the Big Onion property documents the style and distribution of alteration associated with the deposit (Figure 7). Lithogeochemical sampling (also by Stock (1977)) shows that the distribution of copper and molybdenum is coincident with phyllic alteration associated with the Big Onion deposit. However, only minor metals are associated with phyllic-altered diorite to the southeast. An inherent problem with surface sampling at these types of deposits is the extensive metal leaching that occurs in rocks exposed at or near the surface (as previously discussed).

Samples were also collected regionally from rock outcrop not visibly altered: ten samples returned anomalous metal concentrations diagnostic of silver-rich polymetallic veins, four samples returned anomalous metal concentrations diagnostic of copper-silver veins and three samples returned anomalous metal concentrations diagnostic of polymetallic massive sulphides (Table 3).

## **STREAM SEDIMENT GEOCHEMICAL SURVEY**

Stream sediment and water samples were collected from 39 sites throughout the Babine Mountains Recreation Area by J. Gravel (Bonaventure Management Services) and analyzed according to standards set by the Regional Geochemical Survey program of the Ministry of Energy, Mines and Petroleum Resources. This data compliments previously collected data in the area to bring the sample site density to approximately 1 site per 6 square kilometres (Figure 8; Appendix C).

The composition of stream sediments are generally representative of the rocks they were derived from within a drainage basin. However, more than one rock type is typically drained by any particular stream. Prior to statistical analysis of data, each sample is designated as draining a single geological formation (the most dominant within the drainage basin). The data can then be statistically manipulated to provide the mean, median, mode, range, standard deviation and various percentile values for each element according to geological formation (Appendix C). This is necessary because the background concentrations of metals are different for different rock types (anomalous-*looking* values may not necessarily be, and visa versa). In this way, anomalous concentrations of metals (values > 90th percentile = anomalous; values > 95th percentile = very anomalous) are identified, and in most cases the character of the anomalous metal assemblage suggests a mineral deposit type (Table 3) that the drainage basin potentially has (or had) within its bounds.

Some samples from drainage basins where mining-related man-made disturbances are present contain exceedingly large concentrations of metals. These analyses were noted and disqualified from being used as criteria for mineral resource potential evaluation.



FIGURE 8. Stream sediment sample sites.

## **GEOPHYSICAL SURVEYS**

In some areas, geophysical surveys (studies of the Earth by quantitative physical methods, commonly used in the exploration for metallic ores) provide additional information about physical properties of rocks, phenomena beneath the surface, or dominant structural trends which may be important in evaluating the geological favourability of an area. Interpretation of geophysical "anomalies" generally require knowledge of the geological character of the region to understand just what the response means. By using various geophysical techniques, geological formations that are favourable hosts to particular mineral deposit types can be traced beneath overburden or other surface cover and exploration targets outlined (as done by induced polarization geophysical surveys southeast of the Big Onion, see Figure 5).

Regional airborne magnetic surveys (part of a province-wide program by the provincial and federal governments) have been carried out in the study area (Figure 9). The anomalies expressed by the magnetic contours are dependent on the variable magnetic intensities of the underlying rock, and may be due to conditions near, or at unknown depths below the surface.

Just to the northwest of the north end of the study area, a magnetic high is closely adjacent to a magnetic low or depression (Figure 9): this is explained by the presence of a ridge of augite-porphyritic basalt (a rock type with a high magnetic susceptibility) with a steep eastern escarpment (responsible for the adjacent magnetic low).

Another broad anomaly exists just south of the study area and coincides with a stock of diorite. A similar anomaly along the eastern boundary of the study area is not as readily accounted for by the nature of the exposed bedrock: it might indicate a similar stock of igneous rocks at depth.



FIGURE 9. Airborne magnetic survey of the Babine Mountains Recreation Area (flight altitude is 300 metres above ground level). Compiled from *British Columbia* Ministry of Energy, Mines and Petroleum Resources (1969a, b, c, d).

Overall, the airborne magnetic survey has not offered any new information with regard to areas which might be favourable for mineral resources.

## **MINERAL RESOURCE POTENTIAL**

## **Mineral Potential Classification**

Systematic integration of geological, geochemical and mineral occurrence data is the basis upon which mineral resource potential is determined (McLaren, 1990). Mineral potential is a rating of the likelihood of an area to contain mineral deposits based on the presence of favourable criteria which are diagnostic of the mineral deposit types of concern (see Table 3). Favourable criteria are defined as: the geological setting (as determined by mapping); anomalous concentrations of diagnostic base and/or precious metals in bedrock or stream sediments (as identified by lithogeochemical or stream sediment sampling); and known mineral occurrences (as prospects, past-producers or known resources). Together, the data define areas of low to very high mineral potential for each of the mineral deposit types, which are then combined into a composite mineral resource potential map for the study area.

### Mineral Resource Potential: By Deposit Type

Mineral resource potential has been determined for each of the mineral deposit types within and adjacent to the study area: porphyry copper-molybdenum, silver-rich polymetallic veins, basalt-hosted copper-silver veins, and polymetallic massive sulphides. Summaries of the criteria used to assess each of the deposit types are outlined on tables 5 to 8, and are accompanied by maps (figures 10a to 13a) outlining the areas and ratings of potential for each deposit type as defined by individual favourable criteria.

# TABLE 5.

#### SUMMARY OF CRITERIA USED TO ASSESS PORPHYRY CU-MO POTENTIAL

CRITERIA FIELD	OUTLINE/SYMBOL	DESCRIPTION	RATING	AREA OF INFLUENCE
FAVOURABLE GEOLOGY	$\square$	Late Cretaceous to Early Tertiary quartz-diorite porphyry (qdp), quartz feldspar porphyry (qfp) and diorite (dr) propylitic, sericitic and silicic alteration zones	$2_{\rm G}, 2_{\rm G}^{+}$ $2_{\rm G}, 2_{\rm G}^{+}$	outline of rock distribution outline of rock distribution
ANOMALOUS GEOCHEMISTRY	ے۔ 0	RGS (stream sediment): Cu±Mo±Au±Ag > 90 th percentile " > 95 th percentile rock geochemistry: Cu±Mo±Au±Ag - very anomalous	² A 2 ⁴ / _A 2 ⁴ / _A	drainage basin drainage basin 200 metres radius
KNOWN MINERALIZATION	* *	mineral occurrence mineral resource with proven reserves	2 _M , 3 [*] 6	500 metres radius 500 to 1000 metres radius

#### MINERAL POTENTIAL RATING SYSTEMATICS





FIGURE (D. Porphyry Cu-Mo potential: a) ratings as defined by individual criteria fields, and b) the final assigned ratings incorporating criteria field overlap.

## TABLE G.

### SUMMARY OF CRITERIA USED TO ASSESS POLYMETALLIC VEIN POTENTIAL

				****************
CRITERIA FIELD	OUTLINE/SYMBOL	DESCRIPTION	RATING	AREA OF INFLUENCE
FAVOURABLE GEOLOGY	$\square$	Middle to Upper Jurassic Ashman Formation (muJA) / rhyolite Upper Cretaceous Kasalka Group (uKK1, uKK2) and associated dikes pyritic-limonitic alteration zones	2 <u>;</u> 2 ₆ ,2 ₆ 2 <u>6</u> ,2 ₆ 2 ₆ ,2 ₆ 2 ₆ ,2 ₆	outline of rock distributio outline of rock distributio outline of alteration zones
anomalous Geochemistry	; 0	RGS (stream sediment): Ag±Au±Pb±Zn±Cd±Cu±As±Sb > 90 th percentile "	$2\overline{A}, 2A$ $2A, 2\overline{A}$ $2\overline{A}, 2A$ $2\overline{A}, 2A$ $2A, 2\overline{A}$	drainage basin drainage basin 200 metres radius 200 metres radius
KNOWN MINERALIZATION	☆ ★ ⊛	mineral occurrence past producer mineral resource with proven reserves	2 _M to 5 5 6	500 metres radius 500 to 1000 metres radius 500 to 1000 metres radius

#### MINERAL POTENTIAL RATING SYSTEMATICS





HGURE II. Polymetallic vein potential: a) ratings as defined by individual criteria fields, and b) the final assigned ratings incorporating criteria field overlap.

## TABLE 7.

### SUMMARY OF CRITERIA USED TO ASSESS BASALT-HOSTED CU-AG VEIN POTENTIAL

				ی که این
CRITERIA FIELD	OUTLINE/SYMBOL	DESCRIPTION	RATING	AREA OF INFLUENCE
FAVOURABLE GEOLOGY	$\bigcirc$	Lower to Middle Jurassic Telkwa Formation (lJT, lJTb)	2 <u>6</u> ,2 ₆ ,2 <mark>6</mark>	outline of rock distribution
Anomalous Chemistry	ے۔ 0	RGS (stream sediment): Cu±Ag±Au±Pb±Zn > 90 th percentile rock geochemistry: Cu±Ag±Au±Pb±Zn ~ very anomalous	2Ā 2Ă	drainage basin 200 metres radius
NOWN	≪ ★	mineral occurrence past producer	within 5 5	500 metres radius 500 to 1000 metres radius

#### MINERAL POTENTIAL RATING SYSTEMATICS



2



FIGURE 12. Basalt-hosted Cu-Ag vein potential: a) ratings as defined by individual criteria fields, and b) the final assigned ratings incorporating criteria field overlap.

## TABLE 8.

### SUMMARY OF CRITERIA USED TO ASSESS POLYMETALLIC MASSIVE SULPHIDE POTENTIAL

. :

CRITERIA FIELD	OUTLINE/SYMBOL	DESCRIPTION	RATING	AREA OF INFLUENCE
FAVOURABLE Geology	$\bigcirc$	Lower Jurassic Nilkitkwa Formation (lJN) and upper parts of the underlying Telkwa Formation (lJT, lJTb)	2 _G , 2 _G , 2 [†] _G	outline of rock distribut
Anomalous Geochemistry	O	rock geochemistry: Zn±Pb±Ba±Cu±As - anomalous	2 <u>Ā</u>	200 metres radius .
KNOWN MINERALIZATION		no known mineralization of this type within the study area		

#### MINERAL POTENTIAL RATING SYSTEMATICS





FIGURE 13. Polymetallic massive sulphide potential: a) ratings as defined by individual criteria fields, and b) the final assigned ratings incorporating criteria field

Areas of favourable geology (which includes favourable host rocks and alteration type) are designated as  $2G^{-}$ , 2G, or  $2G^{+}$ . Minus or plus signs are used to indicate less favourable or more favourable data: an example of more favourable data is the overlap area of favourable alteration with favourable geology. The area of influence is the outline of the distribution of favourable rocks or alteration zones.

Areas of favourable geochemistry include sites from which stream sediment samples and lithogeochemical (or rock) samples were taken that contain anomalous concentrations of diagnostic base and/or precious metals. Anomalous stream sediment analyses which are generally greater than the 90th percentile for the specific data group (according to the diagnostic metal assemblage and dominant rock formation within the drainage basin) are designated  $2A^-$  or 2A, depending on the number and character of anomalous metals and their individual concentrations; those analyses greater than the 95th percentile are designated 2A or  $2A^+$ . The area of influence for anomalous stream sediment analyses is the drainage basin above the site where the sample was collected.

Anomalous rock geochemical analyses (according to the diagnostic metal assemblage) are designated  $2_{A}$ ,  $2_{A}$ , or  $2_{A}$ ⁺, depending on how anomalous the analyses are (determined by visual inspection of the regional data set). The area of influence is that which is within a 200 metres radius of the sample site.

Known mineralization is catagorized according to its degree of significance: mineral occurrences, past-producers and mineral resources with proven reserves. Mineral occurrences are designated as  $2_{M}$ ,  $2_{M}$  or  $2_{M}$ ⁺, and the area of influence is that which is within a 500 metres radius of the mineral occurrence location. Pastproducers have a much greater degree of significance and are designated as high as 5, with an area of influence of 500 to 1000 metres radius. Mineral resources with proven reserves have the greatest degree of significance and are designated as 6, with an area of influence of 500 to 1000 metres radius: this catagory includes pastproducers that still contain mineral reserves.

Areas where favourable criteria overlap indicate a greater degree of confidence, or an increased likelihood for a mineral deposit of a particular type to occur. A higher degree of mineral potential is therefore assigned to the region of overlap: this is shown for each of the mineral deposit types on figures 10 b to 13 b. In areas where favourable geochemistry overlap with areas of favourable geology, the area of overlap is designated as a 3 or  $3^+$ , and for areas where favourable geochemistry overlap with known mineralization, the area of overlap is designated as  $3^*$ : the ^{*} represents the presumption that the area is also within favourable geology because of the presence of known mineralization. For areas of overlap between favourable geology and known mineralization, the designation is 4⁻, 4, or 4⁺ because these data indicate a greater likelihood for the area to contain additional concentrations of metals within a greater area. Mineral potential designations of 5 and 6 indicate areas where all three favourable criteria are present, and are generally assigned to areas which include significant mineral occurrences or deposits, past-producers, or mineral resources with proven reserves. Areas in which no favourable criteria has been identified are designated as 1.

## Mineral Resource Potential of the Babine Mountains Recreation Area

Data presented in the mineral potential maps for each mineral deposit type (figures 10 to 13) are superimposed into one final composite mineral resource potential map for the study area (figures 14 and 15). Areas of very high mineral potential (class 6) surround the Big Onion deposit and the Cronin mine: both deposits contain known mineral reserves and potential for development is high.

Larger areas of high mineral potential (class 5) include: the belt of silver-rich polymetallic vein prospects and past-producers through the central part of the study



## CLASSIFICATION OF MINERAL POTENTIAL (AMENDED FROM MCLAREN, 1990)

### QUALITATIVE DESCRIPTIONS OF MINERAL POTENTIAL CLASSIFICATIONS

Class	Mineral Potential	Description
6	Very High	Known deposits with identified resources in the ground. Favourable supporting data from all three sources; high degree of confidence in designation. Continued exploration highly probable; potential for mine development is high.
5	High	Known occurrences in highly favourable metallogenic environment. Supporting data from all three sources; high degree of confidence in designation. May include known deposits or past producing mines with unknown resources in the ground. Future exploration highly probable.
4	Moderate to high	Known or indicated mineral resources in favourable geological environment. Supporting data from these two sources specifically; moderate degree of confidence in designation. Future exploration to be expected.
2	Moderate to high	Forourable geological and geochemical environment, but significant mineral occurrences lacking. Supportive data from these two sources; moderate degree of confidence in designation. Future exploration likely, particularly if near areas of higher potential.
2	Moderate	Supporting data from one of three sources, usually geological or geochemical; areas generatly lack sufficient prospecting to identify mineratization. Noderate to low degree of confidence in designation. Reconnaissance exploration to be expected. Good potential for upgrading of classification.
۱	Low	Current data is non—diagnostic for favourable metallogenic environment. Moderate to high degree of confidence in designation. Little likelihood for future exploration for deposit types considered.
I	Indeterminate ·	Current data is either outdated or insufficiently detailed for a reasoned determination of mineral potential. High degree of confidence in designation. Future exploration to be expected in portions of the area.

FIGURE 14. Classification of mineral resource potential (after McLaren (1990)).

10



FIGURE 15. Mineral resource potential of the Babine Mountains Recreation Area (see Figure 14).

area; and the cluster of basalt-hosted copper-silver vein prospects and pastproducers in the central-eastern part of the study area. Future exploration within these areas is highly probable.

Areas of high to moderate mineral potential (class 4) surround mineral prospects that are within a favourable geological environment, and further exploration is to be expected.

Areas of moderate to high mineral potential (class 3) indicate favourable geology and geochemistry: future exploration for undiscovered mineral resources is likely, particularly for areas near known mineralization.

Areas of moderate mineral potential (class 2) require further examination to upgrade the mineral potential rating: reconnaissance exploration is to be expected.

Areas of low mineral potential (class 1) indicate: a lack of sufficiently detailed information for the area, or rocks that are not likely hosts of metallic mineral deposits. Present information does not provide much encouragement for future exploration.

## CHAPTER 5

## CONCLUDING REMARKS

## ■90 YEARS OF EXPLORATION: ARE THERE STILL UNDISCOVERED MINERAL RESOURCES?

A mineral resource potential study such as this attempts to summarize the geological database as it is presently known. Examination and analysis of exposed bedrock does not always yield information on possible resources stored at depth: only explorationists have the tools (such as geophysical instruments and diamond drills) to test for mineral potential below the surface.

Surface prospecting and sampling during the course of this study revealed three rather significant (previously undocumented) polymetallic vein prospects (Gaba et al., 1992). During the present economic climate, prospects such as these (and others in the study area) might not be pursued by the mining industry, but with changes in economic circumstances or exploration strategies in the future, may be looked at as viable exploration targets: this is exemplified by the history of exploration at the Big Onion property (Appendix A).

Regionally extensive belts of pyritic and limonite-stained altered rocks, mainly within the central part of the study area (Figure 7), contain scattered anomalous concentrations of base and/or precious metals (as determined by lithogeochemical sampling). A plausible reason for the lack of more widespread metals within the altered rocks may be that pre-existing metals have been leached from the rocks by near-surface groundwater acidified by the natural oxidation of pyrite. Proper evaluation of these rocks, therefore, require diamond drilling in order to test the rocks at depth beneath the possibly metal-deficient capping of iron-rich altered rocks.

## •THE BIG ONION DEPOSIT: PART OF BRITISH COLUMBIA'S MINERAL RESOURCE INVENTORY

A known resource of copper and molybdenum (with accessory gold and silver) continues to be evaluated at the Big Onion property. Further exploration serves not only to better constrain the grade and distribution of indicated ore, but also to expand on possible ore in favourable peripheral environments. The proximity of the Big Onion orebody to the town of Smithers is advantageous in keeping down the cost of exploration and development. At the same time, if 51

development were to proceed, Smithers would undoubtedly feel positive economic repercussions from the project. Under these circumstances it would be illogical to alienate the Big Onion deposit from future exploration, and possibly development.

## **•THE BOUNDARY QUESTION: EQUITABLE MULTI-USE LAND** MANAGEMENT

The present boundary of the Babine Mountains Recreation Area generally follows the 1370 metre (4500 foot) elevation contour. This boundary location was designed to exclude lower elevation areas where commercial timber exists, thereby avoiding conflict with the forest industry (Babine Master Plan Study Team, 1991). In addition, exceptions to recreation area rules were made for snowmobile use in the Ganowkwa Basin, a rapidly expanding recreation that attracts many people from out-of-town and boosts the local economy during the winter months. However, oblivious to the mining industry's interests, the recreation area boundary cuts through the middle of the Big Onion deposit, the most promising mineral property presently being explored within the recreation area.

Equitable multi-use land management (in an ideal situation) requires that all parties with interests in the lands occupied by a recreation area would have equal input into the design of the final plan. From the mining industry's standpoint, the recreation area (or other future designation) boundary should be so designed as to exclude the Big Onion deposit and a sufficiently large region peripheral to the prospect to protect mining interests and future exploration access to a known metal resource. Further, it is proposed that the northern boundary be extended so as to include a comparably-sized territory of alpine meadows and wetlands to complement the "wide variety of wilderness environments" within the Babine Mountains Recreation Area.

### REFERENCES

- Babine Master Plan Study Team (1991): Babine Mountains Recreation Area
   Master Plan Background Report; unpublished report prepared for the B.C.
   Ministry of Environment, Lands and Parks, 79 pages.
- Blix, E. (1977): Trails to Timberline; Northern Times Press, Terrace, B.C., 197 pages.
- British Columbia Ministry of Energy, Mines and Petroleum Resources (1969a): Harold Price Creek; Aeromagnetic Map 5243G, scale 1:63 360.
- British Columbia Ministry of Energy, Mines and Petroleum Resources (1969b): Morice Town; Aeromagnetic Map 5244G, scale 1:63 360.
- British Columbia Ministry of Energy, Mines and Petroleum Resources (1969a): Driftwood Creek; Aeromagnetic Map 5318G, scale 1:63 360.
- British Columbia Ministry of Energy, Mines and Petroleum Resources (1969a): Smithers; Aeromagnetic Map 5319G, scale 1:63 360.
- British Columbia Ministry of Energy, Mines and Petroleum Resources, Annual Reports (1898-1968).
- British Columbia Ministry of Energy, Mines and Petroleum Resources, Geology, Exploration and Mining in British Columbia (1969-1988).

- Carter, N.C. (1981): Porphyry Copper and Molybdenum Deposits, West-Central British Columbia; B.C. Ministry of Energy, Mines and Petroleum Resources, Bulletin 64, 150 pages.
- Dawson, G.M. (1881): Report on an Exploration From Port Simpson on the Pacific Coast, to Edmonton on the Saskatchewan, 1879; in Report of Progress for 1879-80, Geological Survey of Canada, Report B, 177 pages
- Depaoli, G.M. (1977): Geophysical Report on the Cote Option; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 6363, 11 pages plus maps.
- Gaba, R.G., Desjardins, P.J. and MacIntyre, D.G. (1992): Mineral Potential Investigations in the Babine Mountains Recreation Area; *in* Geological Fieldwork 1991, *B.C. Ministry of Energy, Mines and Petroleum Resources*, Paper 1992-1, pages 93-101.
- Holland, S.S. (1964): Landforms of British Columbia, A Physiographic Outline; B.C. Ministry of Energy, Mines and Petroleum Resources, Bulletin 48.
- L'Orsa, J. (1990): A History of the Babine Mountains Recreation Area; unpublished report prepared for the B.C. Ministry of Environment, Lands and Parks, 29 pages.
- Livgard, E. (1973): The Cronin Mine; B.C. Ministry of Energy, Mines and Petroleum Resources, Property File, unpublished company report, 24 pages.

MacIntyre, D.G., Brown, D., Desjardins, P. and Mallett, P. (1987): Babine Project (93L/10,15); in Geological Fieldwork 1986, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1987-1, pages 201-222.

- MacIntyre, D.G. and Desjardins, P. (1988a): Babine Project; in Geological
  Fieldwork 1987, B.C. Ministry of Energy, Mines and Petroleum Resources,
  Paper 1988-1, pages 181-194.
- MacIntyre, D.G. and Desjardins, P. (1988b): Geology of the Silver King Mount Cronin Area; B.C. Ministry of Energy, Mines and Petroleum Resources, Open File 1988-20.
- McCrossan, E. (1991): Drilling Report on the Big Onion Property; report draft for Varitech Resources Limited, 25 pages.
- McLaren, G.P. (1990): A Mineral Resource Assessment of the Chilko Lake
  Planning Area; B.C. Ministry of Energy, Mines and Petroleum Resources,
  Bulletin 81, 117 pages.
- Morice, A.G. (1904): The History of the Northern Interior of British Columbia, 1660 to 1880, William Briggs, Toronto.
- Palmer, A.R. (1983): The Decade of North American Geology 1983 Geologic Time Scale; *Geology*, Volume 11, pp.503-504.

- Quin, S.P. (1987): Cronin Mine Project: Summary Report for the 1987 Exploration Program for Southern Gold Resources; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 16721, 36 pages.
- Schroeter, T.G. (1977): Big Onion; B.C. Ministry of Energy, Mines and Petroleum Resources, Geology in British Columbia 1975, pages 66-67.
- Stock, G.C. (1977): Geological and Rock Geochemical Report on the Big Onion Area Claims; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 6364, 13 pages plus maps.
- Sutherland-Brown, A. (1967): Big Onion; B.C. Ministry of Energy, Mines and Petroleum Resources, Minister of Mines Annual Report for 1966, pages 83-86.

## APPENDIX A

## Chronologic History of Exploration and Mining in the Babine Mountains Recreation Area (1866-1991)

- 1866 Construction of the Collins Overland Telegraph line (Western Union Telegraph Company) along the Watsonquah River, shortly thereafter renamed the Bulkley River after Colonel Bulkley (Engineer-in-Chief of the operation).
- 1878 H.J. Cambie, Canadian Pacific Railway, in connection with explorations of proposed railway routes briefly reviewed the Bulkley Valley and its agricultural possibilities.
- 1879 G.M. Dawson, Geological Survey of Canada, made an exploratory trip across the Babine Range up the Suskwa River and over the height of land to Babine Lake.
- 1898 The Collins Overland Telegraph trail along the Bulkley Valley was used as a route to the Klondike gold fields by a rush of prospectors; copper-gold veins and coal seams reported from the region.
- 1903 Assessment work reported from the *Eldorado* claim (Harvey Mountain area)
- 1905 W.F. Robertson, Provincial Mineralogist, explored the region and visited mineral claims on Harvey Mountain; discovery of the Dibble (or Babine-Bonanza) veins by prospectors from Hazelton; claims staked in Ganokwa Basin.
- 1906 W.W. Leach, Geological Survey of Canada, began scientific geological examinations (1906-1910).
- 1908 Prospecting and exploratory work done on at least 25 mineral properties within the Babine Range, with the hopes that the construction of a line of the Grand Trunk Pacific Railroad would be built throughout the length of the Bulkley Valley.
- 1909 The railway now assured, miners flock in and considerable work is done on more than 20 mineral prospects; surface and underground work (drifting) on the *Pack Train (or Drift)* property (by P. Harvey); the *Dibble (or Babine-Bonanza)* group is acquired by the Babine-Bonanza Mining Company (J. Cronin and Associates) and work begins.
- 1910 Construction on railway (1910-1914); extensive underground work on *Babine-Bonanza* considerable interest in this silver property draws attention to the region.
- 1911 Considerable work done on existing mineral properties, particularly the *Babine-Bonanza* trails from Telkwa, Morricetown, and Hudson Bay Ranch (on Driftwood Creek) to the *Babine-Bonanza* area in use; about 42 new claims recorded.
- 1912 Fourty-eight new claims recorded.
- 1913 Town of Smithers founded; silver-lead veins on the Debenture group explored by drifting (by Ritzins and Morton); 71 new claims recorded.
- 1914 Underground development continued on the *Debenture* (by Ritzins and Morton) and the *Babine-Bonanza* property; 46 new claims recorded.
- 1916 Seventy-two new claims recorded.
- 1917 A sleigh road linking the *Babine-Bonanza* to the railway at Telkwa is completed (with a grant from the Mines Development Fund) and 79 tons of hand-cobbed silver-lead ore are brought out (to date 762 metres of shafts and tunnels had been put in all work was by hand as no machinery was on the site); 6 tonnes of silver-lead ore produced from the *Victoria (or Lorraine)* group; 6 tonnes of high grade silver ore shipped from the *Silver King* property.
- 1918 The Cimbria (or Big Onion) group is staked (by A. Elmsted and Associates); underground development at the Victoria group (by P.J. Higgins); 23 tonnes of hand-cobbed silver-copper ore brought out (1915-1918) from Harvey (or Drift) group (by C.G.

57

Harvey and W.J. Larkworthy); surface and underground exploration (drifting) at the Social (or Jud) group (by A.P. McCabe and P. McPhee).

- 1919 Construction of the McCabe trail to the Social group and the Harvey Mountain trail to the Harvey group (both built with grants from the Mines Development Fund); underground development at the Harvey (by C.G. Harvey and W.J. Larkworthy) and Silver King groups, and continued work at the Babine-Bonanza property.
- 1920 Extensions were added to the McCabe trail (with grants from the Mines Development Fund): the Silver King Basin trail to the Silver King group, and a trail to the Victoria (or Lorraine) group (now part of the Little Joe trail); underground development at the Babine-Bonanza property (by Babine-Bonanza Mining and Milling Company).
- 1921 Underground development continued at the Babine-Bonanza, Driftwood (by J.T. Driscoll), Harvey and Silver King (by P.J. Higgins) groups.
- 1922 Underground development commenced at the Hyland Basin (by M. Cain and T. King) and Little Joe (or Silver Pick) (by M. Cain and T. King) groups; continued underground development at the Silver King (by W. Foley and E. Lee), Victoria (by PJ. Higgins) and Social groups.
- 1923 Underground development continued at the Babine-Bonanza, Hyland Basin (by J.F. Duthie) and Little Joe (by M. Cain and T. King) groups.
- 1924 G. Hanson, Geological Survey of Canada, carried out the first systematic geological mapping of the southern Babine Range, including mineral prospect examination; continued underground work at the *Silver King* (by P.J. Higgins), *Victoria* (by P.J. Higgins), *Rainbow* (or Driftwood), Hyland Basin (by J.F. Duthie) and Little Joe (by M. Cane and T. King) groups.
- 1925 Underground development continued at the Silver King (by P.J. Higgins and Associates), Hyland Basin (by Gale and Milligan), Harvey (by C.G. Harvey) and Little Joe (by M. Cain and T. King) groups; J. Cronin, manager of the Babine-Bonanza property dies of injuries received in 1923 when his horse fell as he was riding.
- 1926 Construction of the Little Joe Creek trail (built with a grant from the Mines Development Fund) now linked the Little Joe group with the Babine-Bonanza sleigh road; underground development continued at the Silver King, Hyland Basin, Victoria, Silver Saddle, Little Joe and Harvey (by C.G. Harvey) groups.
- 1927 Six tonnes of hand-sorted silver ore shipped from the Silver King property, 9 tonnes of silver ore was taken out of the Little Joe property, 4.5 tonnes of silver-copper ore was shipped from the Harvey property; underground development (drifting) at the Cimbria (or Big Onion) group (by A. Elmsted).
- 1928 Underground operations resume at the *Babine-Bonanza* group; continued underground development (drifting) at the *Victoria* group (by Lorraine Copper-Silver Mines Limited).
- 1929 A new trail from the Little Joe Creek trail to the *Victoria* group is built; underground work continues at the *Victoria* (by Lorraine Copper-Silver Mines Limited), *Rainbow*, *Harvey* (by Consolidated Mining and Smelting Company of Canada), and *Little Joe* properties; continued underground development at the *Babine-Bonanza* property and 27 tonnes of hand-sorted silver-lead ore shipped (by Babine-Bonanza Metals Limited); trenching on the *Silver Saddle* property (by A.T. Harrer and B.F. Messner).
- 1930 Underground development continues at the Rainbow, Silver King (by Omineca Silver King Mining Company Limited), Victoria (by Lorraine Copper-Silver Mines Limited) and Babine-Bonanza groups.
- 1931 Underground work continues at the Babine-Bonanza, Silver King (by Omineca Silver King Mining Company Limited), Victoria (by Lorraine Copper-Silver Mines Limited) and Little Joe (by T. King) groups.
- 1932 Work continued at the Rainbow and Cimbria (by A. Elmsted and B. Mueller) groups.
- 1935 Six tonnes of hand-sorted silver ore packed out of the Hyland Basin property.
- 1936 Nine tonnes of hand-sorted silver ore packed out of the Silver Pick (or Little Joe) property (by J.J. Herman).
- 1937 Nine tonnes of hand-sorted silver ore packed out of the *Skookum (by Silver King)* group (by J. Baker); 9 tonnes of hand-sorted gold-silver-copper ore packed out from the *Rainbow* group (by F.H. Johnson).
- 1938 Five tonnes of hand-sorted silver ore shipped from the Little Joe property (by A. Elmsted).

- 1939 Camp construction at the Silver King property (by La Marr Gold Mines Limited).
- 1940 Surface and underground work at the Silver King group (by La Marr Gold Mines Limited); 4 tonnes of hand-sorted silver ore shipped from the Hyland Basin group (by H.W. Agnew and Associates).
- 1947 Surface work done on the Babine-Bonanza (by Cronin Babine Mines Limited).
- 1948 Underground and surface diamond drilling at the Babine-Bonanza, and a 112 kilogram sample sent for metallurgical tests.
- 1950 Construction began on a new road between the *Babine-Bonanza* group and the recently completed Chapman Lake road (now known as the Babine Lake road), with plans for installing a mill on the property.
- 1951 The new road is completed, many of the new mine buildings are constructed and 55 tonnes of previously stockpiled ore is shipped from the *Babine-Bonanza* property; surface work continued at the *Lorraine* (by Yellowknife Gold Mines Limited) and *Hyland Basin* (by Yellowknife Gold Mines Limited) properties.
- 1952 Parts of the Cronin (or Babine-Bonanza) property are rehabilitated, a road from the mine to the mill site is built and several buildings completed, including a 36 tonne-per-day mill (by New Cronin Babine Mines Limited); 3185 tonnes of ore were milled (lead and zinc concentrates containing silver, gold, lead, zinc and cadmium were shipped to the Trail smelter), but operations cease by the year end due to low base metal prices.
- 1956 Work resumes at the Cronin mine, including underground development and 3811 tonnes of ore milled.
- 1957 Underground work at the Cronin mine continued, and 5370 tonnes of ore milled.
- 1958 A road was built up Higgins Creek joining the *Lorraine* property to the *Cronin mine* road; some underground work was done at the *Lorraine*; the *Cronin mine* was leased from New Cronin Babine Mines Limited by P. Kindrat, and with his family operated the mine each summer until 1972 when it was sold to Hallmark Resources: 112 tonnes of unmilled ore and 8 tonnes of lead concentrate were shipped from the *Cronin mine*.
- 1959 Seventy-four tonnes of lead concentrate and 60 tonnes of zinc concentrate are shipped from the Cronin mine.
- 1960 Seventy-two tonnes of lead concentrate and 60 tonnes of zinc concentrate are shipped from the Cronin mine.
- 1961 Seventy-three tonnes of lead concentrate and 84 tonnes of zinc concentrate are shipped from the *Cronin mine*.
- 1962 Three hundred and sixty-three tonnes of ore is mined at the Cronin mine, but none is shipped.
- 1963 Continued underground development and exploration (diamond drilling) at the *Cronin mine*, and shipment of 25 tonnes of lead concentrate and 33 tonnes of zinc concentrate.
- 1964 Continued underground development and exploration (diamond drilling) at the Cronin mine, and shipment of 41 tonnes of lead concentrate and 72 tonnes of zinc concentrate; underground development and camp construction at the Debenure group (by Native Mines Limited); trenching, geophysics, and diamond drilling at the Astlais (or Big Onion) property (by Noranda Exploration Company Limited).
- 1965 Continued underground development at the *Cronin mine*, and shipment of 99 tonnes of lead concentrate and 138 tonnes of zinc concentrate.
- 1966 Eighty-three tonnes of lead concentrate and 124 tonnes of zinc concentrate are shipped from the *Cronin mine*; continued underground development and exploration (diamond drilling) at the *Lorraine* property (by Native Mines Limited); bulldozer stripping and road building, geophysics and diamond drilling at the *Big Onion* property (by Texas Gulf Sulphur Company); geochemical sampling and trenching at the *Rainbow (or Driftwood)* property (by Reindeer Mines Limited).
- 1967 Fifty-one tonnes of lead concentrate and 76 tonnes of zinc concentrate milled from ore mined from surface pit and underground are shipped from the Cronin mine (by Kindrat Mines Limited); continued exploration (diamond drilling) at the Big Onion property (by Texas Gulf Sulphur Company); road construction and trenching on the Mert group (northeast of the Big Onion property) (by Tro-Buttle Exploration Limited); geochemical sampling on the Debenture property (by Wanda Mines and Exploration Limited).

コブ

- 1968 Continued surface exploration at the *Mert* group (by Tro-Buttle Exploration Limited) and the *Rainbow* group (by D.W. Small and Associates).
- 1969 Twenty-two tonnes of lead concentrate and 25 tonnes of zinc concentrate milled from ore from surface pit and old dumps are shipped from the *Cronin mine*; 13.5 tonnes of high-grade copper-silver ore was shipped from the *Rainbow* property (by J. Millhouse).
- 1970 H. Tipper, Geological Survey of Canada, began reconnaissance geological mapping in the Smithers map area (1969-1970); seventy-nine tonnes of lead concentrate and 94 tonnes of zinc concentrate were shipped from the Cronin mine (some surface exploration was also done); continued surface exploration (geophysics and geochemistry) at the Big Onion (by Blue Rock Mining Corporation Limited); continued surface exploration (geophysics) on the Mert group (by Tro-Buttle Exploration Limited); trenching and diamond drilling on the Jud (or Social) group (by Rockwell Resources Limited).
- 1971 Eighty-three tonnes of lead concentrate and 113 tonnes of zinc concentrate milled from ore from surface pit and underground are shipped from the *Cronin mine*; underground mapping at the *Drift (or Harvey)* group and 4.5 tonnes of high-grade silver-copper ore are shipped out (by Driftwood Mines Limited).
- 1972 Continued underground development at the Cronin mine, and shipment of 69 tonnes of lead concentrate and 74 tonnes of zinc concentrate; bulldozer trenching on the Drift property (by Driftwood Mines Limited).
- 1973 Construction of tailings disposal area, upgraded camp facilities, mill rehabilitation, surface exploration (exposing the new Upper showing and continued underground development at the Cronin mine, and shipment of 78 tonnes of lead concentrate and 73 tonnes of zinc concentrate (by Hallmark Resources Limited).
- 1974 Continued underground development at the *Cronin mine*, and shipment of 36 tonnes of lead concentrate and 64 tonnes of zinc concentrate; continued exploration (geophysics and diamond drilling) at the *Big Onion* (by Canadian Superior Exploration Limited).
- 1975 Surface diamond drilling (to test the open-pit potential of the *Upper showing*) and surface and underground surveying at the *Cronin mine* (by Coca Metals Limited); surface diamond and percussion drilling and geochemical surveys at the *Big Onion* property (by Canadian Superior Exploration Limited).
- 1976 Surface diamond and percussion drilling, geochemical surveys and geological mapping at the *Big Onion* property (by Canadian Superior Exploration Limited); trenching on *Driftwood (or Rainbow)* group (by P.J. Huber and L.B. Warren).
- 1977 Geochemical surveys, geological mapping and geophysics done at the *Big Onion* property (by Canadian Superior Exploration Limited); geochemical surveys on the *Driftwood (or Rainbow)* group (by Petra Gem Explorations Limited); trenching on the *Native* group (by J.M. Hutter); geological mapping and underground sampling at the *Cronin mine* (by Hallmark Resources Limited).
- 1981 Surface diamond drilling at the *Silver King* property (by Silver Hill mines); underground sampling at the *Cronin mine* (by Hallmark Resources Limited).
- 1983 Underground sampling and surface diamond drilling at the Cronin mine (by Goldsil Mining and Milling Incorporated): this work confirmed and improved reserves previously known.
- 1984 Establishment of the Babine Mountains Recreation Area by Order-In-Council #676, under management of the Ministry of Parks; trenching at the AG (or Silver Box) property (by Van Silver Holdings Limited).
- 1985 Underground exploration (drifting) at the Silver King property (by Silver Hill Mines).
- 1986 D. MacIntyre, P. Desjardins and others, British Columbia Geological Survey Branch, carry out geological mapping and mineral deposit studies in the southern Babine Range.
- 1987 Geological mapping, geochemical sampling and geophysical surveys done on the *Cronin mine* property (by Southern Gold Resources Limited); geochemical sampling at the *Big Onion* property (by Noranda Exploration Company Limited).
- 1988 The Mineral Tenure Act becomes effective and makes provisions for exploration within recreation areas: work done outside a claim (access, etc.) is subject to both a Ministry of Parks Resource Use Permit and a Mines Act approval. Any work within a claim must be authorized under a Mines Reclamation Permit containing conditions agreeable to both Ministries. Later in the year Order-In-Council #151 is passed, protecting all mineral claims located within a recreation area from forfeiture for a period

of one year after the date a Resource Use Permit is issued under the Park Act; geophysical surveys done on the Cronin mine property (by Southern Gold Resources Limited).

1991 Order-In-Council #151 was rescinded by Order-In-Council #185 which gives title holders until 31 October, 1992 to comply with section 25 of the Mineral Tenure Act: this was necessary because of problems in the issuance of Resource Use Permits; surface diamond drilling on the *Big Onion* property (by Mindoro Corporation and Varitech Resources Limited).

Sources of information: British Columbia Ministry of Mines Annual Reports (1898-1968); Geology, Exploration and Mining in British Columbia (1969-1988); Morice (1904); L'Orsa (1990); unpublished Assessment Reports and other company reports.

## **APPENDIX B**

6L

## Lithogeochemical Analyses

Rock-chip samples collected from the study area in 1986, 1987 and 1988 (sample numbers 1 to 119) were analyzed by the Ministry of Energy, Mines and Petroleum Resources, Geological Survey Branch Analytical Sciences Laboratory. Samples were jaw crushed, split and then ring pulverized in a tungsten-carbide mill. Ag, Cu, Pb, Zn, Mo, As and Sb were determined by atomic absorption spectrophotometry. Au was determined by fire assay/atomic absorption finish, in part by Acme Analytical Laboratories, Vancouver, B.C.

Rock-chip samples collected in 1991 (samples 120 to 243) were processed as above and analyzed by the Analytical Sciences Laboratory for Ag, Cu, Pb, Zn and Cd by atomic absorption spectrophotometry. In addition, Au, Mo, As and Sb were determined by neutron activation by Actlabs, Ancaster, Ontario; samples for which large gold concentrations were encountered were re-analysed by classic fire assay and atomic absorption finish by Chemex Laboratories Limited, North Vancouver, B.C.

All elements are expressed in parts per million, except gold which is in parts per billion. Detection limits are as follows:

Element	Method	Detection Limit (ppm)						
Au (1986)	fa/aas	17 (daa)						
Au (1987)	fa/aas	20 (ppb)						
Au (1988)	fa/aas	1 (ppb)						
Au (1991)	na	5 (ppb)						
Au (1991)	fa/aas	1 (pph)						
Ag (1986)	aas	0.6						
Ag (1987)	aas	0.5						
Ag (1991)	aas	0.5 (samples 120-158)						
Ag (1991)	aas	0.4 (samples 159-243)						
Cu	aas	2						
Pb (1986-88)	aas	5						
Pb (1991)	aas	4						
Zn	aas	2						
Mo (1986-88)	aas	5						
Mo (1991)	na	5						
Cd	aas	0.5						
As (1986)	aas	20						
As (1988)	aas	50						
As (1991)	na	2						
Sb (1986)	aas	5						
Sb (1991)	na	0.2						

fa/aas = fire assay/ atomic absorption spectrophotometry, na = neutron activation.

·

.

ROCK (FLOAT) IFF ROCK ROCK ROCK ROCK C SCHIST (MAL)
IFF ROCK ROCK ROCK CSCHIST (MAL)
JFF ROCK ROCK ROCK SCHIST (MAL)
ROCK ROCK ROCK SCHIST (MAL)
ROCK ROCK SCHIST (HAL)
ROCK SCHIST (MAL)
(MAL)
(HAL)
(HAL)
AT)
ROCK
ROCK
C SCHIST
(CPY, MAL)
VEIN
TIC SCHIST

46	93L15:PD87-388-2	639065 60882181	901	-0.51	3.001	8.001	32.00	·	•	•	•	QUARTZ VEIN
47	93L 151PD87-402	633715 60880091	- 201	2.0	20.00	93.00	38.00	•	•	•	•	PYRITIC SCHIST
48	93L15 P087-403-2	633344160881191	- 201	0.8	13.00	52.001	47.00	-	•	•	•	PYRITIC ANDESITE
49	93L 15 P087-403-3	633344 6088119	- 201	0.5	2.001	12.00	12.00	-	·	•	•	SILICIC ANDESITE
50	93L15 P087-404	633214 6087767	- 20	0.6	15.001	33.00	63.00	•	•	•	•	PYRITIC SCHIST
51	93L15 P087-405-2	633118/6087805/	-201	-0.5	2.00	10.00	3.00	-	•	-	•	SILICIC VOLCANIC ROCK
52	93L15 P087-409	632768 6087284	-20	-0.5	9.001	10.00	90.00	- 1	·	•	•	PYRITIC SCHIST
53	93L 15 P087-410	632642 60871111	-201	-0.5	28.00	12.001	112.00	•	•	•	•	ALTERED PYRITIC ANDESITE
54	93L15 PD87-411	632430 6086713	- 201	-0.5	15.00	12.00	22.00	•	•	•	•	LIMONITIC SCHIST
55	93L15 P087-412	632312 6086482	-201	-0.5	11.00	15.001	56.00	•	•	•	•	ALTERED BASALT
56	93L 15 PD87-413-1	632212 60863031	-201	-0.5	13.00	12.00	47.00	•	•	•	•	QUARTZ VEIN
57	93L15 P087-413-2	632212 6086303	-201	-0.5	10.00	12.00	214.00	•	•			SERICITIC/LIMONITIC SCHIST
58	93L15 P087-421-4	630400160882001	- 201	-0.5	24.00	22.001	155.00	18	•	· · ·	-	LIMONITIC SCHIST
59	93L15 P087-421-6	630400160882001	-201	-0.5	21.00	12.00	36.00	-5	•	· ·	•	LINOWITIC SCHIST
60	93L15 P0421-7	630400 60882001	-201	-0.5	8.00	11.001	25.00	5	•			LINOWITIC SCHIST
61	93L15 P087-421-8	630400 60882001	- 201	-0.5	12.00	18.00	52.00	-5	•	· · · ·	•	LIMONITIC SCHIST
62	93L15 P087-425	631000160889001	·201	-0.5	13.00	13.00	42.00	-5	•	•	•	PYRITIC SCHIST
63	93L15 P087-426	631700/6089300/	- 201	-0.5	15.00	11.00	39.00	-5	•		•	PYRITIC SCHIST
64	93L 15 PD87-428-3	633878 6090672	-201	-0.5	26.001	13.001	84.00	-5	•		•	LIMONITIC SCHIST
65	93L 15 PO87-429-1	633879 60906091	·20	-0.5	41.001	101.00	141.00	5	•	· · ·	•	LINOWITIC SCHIST
66	93L151PD87-458-4	631969 6094 379	- 201	-0.5	19.001	19.001	63.00	-5	•	· · ·	•	PYRITIC SCHIST
67	93L15 PD87-459	631913 60942331	-201	-0.5	35.00	19.00	54.00	-5	•		•	QUARTZ VEIN
68	93L15 P087-460-2	631888 6094 163	- 201	-0.5	31.001	12.00	81.00	8	•		•	ALTERED TUFF
69	93L15 P087-480	629380160871491	- 201	-0.5	15.00	16.001	80.00	5	•	· · ·	•	ALTERED TUFF
70	93L15 PD87-484-2	630103 60901501	- 20	1.0	6.00	130.00	70.00	-5	•		•	QUARTZ VEIN
71	93L151P087-484-4	630103 6090150	- 20	0.5	21.00	47.00	135.00	5	•	- 1	•	PYRITIC SILTSTONE
72	93L15 PD87-489	635695 60853731	- 20	-0.5	19.00	16.00	54.00	9	•	- 1	•	LINCHITIC SCHIST
73	93L15 P087-491-2	635832 6084936	- 201	-0.5	21.00	10.00	76.00	-5	•		•	ALTERED TUFF
74	93L15 PD87-506-4	636379 6087668	- 201	-0.5	4.00	13.001	105.00	6	·	1	•	ALTERED ANDESITE
75	93L15/PD87-506-5	636379 60876681	- 20	-0.5	3.00	9.001	32.00	15	•		•	ALTERED VOLCANIC ROCK (FLOAT)
76	93L15 P087-510-2	636838160865201	- 201	-0.5	7.001	73.001	19.00	6	•	1 1	•	LINCHITIC SCHIST
77	93L 15 PD87-510-3	636838 60865201	- 20	-0.5	33.00	12.00	58.00	-5	•	. 1	•	LINONITIC SCHIST
78	93L 151P087-514	636319 60861981	1201	-0.5	7.001	54.00	21.00	5	•	1 .	•	SILICIC VOLCANIC ROCK
79	93L 15 P087-533-2	640757 6088258	-20	1.0	90.00	29.001	240.00	-5	· ·		•	ALTERED RHYOLITE
80	93L15 P087-539-3	639910160865281	1410	2.01	59.00	15.001	79.00	-5	•		•	PY-RHYOLITE (RHYOLITE SHOWING)
81	93L 15 PD87-539-4	639910160865281	4320	2.01	37.00	25.00	90.00	-5	•	1 . 1	•	PY SCHIST (RHYOLITE SHOWING)
82	93L15 P087-545-1	636365 60924121	- 201	0.5	51.00	12.00	102.00	-5		1 . 1	•	SERICITIC/PYRITIC SCHIST
83	93L 15 P087-545-4	636258 6092297	- 201	-0.5	38.00	:6.00	78.00	8	•	1 . 1	•	LINONITIC SCHIST
84	93L15 PD87-545-5	636258 60922971	- 201	-0.5	35.001	18.00	110.00	-5	•	1 . 1	•	LINONITIC SCHIST
85	93L 15 PD87-560	641142 6085644	-201	-0.51	4.00	17.00	226.00	.5	•	1 . 1	•	QUARTZ VEIN
86	93L 15 P087-570	642173 60842811	- 20	0.5	23.00	27.00	75.00	-5	•	1 . 1	•	LINCHITIC SCHIST
87	93L 15 P087-583-4	640223 6084971	-201	.0.5	5.00	-5.001	16.00	•5		1 . 1	•	LINCHITIC SCHIST
88	93L 14 DHA88-14-2	627159 60893431	1	0.5	8.00	13.00	10.00	•		-50.0	-15.0	QUARTZ VEIN
	1	17334331700331		60.0	284 00	5100 00	5900 001			1100 0	320 0	CHARTZ VETH CAC SHOULACS
89	193L14 DRA88-17	1027233100878471	12101	29.01	200.001	3100.001	2700.001	-	-	1 100.01		
	931 15 OMA88-44	643885 60794681	211	-0.5	30.00	54.00	310.00	• 6			·25.0	ALTERED VOLCANIC ROCK

92	93L14 MCU88-3	627111 609022	6 1	-0.5	2.00	42.00	23.00	•	·	-50.0	•15.0	QUARTZ VEIN
93	93L 14 MCU88-4	627155 609123	1 1	-0.5	117.00	9.00	220.00	·	•	·50.0	-15.0	ALTERED VOLCANIC ROCK
94	931 14 NCU88-5	627212 609022	4 1	-0.5	3.00	7.00	12.00	•	•	-50.0	-15.0	QUARTZ VEIN
95	93H03 MCU88-6	626231 609721	1 8	-0.5	47.00	34.00	108.00	•	-	140.0	-15.0	SANDSTONE
96	93H03 HCU88-7	627243 609744	2 1	-0.5	37.00	17.00	80.00	•	•	-50.0	-15.0	SANDSTONE
97	93L 15 PDE88-2	642217 607757	2 3	-0.5	3.00	7.00	31.00	•	•	-50.0	-15.0	QUARTZ VEIN
98	93L 15 PDE88-3-1	643156 607846	6 1	-0.5	17.00	10.00	86.00	•	•	-50.0	-15.0	ALTERED VOLCANIC ROCK
99	93L15 PDE88-3-2	643885 607946	8 29	-0.6	12.00	9.00	87.00	•	-	•	•	SILTSTONE
100	93L15 PDE88-12-2	643884 608194	1 1	-0.5	59.00	5.00	148.00	•	•	-50.0	-15.0	ALTERED VOLCANIC ROCK
101	93L15 PDE88-19	644656 608280	8 2	-0.5	2.00	39.00	60.00	•	•	-50.0	-15.0	QUARTZ VEIN
102	93L 15 PDE88-86	643704 608876	1 1	-0.5	197.00	15.00	148.00	•	•	-50.0	-15.0	ALTERED VOLCANIC ROCK
103	93L15 PDE88-90-1	643087 608998	5 2	-0.5	34.00	29.00	218.00	•	•	-50.0	-15.0	ALTERED VOLCANIC ROCK
104	93L15 PDE88-96	643366 60905	1 2	-0.5	143.00	7.00	50.00	•	•	-50.0	-15.0	ALTERED VOLCANIC ROCK
105	93L15 PDE88-99	643854 609021	7 1	-0.5	7.00	15.00	138.00	•	•	-50.0	-15.0	ALTERED VOLCANIC ROCK
106	93L14 PDE88-166	626559 609062	3 2	+0.5	59.00	14.00	74.00	•	•	-50.0	-15.0	ALTERED VOLCANIC ROCK
107	93L14 PDE88-184	623637 60937	7 1	-0.5	22.00	13.00	77.00	·	•	-50.0	-15.0	SANDSTONE
108	93L14 POE88-190	622353 60939	5 1	-0.5	73.00	48.00	78.00	•	•	-50.0	-15.0	SANDSTONE
109	93L14 PDE88-192	622612 609420	3 2	-0.5	52.00	9.00	120.00	•	•	-50.0	-15.0	ALTERED VOLCANIC ROCK
110	93L14 PDE88-193	622656 60942	5 4	-0.5	150.00	165.00	253.00	•	·	72.0	-15.0	QUARTZ VEIN
111	93L14 PDE88-198	621528 60960	8 4	-0.5	26.00	17.00	82.00	•	•	-50.0	-15.0	SILTSTONE
112	93L14 PDE88-199	621497 60960	3 112	-0.5	17.00	24.00	68.00	-	•	-50.0	-15.0	QUARTZ VEIN
113	93L14 PDE88-209	620858 60949	23 2	-0.5	40.00	17.00	118.00	•	•	-50.0	-15.0	SILISTONE
114	93L14 PDE88-213	621133 60937	8 6	2.0	2300.00	17.00	248.00	•	•	-50.0	337.0	QUARTZ VEIN
115	93L15 PDE88-264-3	643503 60912	14	0.6	9.00	3.00	24.00	•	•	•	-25.0	TUFF
116	93L14 PTE88-129	620505 60917	51 -	1.0	14.00	60.00	33.00	•	•	-50.0	-15.0	QUARTZ VEIN
117	93L15 APE88-2	643885 60794	58 37	-0.6	3.00	5.00	27.00	•	•	•	•	SILTSTONE
118	93L15 APE88-3	643885 60794	58 33	-0.6	4.00	5.00	29.00	•	•	•	•	SILTSTONE
119	93L15 APE88-4	643885 60794	58 37	-0.6	5.00	7.00	147.00	•	•	•	•	SILTSTONE
120	93M02 BGA91-1	631158 60985	62 6	-0.5	19.00	7.00	60.00	-5	-0.3	8.0	5.5	ALTERED ANDESITE
121	93M02 BGA91-2	630995 60985	71 -5	-0.5	32.00	7.00	63.00	-5	-0.3	5.0	1.6	ALTERED ANDESITE
122	93H02 BGA91-3	631331 60984	70 -5	-0.5	28.00	3 00				7 01	0 4	I INCHITIC ANDESITE
123	93M02 8GA91-4					5.00	00.001	• > 1	-0.5	3.0	U.4	
124		631391 60984	19 -5	-0.5	8.00	11.00	131.00	-5	-0.3	9.0	14.0	ALTERED ANDESITE
	93H02 BGA91-5	631391 60984	19  -5 67  -5	-0.5	8.00	11.00	131.00	-5 -5 7	-0.3 0.4 0.4	9.0 25.0	14.0	ALTERED ANDESITE
125	93M02 BGA91-5 93M02 BGA91-6	631391 60984 631381 60986 631224 60988	19 -5 67 -5 38 5	-0.5 -0.5 -0.5	8.00 46.00 9.00	11.00 9.00 8.00	131.00 133.00 85.00	-5 -5 7 5	-0.3 0.4 0.4	9.0 9.0 25.0 10.0	14.0 0.6 19.0	ALTERED ANDESITE LINONITIC ANDESITE QUARTZ-VEINED ANDESITE
125	93H02 BGA91-5 93H02 BGA91-6 93H02 BGA91-7	631391 60984 631381 60986 631224 60988 631711 60982	19 -5 47 -5 38 5 03 -5	-0.5 -0.5 -0.5 -0.5	8.00 46.00 9.00 49.00	11.00 9.00 8.00 8.00	131.00 133.00 85.00 81.00	-5 -5 7 5 -5	-0.3 0.4 -0.3 -0.3	9.0 25.0 10.0 8.0	14.0 0.6 19.0 2.6	ALTERED ANDESITE LINONITIC ANDESITE QUARTZ-VEINED ANDESITE LINONITIC ANDESITE
125 126 127	93M02 BGA91-5 93M02 BGA91-6 93M02 BGA91-6 93M02 BGA91-7 93M02 BGA91-8	631391 60984 631381 60986 631224 60988 631711 60982 631711 60982	19 -5 47 -5 38 5 03 -5 03 -5	-0.5 -0.5 -0.5 -0.5	8.00 46.00 9.00 49.00 13.00	11.00 9.00 8.00 8.00 13.00	131.00 133.00 85.00 81.00 33.00	-5 -5 7 5 -5	-0.3 0.4 -0.3 -0.3 -0.3	3.0 9.0 25.0 10.0 8.0 4.0	14.0 0.6 19.0 2.6 1.6	ALTERED ANDESITE LIMONITIC ANDESITE QUARTZ-VEINED ANDESITE LIMONITIC ANDESITE ALTERED ANDESITE
125 126 127 128	93H02 BGA91-5 93H02 BGA91-6 93H02 BGA91-6 93H02 BGA91-7 93H02 BGA91-8 93H02 BGA91-9	631391 60984 631381 60986 631224 60988 631711 60982 631711 60982 631710 60982	19 -5 47 -5 38 5 03 -5 03 -5 03 -5 03 -5	-0.5 -0.5 -0.5 -0.5 -0.5 -0.5	8.00 46.00 9.00 49.00 13.00 24.00	11.00 9.00 8.00 13.00 12.00	88.00 131.00 133.00 85.00 81.00 33.00 50.00	-5 -5 7 5 -5 -5	-0.3 0.4 -0.3 -0.3 -0.3	3.0 9.0 25.0 10.0 8.0 4.0 8.0	14.0 0.6 19.0 2.6 1.6 2.3	AITERED ANDESITE LINONITIC ANDESITE QUARTZ-VEINED ANDESITE LINONITIC ANDESITE AITERED ANDESITE EPIDOTE-ALTERED ANDESITE
125 126 127 128 129	93H02 86A91-5 93H02 86A91-6 93H02 86A91-6 93H02 86A91-7 93H02 86A91-7 93H02 86A91-8 93H02 86A91-9 93H02 86A91-10	63139160984 63138160986 63122460988 63171160982 63171160982 63171160982 63171060982 63181860982	19 -5 47 -5 38 5 03 -5 03 -5 03 -5 17 -5	-0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5	8.00 46.00 9.00 13.00 24.00 27.00	11.00 9.00 8.00 13.00 12.00 8.00	88.00 131.00 133.00 85.00 81.00 33.00 50.00 72.00	-5 -5 7 -5 -5 -5 -5	-0.3 0.4 -0.3 -0.3 -0.3 -0.3 -0.3	3.0 9.0 25.0 10.0 8.0 4.0 8.0 3.0	14.0 0.6 19.0 2.6 1.6 2.3 0.5	AITERED AMDESITE LIMONITIC ANDESITE GUARTZ-VEINED ANDESITE LIMONITIC ANDESITE LIMONITIC ANDESITE ALTERED ANDESITE EPIDDTE-ALTERED ANDESITE MAKERITE-VEINED ANDESITE
125 126 127 128 129 130	93M02 BGA91-5 93M02 BGA91-6 93M02 BGA91-6 93M02 BGA91-7 93M02 BGA91-8 93M02 BGA91-9 93M02 BGA91-10 93M02 BGA91-11	631391 60984 631381 60986 631224 60988 631711 60982 631711 60982 631710 60982 631710 60982 631818 60982 631917 60982	19 -5 47 -5 58 5 03 -5 03 -5 03 -5 17 -5 44 -5	-0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5	8.00 46.00 9.00 13.00 24.00 27.00 6.00	11.00 9.00 8.00 13.00 12.00 8.00 12.00	88.00 131.00 133.00 85.00 81.00 33.00 50.00 72.00 132.00	-5 -5 7 5 -5 -5 -5 -5	-0.3 0.4 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3	3.0 9.0 25.0 10.0 8.0 4.0 8.0 3.0 9.0	14.0 0.6 19.0 2.6 1.6 2.3 0.5 33.0	ALTERED AMDESITE LIMONITIC AMDESITE CULARTZ-VEINED AMDESITE LIMONITIC AMDESITE LIMONITIC AMDESITE ALTERED AMDESITE EPIDOTE-ALTERED AMDESITE QTZ-ANK VEINED AMDESITE
125 126 127 128 129 130 131	93H02   BGA91 - 5 93H02   BGA91 - 6 93H02   BGA91 - 6 93H02   BGA91 - 7 93H02   BGA91 - 8 93H02   BGA91 - 10 93H02   BGA91 - 11 E3H02   BGA91 - 12	631391 60984 631381 60986 631224 60988 631711 60982 631711 60982 631711 60982 631710 60982 631818 60982 631917 60982 632048 60982	19 -5 47 -5 58 5 53 -5 53 -5 53 -5 53 -5 53 -5 53 -5 53 -5 54 -5 81 -5	-0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5	8.00 46.00 9.00 13.00 24.00 27.00 6.00 12.00	11.00 9.00 8.00 13.00 12.00 8.00 12.00 12.00 11.00	88.00 131.00 133.00 85.00 81.00 33.00 50.00 72.00 132.00 145.00	-5 -5 7 5 -5 -5 -5 -5 -5	-0.3 0.4 0.4 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 0.3	3.0 9.0 25.0 10.0 8.0 4.0 8.0 3.0 9.0 2.0	14.0 0.6 19.0 2.6 1.6 2.3 0.5 33.0 1.9	LINONITIC ANDESITE LINONITIC ANDESITE QUARTZ-VEINED ANDESITE LINONITIC ANDESITE LINONITIC ANDESITE ALTERED ANDESITE EPIDDTE-ALTERED ANDESITE ANKERITE-VEINED ANDESITE QT2-ANK VEINED ANDESITE LINONITIC ANDESITE
125 126 127 128 129 130 131 132	93402   BGA91 - 5 93402   BGA91 - 6 93402   BGA91 - 6 93402   BGA91 - 8 93402   BGA91 - 8 93402   BGA91 - 10 93402   BGA91 - 11 E3402   BGA91 - 13 93402   BGA91 - 13	631391 60984 631381 60986 631224 60988 631711 60982 631711 60982 631710 60982 631710 60982 631917 60982 631917 60982 632048 60982 632033 60983	19 -5 47 -5 38 5 03 -5 03 -5 03 -5 17 -5 44 -5 81 -5 57 -5	-0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5	8.00 46.00 9.00 13.00 24.00 27.00 6.00 12.00 122.00	3.00 11.00 9.00 8.00 13.00 12.00 8.00 12.00 11.00 14.00	88.00 131.00 133.00 85.00 81.00 33.00 50.00 72.00 132.00 145.00 52.00	-5 -5 7 5 -5 -5 -5 -5 -5 -5 -5 -5	-0.3 0.4 0.4 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 1.7	3.0 9.0 25.0 10.0 4.0 8.0 3.0 9.0 2.0 5.0	14.0 0.6 19.0 2.6 1.6 2.3 0.5 33.0 1.9 5.1	AITERED AMDESITE AITERED AMDESITE UIMARTZ-VEINED ANDESITE UIMARTIC ANDESITE LIMONITIC ANDESITE EPIDDTE-ALTERED ANDESITE EPIDDTE-ALTERED ANDESITE OTZ-ANK VEINED ANDESITE LIMONITIC ANDESITE LIMONITIC ANDESITE
125 126 127 128 129 130 131 132 133	93H02 BGA91-5 93H02 BGA91-6 93H02 BGA91-6 93H02 BGA91-8 93H02 BGA91-8 93H02 BGA91-8 93H02 BGA91-10 93H02 BGA91-11 E3H02 BGA91-12 93H02 BGA91-13 93H02 BGA91-13	631391 60984 631381 60986 631224 60988 631711 60982 631711 60982 631711 60982 631818 60982 631818 60982 631917 60982 632048 60982 632048 60982 632033 60983 632077 60984	19 -5 47 -5 38 5 03 -5 03 -5 03 -5 17 -5 44 -5 81 -5 57 -5 90 -5	-0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5	8.00 46.00 9.00 13.00 24.00 27.00 6.00 122.00 6.00	11.00 9.00 8.00 13.00 12.00 12.00 12.00 12.00 11.00 14.00 8.00	83.00 131.00 133.00 85.00 81.00 33.00 50.00 72.00 132.00 132.00 145.00 52.00 58.00	-5 -5 7 -5 -5 -5 -5 -5 -5 -5 -5 -5	-0.3 0.4 0.4 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3	9.0 9.0 10.0 8.0 4.0 8.0 3.0 9.0 2.0 5.0 6.0	14.0 0.6 19.0 2.6 1.6 2.3 0.5 33.0 1.9 5.1 14.0	ALTERED AMDESITE LIMONITIC AMDESITE GUARTZ-VEINED ANDESITE LIMONITIC AMDESITE LIMONITIC AMDESITE ALTERED ANDESITE ALTERED ANDESITE EPIDOTE-ALTERED ANDESITE GTZ-ANK VEINED ANDESITE GTZ-ANK VEINED ANDESITE LIMONITIC AMDESITE LIMONITIC AMDESITE CHORTIC AMDESITE
125 126 127 128 129 130 131 132 133 134	93H02 BGA91-5 93H02 BGA91-6 93H02 BGA91-7 93H02 BGA91-7 93H02 BGA91-7 93H02 BGA91-9 93H02 BGA91-9 93H02 BGA91-10 93H02 BGA91-11 93H02 BGA91-13 93H02 BGA91-15 93H02 BGA91-15	631391 60984 631381 60986 631224 60988 631711 60982 631711 60982 631711 60982 631710 60982 631710 60982 631917 60982 632048 60982 632048 60982 632033 60984 632037 60984 631983 60984	19         -5           4.7         -5           38         5           03         -5           03         -5           17         -5           81         -5           57         -5           90         -5           577         5	-0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5	8.00 46.00 9.00 13.00 24.00 27.00 6.00 122.00 6.00 57.00	11.00 9.00 8.00 13.00 12.00 12.00 12.00 12.00 12.00 11.00 14.00 8.00 10.00	88.00 131.00 133.00 85.00 81.00 33.00 50.00 72.00 132.00 145.00 52.00 58.00 112.00	-5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -	-0.3 0.4 0.4 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3	3.0 9.0 25.0 10.0 8.0 4.0 8.0 3.0 9.0 5.0 5.0 6.0 4.0	14.0 0.6 19.0 2.6 1.6 2.3 0.5 33.0 1.9 5.1 14.0 0.6	AITERED AMDESITE LIMONITIC ANDESITE LIMONITIC ANDESITE LIMONITIC ANDESITE AITERED ANDESITE EVIDOTE-ALTERED AMDESITE ANKERITE-VEINED ANDESITE ANKERITE-VEINED ANDESITE LIMONITIC ANDESITE LIMONITIC ANDESITE CHLORITIC ANDESITE LIMONITIC ANDESITE LIMONITIC ANDESITE LIMONITIC ANDESITE
125 126 127 128 129 130 131 132 133 134 135	93H02   BGA91 - 5 93H02   BGA91 - 6 93H02   BGA91 - 6 93H02   BGA91 - 8 93H02   BGA91 - 8 93H02   BGA91 - 8 93H02   BGA91 - 8 93H02   BGA91 - 11 93H02   BGA91 - 12 93H02   BGA91 - 14 93H02   BGA91 - 15 93L 15   BGA91 - 15	(33) 1591 (60984) (53) 1381 (60986) (53) 1224 (60988) (53) 1271 (60982) (53) 1711 (60982) (53) 1711 (60982) (53) 1818 (6	19         -5           47         -5           38         5           03         -5           03         -5           17         -5           44         -5           81         -5           57         -5           90         -5           577         5           36         10	-0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5	8.00 46.00 9.00 13.00 24.00 27.00 6.00 12.00 6.00 57.00 12.00	11.00 9.00 8.00 13.00 12.00 12.00 11.00 14.00 14.00 8.00 10.00 18.00	83.00 131.00 133.00 85.00 81.00 35.00 50.00 72.00 132.00 145.00 52.00 58.00 112.00	-5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -	-0.3 0.4 0.4 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3	3.0 9.0 25.0 10.0 8.0 4.0 8.0 3.0 9.0 2.0 5.0 6.0 6.0 4.0 16.0	0.4           14.0           0.6           19.0           2.6           1.6           2.3           0.5           33.0           1.9           5.1           14.0           0.6           33.0           1.9           5.1           14.0           0.6           3.1	LINGHILG ANDESITE LINGHILG ANDESITE GUARTZ-VEINED ANDESITE LINGHILG ANDESITE LINGHILG ANDESITE EPIDDTE-ALTERED ANDESITE EPIDDTE-ALTERED ANDESITE GIZ-ANK VEINED ANDESITE LINGHILG ANDESITE LINGHILG ANDESITE LINGHILG ANDESITE LINGHILG ANDESITE LINGHILG ANDESITE LINGHILG SCHIST
125 126 127 128 129 130 131 132 133 134 135 136	93H02 BGA91-5 93H02 BGA91-6 93H02 BGA91-6 93H02 BGA91-8 93H02 BGA91-8 93H02 BGA91-18 93H02 BGA91-19 93H02 BGA91-11 E3H02 BGA91-11 93H02 BGA91-13 93H02 BGA91-15 93H02 BGA91-15 93L15 BGA91-17	(3339) (6094) (53138) (60986) (531224 (60988) (531224 (60988) (531271 (60982) (531711 (60982) (531710 (60982) (531917 (60982) (532037) (60984) (532037) (60984) (532037) (60984) (536078) (60864) (536078) (60864)	191         -5           477         -5           388         5           031         -5           033         -5           031         -5           177         -5           441         -5           811         -5           577         -5           364         10           995         -5	-0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5	8.00 46.00 9.00 13.00 26.00 27.00 6.00 12.00 122.00 57.00 57.00 12.00 17.00	11.00 9.00 8.00 13.00 12.00 12.00 11.00 14.00 8.00 10.00 10.00 15.00	85.00 131.00 133.00 85.00 81.00 50.00 72.00 132.00 145.00 52.00 58.00 112.00 12.00 25.00	-5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -	-0.3 0.4 0.4 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 1.7 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3	3.0 9.0 25.0 10.0 8.0 4.0 3.0 9.0 2.0 5.0 6.0 4.0 4.0 16.0 12.0	0.4           14.0           0.6           19.0           2.6           1.6           2.3           0.5           33.0           1.9           5.1           16.0           0.6           3.1	ALTERED AMDESITE LIMONITIC AMDESITE CULARTZ-VEINED ANDESITE LIMONITIC AMDESITE LIMONITIC AMDESITE ALTERED ANDESITE EPIDOTE-ALTERED ANDESITE GTZ-ANK VEINED ANDESITE CHLORITIC AMDESITE LIMONITIC AMDESITE CHLORITIC AMDESITE LIMONITIC AMDESITE LIMONITIC AMDESITE LIMONITIC SCHIST SERICITIC/PYRITIC SCHIST
125 126 127 128 129 130 131 132 133 134 135 136 137	93H02 BGA91-5 93H02 BGA91-6 93H02 BGA91-7 93H02 BGA91-7 93H02 BGA91-7 93H02 BGA91-9 93H02 BGA91-9 93H02 BGA91-10 93H02 BGA91-11 E3H02 BGA91-12 93H02 BGA91-13 93H02 BGA91-15 93H02 BGA91-16 93L15 BGA91-17 93L15 BGA91-17	(3) 3391 (6094) (3) 331 (6096) (3) 324 (60985) (3) 324 (60985) (3) 1711 (60922) (3) 1711 (60922) (3) 1711 (60922) (3) 1710 (60982) (3) 1818 (60982) (3) 2033 (60982)	191         -5           471         -5           381         5           031         -5           031         -5           031         -5           171         -5           44         -5           571         -5           571         5           571         5           36         100           951         -5           301         -5	-0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5	8.00 46.00 9.00 13.00 24.00 27.00 6.00 122.00 6.00 57.00 12.00 17.00 8.00	11.00 9.00 8.00 13.00 12.00 12.00 11.00 14.00 14.00 16.00 18.00 15.00 7.00	85.00 131.00 133.00 85.00 81.00 33.00 50.00 72.00 132.00 145.00 145.00 112.00 12.00 12.00 12.00 14.00	-5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -	-0.3 0.4 0.4 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3	3.0 9.0 25.0 10.0 8.0 8.0 3.0 9.0 2.0 5.0 6.0 4.0 16.0 12.0 9.0	0.4           14.00           0.6           19.0           2.6           2.3           0.5           33.0           1.9           5.1           16.0           0.6           33.0           1.9           5.1           16.0           0.6           3.10           1.9           5.1           1.5           1.9	LINGHILD ANDESITE LINGHITIC ANDESITE LINGHITIC ANDESITE LINGHITIC ANDESITE LINGHITIC ANDESITE ALTERED ANDESITE EPIDOTE-ALTERED ANDESITE EPIDOTE-ALTERED ANDESITE LINGHITIC ANDESITE LINGHITIC ANDESITE LINGHITIC ANDESITE LINGHITIC ANDESITE LINGHITIC ANDESITE LINGHITIC SCHIST SERICITIC/PYRITIC SCHIST LINGHITIC SCHIST

.

138	93L15(BGA91-19	636432160861311	-51	-0.5	14.001	10.00	168.001	-51	-0.3	25.0	5.0 PYRITIC SCHIST
139	93L15 BGA91-20	636419160860471	-5	-0.51	2.00	7.00	13.001	-5	0.3	5.0	1.1 LINONITIC QUARTZ VEIN
140	93L15 8GA91-21	636424160860451	-51	-0.51	16.00	9.00	49.00	-5	-0.3	6.0	3.5 SERICITE SCHIST
141	93L15 BGA91-22	636476 6085986	-5	-0.5	24.00	15.00	19.00	-5	-0.3	10.0	6.1 PYRITIC SCHIST
142	93L 15 BGA91-23	636345 60858871	-5	-0.5	21.00	10.00	30.001	-5	-0.3	31.0	2.3 PYRITIC SCHIST
143	93L15 BGA91-24	636290 60858981	-5	-0.5	35.00	35.00	49.001	5	-0.3	34.01	6.0 PYRITIC SCHIST
144	93L 15 BGA91-25	634341 6085951	-5	-0.5	4.00	3.00	8.00	-5	0.4	15.01	1.0 QUARTZ VEIN
145	93L15 BGA91-26	633932 60859501	-5	-0.5	14.00	15.00	93.001	-5	-0.3	15.0	0.9 LIMONITIC SCHIST
146	93L 15 BGA91-27	633892 6085838	-5	-0.5	12.00	5.00	34.00	-5	-0.3	15.0	8.1 LINONITIC SCHIST
147	93L15 BGA91-28	633984 60858001	-5	-0.51	19.00	7.00	22.00	-5	-0.3	5.0	1.8 LIM-ANK QUARTZ VEIN
148	93L15 BGA91-29	634040160857941	12	-0.5	20.00	7.00	61,00	-5	-0.3	14.0	2.4 LINONITIC SCHIST
149	93L 15 BGA91-30	634145 6085734	-5	-0.5	39.001	21.00	136.001	.5	-0.3	27.0	8.8 LIMONITIC SCHIST
150	93L15 8GA91-31	634269 6085957	-5	-0.5	9.00	9.00	20.00	-5	-0.3	23.0	1.7 LINONITIC-SILICIC SCHIST
. 151	93L15 8GA91-32	634214 6085731	-5	-0.5	9.00	7.00	33.00	-51	-0.3	6.0	4.4 LINONITIC-SILICIC SCHIST
152	93L15 8GA91-33	634290 6085828	-5	0.7	9.00	240.00	76.00	-5	-0.3	38.0	6.4 BLEACHED PHYLLITE
153	931 15 8GA91-34	634378 60858681	-5	-0.51	7.00	-3.00	16.00	-5	-0.3	13.0	0.5 LINONITIC QUARTZ VEIN
154	93L15 8GA91-35	634412 60858371	-5	-0.51	11.00	25.00	50.00	-5	-0.3	44.0	6.2 LINONITIC SCHIST
155	93L15 8GA91-36	634488 6085838	-5	-0.5	28.00	25.00	65.001	-5	-0.3	59.01	4.7 LINONITIC SCHIST
156	93L15 8GA91-37	634569160857941	-5	-0.5	11.00	16.00	166.00	-5	-0.3	47.0	3.4 LINONITIC-SILICIC PHYLLITE
157	93H02 8GA91-38	631508 6096903	26	-0.51	12.00	18,001	68.001	-51	-0.3	23.0	3.8 SILICIC ANDESITE
158	93H02 BGA91-39	630785 61000801	-5	-0.5	17.00	6.00	46.001	-5	-0.3	4.0	0.9 CARBONATE ALTERED ANDESTTE
159	93L15 8GA91-40	634835 60877781	8	0.41	16.00	23,00	170.00	-51	-0.3	26.0	2.9 LINONITIC ANDESITE
160	93L15 BGA91-41	634733 6087833	-5	-0.41	10.00	6.00	11.00	-5	0.3	7.0	1.1 QUARTZ VEIN (SPEC)
161	93L15 BGA91-42	634735 6087832	-5	-0.41	12.00	3.00	193.00	-51	3.4	8.0	1.6 QUARTZ VEIN (SPEC)
162	93L15 BGA91-43	634721 60878341	- 5	-0.4	11.00	3.00	10.00	-51	0.3	8.0	1.1 QUARTZ VEIN (SPEC)
163	93L15 BGA91-44	633948 6087892	11	16.01	564.00	15900.00	370.00	-5	13.0	11.0	12.0 SILVER KING LAKE SHOWING/VEIN
164	93L 15 BGA91-45	633879 60879431	-5	-0.41	18.00	21.00	41.00	-5	-0.3	37.0	1.7 LINONITIC SCHIST
165	93L15 BGA91-46	633850 60878851	-5	-0.4	14.00	9.00	40.00	-5	0.3	36.0	2.1 LINONITIC SCHIST
166	93L 15 BGA91-47	633779 60878691	-5	0.4	20.00	12.00	59.001	-5	-0.3	72.0	2.4 LINONITIC/PYRITIC SCHIST
167	93L 15 BGA91-48	633891 6088163	-5	1.3	17.00	11.00	15.00	7	-0.3	53.01	5.0 PYRITIC RHYOLITE
168	93L15 BGA91-49	633891160881631	-5	-0.41	19.00	12.00	17.00	8	-0.3	35.0	3.1 PYRITIC RHYOLITE
169	93L 15 BGA91-50	633787160879501	-5	0.41	34.00	15.001	13.00	-5	-0.3	120.0	1.5 PYRITIC/LINONITIC ANDESITE
170	93L15 BGA91-51	633700 60879861	-51	1.2	24.00	17.00	10.00	91	.0.3	230.01	5.1LINONITIC SCHIST
171	93L 15 BGA91-52	633214 60878811	-5	-0.4	17.00	5.00	107.00	-5	-0.3	170.01	1.3 PYRITIC/LINONITIC ANDESITE
172	93L15 BGA91-53	633876 60879571	-5	-0.4	21.00	-3.00	83.00	-5	-0.3	10.01	0.7 RIBBONED QUARTZ VEIN
173	93L15 BGA91-54	632725 60872421	-5	-0.41	25.00	14.001	69.00	-5	-0.3	28.0	1.9 SERICITE-CHLORITE SCHIST
174	93L15 BGA91-55	63262616087143	-5	-0.4	20.00	9.00	140.001	-5	-0.3	34.01	4.8ICHLORITE-SERICITE SCHIST
175	93L15 BGA91-56	632677 60870831	9	-0.41	16.00	8.00	100.00	-51	-0.3	62.0	11.0 PYRITIC ANDESITE
176	93L15 BGA91-57	632629160867511	-5	-0.4	16.00	9.00	70.00	-5	-0.3	28.01	1.2 PYRITIC SCHIST
177	93L 15 BGA91-58	632597 60866981	-5	-0.41	22.00	8.00	86.00	-5	-0.3	23.0	1.3 PYRITIC SER-CHLOR SCHIST
178	93L 15 8GA91-59	632472 60864 30	-5	-0.41	9.00	11.00	7.00	-51	-0.3	22.0	3.0 PYRITIC SERICITE SCHIST
179	93L15 BGA91-60	632486 6086351	-5	-0.4	19.00	8.00	84.00	-5	-0.3	21.0	1.7 PYRITIC SERICITE SCHIST
180	93L 15 8GA91-61	634406 6092181	-5	-0.4	25.00	8.00	41.00	5	-0.3	17.0	0.6 SILICIC ANDESITE
181	93L 15 BGA91-62	634399 60920901	5	-0.4	1700	8.00	62.00	-5	-0.3	4.0	-0.2 SILICIC ANDESITE
182	93L 15 BGA91-63	634054 6092575	-5	-0.4	25.00	11.00	51.00	-5	-0.3	3.01	0.3 SILICIC ANDESITE
183	93L 15 BGA91-64	633673 6092915	-5	-0.4	68.00	11.00	110.00	-5	-0.3	8.0	0.4 SILICIC ANDESITE

•

184	93L15 BGA91-65	633518	6092959	-5	-0.4	24.00	8.00	60.00	-5	-0.3	18.0	2.3	SILICIC ANDESITE
185	93L15 8GA91-66	639757	6081859	8	-0.4	18.00	8.00	90.00	-5	-0.3	. 5.0	1.5	PYRITIC ANDESITE
186	93L 15 BGA91-67	639870	6081851	-5	-0.4	47.00	14.00	225.00	•5	4.1	3.0	0.7	RIBBONED QUARTZ VEIN
187	93L15 BGA91-68	639921	6081862	-5	-0.4	17.00	5.00	44.00	-5	-0.3	2.0	0.8	LINOWITIC QUARTZ VEIN
188	93L 15 BGA91-69	639981	6081885	-5	-0.4	14.00	5.00	36.00	-5	0.3	-2.0	1.6	LINOWITIC QUARTZ VEIN
189	93L 15 8GA91-70	640046	6081934	-5	-0.4	8.00	8.00	54.00	-5	-0.3	4.0	0.9	LINONITIC QUARTZ VEIN
190	93L 15 8GA91-71	640090	6081979	-5	-0.4	5.00	9.00	28.00	-5	0.3	2.0	1.4	LINONITIC QUARTZ VEIN
191	93L 15 8GA91-72	640119	6082007	-5	-0.4	18.00	17.00	35.00	-5	-0.3	10.0	1.7	LINONITIC QUARTZ VEIN
192	93L 15 BGA91-73	640313	6082042	-5	0.4	19.00	18.00	163.00	-5	1.0	3.0	3.9	LINONITIC SCHIST
193	93L15 BGA91-74	640522	6082037	5	10.0	66.00	4050.00	3800.00	-5	22.0	8.0	220.0	74-77 LITTLE JOE LAKE S VEINS
194	93L15 BGA91-75	640521	6082031	-5	0.4	16.00	18.00	163.00	-5	0.6	-2.0	20.0	QUARTZ VEIN
195	93L 15 BGA91-76	640521	6082032	- 12	32.0	163.00	25300.00	1350.00	-5	10.0	-2.0	1400.0	QUARTZ VEIN
196	93L 15 BGA91-77	640522	6082034	-5	0.6	4.00	16.00	39.00	-5	-0.3	3.0	2.5	QUARTZ VEIN
197	93L15 8GA91-78	640246	6082036	-5	-0.4	20.00	15.00	60.00	-5	-0.3	14.0	1.9	QUARTZ VEIN
198	93L15 BGA91-79	640356	6082007	-5	-0.4	16.00	39.00	66.00	-5	0.5	-2.0	2.3	LIMONITIC QUARTZ VEIN
199	93L15 8GA91-80	640387	6082013	-5	-0.4	3.00	27.00	23.00	.5	0.3	-2.0	1.7	LIMONITIC QUARTZ VEIN
200	93L15 8GA91-81	640414	6082028	-5	-0.4	3.00	11.00	15.00	-5	0.3	3.0	1.5	LIMONITIC QUARTZ VEIN
201	93L15 BGA91-82	640471	6082032	-5	-0.4	11.00	19.00	71.00	-5	-0.3	4.0	4.2	82-90 LITTLE JOE LAKE S VEINS
202	93L 15 8GA91-83	640515	6082028	-38	17.0	413.00	18300.00	10700.00	-7	60.0	110.0	4100.0	QUARTZ VEIN
203	93L 15 8GA91-84	640516	6082030	• 36	28.0	73.00	18000.00	2650.00	-9	22.0	-8.0	5600.0	QUARTZ VEIN
204	93L 15 8GA91-85	640575	6082018	-5	-0.4	4.00	15.00	34.00	-5	-0.3	4.0	2.1	QUARTZ VEIN
205	93L 15 8GA91-86	640575	6082018	12	0.6	15.00	30.00	83.00	10	0.5	15.0	3.1	QUARTZ VEIN
206	931 15 8GA91-87	640575	6082018	.5	0.4	19.00	63.00	70.00	-5	0.4	4.0	1.7	QUARTZ VEIN
207	93L15 8GA91-88	640573	6082017	-5	0.4	53,00	66.00	22.00	-5	0.3	3.0	3.4	QUARTZ YEIN
208	93L15 8GA91-89	640573	6082017	-5	-0.4	3.00	66.00	57.00	-5	0.3	-2.0	2.3	QUARTZ VEIN
209	93L15 BGA91-90	640516	6082034	-5	95.0	112.00	82500.00	1400.00	•5	11.0	-2.0	580.0	QUARTZ YEIN
210	93L15 BGA91-91	641351	6081206	-2	0.4	2.00	5.00	10.00	2	-0.3	1.0	0.3	LINONITIC QUARTZ VEIN
211	93L15 BGA91-92	641348	6081205	-2	-0.4	3.00	6.00	29.00	1	-0.3	6.5	1.0	PYRITIC RHYOLITE
212	93L15 8GA91-93	641265	6081092	-2	-0.4	3.00	5.00	26.00	3	-0.3	1.5	0.4	RIBBONED QUARTZ VEIN
213	93L15 BGA91-94	641143	6080872	-2	-0.4	5.00	15.00	33.00	2	-0.3	10.0	2.1	QUARTZ VEIN
214	93L15 BGA91-95	640697	6082011	26	11.0	53.00	6000.00	3550.00	4	31.0	2.9	8.7	95-103 LITTLE JOE LAKE S VEINS
215	93L15 BGA91-96	640697	6082011	15	6.0	110.00	1800.00	34000.00	-1	300.0	2.0	6.7	QUARTZ VEIN
216	93L15 BGA91-97	640694	6082012	-2	0.4	9.00	228.00	98.00	4	1.5	2.1	2.7	QUARTZ VEIN
217	93L 15 BGA91-98	640705	6081949	-2	2.0	10.00	687.00	470.00	-1	3.0	1.9	5.6	QUARTZ VEIN
218	93L15 BGA91-99	640706	6081950	2	6.0	36.00	869.00	1200.00	-1	3.7	18.0	0.0	QUARTZ VEIN
219	93L 15 BGA91-100	640706	6081950	5	3.5	69.00	168.00	730.00	-1	2.9	6.1	40.0	QUARTZ VEIN
220	93L15 BGA91-101	640705	6081950	.2	-0.4	3.00	20.00	135.00	2	1.0	5.1	2.6	QUARTZ VEIN
221	93L15 8GA91-102	640706	6081951	2	1.4	7.00	38.00	.43.00	-1	0.3	5.7	5.0	QUARTZ VEIN
222	93L15 8GA91-103	640718	6081944	52	26.01	337.00	2500.00	26000.00	3	140.0	77.0	110.0	QUARTZ VEIN
223	93L 15 BGA91-104	639844	6086250	4	-0.4	24.00	5.00	133.00	3	0.3	7.8	0.4	QUARTZ VEIN
224	93L15 BGA91-105	639843	6086250	23	-0.4	4.00	3.00	47.00	-1	-0.3	310.0	-0.1	CHLOR-ANK QUARTZ VEIN
225	93L15 BGA91-106	639824	6086498	-2	-0.4	5.00	6.00	53.00	-1	-0.3	12.0	0.8	IRNYOLITE
226	93L 15 BGA91-107	639910	6086507	2	-0.4	15.00	9.00	134.00	0	0.6	22.0	1.3	RHYOLITE
227	93L15 BGA91-108	640061	6086515	5370	12.0	213.00	54.00	68.00	-6	0.3	62000.0	36.0	108-111 RHYOLITE SHOWING VEINS
228	93L 15 8GA91 - 108F		l	3950	0.0	0.00	0.00	0.00	0	0.0	0.0	0.0	FIRE ASSAY OF BGA91-108
229	931 15 RGA91-109	640055	6086518	7390	7.0	555.00	33.00	138.00	-6	2.0	100000.0	8.6	SULPHIDE-QUARTZ VEIN

230	93L15/BGA91-109FA	94900	0.01	0.00	0.001	0.001	01	0.01	0.0	0.01FIRE ASSAY OF BGA91-109
231	93L15 BGA91-110 64005616086501	10200	38.01	273.00	138.00	28.00	- 10	-0.3	99000.0	30.0 SULPHIDE-QUARTZ STOCKWORK
232	93L15 BGA91-110FA	13200	0.0	0.00	0.001	0.001	01	0.01	0.0	0.01FIRE ASSAY OF 8GA91-110
233	93L15 BGA91-111 640055 6086500	9860	36.01	10900.00	50.00	1200.001	-4	24.0	31000.01	98.0 SULPHIDE VEIN (FLOAT)
234	93L15 BGA91-111FA	10500	0.0	0.00	0.00	0.00	0	0.0	0.0	0.0 FIRE ASSAY OF BGA91-111
235	93L15 BGA91-112 634303 6080162	12	.0.4	27.00	5.001	54.00	-1	-0.3	70.0	0.7ISILISTONE
236	93L15 BGA91-113 63384616080017	17	0.4	1700.00	3.00	9.00	3	-0.3	14.0	0.3 QUARTZ VEIN
237	93L15 BGA91-114 638013 6084724	2	0.41	7.00	15.001	32.00	-5	-0.3	8.4	1.1 RHYOLITE
238	93L15 BGA91-115 630242 6086717	·2	.0.4	13.00	6.00	52.00	-5	-0.3	7.8	1.5 LINOWITIC SCHIST
239	93L15 8GA91-116 632855 6086163	-2	-0.4	67.00	16.00	30.00	4	-0.3	160.0	5.0 SERICITE SCHIST
240	93L15 BGA91-117 63804216084726	5	0.4	6.00	30.001	31.00	7	-0.3	49.0	2.7 PYRITIC RHYOLITE
241	93L15 BGA91-118 632857 6086158	- 2	-0.4	15.00	38.001	88.00	-5	-0.3	27.0	16.0 SERICITIC SCHIST
242	93L15 BGA91-119 630255 6086730	- 2	-0.4	12.00	6.00	133.00	-1	-0.3	11.0	2.7 SERICITIC SCHIST
243	93L15 8GA91-120 641251 6081112	7	-0.4	34.00	20.00	79.00	-11	-0.3	11.0	2.7 PYRITIC SCHIST

.
## APPENDIX C

#### Stream Sediment Geochemical Analyses

A reconnaissance stream sediment (and water) geochemical survey was conducted in the Babine Mountains Recreation Area from August 23 to 25, 1991 by J. Gravel of Bonaventure Management Services. A total of 39 streams were sampled: methods used to collect and analyze the sediment samples were in accordance with standards set by the RGS program of the Ministry of Energy, Mines and Petroleum Resources. This data compliments previously released RGS data in 1983 (Hazelton Map Sheet NTS 93M: Geological Survey of Canada Open File 1000) and 1986 (Smithers Map Sheet NTS 93L: Geological Survey of Canada Open File 1361).

Geological formations listed for each sample site (FORM) are those which are the dominant bedrock type within each drainage basin. Statistical manipulation of data utilized the Geological Survey Branch Environmental Geology Section's "Geochemical Applications Software Package".

Samples collected in 1991 were analysed by Chemex Labs Limited, North Vancouver (atomic absorption spectrophotometry) and Actlabs Activation Laboratories limited, Ancaster, Ontario (neutron activation). All elements are expressed in parts per million, except gold which is in parts per billion. Analytical methods and detection limits for elements determined are as follows:

# METHODS AND SPECIFICATIONS FOR ROUTINE RGS SUITE OF ELEMENTS

	Detection	Sample						
Element	Limits	Weight	Digestion Technique		Determination Method			
Cadmium	0.2 ppm							
Cobait	2 ppm							
Copper	2 ppm		3 ml HNO3 let sit overnight, add 1					
Iron	0.02 pct	1 g	ml HCl in 90°C water bath, for 2					
Lead	2 ppm		hrs. cool, add 2 ml H ₂ O, wait 2	AAS				
Manganese (	5 ppm		hrs.					
Nickel	2 ppm				atomic absorption spectrophotometry using air- acetylene			
Silver	0.2 ppm				burner and standard solutions for calibration, background			
Zinc	2 ppm				corrections made for Pb, Ni, Co, Ag, Cd			
Molybdenum	l ppm	0.5 g	Al added to above solution					
Barium	10 ppm		HNO3 - HCl - HF taken to dryness,					
Vanadium	5 ppm	1 g	hot HCl added to leach residue					
Chromium	5 ppm							
Bismuth	0.2 ppm	2 g	HCl - KClO2 digestion, KI added to	AAS-H	organic layer analyzed by atomic absorption			
Antimony	0.2 ppm	-	reduce Fe, MIBK and TOPO for		spectrophotometry with background. correction			
·			extraction		,			
Tin	1 ppm	1 2	sintered with NH4L HCl and	AAS	atomic absorption spectrophotometry			
		, in the second s	ascorbic acid leach					
Arsenic	1 0000	0.5 .	add 2 ml KI and dilute HCI to 0.8M	AAS-H	2 ml bombydride solution added to produce AsH2 gas which is			
	· pp	0.0 8	HNO1 • 0.2M HCI		passed through bested quarter tube in the light path of storaic			
					absorption spectrophotometer			
Marruny	10 000	05 8	20 milliNOn e i milliCi	AASE	10% standing subjets subjet to evolve mercing version			
mercury	10 000	0.5 8		AA3-1	determined by atomic absorption spectrometry			
Tungsten	1.000	05	KaSO4 fusion HCI leach	COLOR	colorimetric: reduced tungster completed with			
rungsten	r ppm	0.5 8	R2504 Jusion, ner leach	COLOR	toluene 3 4 dithiol			
Fluorine	40	0.25 0	NaCOa - KNOa fusion HaO leach	ION	ritric and added and diluted with water flucting data-			
Fluorine	-o ppin	U.2.J g	Micoz - Knoz Jusion, M20 leadi	ION	with marific ion electrode			
Umaine	0.5			NADNC				
		<u> </u>		CRAV	neuron acuvation with delayed neuron counting			
		<u>0.5</u> g	asn sample at JUJC	UKA V				
pii - water	0.1 pH unit	25 mi	nii	UCE	glass - calomet electrode system			
U - water	0.05 ppb	5 mi	add 0.5 mi fluran solution	LIF	place in Scintrex UA-3			
F - water	20 ppb	25 mi	nil	ION	fluorine ion specific electrode			

# ADDITIONAL ELEMENTS ANALYZED BY INAA

•	Detection		Detection
Element	Limit	Element	Limit
Gold	2 ppb (	Molybdenum	1 ppm
Antimony	0.1 ppm	Nickel	10 ppm
Arsenic	0.5 ppm	Rubidium	5 ppm
Barium	100 ppm	Samarium	0.5 ppm
Bromine	0.5 ppm	Scandium	0.5 ppm
Cerium	10 ppm	Sodium	0.1 pct
Cesium	0.5 ppm	Tantaium	0.5 ppm
Chromium	5 ppm	Terbium	0.5 ppm
Cobait	5 ppm	Thorium	0.5 ppm
Hafnium	1 ppm	Tungsten	2 ppm
Iron	0.2 pct	Uranium	0.2 ppm
Lanthanum	5 ppm	Ytterbium	2 ppm
Lutctium	0.2 ppm	Zirconium	200 ppm

MAP	10	UTHE	UTMN	FORM	PH	ZN	a	PB	NI	CO	AG	MN	Ю	CĐ	۷	BI	AU	SB	AS
93L15	861185	641126	6075322	mJS	6.9	110	50	14	20	13	0.2	800	1	0.1	- 40	•1.0	6	3.9	71.0
93L15	861186	642732	6077961	RUJA	6.8	117	34	10	48	14	0.1	840	1	0.1	32	-1.0	1	2.1	18.0
93L15	861187	644141	6080852	ALLIN	6.9	110	29	13	401	13	0.1	600	1	0.1	34	-1.0	14	2.4	14.0
93L15	861188	644141	6080852	ALUM	6.8	122	32	14	40	13	0.1	660	1	0.1	32	-1.0	11	1.5	12.0
93L15	861189	645246	6081453	1K	6.6	113	25	18	19	10	0.1	710	1	0.1	34	-1.0	1	2.8	20.0
93L 15	861194	648285	6085038	LJ_	6.6	89	7	7	16	6	0.1	550	1	0.1	32	-1.0	3	0.9	12.0
93L15	861195	637147	6072713	dr	6.9	121	48	15	18	- 9	0.1	680	5	0.1	40	-1.0	11	2.9	50.0
93L15	861244	632510	6074962	LJ_	7.1	84	23	6	21	- 9	0.1	590	1	0.1	38	-1.0	1	1.6	31.0
93L15	861245	629750	6075930	IJ	7.4	91	23	6	20	13	0.3	510	1	0.1	47	-1.0		1.2	12.0
93L15	861246	631562	6079201	L.J	7.5	137	34	11	191	13	0.1	780		0.2	64	-1.0	2	2.6	13.0
93L15	861255	648334	6088615	IJ	7.3	257	23	92	19	- 11	0.3	640		2.4		-1.0	20	4.8	51.0
93L15	861256	648334	6088615	IJ	7.2	285	27	102	20	12	0.5	640		2.5	34	-1.0	7	4.3	54.0
93L15	861257	647306	6093500	13	7.0	108	19	18	20	15	0.1	2000		0.1	42	•1.0	2	1.5	9.0
93L15	861258	647019	6094951	11	7.2	88	18	9	21	13	0.1	350		0.1	42	•1.0	1	1.8	8.0
93L15	861259	647329	6090881	11	7.0	78	17	9	13	10	0.1	940		0.1	45	•1.0	1	1.4	9.0
93L15	861260	641733	6093793	13	7.1	95	21	14	26	10	0.2	510		0.1	39	•1.0	2	2.3	8.0
93L15	861262	642035	6093444	13	7.0	115	27	11	16	11	0.2	520		0.1	42	-1.0	2	4.1	16.0
93L15	861263	643861	6087366	11	6.5	204	30	36	18	13	0.3	1100		0.6	30	-1.0		2.2	10.0
93L15	861264	643515	6087847	1.1	6.8	806	491	532	26	14	3.0	720	1	9.3	26	-1.0	<u>त</u>	27.5	60.0
93L15	861265	640332	6087188	MUJA	6.9	235	53	212	34	17	3.7	680	1	1.4	28	-1.0	610	18.5	40.0
93L15	861266	631757	6074007	11	7.4	- 95	270	9	25	29	0.1	6200	- 4	0.1	33	-1.0	2	0.9	18.0
93L15	861374	634509	6084392	IK	6.9	825	42	66	92	31	0.7	6200	1	6.7	34	-1.0	12	3.8	30.0
93L15	861375	634540	6083999	MULA	7.0	92		- 15	23	15	0.2	580		0.1		-1.0		1.8	10.0
931 15	861376	652497	6084718	UKK	0.8	138	- 36	19	21	10	0.4	760		0.1	4	-1.0		1.3	
93L15	8613//	630090	6083781	UKK	0.9	200	- 37		38	18	0.3	2200		1.9		-1.0		2.2	
93615	861400	635284	6076780	I ILIS	(.)	180				11	0.3	1200		0.8	39	-1.0	;	2.0	
93L 15	801424	640649	6094427	UKK	0.9	62	- 10	- 13	24	10	0.1	200		0.0		-1.0		0.9	
93615	861423	640212	607/077	UKK		110	- 201		- 23	- 14	0.1	/80		0.7	70	-1.0			
93615	001002	634000	6097400	RJS .	1.0	100	29		23		0.1	200		- 0.1		-1.0		1.0	- 33.0
931 15	961702	431797	4002147	UKK	0.7	80	- 27		22	- 13	0.1	430		0.1	1 2	-1.0		1 1 1	- 11 0
031 15	961783	471907	4001701		-1.0	04	- 26	- 14	- 12	12	0.1	800		0 1		.1 0		1 1	12 0
031 15	861786	428200	4080450	112	7 3	08	34	- 11	14	14	0.1	720	<del>  ;</del>	0.1	1 11	1 1 0		1 1	17.0
031 14	861780	627632	6004650	1 ir	8.0	110	20	;;	41	12	0.1	\$70	$\vdash$	0.1	35	-1.0	;	2.7	- 0.0
031 14	861946	621217	6093650	1 12	A 3	50	40	- 11	31	14	0 1	700	i	0.1	43	-1.0	<del>i</del>	1.6	
031 14	861947	621715	4093505	112	7 0	110	40	12	52	17	0.1	800	<u> </u>	0.1	40	1.0	- 5	1.6	10.0
031 14	861968	621175	6089069	1 ir	1 8.2	105	42	12	43	14	0.1	740	<u> </u>	0.1	42	-1.0	- 1	1.3	10.0
031 14	861949	623620	6088320	IKK	7 6	94	27	15	1 14	11	0.1	640	1	0.1	3.6	-1.0	1	3.0	29.0
931 14	861951	622489	6087707	IK	1.0	95	36	14	22	13	0.1	800		0.1	42	-1.0	1	2.7	17.0
931 14	861954	626073	6086640	UKK	7.6	100	20	20	33	11	0.1	740	i i	0,1	30	-1.0		2.5	29.0
931 14	861955	626073	6086660	UKK	7.4	104	30	21	34	12	0.1	840	<u> </u>	0,1	33	1.0	1	3.0	33.0
93402	833170	637100	6102202	1 115	6.0	109	17		32	15	0.2	679	<u> </u>	1.0	1 .1	1.1.0		3.0	25.0
03402	833173	632803	6103051	LIKK	7.4	90	26		34	16	0.1	855	1	1 -1.0	1 -1	-1.0		6.1	20.0
93802	833174	631079	6102828	UKK	7.5	83	28		22	15	0.1	763	ii	1 -1.0	1	1.0		6.6	23.0
93802	833175	631201	6102501	LIKY	7.4	116	50		60	20	0.1	833	1-1	1 -1.0	<del>  .</del> ;	1-1.0		5.5	40.0
121102				1				_				1 000	1	1	_				

.

-

- ,

93M02	833176	6289001	61026001	UKK	7.8	661	241	61	151	161	0.1	838	1	-1.01	-1	-1.0	3	7.41	18.0
93M02	833177	6282001	6101000	1.1	7.7	1061	44	5	391	20	0.1	878	1	-1.0	-1	-1.0	2	4.7	23.0
93N03	8331781	626900	6098200	11	7.5	86	36	6	281	17	0.1	866	1	-1.0	-1	-1.0	5	2.21	13.0
93M02	833179	635906	6098342	UKK	7.5	681	27	5	271	15	0.1	827	1	-1.0	-1	-1.0	21	6.3	16.0
93H02	8331801	641102	6097244	uKK	7.6	801	19	8	261	13	0.1	7201	1	-1.0	-1	-1.0	21	4.31	14.0
93L 15	911002	01	0	13	7.6	144	401	20	21	16	0.2	1450	1	0.2	31	0.2	27	4.01	89.0
93L 15	911003	0	0	ALLIN	7.5	372	43	105	421	15	1.7	11501	1	2.4	34	0.1	12	7.01	36.0
93L15	911004	0	0	11	7.6	165	18	12	51	9	0.1	1700	1	0.1	19	0.1	2	5.01	8.0
93L15	911005	01	0	13	8.01	1401	37	19	161	9	1.5	1000	4	0.5	49	0.4	8	7.01	70.0
93L15	911007	0	0	1.1	7.5	160	27	17	13	9	0.2	910	1	0.6	54	0.3	2	6.0	54.0
93L 15	911008	0	0	L.	8.1	1601	29	15	13	9	0.1	9201	1	0.6	52	0.3	2	5.0	54.0
93L15	911009	0	0	<u>j</u> u	7.7	106	23	10	21	11	0.1	9201	1	0.1	51	0.1	2	4.01	27.0
93L15	911010	0	0	IJ	7.4	1241	22	18	161	11	0.1	1150	1	0.2	50	0.1	3	5.0	44.0
93L15	911011	0	0	U	7.4	128	231	13	16)	11	0.1	11001	1	0.3	- 47	0.2	2	5.0	32.0
93L15	911012	0	0	đ٢	8.0	125	53	16	17	14	0.1	12001	6	0.2	55	0.3	2	7.01	50.0
93L15	911013	0	0	a i S	8.0	140	601	13	12!	11	0.1	1200	3	0.2	40	0.5	4	9.01	240.0
93L15	911014	0	0	ajs.	8.1	1481	40	17	22	13	0.1	1600	1	0.1	38	0.1	10	8.01	140.0
93L15	911015	0	0	IK	-1.0	212	49	25	371	32	0.1	12001	1	0.4	19	0.4	5	6.0	43.0
93L15	911016	0	0	ιĸ	8.3	941	17	15	191	13	0.1	880	1	0.1	22	0.1	41	5.01	43.0
93L15	911017	0	0	11	8.4	140	43	30	171	14	0.1	870	1	0.4	63	0.1	2	8.01	56.0
93L15	911018	0	0	11	8.5	1401	481	10	17	17	0.1	885	1	0.1	55	0.1	2	5.0	20.0
93L 15	911019	0	0	MUJA	7.6	110	33	5	261	13	0.1	12001	1	0.1	32	0.1	2	4.0	39.0
93L15	911020	0	0	ALUM	7.7	125	27	6	431	15	0.1	14001	1	0.1	30	0.1	2	3.01	32.0
93L15	911022	0	0	MUJA	7.5	2021	55	11	951	35	0.1	15501	1	0.1	28	0.1	2	10.01	16.0
93L 15	911023	01	0	UKK	7.4	175	43	16	551	22	0.1	16001	1	0.3	23	0.2	2	4.0	18.0
93L15	911024	0	0	UKK	7.6	2901	55	190	321	15	12.0	9701	1	1.7	28	0.1	3	3.01	18.0
93L15	911025	0	0	MUJA	1 7.6	1741	581	13	851	23	0.1	18001	1	0.5	33	0.1	184	16.01	35.0
93L15	911026	0	0	MUJA	7.5	97	25	13	231	14	0.1	880	1	0.1	50	0.1	2	4.01	22.0
93L15	911027	0	0	UKK	7.6	102	301	31	281	14	0.1	7601	1	0.1	52	0.1	2	3.01	15.0
93L15	9110281	0	0	UKK	7.5	1121	33	27	301	14	0.1	8451	1	0.1	53	0.1	4	3.0	15.0
93L15	911029	0	0	UKK	7.61	1181	301	16	261	14	0.1	11501	1	0.1	38	0.1	2	5.0	17.0
93L15	9110301	0	0	UKK	7.5	1281	31	23	301	15	0.1	1300	1	0.1	43	0.1	2	5.01	18.0
93L15	9110311	0	0	UKK	7.9	1201	401	38	251	17	0.1	9001	1	0.4	_ 45	0.8	2	5.01	15.0
93L15	911032	0	0	uKK	8.01	561	251	11	191	13	0.1	5601	1	0.1	28	0.1	3	4.01	10.0
93H02	911033	0	0	UKK	7.4	87	221	6	231	12	0.1	15001	1	0.1	57	0.1	2	3.0	17.0
93M02	9110341	0	0	UKK	7.5	801	221	7	221	12	0.1	710	1	0.1	67	0.1	2	4.01	13.0
93L15	911035	0	0	UKK	7.81	85	21	10	191	14	0.1	12001	!	0.1	38	0.1	6	4.0	16.0
93L15	911037	0	0	L.J	6.1	1001	281	9	221	13	0.1	870	1	0.1	39	0.1	2	4.01	23.0
93M03	911038	0	0	11	8.01	75	22	8	22	13	0.1	740		0.1	40	0.1	2	4.0	18.0
93403	911039	0	0	UKK	3.0	87	33	5	321	- 19	0.1	870	1	0.1	45	0.1	2	3.0	44.0
93L15	9110401	0	0	UKK	7.8	1061	281	10	331	16	0.1	10001	!	0.1	36	0.1	2	2.0	17.0
93L15	911042	0	0	IK	8.1	104	40	- 8	25	16	0.1	6101	1	0.1	20	0.2	11	9.01	120.0
93L14	911043	0	0	IK	7.8	115	401	9	421		0.1	12001	!	0.1		0.1	2	4.0	40.0
93L 15	911044	0	0	UKK	7.6	145	50	30	201		0.1	17001	_1	0.3	32	0.2	2	3.0	24.0
93L14	911045	0	0	IK	8.0	95	27	11	411	12	0.1	630	1	0.1	45	0.1	2	2.01	10.0

Stream Sediment Geochemical Analyses:

Statistical Summary of Data by Geological Formation:

1-

Element Statistics
Variable - pH (pH)
Number of Values - 82
Units -
Detection Limit - 0.1
Analytical Hethod - GCE

	111	1J	uKK	1K	MUJA
	82	26	26	12	10
N>DL	82	26	26	12	10
Missing	3	-0	1	2	0
Hean	7.46	7.36	7.52	7.68	7.30
Hedian	7.50	7.40	7.60	7.90	7.50
Mode	7.60	7.40	7.60	8.00	7.50
Range	2.4	2.4	1.2	1.7	0.9
St Dev	0.48	0.54	0.32	0.62	0.35
Coef Var	0.064	0.074	0.043	0.080	0.048
Log Hean	0.872	0.866	0.876	0.884	0.863
Geo Mean	7.44	7.34	7.51	7.66	7.29
Log StDv	0.028	0.032	0.019	0.036	0.621
Log CVar	0.032	0.037	0.022	0.041	0.025
Percntis					
Minimum	6.1	6.1	6.8	6.6	6.8
10th	6.8	6.6	6.9	6.6	6.8
20th	6.9	7.0	7.4	6.8	6.9
30th	7.3	7.1	7.5	7.3	6.9
40th	7.4	7.2	7.5	7.8	7.0
50ch	7.5	7.4	7.6	7.9	7.5
60th	7.6	7.5	7.6	8.0	7.5
70ch	7.6	7.5	7.6	8.0	7.5
80th	7.9	7.7	7.8	8.2	7.6
85th	8.0	7.7	7.8	8.2	7.6
90th	8.0	8.0	7.8	8.3	7.6
95th	8.2	8.4	8.0	8.3	7.7
98th	8.3	8.4	8.0	8.3	7.7
99th	8.4	8.5	8.0	8.3	7.7
Maximum	8.5	8.5	8.0	8.3	7.7

Element Statistics
Variable - Zinc [2n]
Number of Values - 85
Units - ppm
Detection Limit - 2
Analytical Method - AAS

	A11	шKK	1J	1K	ALLER
-					
N	85	27	26	14	10
N > DL	85	27	26	14	10
Missing	0	٥	0	0	0
Hean	139.2	111.5	148.5	162.3	163.4
Median	110.0	94.0	108.0	104.0	117.0
Hode	95.0	80.0	140.0	94.0	110.0
Range	769	234	731	732	280
St Dev	117.73	54.49	140.34	193.14	87.61
Coef Var	0.846	0.489	0.945	1.190	0.536
Log Hean	2.081	2.013	2.098	2.098	2.169
Geo Hean	120.4	102.9	125.5	125.3	147.4
Log StDv	0.196	C.164	0.210	C.253	0.197
Log CVar	0.094	0.082	0.100	0.120	0.091
Percntis					
Minimum	56	56	75	93	92
10th	82	68	84	93	92
201E	86	80	88	94	97
30th	95	83	. 95	95	110
4022	100	87	100	98	110
50th	110	94	108	104	117
60th	116	100	128	105	125
70th	125	112	140	113	174
80th	144	120	144	115	202
85th	165	138	160	119	235
90th	204	145	165	212	225
95th	266	200	257	212	372
98th	372	266	257	825	372
99th	806	290	806	825	372
Maximum	825	290	806	825	372

(Summary statistics not calculated for formations with fewer than ten values.)

•

,

Element Statistics	
Variable - Copper (Cu)	
Number of Values - 85	
Units - ppm	
Detection Limit - 2	
Analytical Method - AAS	

	<b>A11</b>	лж	n	18	πιJλ
 И	85	27	26	14	10
N > DL	85	27	26	14	10
Missing	0	٥	٥	0	0
Hean	35.4	30.5	37.4	35.4	39.0
Median	30.0	28.0	23.0	36.0	33.0
Mode	23.0	22.0	23.0	40.0	33.0
Range	263	38	263	32	33
St Dev	28.19	9.89	48.59	9.48	12.32
Coef Var	0.796	0.324	1.300	0.268	0.316
Log Mean	1.497	1.465	1.454	1.533	1.572
Geo Mean	31.4	29.1	28.4	34.1	37.3
Log StDv	0.192	0.132	0.268	0.130	0.134
Log CVar	0.128	0.090	0.184	C.085	C.085
Percntis					
Minimum	7	17	7	17	25
10th	19	20	18	17	25
2011	23	22	19	26	27
30th	25	24	22	27	29
40th	27	27	23	34	33
50th	30	28	23	36	33
60tn	34	29	28	40	34
70th	40	33	34	40	43
80th	43	37	40	42	53
85th	48	40	43	42	55
90th	50	43	44	49	55
322h	\$5	30	45	49	î
AREP	58	- 50	49	49	58
99th	60	55	270	49	58
Maximin	270	55	270	49	51

1

1	Element Statistics	
1	Variable - Load (Pb)	
	Number of Values - 85	
1	Units - ppm	
1	Detection Limit - 2	_
1	Analytical Method - AAS	_

	A11	щQK	13	lĸ	MLJA
N	85	27	26	14	10
N > DL	85	27	26	14	10
Missing	0	0	٥	0	٥
Mean	26.4	20.9	36.0	16.8	40.3
Mediian	13.0	13.0	11.0	12.0	13.0
Hode	6.0	6.0	9.0	11.0	13.0
Range	528	185	527	58	207
St Dev	64.23	34.97	102.59	14.82	67.28
Coef Var	2.435	1.674	2.847	C.883	1.670
Log Mean	1.145	1.121	1.156	1.145	1.238
Geo Hean	14.0	13.2	14.3	14.0	17.3
Log StDv	0.367	C.352	0.424	C.233	C.521
Log CVar	0.320	0.314	0.366	C.203	C.421
Permis					
Minimum	4	5	5	8	5
10th	6	5	6	8	5
20th	8	•	7	9	6
30th	9	7	9	11	10
40th	11	10	9	11	::
50th	13	13	11	12	13
60th	14	15	13	12	13
70ch	16	16	17	14	13
SOLH	19	24	19	15	· 15
85th	24	27	20	18	105
90th		30	30	25	105
T YSER	92		97	- 25	ليتنتب
JUCD	190	38	92	66	212
995.n	212	190	532	66	212
MAX1808	532	190	532	66	212

	Zle	mat St	tistics		
i		riable	- Nickel	[115]	i
·			- 110401		i
1	Number of	Values	- 85		
i		Units	- ppm		i
1	Detection	n Limit	- 2		
1	nalytical	Method	- 335		
	A11	wax	IJ	1K	۸tum
N	85	27	26	14	10
N > DL	85	27	26	14	10
Hissing	0	0	0	0	0
Maan	29.0	28.9	19.7	38.9	45.9
Median	24.0	27.0	19.0	37.0	40.0
Hode	22.0	22.0	16.0	19.0	23.0
Range	90	45	34	73	72
St Dev	15.76	9.97	6.19	18.59	24.92
Coef Var	0.544	0.345	0.314	0.478	0.543
Log Hean	1.414	1.439	1.272	1.550	1.612
Geo Mean	25.9	27.5	18.7	35.5	40.9
Log StDV	0.199	0.132	0.157	0.187	0.214
Log CVar	0.141	0.092	0.124	0.121	0.133
Percntis					
Minimum	. 5	15	5	19	23
10ch	16	19	13	19	23
2015	19	22	16	22	23
30th	21	23	16	25	26
40th	22	25	17	32	34
SOCH	24	27	19	37	40
60th	26	28	21	41	42
70th	32	32	21	62	43
8055	37	33	22	43	40
8350	41	34	20	48 50	83
9545		55	28	52	95
98eh	85	55	29	92	95
99th	92	60	39	92	95
Maxaman	95	60	39	92	95

.

	214	ment Sta	tistics				
1	Variable - Cobalt (Co)						
1	humber of	Values	- 85		1		
		Units	- pps				
1	Detectio	n Limit	- 2				
λr	alytical	Hethod	- 225				
_	114	шЮК	1J	1K	ALum		
N	85	27	26	14	10		
N > DL	85	27	26	14	10		
Missing	0	0	0	٥	0		
Hean	14.4	14.6	13.0	16.1	17.2		
Hedian	14.0	14.0	13.0	14.0	14.0		
Hode	13.0	14.0	13.0	14.0	13.0		
Range	29	12	23	22	22		
St Dev	4.86	2.90	4.49	6.72	6.94		
CDEI VAF	6.337	0.133	0.346	0.417	0.404		
Log Hean	1.140	1.155	1 092	1 187	1 -1		
Geo Mean	13.8	14.3	12.3	15 2	16 1		
Log StDv	0.124	0.084	0.134	0.345	C.139		
Log CVar	0.109	0.073	0.123	0.123	0.114		
Perchis							
Minimum	6	10	6	10	17		
10th	10	11	9	10	13		
20th	, 11	:2	9	:2	11		
30th	12	13	11	13	13		
40th	13	14		14	24		
SOth	14	14	13	14	14		
60th	14	15	13	14	15		
7025	16	10	13	14	15		
85rh	17	17	12	16	17		
90th	19	19	17	÷.'	23		
/95th	23	20	20	31	35		
98th	31	20	20				
99th	32	22	29	32	35		
Maximum	35	22	29	32	35		

(Summary statistics not calculated for formations with fewer than ten values.)

.

Variable - Silver (Ag) under of Values - 85
unper of Values - 85
Units - ppm
Detection Limit - 0.2
alytical Hethod - AAS

.

	711	UKK	13	JK	mjj¥
- N	85	27	26	14	10
N > DL	12	3	5	1	
Missing	0	ō	õ	ō	ō
Hean	0.38	0.56	0.30	0.14	C.63
Median	0.10	0.10	0.10	0.10	C.10
Hode	0.10	0.10	C.10	0.10	0.10
Range	11.9	11.9	2.9	0.6	3.6
St Dev	1.39	2.29	0.61	0.16	1.19
Coef Var	3.604	4.090	2.023	1.122	1.887
Log Hean	-0.839	-0.883	-0.797	-0.940	-0.690
Geo Mean	0.14	0.13	0.16	0.11	C.20
Log StDv	0.390	0.418	0.376	C.226	0.587
Log CVar	-0.465	-0.473	-0.472	-0.241	-0.851
Percniis					
Minimum	0.1	0.1	0.1	0.1	0.1
10ch	0.1	0.1	0.1	0.1	0.1
2015	o.:	6.1	0.1	ć.:	:.:
30ch	0.1	0.1	0.1	0.1	C.1
4025	0.1	0.1	0.1	0.1	<b>C.1</b>
SOCh	0.1	0.1	C.1	0.1	C.1
60th	0.1	0.1	0.1	0.1	0.1
70th	0.1	0.1	0.2	0.1	0.1
80th	0.2	0.1	0.2	0.1	C.2
85th	0.2	0.1	0.3	0.1	1.7
90th	0.3	0.1	0.3	0,1	1.7
1 325P		6.4	1.5	0.1	1.7
Jacu.	3.0	0.4	1.5	6.7	3.7
995.h	3.7	12.0	3.0	0.7	3.7
	12.0	14.0	3.0	0.7	3.7

1		Ele	mant Sta	tistics		1
-		Va	riable -	Mangan	ese (Mn)	
	ж	moer of	Values -	85	-	
1			Units -	- bibu		
1	I	Detection	Limit -	- 5		1
1	λη	lytical	Hethod -	AAS		
		<b>A11</b>	UCK	IJ	1K	لائت
	- א	85	27	26	14	10
N	> DL	85	27	26	14	10
Mi	ssing	٥	٥	0	٥	0
	Mean	1046.8	928.2	1105.7	1189.3	1068.0
м	odian	845.0	833.0	870.0	740.0	880.0
	Mode	1200.0	760.0	510.0	800.0	580.0
1	Range	5940	1940	5850	5630	1220
S	t Dev	884.08	408.57	1102.91	1454.94	421.32
Coe	f Var	C.845	0.440	0.997	1.223	0.394
Log	Mean	2.954	2,932	2,955	2.958	2.997
Geo	Mean	899.2	854.3	902.6	908.2	994.1
Log	StDv	C.209	C.180	C.240	0.259	0.175
Log	CVar	0.071	C.062	C.081	0.087	0.058
Per	entis					
Mis	1100	260	260	350	570	580
	loth	560	560	510	570	580
	2015	640	640	550	630	600
	30th	720	720	720	700	680
	40th	763	760	780	720	840
	50th	B45	833	870	740	880
	GOTH	880	845	910	800	1150
	70th	1000	900	940	880	1200
	SOLL	1200	1150	1100	890	1400
	BOEL	1200	1200	1150	1200	1550
	9010	1800	1300	1450	1200	1550
	98th	2200	1700	2000	1200	1800
	9955	6200	2200	6200	6200	1800
Maa	cimum.	6200	2200	6200	6200	1800

1	Eler	ment Star	LISTICS		
	Var:	Lable - I	Holybdem	um (Ho)	
l Humi	ber of Va	Llues -	85		i
	1	Units - j	ppm		
Det	tection )	Limit -	1		
1 Anal	ytical M	rthod -	MS .		1
	<b>A1</b> 1	шЮК	13	18	ALLIN
	85	27	26	14	10
N > DL Missing	۲ 0	2	2	0	· 0
Hean	1.2	1.1	1.2	1.0	1.0
Median	1.0	1.0	1.0	1.0	1.0
Hode	1.0	1.0	1.0	1.0	1.0
Range	5	1	3	0	
St Dev	0.85	0.27	0.82	0.00	0.00
COBI VAI	0.673	0.246	0.002	0.000	0.000
Log Mean	0.044	0.022	0.046	0.000	0.000
Geo Mean	1.1	1.1	1.1	1.0	1.0
Log StDv	0.157	0.080	C.164	0.000	0.000
Log CVar	3.560	3.652	3.557	0.000	0.000
Perentis					
Minimum	. 1	1	- 1	1	1
10th	1	1	1	1	1
2011	-	÷.		;	;
JOEN	1	1	÷.	÷.	÷.
5000	;	;	î	;	i
6075	1	1	1	1	i
70th	î	i	ī	ī	ī
80th	ī	ī	ī	ī	ĩ
85th	ī	ī	1	1	1
90th	1	1	1	1	1
(95th	3	2	4	1	<u> </u>
Jach	4	4	4		
99th	5	2	4	1	1
		∠		1	

• .

(Summary statistics not calculated for formations with fewer than ten values.)

.

Element Statistics
Variable - Vanadium (V)
Rumber of Values - 76
Units - ppm
Detection Limit - 5
Analytical Method - AAS

	114	13	u <b>K</b> K	1K	MLJA
 א	76	24	21	14	10
N > DL	76	24	21	14	10
Missing	9	2	6	٥	٥
Mean	38.4	42.2	38.1	34.4	33.5
Median	38.0	42.0	37.0	35.0	32.0
Mode	34.0	42.0	38.0	34.0	34.0
Range	48	45	45	26	22
St Dev	10.33	11.05	11.83	8.51	6.24
Coef Var	0.269	0.262	0.310	0.248	C.186
Log Mean	1.569	1.610	1.562	1.521	1.519
Geo Mean	37.1	40.7	36.5	33.2	33.1
Log StDV	0.119	0.123	0.131	0.124	0.071
Log CVar	0.076	0.076	0.084	0.082	C.047
rerentis					
Minimum	19	19	22	19	28
lOth	26	26	23	19	28
2015	30	32	22	22	28
JOTH	33	35	29	33	30
401h	34	39	32	34	32
SOLH	38	42	37	35	32
60ch	40	42	38	35	33
70ch	42	47	43	40	34
SOLL	45	50	45	42	34
85th	50	51	52	42	34
90th	52	55	53	43	34
95th	55	ទ	57	43	50
98ch	63	64	67	45	50
99ch	64	64	67	45	50
Maximi	67	64	67	45	50

1	Eler	ment Stat	LISTICS				
	1 Variable - Cadmium (Cd)						
I N	under of	Values	- 76		1		
	Detection Limit - 0.2						
1 An	alytical	Hethod	- XXS				
	<b>A1</b> 1	1J	ᆈᅈ	1K	ALum		
- N	76	24	21	14	10		
N > DL	21			2	1		
Missing	9	2	6	ō	ō		
Mean	0.51	0.67	0.39	0.59	0.50		
Hedian	0.10	0.10	0.10	0.10	0.10		
Mode	0.10	0.10	0.10	0.10	0.10		
Range	9.2	9.2	1.8	6.6	2.3		
St Dev	1.35	1.90	0.52	1.76	0.78		
Coef Var	2.619	2.831	1.360	2.968	1.569		
Log Mean	-0.719	-0.684	-0.684	-0.827	-0.677		
Geo Mean	0.19	C.21	0.21	0.15	0.21		
Log StDv	0.475	0.508	0.453	0.502	0.544		
Log CVar	-0.662	-0.744	-0.663	-0.608	-0.804		
Percntis							
Minimum	0.1	C.1	0.1	0.1	0.1		
10th	0.1	0.1	0.1	0.1	0.1		
2522	<u></u>	ç.:	<b></b>	:.:	<b>:.:</b>		
30th	0.1	0.1	0.1	0.1	0.1		
4012	5.1	<u></u>	0.1	Ç.1	0.1		
SUCH	0.1	G.1	0.1	0.1	0.1		
	0.1	6.1	0.1	C.1	0.1		
	0.2	5.2	0.3	0.1	0.1		
8475	0.4	0.4	0.6	C.1	0.5		
9075	0.0	0.5	0.7	C.1	1.4		
19555	<u> </u>			0.4			
9825	2.4			0.4	2.4		
99th	6.7	9.3	•••	6.7	2.4		
Maximum	9.3	9.3	1.9	6.7	2.9		
					4.7		

Element Statistics
Variable - Bismuth [Bi]
Number of Values - 38
Units - ppm
Detection Limit - 0.2
Analytical Method - AAS

-	A11	ШCK	1J
N	38	13	11
N > DL	6	1	2
Missing	47	14	15
Hean	C.17	0.17	C.16
Median	0.10	C.10	C.10
Hoge	0.10	C.10	0.10
Range	0.7	C.7	0.3
St Dev	0.15	C.19	0.10
Coef Var	0.863	1.141	C.628
Log Mean	-0.861	-0.884	-0.847
Geo Mean	0.14	0.13	0.14
LOG SLOV	0.244	C.262	0.227
Log CVar	-0.284	-0.296	-0.268
Perchtis			
Minimum	0.1	0.1	0.1
IDEN	0.1	0.1	C.1
2014	•••		÷
3052	C.1	0.1	0.1
4547	2.1	÷.:	2.2
50th	Ç.1	5.1	0.1
60th	<b></b> .	:.:	6.1
70th	C.1	0.1	C.2
BOth	C.2	0.1	0.2
85th	0.2	C.2	0.2
90th	0.3	<u> </u>	<u> </u>
19520		5.2	C.3
-98th	0.5	2.5	0.4
99th	0.8	0.8	0.4
Maximin	0.8	C.8	0.4

				_	
	EIG	Wartable	clatics	(	
				1.001	
1	Manber d	I VAIUes	- 85		
		Units	- ppb		
 	Detecti	on Limit	- 1		
1 <b>A</b>	nalytica	1 Method	- FA-NA		1
_	114	шCK	13	1K	۳۵
N	85	27	26	14	10
N > DL	64	20	22	7	8
Missing	0	0	0	0	0
Mean	13.9	2.3	7.8	3.4	83.0
Median	2.0	2.0	2.0	1.0	2.0
Mode	2.0	2.0	2.0	1.0	2.0
Range	609		74	11	609
Conf Var	4 846	1.23	15.79	3.74	193.63
COST VET	4.343	0.343	2.023	1.090	2.333
Log Mean	0.457	0.299	0.494	C.337	C.848
Geo Mean	2.9	2.0	3.1	2.2	7.0
Log StDv	0.507	0.221	0.494	0.409	0.974
Log CVar	1.110	0.738	1.001	1.214	1.150
Percntis					
Minimum	1	1	1	1	1
10th	1	1	1	ī	1
2012	:	:	2	:	Ξ
30th	2	2	2	1	2
4025	2	2	2	1	2
SOLD	2	2	2	1	2
60th	2	2	2	2	2
70th	3	2	2	4	12
80th	5	3	5	5	14
85th	6	3	8	5	184
90th	12	3	20	11	184
7 95th	27		30		614
9810	15	5	30	12	610
797.0	184	6	75	12	610
CHAT WILL	0T0	6	75	12	610

Humber of Values - 47							
l Units - ppm							
Detection Limit - 0.1							
Analytical Mathod - INAA							
-	114	<b>UR</b> CK	1J				
N N > DI.	47	19	13				
Missing	Ö	0	-0				
Hean Hedian	5.13 4.30	4.21	4.92				
Range St. Dev	4.00 14.0 2.51	5.4	4.00 5.8 1.47				
Coef Var	0.489	0.336	0.299				
Log Hean Geo Hean Log StDv	0.669 4.66 0,186	0.602 4.00 0.144	0.673 4.71 0.137				
Log CVar	0.279	0.240	0.204				
Percntis Minimum	2.0	2.0	2.2				
10th 20th	3.0 3.0	3.0 3.0	2.2				
40th 50th	4.0	4.0	4.0				
60th 70th	5.0 5.5	4.0	5.0 5.0				
80th 85th 90th	7.0 7.0 8.0	5.0 5.5 6.3	5.0 6.0 7.0				
955	9.0						
98Eh 99th	10.0	7.4	8.0				
	74.0	1.1	d.0				

-

Element Statistics Variable - Antimony (Sb) 17

(Summary statistics not calculated for formations with fewer than ten values.)

Element Statistics				
Variable - Arsenic (As)				
Number of Values - 47				
Units - ppm				
Detection Limit - 0.5				
Analytical Method - INAA				

_	<b>A11</b>	uKOK	13
Ч	47	19	13
N > DL	47	19	13
Missing	0	0	0
Mean	36.98	19.47	36.69
Median	23.00	17.00	27.00
Mode	18.00	15.00	23.00
Range	232.0	34.0	81.0
St Dev	40.32	8.59	24.28
Coef Var	1.090	0.441	0.662
	1 434	1.260	1 473
Geo Mean	27.18	18.20	29.73
Log St Dy	0.310	0.153	0.302
Log CVar	0.216	0.122	0.205
Permis			
Minama	8.0	10.0	8.0
1015	13.0	13.0	8.0
2012	13.0	15.0	16.2
30th	17.0	15.0	20.0
401b	18.0	16.0	23.0
SOth	23.0	17.0	27.0
60th	27.0	17.0	32.0
70th	39.0	18.0	44.0
SOLD	44.0	20.0	54.0
85th	50.0	23.0	56.0
90th	56.0	24.0	70.0
95tr.	120.0	40.0	70.0
98th	140.0	44.6	89.0
99th	240.0	44.0	89.0
Maxaman	240.0	44.0	89.0

### APPENDIX D

Geological Time Scale (from Palmer, 1983)



75

## LIST OF FIGURES

16

FIGURE 1. Location of the Babine Mountains Recreation Area (parts of 93L/14E,15W and 93M/2W), west-central British Columbia.

FIGURE 2. Simplified geology of the Babine Mountains Recreation Area and the distribution of mineral occurrences (MINFILE numbers are preceeded by 093L-).

FIGURE 3. Mineral tenure within the Babine Mountains Recreation Area

**FIGURE 4.** Distribution of mineral occurrences within the Babine Mountains Recreation Area according to mineral deposit type (see Table 3).

FIGURE 5. Detailed geology of the Big Onion copper-molybdenum property (compiled from Depaoli (1977), Stock (1977) and McCrossan (1991)).

FIGURE 6. Lithogeochemical sample sites.

FIGURE 7. Distribution of altered rocks within the Babine Mountains Recreation Area.

FIGURE 8. Stream sediment sample sites.

FIGURE 9. Airborne magnetic survey of the Babine Mountains Recreation Area (flight altitude is 300 metres above ground level). Compiled from *British Columbia Ministry of Energy, Mines and Petroleum Resources* (1969a, b, c, d).

**FIGURE 10.** Porphyry Cu-Mo potential: a) ratings as defined by individual criteria fields, and b) the final assigned ratings incorporating criteria field overlap.

1/

**FIGURE 11.** Polymetallic vein potential: a) ratings as defined by individual criteria fields, and b) the final assigned ratings incorporating criteria field overlap.

**FIGURE 12.** Basalt-hosted Cu-Ag vein potential: a) ratings as defined by individual criteria fields, and b) the final assigned ratings incorporating criteria field overlap.

FIGURE 13. Polymetallic massive sulphide potential: a) ratings as defined by individual criteria fields, and b) the final assigned ratings incorporating criteria field overlap.

FIGURE 14. Classification of mineral resource potential (after McLaren (1990)).

FIGURE 15. Mineral resource potential of the Babine Mountains Recreation Area (see Figure 14).

# LIST OF TABLES

**TABLE 1.** Historical metal production within the Babine Mountains Recreation

 Area.

**TABLE 2.** Estimates of metal reserves within the Babine Mountains Recreation

 Area.

**TABLE 3.** Important mineral deposit types within (and adjacent) to the BabineMountains Recreation Area.

**TABLE 4.** Known metallic mineral occurrences within the Babine MountainsRecreation Area.

TABLE 5. Summary of criteria used to assess porphyry Cu-Mo potential.

TABLE 6. Summary of criteria used to assess polymetallic vein potential.

TABLE 7. Summary of criteria used to assess basalt-hosted Cu-Ag vein potential.

 TABLE 8. Summary of criteria used to assess polymetallic massive sulphide

 potential.