February 27, 1987

MEMORANDUM

TO:

FILE
FROM: EXPLORATION EEOLOGIST
FE: ANALYSIS DF 1986 HEAVY HINERAL SAMPLING KASPLKA PROJECT

INTRIDDUCTION \& HISTORY

Regional Heavy Mineral stream sediment samples have been collected by Equity Silver in the district surrounding the minesite over the past several years. They have been reasonably successful in targetting anomalous drainages which warrent more detailed exploration.

An area south of Tathsa Lake was chosen to be surveyed in 1986, due to a theory that favourable geology for hosting a bulk tonnage precious metal deposit underlies this region. The survey would hopefully target drainages for more detailed exploration.

DISCUSSIDN

(i) Sampling Frocedure

The standard "Equity" heavy mineral sampling techniquue was used. Aprroximately 10 to 15 kg of -20 mesh material was sieved from a high energy regime in the creeks. Access to the sites was by helicopter, and sampling took place on August 12, 13 and 14, 1986. Conventional silt samples were also collected at each site, and a total of 37 sites were sampled.

The bulk samples were sent to C. F. Minerals laboratory in Kelowna for break-down into fractions. Samples were split into two grain size categories, $-35+150$, and -150 mesh. These were further divided by specific gravity into light ($3.8 \mathrm{~g} / \mathrm{cc}$), intermediate (2.8-3.2), and heavy (》 3.2) fractions. The light fractions were then discarded. The other fractions were further divided by magnetic properties into non-magnetic, para-magnetic, and magnetic.

This results in 12 fractions returned to Equity from each of the original bulk samples. The coarse and fine intermediate magnetic fractions were discarded, and the remaining 10 were sent to flacer's laboratory in Vancouver for Mo, $\mathrm{Cu}, \mathrm{Zn}, \mathrm{Fb}, \mathrm{Ag}, \mathrm{Au}, \mathrm{W}, \mathrm{F}, \mathrm{As}$, and Sb analysis.

The geochemical results from the samples were "eye-balled" to determine anomalous levels. Five anomaly categories were recognized ranging from best, good, moderate, weak; and worst, depending on the magnitude of the anomaly, the metals anomalous, and the expression in several fractions.

The results are as follows.

Eest

```
. 3665 - best, high multi-element
    Mo, Cu, Zn, Fb, Ag, Au, As, Sb all high in 7 fractions
3706 - strong multi-element expression over B fractions
    Cu, Fb, Ag, Au, As, Sb all high
    lower Zn: F
```

 Good
 3666 - Migh Mo, Cu, F in 6 fractions
 lower \(\mathrm{Zn}, \mathrm{Fb}, \mathrm{Ag}\), Au
 3720 - high Cu, Au, As, Sb in HN fractions
 lower Ag: \(F\)
 base Me: \(5+\mathrm{Ag}\) in FHN were NSS
 3657 - high Mo, Cu, Fb, Ag: Au, F, As in CHN
lower $5 b$ in CHN and Au in FHN
3710 - high Pb, Au, As in CHN
low $A g, F$ in $C H N$
base Me's + Ag in FHN were NSS
3719 - high Au, As in FHN
lower $\mathrm{Cu}, \mathrm{F}, \mathrm{As}$ in $\mathrm{HN}^{\prime} \mathrm{s}$
lower As: Sb in CHF
slight kick in conventional silt
Moderate
3704 - very high Ag, Au in CHN
low Au in FHN
3660 - high Ma, Ag, Fb in HN's
lower W
3709 - high Au, As in CHN
lower Ag, Fin HN's
3655 - high Au in CHN
lower $\mathrm{Cu}, \mathrm{Zn}, \mathrm{Fb}$, $\mathrm{Ag}, \mathrm{W}, \mathrm{As}$ in CHN

```
3662 - high Cu, Sb in CHN
    lower Ag, As: Au in HN's
    base Me's + Ag were NSS in FHN
Weal:
3717 - high Ag, F in CHN, lower Au
    high W, Sb in CHF, lower Au, F; As
    low F in CHN
3664 - high Cu, in CHN, low Au in HN's
    high As in CHF; lower Sb
    base Me's + Ag were NSS in FHN
3663 - high Fb, W, As in CHN, lower Ag
    high W in FHN
    low As: Sb in CHF, low As in IF's
    weak Au in FHN
3718 - low Zn, Ag, W, F in CHN, low Ag in FHN
    low F in CIN, CHF
Worst
```

3661 - $10 w$ Ag, Au, F in both $\mathrm{HN}^{2} s$
3667 - low Cu, As, Sb in CHP
3711 - high Cu in CHN
3652 - low As in CIN and $H N^{3} s$
3716-10w F in CIN, CHM, CHF and FIF low W in FIP

The anomalous drainages are shaded by category on the accompanying map. Four general areas which warrent more detailed exploration are defined.

CONCLUSIONS

One of the best anomlies: 3665, is surrounded by seven of the lesser anomalies in an area north of Mount Eolom. A mineral occurance of Cu-Zn-Fb-Ag-Au bearing massive lenses is known to occur in the immediate drainage of sample 3665 . The whole area is currently open.

The other best anomaly, 3706 , drains the Captain $\mathrm{Fb}, \mathrm{Zn}, \mathrm{Ag}, \mathrm{Cu}, \mathrm{Au}$ showing, which is currently staked. Two moderate anomlies, 3655 and 3704 , drain an area north of the Captain showing, which is currently open.

Two good anomalies, 3657 and 3710 , along with two of the worst anomalies drain the Swing Feak area. This area is open, although mineral claims have been previously held.

Two good Anomalies, 3720 and 3719, drain an area around Mount Baptiste. Four other lower order anomalies are also located in this area. The area is currently open, but again mineral claims have been held in the past.

All of these areas are underlain by geology favourable for the target. precious metal mineralization, and the geochemical expressions in the fractions are considered good for locating this mineralization.

RECOMMENDATION

The four areas should be prospected in detail (mapping, soil traverses). The known mineral showing in drainage 3665 should be staked as soon as possible. A B. C. government sponsored silt sediment geochemical survey will be released in the spring of 1987, and may create a land position rush.

The follow-up work will require a helicopter supported 4-man crew for approximately 10 days, and a total budget of approximately $\$ 20,000$.
P.S. All Data checked and merged in;

