

INTERIM REPORT

860852

FOR THE

PHASE I

1990 DIAMOND DRILLING

ON THE

KNUT PROJECT

KAMLOOPS MINING DIVISION

N.T.S. 92-I-9

LATITUDE 50° 36', LONGITUDE 120° 20'

OWNER: SALOR SCIENTIFIC INC. OPERATOR: PLACER DOME INC.

R. B. Pease

R. W. Cannon, P. Eng.

July, 1990

TABLE OF CONTENTS

<u>Pac</u>	<u> 1e</u>
SUMMARY	1
INTRODUCTION	1
LOCATION AND ACCESS	1
CLAIM STATUS	3
PHYSIOGRAPHY AND CLIMATE	3
HISTORY	3
REGIONAL GEOLOGY	4
PROPERTY GEOLOGY	6
DIAMOND DRILLING PROGRAM	6
DISCUSSION OF RESULTS	7
CONCLUSIONS AND RECOMMENDATIONS	13
ESTIMATED COST OF PROPOSED WORK PROGRAM	14
REFERENCES	15
STATEMENT OF EXPENDITURES	16
STATEMENT OF QUALIFICATIONS	17

LIST OF APPENDICES

APPENDIX I

Explanation of Drill Log Codes

APPENDIX II

Diamond Drill Logs and Assay Results

APPENDIX III

Petrographic Study

-75

LIST OF FIGURES

					raye
Figure 2	-	Location Map			2 5
		Batholith		•	11
Figure 4	-	Geology	•	•	12
		LIST OF PLATES			
Plate I	_	Cross-section 3900 (I	n	Po	cket)
Plate II	_	Cross-section 3700			11
Plate III	_	Cross-section 3600			11
Plate IV	_	Cross-section 3400			77
Plate V	-	Cross-section 3300			11
Plate VI	_	Cross-section 3265			? 1

- 22

SUMMARY

A total of 1204.9 metres of diamond drilling was carried out in nine holes. Drill holes were targeted to test generally coincident chargeability anomalies, copper and/or gold soil anomalies, and in one case a VLF-EM anomaly.

The drilling intersected rocks of diorite to syenite composition which generally displayed a potassic and/or propylitic alteration assemblage. Abundant fracture fillings and veins of quartz, pyrite, gypsum, and chlorite were intersected. Sufficient pyrite concentrations were found to explain the observed chargeability anomalies. The drill holes are generally indicative of rocks that could be expected proximal to a copper porphyry system.

Anomalous copper values over significant widths were determined in holes 90-1 and 90-4. This data combined with the observed alteration pattern, suggests better grade mineralization may be located further to the west. More drilling is recommended to test this hypothesis.

INTRODUCTION

The target mineralization is a porphyry style coppergold deposit. Several occurrences of this type of mineralization are hosted by the Iron Mask batholith which underlies most of the property. Examples of other deposits would include the Ajax, located 4.0 kilometres west of the property, which is currently in production. Another example is the now exhausted Afton deposit located 13 kilometres northwest of the property.

Previous exploration on the property has determined that porphyry style copper mineralization occurs. The objective of the 1990 diamond drilling program was to test areas of previously determined copper and gold soil geochemical anomalies which had coincident anomalous chargeability effects.

LOCATION AND ACCESS

The Knut property is located approximately 300 kilometres northeast of Vancouver and 7.0 kilometres south of downtown Kamloops, in the rural area of Knutsford (see Figure 1). The claims are roughly centred at 50° 36' latitude and 120° 20' longitude on NTS map sheet 92I/9.

The old Kamloops/Merritt highway crosses the eastern margin of the property. Secondary roads provide easy access to most of the claim block (see Figure 2).

CLAIM STATUS

The Knut property consists of six modified grid mineral claims, three fractional claims, and one reverted crown grant. A claim schedule is listed below and the claims are shown on Figure 2. Significant portions of the MD-1 and MD-8 claims are overstaked on pre-existing claims which are not part of the subject property. All of the claims are located on deeded land.

<u>Claim Name</u>	<u>Units</u>	Record No.	Expiry Date	<u>Owner</u>
MD-1	10	6079	Feb. 22, 1998	M. McElgunn
MD-2	16	6080	Feb. 22, 1998	M. McElgunn
MD-3	8	6081	Feb. 22, 1998	M. McElgunn
MD-4 Fr.	1	6099	Mar. 29, 1999	M. McElgunn
MD-5 Fr.	1	6100	Mar. 29, 1999	M. McElgunn
MD-6 Fr.	1	6101	Mar. 29, 1999	M. McElgunn
MD-7	12	8913	Oct. 24, 1999	Placer Dome Inc.
MD-8	6	8927	Oct. 31, 1999	Placer Dome Inc.
Knut	4	8212	Dec. 20, 1999	Placer Dome Inc.
Dispatcher	1	7448	Dec. 24, 1999	M. McElgunn

PHYSIOGRAPHY AND CLIMATE

The property covers gently rolling open grasslands of the interior plateau. Elevations range from 840 to 980 metres. Land use is agricultural, as most of the property is used for grazing cattle with some minor hay production.

Summer temperatures can exceed 30 degrees centigrade and will fall as low as -20 degrees in winter. Annual precipitation is generally under 25 centimetres. Reasonable weather conditions for exploration work can be expected from April to November.

HISTORY

Exploration was conducted in the area of the current claims in the period from 1969 to 1973. This work consisted of soil sampling, magnetometer and VLF-EM, and induced polarization surveys, followed by percussion and diamond drilling. These surveys were conducted by Great Plains Development Ltd., Royal Canadian Ventures Ltd., and Craigmont Mines Ltd.

The results determined copper-in-soil, and IP metal factor anomalies. The known pre-1990 drill holes are plotted on Figure 4. Their locations are reproduced from Murphy (1988). Attempts to define their precise location in the field or from airphotos were unsuccessful. Porphyry

style copper mineralization was encountered in some of the drill holes clustered around 3250N/2200E. It is unknown if significant mineralization was intersected in any other holes. Most of the drill holes were vertical and likely less than 70 metres in length.

Placer Dome Inc. reviewed the available property data in mid-1989 and determined that significant favourable areas remained to be tested, and subsequently optioned the property. In the fall of 1989, Placer Dome conducted an integrated program of soil sampling, magnetometer and VLF-EM, and induced polarization surveys. These surveys defined three zones of anomalous chargeability effects, two of which had corresponding copper and/or gold soil geochemical anomalies.

REGIONAL GEOLOGY

The following discussion has been largely extracted from Northcote (1976) and Kwong (1987).

The Knut property is situated within the southern portion of the Iron Mask batholith. This multiphase, alkaline batholith lies within the Nicola Belt portion of the Quesnel Trough in the Intermontane tectonic belt of the Canadian Cordillera. The Nicola Belt is characterized by Late Triassic volcanic and sedimentary rocks of the Nicola Group that have been intermittently intruded by coeval and comagmatic alkaline plutons, such as the Iron Mask batholith. Early Tertiary sedimentary and volcanic rocks of the Kamloops Group and Miocene-age basaltic flows and volcanoclastics unconformably overlie the Nicola strata and the various intrusive rocks, usually within graben structures.

The Iron Mask batholith is an Upper Triassic-Jurassic age intrusive complex, elongated in a northwest-southeast direction with an exposure length of 20 kilometres and an average width of 4.0 kilometres (see Figure 3). It is comprised of four major units; Iron Mask Hybrid, Pothook, Sugarloaf, and Cherry Creek. These units are generally fine grained and sometimes porphyritic. They range from gabbro to syenite composition with diorite predominating. Northwesterly, northerly, and northeasterly trending recurring fractures or faults controlled emplacement of the various Iron Mask units. The Iron Mask batholith hosts numerous "porphyry" type mineral occurrences.

PROPERTY GEOLOGY

The distribution and descriptions of the various rock types on the property have been compiled from Northcote (1977) and Kwong (1987). The major rock units are shown on Figure 4.

The oldest rock units in the map area are three phases of the Iron Mask batholith. The Iron Mask Hybrid (1) is exposed on the western flank and the northern tip of the property. It is generally described as a melange of intrusive rock, composed of rounded to angular fragments of various sizes, texture and composition in a dioritic matrix. The fragments, which can make up more than 80 per cent by volume of the rock, include mainly coarse and fine grained diorite and coarse grained gabbro with lesser amounts of medium to coarse grained hornblendite and scattered xenoliths of Nicola Group volcanic rocks.

The Sugarloaf unit (4) is exposed as a small enclosed body in the southern portion of the map area. This unit is a porphyritic rock of diorite to andesite composition. A distinguishing feature is the presence of hornblende and/or augite phenocrysts.

The Cherry Creek unit (5) occupies a central belt of the map area. This unit is weakly to strongly porphyritic, fine grained, and ranges in composition from diorite to syenite. A speckled texture is characteristic which results from a clustering of fine grained mafic minerals.

Triassic Nicola Group volcanic rocks (7) dominate the eastern flank of the map area. They are mainly tuff and tuff breccia with multi-coloured fragments and are commonly very hematitic.

Tertiary Kamloops Group rocks (9) compose a prominent hill in the east-central portion of the map area. These rocks unconformably overlie the Iron Mask batholith and the Nicola Group rocks. They are mainly of basaltic composition and occur as vesicular flows and flow breccia.

DIAMOND DRILLING PROGRAM

The program consisted of 1204.9 metres of NQ wireline diamond drilling spread over nine holes. The drilling contractor was Atlas Diamond Drilling of Kamloops. A skid-mounted Longyear Super-38 rig was utilized. Minimal access road and pad construction was required as the target area is open grassland. Drilling commenced 19 April and was completed 8 May, 1990.

The core was transported to Placer Dome's warehouse facility in Kamloops for logging and sampling. The core was logged by two geologist, Kelly Edwards and Marc Deschenes, under the direct daily supervision of R. Pease. The core was sampled continuously in geologically controlled intervals generally varying from 2.0 to 3.0 metres. Marked intervals were split by a technician using a hand operated core splitter, with one half placed in plastic sample bags and the other half returned to the core box. Samples were shipped to Placer Dome's Research facility in Vancouver for geochemical determination of gold, silver, copper, and molybdenum. The core is stored in Placer Dome's Kamloops warehouse.

The 1990 drill hole collar locations are plotted on Figure 4. The drill logs and assay results are recorded in Appendix I. Geologic cross-sections displaying the drill hole trace and target data are included as Plates I to VI.

DISCUSSION OF RESULTS

The following discussion assesses the 1990 diamond drill program on a cross-section by cross-section basis. Determined metal values for selected intervals are listed in the following table.

<u>Hole</u>	From	<u>To</u>	Length (m)	Cu (ppm)	Au (ppb)
90-1	10.0	130.0	120.0	1677	9
90-2	46.6	47.3	0.7	8400	545
	83.3	83.9	0.6	2060	225
90-4	35.0	45.0	10.0	1499	131
	65.0	120.0	55.0	1259	54
90-5	111.7	112.6	0.9	250	100
90-7	78.1	80.5	2.4	344	370
	152.2	154.2	2.0	150	715

Section 3900

Diamond drill holes 90-1, 90-2, and 90-3 were drilled in a fence pattern on line 3900 north to test copper and gold soil anomalies and a coincident greater than 20 millisecond chargeability (n=2) anomaly.

Hole 90-1 intersected mainly fine grained diorite. The rock is principally composed of plagioclase with lesser amounts hornblende, quartz, and biotite. It

displays a high density of medium to high angle crosscutting fractures and veins. These structures contain quartz, pyrite, gypsum, epidote, and chlorite. They are sometimes enveloped by an alteration suite of sericite and potassium feldspar. Hole 90-1 averaged 1479 ppm copper over it's entire length. Minor chalcopyrite and rare bornite were noted, but not in sufficient quantity to explain the determined copper values. Petrographic analysis determined that very fine grains of chalcopyrite occur as inclusions with pyrite grains. This type of occurrence is believed to account for the determined copper levels.

Holes 90-2 and 90-3 intersected mainly hybrid diorite. The rock is similar in composition to the diorite of hole 90-1, but displays a brecciated texture, with common inclusions of volcanic and rarer sedimentary rock types. Fracture fillings and veins of quartz, pyrite, gypsum, epidote, and chlorite are common as in hole 90-1. Alteration can be characterized as dominantly propylitic, as compared to a more potassic/propylitic suite in hole 90-1.

Two small zones of massive actinolite, pyrite, and magnetite skarn were intersected in hole 90-2. These zones returned values of 8400 and 2060 ppm copper, and 545 and 225 ppb gold, respectively. The significance of this mineralization is not understood.

There is a clear gradient in the average copper values across section 3900, as they increase from east to west. This factor, combined with the observed alteration sequence of propylitic to potassic in an east to west direction, indicates that better grade porphyry style mineralization may be located further to the west.

The pyrite content is sufficient to explain the observed chargeability anomaly. The copper values in 90-1 and the sporadic elevated gold values over the section could explain the observed soil anomalies.

Section 3700

Hole 90-4 was collared to test the western margin of a copper and gold soil anomaly with a coinciding greater than 15 millisecond chargeability (n=2) anomaly.

The hole intersected mainly hybrid diorite similar to holes 90-2 and 90-3. Abundant fracture fillings and veins of quartz, pyrite, gypsum, and chlorite were found. The hole generally displayed a suite of potassic/propylitic alteration. It also was

determined to contain an average high level of 731 ppm copper. This hole also contains the highest average gold values in the 1990 drilling. The hole also demonstrates that higher copper values are not restricted to a single rock type, but appear to be more related to potassic alteration.

Combining this information with the data from sections 3900 and 3600, it indicates better grade mineralization may be located further to the west. The pyrite content, and copper and gold values found could explain the observed surface anomaly.

Section 3600

Hole 90-5 was collared to test the eastern margin of a greater than 20 millisecond chargeability (n=2) anomaly which coincided with a few copper and gold soil anomalies.

The hole intersected mainly fine grained diorite. Abundant fracture fillings and veins of quartz, pyrite, gypsum, chlorite and epidote were found. Alteration is mainly propylitic, but some potassium feldspar flooding was found closer to the end of the hole.

The pyrite content would explain the observed chargeability anomaly, but the soil anomalies are not likely related to the rocks intersected by #ole 90-5.

4

Section 3400

Hole 90-6 was collared to test a greater than 15 millisecond chargeability (n=2) anomaly and the interpreted extension of copper and gold soil anomalies into this area of much thicker overburden cover.

The hole initially intersected a more mafic monzonitic diorite than had been previously noted. It passed through syenite, dykes, and brecciated diorite, before returning to the monzonitic diorite at the end of the hole. Alteration in this hole is a potassic/propylitic suite. No significant metal values were detected. The pyrite content would explain the observed chargeability anomaly.

Section 3265

والإيات

Hole 90-7 was collared to intersect the body of copper mineralization which had been defined by mainly percussion drilling in the early 1970's. A greater

than 10 millisecond chargeability (n=2) anomaly and a weak gold soil anomaly also coincided with the zone.

The hole intersected mainly syenitic rocks. The classification as syenite was used as these rocks contain less mafics and more potassium feldspar than the previous diorites. Fracture fillings and veins of quartz, pyrite, and chlorite are common.

This hole did not intersect the copper mineralization as expected. There are no collar or drillsites distinguishable in the field, nor are the old grid stakes preserved. Therefore, the presumed location of the mineralized body must be slightly in error. More drilling would be required to pin-point its location.

Section 3300

- W.S.2

Holes 90-8 and 90-8A were collared to test a VLF-EM anomaly which had a coincident copper, gold, and arsenic soil anomaly.

Hole 90-8 was abandoned in overburden due to caving, and 90-8A was collared a few metres to the east. It intersected monzonitic diorite after passing through 41 metres of overburden. The rock was extremely broken and the hole had to be abandoned at 111.6 metres due to squeezing.

The observed VLF-EM anomaly is believed to be caused by a major fault zone, as indicated from the very broken and clay-gouged core. The soil anomalies are un-explained.

CONCLUSIONS AND RECOMMENDATIONS

7.1

It is concluded that the diamond drilling partially defined an alteration and geochemical pattern which could be proximal to porphyry style copper/gold mineralization.

It is recommended that diamond drilling continue. The next phase of drilling should be five or six holes totalling approximately 800 metres. Specifically, these holes should be collared on sections 3900 and 3700 north, further to the west of holes 90-1 and 90-4 respectively.

An estimated cost breakdown for the proposed work program is presented in the following table (page 14). This proposed program is the Phase II program as originally recommended by Pease, et.al. (1989).

Submitted by:

Rob Pease Geologist Placer Dome Inc.

Submitted by:

R.W. Cannon Senior Geophysicist Placer Dome Inc.

ESTIMATED COST OF PROPOSED WORK PROGRAM

Diamond Drilling 800 m @ \$55/m	\$	44,000		
Labour Senior Geologist 10 days @ \$390 Junior Geologist 20 days @ \$270 Helper 15 days @ \$200	\$ \$ \$	3,900 5,400 3,000		
Rock Analysis Geochem 260 @ \$15 Assays 100 @ \$15	\$ \$	3,900 1,500		
Site Preparation and Reclamation \$ 2,00				
Vehicle 15 days @ \$75 \$				
Accommodation and Meals 45 man-days @ \$60	\$	2,700		
	\$	67,525		
Contingency @ 11%	\$	7,475		
TOTAL ESTIMATED COST	\$	75,000		

REFERENCES

- Kwong, Y. T. J. (1987): Evolution of the Iron Mask Batholith and its Associated Copper Mineralization. British Columbia Geological Survey Branch, Bulletin 77, 55 pp.
- Murphy, J. D. (1988): Report on the MD and Knut Mineral Claims, Knutsford, B. C. Private report to Salor Scientific Inc.
- Northcote, K. E. (1976): Geology of the Southeast Half of the Iron Mask Batholith, in Geological Fieldwork, 1976, Paper 1977-1, B. C. Ministry of Energy, Mines, and Petroleum Resources, pp. 41-46.
- Pease, R. B.; Gareau, M. B.; Cannon, R. W. (1989)
 Geophysical and Geochemical Report on the Knut Project.
 Private Report to Placer Dome Inc. and Salor Scientific
 Inc.

STATEMENT OF EXPENDITURES KNUT PROJECT

Diamond Drilling 1204.9 m @ \$45/m		54,220.05
Labour R. Pease, Supervisor 17 days @ 420/day K. Edwards, Core Logger 35 days @ 240/day M. Deschenes, Core Logger 23 days @ 250/day D. Turner, Sampler 24 days @ 160/day		7,140.00 8,400.00 5,750.00 3,840.00
Analytical Preparation 500 @ \$3.25 Geochem (Cu,Ag,Au,Mo) 500 @ \$9.00 Assays (Cu) 8 @ \$6.50 Freight		1,625.00 4,500.00 52.00 789.50
Accommodation and Meals 99 Man-days @ 60/day		5,940.00
Consumables		300.00
Petrographics Report		1,200.00
Vehicle 30 days @ 75/day		2,250.00
Report Preparation and Drafting		4,000.00
	Total	\$ <u>100,006.55</u>

-10,169

STATEMENT OF QUALIFICATIONS

I, Richard W. Cannon, of the City of Vancouver, Province of British Columbia, hereby certify as follows:

- 1. I am a graduate of the University of British Columbia where I received a B.A. Sc. in Geological Engineering (Geophysics Option) in May, 1966.
- 2. I am a member of the Association of Professional Engineers of British Columbia and have been so since 1968. Registration No. 6742.
- 3. I am a member of the Canadian Institute of Mining and Metallurgy, Society of Exploration Geophysicists, and the B. C. Geophysical Society.
- 4. I have practised my profession since 1966.
- 5. This report may be used for development of the property, provided that no portion will be used out of context in such a manner as to convey meanings from that set out in the whole.

Respectfully Submitted,

R. W. Cannon, P. Eng.

STATEMENT OF QUALIFICATIONS

I, Robert B. Pease, of 1872 Whistler Court, Kamloops B. C., do hereby certify that:

- 1. I graduated from the University of Waterloo, Waterloo Ontario, with an Honours B. Sc. Degree in Earth Sciences, in 1981.
- 2. From 1976 until the present, I have been engaged studying geology, or working in mineral exploration or mine geology, in various regions of Canada. I have been employed continuously by Placer Dome Inc., or subsidiaries, since 1982.
- I am an Associate of the Geological Association of Canada, and a member of the Canadian Institute of Mining and Metallurgy.
- 4. I personally supervised the diamond drill program as described in this report, and have assessed the resulting data.
- 5. This report may be used for development of the property, provided that no portion will be used out of context in such a manner as to convey meanings from that set out in the whole.

Respectfully Submitted,

Robert B. Pease

-1997

APPENDIX I

Explanation

of

Drill Log Codes

* F. 16"

LOGGING CODE EXPLANATION

Column 1 is a key which indicates the type of data or information on each line.

- I Identity information/data
- S Survey data
- / Upper tier geologic data
- L Lower tier geologic data
- R Free form remarks
- A Assay and analysis data

I DATA

Each Drill Hole has two I lines at the start.

The first line indicates:

- Col. 11 to 16 ID of Project
- Col. 17 to 24 Drill Hole Name
- Col. 29 to 35 Day/Month/Year Logged
- Col. 36 to 38 Logger's Initials
- Col. 39 to 41 Helper's Initials (if any)
- Col. 60 to 62 Coordinate system
- Col. 63 to 68 Grid Azimuth (0.0 if True North)

The second line indicates.

- Col. 5 to 45 Company Name
- Col. 46 to 69 Property or Project or Sub Project Name

S DATA

The S000 line is the collar survey data. Subsequent S Lines (S001, S002, etc.) are down-the-hole surveys.

- Col. 5 to 10 From (a decimal point is inferred between column 8 and 9)
- Col. 11 to 16 To (a decimal point is inferred between column 14 and 15)
- Col. 17 to 18 Units; MT (metres), FT (feet)
- Col. 20 to 26 Total Length
- Col. 27 to 32 Azimuth
- Col. 33 to 38 Dip
- Col. 51 to 60 Northing
- Col. 61 to 70 Easting
- Col. 71 to 80 Elevation

/ AND L DATA

Two lines are available to describe a geologic interval, the upper line (/) and the lower line (L). The /NAM line defines the mineral fields for the upper line.

ST Geocode - upper (/NAM) line

```
Col. 57, 58 QZ - Quartz
```

Col. 59, 60 EP - Epidote

Col. 61, 62 CL - Chlorite

Col. 63, 64 CY - Clay - general

Col. 65, 66 MS - Muscovite (Seriete)

Col. 67, 68 KF - Potassium Feldspar

Col. 69, 70 PY - Pyrite

Col. 71, 72 CP - Chalcopyrite Col. 73, 74 MO - Molybdenite

Col. 75, 76 SL - Sphalerite

Geocode - Lower (LNAM) Line

```
Col. 57, 58 LI - Limonite
```

Col. 59, 60 PL - Pyrolusite

Col. 61, 62 MG - Magnetite

Col. 63, 64 HE - Hematite

Col. 65, 66 GY - Gypsum

Col. 67, 68 MC - Malachite

Col. 69, 70 CB - Carbonate

Col. 75, 76 PO - Pyrrhotite

Upper (/) Geologic Data

```
Col. 5 to 10 - From (decimal inferred between 8 and 9)
```

Col. 11 to 16 - To (decimal inferred between 14 and 15)

Col. 24 to 27 - Rock Type Code - See Rock Type Chart

Col. 28 to 29 - Typifying Mineral 1 - see Mineral Chart

Col. 30 to 31 - Typifying Mineral 2 - see Mineral Chart

Col. 32 to 33 - Main Rock Forming Mineral 1 - See Mineral Chart

Col. 34 - Rock Forming Mineral Field, Amount of Occurrences, See G Scale Chart

Col. 35 to 36 - Texture 1 - see Texture Chart

Col. 37 to 38 - Texture 2 - see Texture Chart

- Essentially always a "P" which stands Col. 47 for Principle Geologic Interval. "N", it stands for Nested Interval - 250 which

> means all of the above interval description applies, except as noted.

Col. 49 to 50 - Structure 1 - see Structure Chart

Col. 51 to 53 - Azimuth of Structure 1.

Col. 54 to 56 - Dip of Structure 1.

Col.	57	-	Mineral Field, Mode of Occurrence - See
0-1	50		H Scale Chart
Col.	58	***	Mineral Field, Amount of Occurrence -
_ 1	56 5		See G Scale Chart
Col.	59 to 74	-	Mineral Fields, sample pattern continues
			(ie. G. Scale How, Amount) as in
			columns 57, 58.

Lower (L) Geologic Data

Col.	28	to	29	_	Colour Code - See Colour Chart
Col.	30	to	31	_	Typifying Mineral 3 - See Mineral Chart
Col.	32	to	33	_	Main Rock Forming Mineral 2 - See
					Mineral Chart
Col.	34			_	Rock Forming Mineral Field - Amount of
					Occurrence - See G Scale Chart
Col.	35	to	36	_	Texture 3 - see Texture Chart
Col.	43			_	Count of Fractures at Steep Angle to
					Core Axis - See F Scale
Col.	44				Count of Fractures at Medium Angle to
					Core Axis - See F Scale
Col.	45			_	Count of Fracture at Low Angle to
					Core Axis - See F Scale
Col.	49	to	50	_	Structure 2 - See Structure Chart
Col.	51	to	53	_	Azimuth of Structure 2
Col.	54			_	Dip of Structure 2
					Angle to Core Axis of Structure 2
					Mineral Fields, as in upper (/) Data
					, , , , , , , , , , , , , , , , , , , ,

Note: Columns 43 to 46 not always used

R DATA

These are free form remarks written by the logger to further describe the geologic interval. Note that Rock Type Codes (see Rock Type Charts are often used.

A DATA

This last type of data lists the assay information for the trench.

Note that remarks are also used.

The first line, A001, defines original samples. A002 defines RQD and Recovery. A003 defines a standard composite set of assays. The following lines describe and list the assay data.

```
ALAB Col. 17 to 80 - Define Laboratory
ATYP Col. 17 to 30 - Define Type of Determination
AUMM Col. 17 to 80 - Define Assay Fields
```

```
A00? Col. 1 to 4 - Defines Sample Type

A001 Col. 5 to 10 - From (decimal inferred between 8 and 9)

Col. 11 to 16 - To (decimal inferred between 14 and 15)

Col. 21 to 26 - Sample Number

Col. 27 to 32 - Silver ppm

Col. 33 to 38 - Gold ppb

Col. 39 to 44 - Copper ppm

Col. 45 to 50 - Molybdenum ppm
```

CHARTS

1. Rock Type Chart

Letter Code

A four letter code is used to describe rock types. The first four letters of a rock type name is its preferred code. If the fourth letter is a vowel, the vowel is replaced by the next consonant.

Lithology

OVBD	OVERBURDEN
BRXX	BRECCIA
FAUL	FAULT BRECCIA
VEIN	VEIN
DIOR	DIORITE
PPDI	PORPHYRITIC DIORITE
FGDI	FINE GRAINED DIORITE
HYDI	HYBRID DIORITE
MSSF	MASSIVE SULPHIDE
FGQM	FINE GRAINED QUARTZ MONZONITE
MZDI	MONZO DIORITE
FSDK	FELSIC DYKE
CGGB	COARSE GRAINED GABBRO
PPDK	PORPHYRITIC DYKE
BRDI	BRECCIATED DIORITE
FGMZ	FINE GRAINED MONZONITE
PPDI	PORPHYRITIC DIORITE
FGQD	FINE GRAINED QUARTZ DIORITE
MGQD	MEDIUM GRAINED QUARTZ DIORITE
SIBR	SILICA BRECCIA
MGMZ	MEDIUM GRAINED MONZONITE
SYDK	SYENITIC DYKE
RYDK	RHYOLITIC DYKE
SYMZ	SYENITIC MONZONITE
MGDI	MEDIUM GRAINED DIORITE
PPSY	PORPHYRITIC SYENITE
MONZ	MONZONITE
FGSY	FINE GRAINED SYENITE
PYSY	PYRITIC SYENITE

2. Mineral Chart (ie. Mineral short-forms)

PY	PYRITE
SL	SPHALERITE
GL	GALENA
PO	PYRRHOTITE
CP	CHALCOPYRITE
CL	CHLORITE
EP	EPIDOTE
MG	MAGNETITE
BI	BIOTITE
MS	SERICITE
СВ	CARBONATE
LI	LIMONITE
SI	SILICIFICATION
\mathtt{PL}	PYROLUSITE
MN	MANGANESE
CY	CLAY
PF	PLAGIOCLASE
HE	HEMATITE
KA	KAOLINITE
QZ	QUARTZ
FX	FELDSPAR
KF	ORTHOCLASE FELDSPAR
HB	HORNBLENDE
PH	PHLOGOPITE
MC	MALACHITE
GY	GYPSUM
CA	CALCITE
XE	XENOLITHS
ВО	BORNITE
HS	SPECULAR HEMATITE
MO	MOLYBDENITE
AC	ACTINOLITE

3. <u>Texture Chart (ie. Texture Short Forms)</u>

SC		SCHIST
BN		BANDED
PH		PHYLLITE
MX		MASSIVE
WB		WAVEY BANDS
FZ		FAULT OR SHEAR ZONE
<<		MICROVEINS
>>	À ™	MACROVEINS
VG		VUGGY
LM		LAMINATED
BR		BRECCIATED
PP		PORPHYRITIC
EQ		EQUIGRANULAR
SH		SHEAR
R2		SLIGHTLY REWORKED

R5	MOD. REWORKED
R7	STRONGLY REWORKED
RW	REWORKED
AG	AUGEN STRUCTURED
SW	STOCKWORKED
GT	GRANITIC
BK	BLOCKY
KR	CRACKLED
LN	LENTICULAR
UF	UNIFORM TEXTURED
VC	VUGGY
VV	VEINED
XE	XENOLITH
EM	EQUIGRANULAR MEDIUM
EC	EQUIGRANULAR COARSE
EF	EQUIGRANULAR FINE
PA	PATCHY
FG	FINE GRAINED

- 25

4. Structure Chart (ie. Structure Short-Forms)

BN	BANDED
BD	BEDDED
BR	BRECCIATED
QV	QUARTZ VEINS
SH	SHEAR ZONE
MX	MASSIVE
<<	MICROVEINS
>>	MACROVEINS
FZ	FAULT
C/	CONTACT
D/	DYKE
FS	FRACTURE SET
LS	LENS
SH	SHEAR
V/	VEIN
VE	EPIDOTE VEIN
VC	CALCITE VEIN
VP	PYRITE VEIN
VQ	QUARTZ VEIN
VG	GYPSUM VEIN
XE	XENOLITHIC

5. How Chart or H Scale

-90

Symbol	Most Dominant Mode of Occurrence		
A	Amygdaloids, cavity fillings		
В	Blebs		
#	Breccia Fillings		
С	Coatings & Encrustations		
*	Clasts		
D	Disseminations & Scat.x'ls		
E	Envelopes		
F	Framework Crystals		
G	Gouge		
Н	Halos		
I	Eyes, Augen		
J	Interstitial		
K	Stockwork		
${f L}$	Laminated/bedded		
M	Massive		
N	Nodules		
0	Spots		
Q	Patches, as in quilts'		
R	Rosettes & x'tls clusters		
S	Selvages		
S \$	Sheeting		
T	Stainings, as in tarnish		
Ŭ	Euhedral		
V	Veins		
>	Macroveins		
<	Microveins		
W	Boxwork		
X	Massive and/or laminated/bedding		
Y	Dalmationite		
Z	Fresh, primary rock		
+	Flooding		

6. G Scale or Amount Chart

Code	Assigned <u>Value</u>	Range
X	100	100 %
9	90	85 to 99
8	80	75 to <85
7	70	65 to <75
6	60	55 to <65
5	50	45 to <55
4	40	35 to <45
3	30	25 to <35
2	20	15 to <25
1	10	7 to <15
=	5	4 to < 7
+	3	2 to < 4
)	1	.5 to < 2
*	.3	.2 to <.5
(.1	.05 to <.2
_	.03	.02 to <.05
•	.01	Trace = $<.02$
0	0	Nil, Absent
/	.07	Present: Estimate impossible
?	0	Possibly Present

7. Colour Chart

The colour chart can be used in two ways. A lightness can be combined with colour, or two colours can be combined.

eg. 3U - Dark Brown or RU - Reddish Brown

Light	ness	Colo	ur
Symbol	<u>Value</u>	Symbol	Colour
9	palest	R	Red
8	pale	Ŭ	Brown (Umber)
7	light	0	Orange
6	lighter	${f T}$	Tan (khaki)
5	medium	Y	Yellow
4	darker	${f L}$	Lime (Y-G)
3	dark	G	Green
2	very dark	Q	Aqua (B-P)
1	darkest	В	Blue
		V	Violet (B-P)
		P	Purple
		M	Mauve
		W	White
		Α	Grey
		N	Black (Noir)

8. F Scale or Fractures and Joints Intensity Chart

- 244

Range Values	Assigned Values	Symbol Symbol	<u>Description</u>
			
	0	0	Unfractured
0 - 2	1	1	Extremely low intensity
2 - 4	3	2	Very low intensity
4 - 8	6	3	Low intensity
8 - 12	10	4	Moderately low intensity
12 - 18	15	5	Moderate
18 - 24	21	6	Fairly high intensity
24 - 32	28	7	High intensity
32 - 40	36	8	Very intense
40 - 50	45	9	Extremely intense
> 50	55	X	Shattered

APPENDIX II

Diamond Drill Logs

and

Assay Results

```
IDEN6B0201 V250 DDH90-1 NQ 21APR90KMEMD ATLSAPR90S38
                                                       RBPUTM 0.0
IPR.I
                                              KNUT PROPERTY
          PDI/Salor Scientific
S000
      00 7400MT 148.13270.0 -46.00
                                                     3892.
                                                               2475.
                                                                          940.
$001 7400 14813
                   148.13270.0 -45.5
/SCI
            MT.2
LSCL
                           LCTM
/NAM
                                                        QZEPCLCYMSKFPYCPMOSL
LNAM
                                                        LIPLMGHEGYMCCB
R
                THIS DDH COLLARED TO TEST CU-AU SOIL AND COINOIDENT IP ANOMALY
R
       00
             610 CASING TO 6.1 M
       00
             61
                       OVBD
       610 1372
                       FGDIPFHBXE(PP<<
                                              P <<
                                                        <=E2P3<1 Q(D-
                                         2314
                           5G QZ*EQ
L
                HIGHLY OXIDIZED ZONE, CLAY DOMINANT 6.1 TO 7.6 M.
R
                PY IN SML TO MED FRACTURES WITH QZ AT END OF INTERVAL
                XENOLITHS .5 CM TO 2 CM, ANGULAR VOLCANIC AND RND INTRUSIVE
                FGDI: PLAG AS PHENOCRYSTS, 1MM - 5 MM
      1372 1791
                       FGDIPFHBXE(PP<<
                                              P << 25E1D1P2<(01Q(<=<-
L
                           AG QZ*EQSW
                                         1213
                                                       C1C2
                STILL IN UPPER OXIDIZED ZONE DISPLAYING INTENSE WEATHERING
R
                INSIDE SELECTIVE FRACTURES.
                XENOLITHS OF INTRUSIVE AND VOLCANIC ORIGIN OCCUR FROM 2 TO 10 MM
R
                ROCK DISPLAYS TWO EVENTS OF MICROVEINING; AN EARLIER STOCKWORK
R
R
                OF SILICA FLOODING FOLLOWED BY A PARALLEL SYSTEM OF PY FILLED
R
                MICROVEINS W ENVELOPES OF SILICA.
                NOTE: INTERVAL SHOWS HIGH CU VALUES, SEE A001. FURTHER EXAM-
                    INATION SHOWS FINELY DISS'D BLACK TO DK BLUE XALS BTWN PY
R
                    SHEETING (2-5%?). POSS TARNISHED CP OR CHALCOCITE WITHIN
                    THE OXIDIZED ZONE. SLIGHT SUPERGENE ENRICHMENT.
R
      1791 2012
                       FGDIPFHBQZ*EQ<<
                                              P <<
                                                     10E1D(P-<(01Q-<)
                           5A XE-PP
                                         2113
                                                       C)C+
                SIMILAR TO PREVIOUS INTERVAL BUT W LESS MICROVEINING AND PY
R
R
                CONTENT.
R
                PY STILL DISPLAYING SILICA ENVELOPES.
R
                XENOLITHS ARE SMALLER 2 - 3 MM AND MUCH LESS COMMON.
      2012 2235
                       FGDIPFHBQZ*EQPP
                                             P <<
                                                       E+D(0* 01Q-<(
                           5A XE-
                                          1001
                                                       C)C+
R
                WEATHERING STILL OCCURRING IN SELECTED FRACTURES BUT PY ALSO
R
                OCCURS IN LESSER AMTS IN MICROVEINS BUT ALSO AS DISS XALS.
                       FGDIPFHBQZ*PP<<
                                                       E* 0* 01<)<=
      2235 3231
                                              P <<
                                 EQSW
                                        1223 VG
                                                               <1
L
                          6A
                OXIDIZED ZONE NO LONGER PRESENT; NO XENOLITHS PRESENT; PYRITE
R
                OCCURS AS MICROVEINS AND DISS XALS W SOME SILICA ENVELOPES;
                MAJORITY OF MICROVEINS CONSIST OF LATER STAGE GYPSUM. A MILD
R
                ARGILLIC ALT IS PRESENT THROUGHOUT.
      3231 5670
                                                                 P3D*B.
                       FGDIPF XE-UF<<
                                             P <<
                                                        <*E*D2
L
                           6A
                                 EQ
                                          1223 VG
                                                               <1
                FEW PF PHENO, PATCHY INTERMITTENT AREAS
R
                DIOR HARD W PERV KF THROUGHOUT
R
R
                34.6 - 35.36 HIGH K CONTENT, FRACTURED, BLACK MICROVEINS
                35.36 FAULT GOUGE, VERY BLACK, SOFT, LI STAINING.
                PY DISS <1%, ALSO IN VEINS 5%, CENTRALLY LOCATED IN GY VEINLETS
R
R
                COMMONLY WITHIN ZONES OF HIGH K CONTENT
        2014
R
                XE DOMINANTLY VOLCANIC
                39.2 - 39.8 LITTLE KF, EP, CL DOMINANT
R
R
                44.1 - 44.25 HIGH KF CONTENT, BLACK FAULT ZONE, PY IN SPOTS
R
                ASSOC W EP - GY VEINS, CROSSCUT IN ALL DIRECTIONS
      5670 6584
                       FGDIPFHBQZ*<<PP
                                             P <<
                                                        <(E+O(D2 E=D1
                                                               <2
                                               ٧E
L
                           6A XE(EQ
                SIMILAR INTERVAL TO PREVIOUS ONE W MORE EP AS ENVELOPES AROUND
R
```

```
GY AND KF VEINLETS (GY-KF-EP). EP ALSO OCCURS AS DISS AND PATCH
R
                PY OCCURS MAINLY DISS (1-2%) AND AS MICROVEINS(<1%)
R
                VEINLETS XCUT EACH OTHER THROUGHOUT; XENOLITHS APPEAR MAINLY AS
R
                VOLCANICS (2-3 MM).
R
                62.0 - 62.5 NARROW FAULT GOUGE W GY-KF-CL ALTN.
      6584 8332
                       FGD I P F H B Q Z / S W P P
                                            P V/
                                                        E(Q(D2
                                                                  E1<(<.
L
                                                                 <2
                           AG
                                 ΕQ
                                          2324
R
                THREE SETS OF VEINS: 1. KF- PRODUCES STOCKWORK ASSOC W EP, QZ, PY,
R
                    CP, RELATIVELY STRAIGHT.
R
                    2. GY- IRREGULAR VEINS, XCUT ALL OTHER VEINS, SOME PINKISH
                    3. QZ - ASSOC W KF VEINS. MINOR
R
R
                65.84 - 70.7 HIGHLY ALTERED, BRECCIATED, KF PERVASIVE EXTENDS
                    AWAY FROM MICROVEINS .5CM. CL, EP ABUNDANT CLOSE TO MICRO
R
R
                    FRACTURES. KF ALSO IN INDIVIDUAL "CLASTS" IN BRECCIA
R
                    SOME CY (LT GREEN) MINERALS ASSOC W FAULTED ZONES AND BLACK
                    INTERSTITIAL MATERIAL.
                68.0 - 70.0 RELATIVELY CLEAN, SIMILAR TO STOCKWORK DESCRIBED
R
R
                PF PHENOCRYSTS EXHIBIT ZONING
R
                79.78 20 CM BRECCIA ZONE: RNDED AND ANG FRAGMENTS W INTERSTIAL
                    GY,CB,CL,SUB TO EUHEDRAL PY ASSOC W CL BTWN FRAGMENTS,
R
R
                    SPOTTY KF, SPOTTY LT GRN CY W VEINS
      8332 8779
                       HYDIPFHB EM<<
                                                        V1E≈
                                              P VQ
                                                                  0(6(0*
/
                                          1111 VG
                                                            B* V1
L
                           4G
                QZ VEINS CUT BY GY VEINS, QZ VEINS IRREG, GENERALLY PARALLEL/
R
                SUB PARALLEL TO AXIS. PY, EP COMMON IN AND ADJ TO QZ VEIN.
R
                MOST GY VEINS HAVE NO PY; XCUT CORE IN ALL DIRECTIONS.
R
R
                PY FOUND ALONE, OR ASSOC W EP - QZ.
R
                CP, PO, MG, PY OCCUR TOGETHER, SPOTTY(87.17M)
R
                MG AS SELVAGES PROXIMAL TO PY CONTAINING VEINS.
      8779 11740
                       FGDIPFHBXE(PPEQ
                                           P <<
                                                        <=<=P1<* <1<*<.
1
                                                            <( <1
L
                               071SW
                                        1314
                                                                          Q(
R
                89.22 SML BRECCIA W RND PINK FRAGMENTS, PY DISS INTERSTITIALLY
                    BRECCIA BOUNDED ON EACH SIDE BY KF AND BLACK MATERIAL
R
R
                    DIP 60 TO RT.
R
                92.07 - 92.67 HIGH DEGREE OF KF, PERVASIVE, CHANGE IN ROCK TYPE?
R
                    KF ALTH NOT CONTINUOS THROUGHOUT ENTIRE INTERVAL 87.79 -END
R
                93.57 BRECCIA, KF ALTN, EP, CB IN PATCHES, EUHEDRAL PY IN PATCHES
R
                    DIP 40 TO RT
R
                103.66 - 105.66 HYDI AS DESCRIBED; EP AS VEINS AND ENVELOPES
R
                    ASSOC W PY. PATCHY MG AND CP. ABUNDANT GY VEINS, PATCHY KF
                    ALTN
R
                    SIMILAR ROCK TYPE FOUND IN SML SECTIONS OF ENTIRE INTERVAL.
R
                GENERAL FGDI:
R
                HAVE STOCKWORK W ABUN KF VEINS W ASSOC PY, QZ ENVELOPES AND EP
R
                SOME LT GRN CLAY ALSO AS ENVELOPES, MINOR.
R
                XENO MINOR AND SML
R
                SOME PATCHY AREAS W PERVASIVE KF, ABUN EP, CB, PY, SOME PO
                    GENERALLY <10CM WIDE. SIMILAR TO AREA AT 93.57.
R
                       HYD I HBPFXE (SWEM
     11740 14813
                                              P <<
1
                                                        <3s3D50( 01<=</
L
                             3G
                                                VQ
                                                            Q( <1 <(
                                 <<BR
                                                                          <(
R
                ROCK MG TO CGRAIN W ANGULAR FELSIC (FGDI) FRAGMENTS UP TO 4 CM
R
                INTENSE STOCKWORK QZ VEIN: TWO GENERATIONS
R
                    1. QZ-EP-PY VEINS, EP SELVEDGES W PY AND QZ IN CENTRE. EP
R
                    PERVASIVE IN DI, MED ANGLE TO AXIS
R
                    2. XCUTTING VQ, GENERALLY BARREN. IRREGULAR SHAPE XCUTTING
R
                    EACH OTHER AND QZ-EP-PY VEINS. MORE ABUNDANT
R
                GY VEINS XCUT EVERYTHING; LARGE VEINS ASSOC W PATCHY PO,MG; CB
R
                    VEINS ASSOC W GY VEINS, MINOR.
                EP INCREASES AS PATCHES AND PERVASIVELY W DEPTH.
R
```

CLAY ALTH IS PREDOMINANTLY KF ALTH TO LTGRN CLAY, SOME AREAS

```
R
                     MORE AFFECTED
R
                 120.55 BRECCIA W GY, FINE DISS PY, EP AND ROCK FRAGMENTS
R
                 121.31 - 122.46 FELSIC BODY: 60%PF,QZ AND KF FLOODING.
R
                     CONTAINS SIMILAR VEINS AS INTERVAL, SOME BRECCIATN W QZ FILL
R
                 COARSE HYDI HAS LGE (.5CM) EUHDERAL PY, CONTAINS MG AND CL ALTN
R
                     OF FSP.
R
                     AREAS:123.59 - 124.24,129.54 - 130.34, 138.68 - 143.34 (INT-
R
                     ERVAL CONTAINS ABUNDANT EP AS DISS AND VEINS(30%), MG IN
                     PATCHES(20%), AND PATCHY PY.
R
R
                 130.34 - 130.64 BRECCIA: EP 40%, PERVASIVE; CL 50% PERVASIVE.
R
                 147.16 FAULT GOUGE: EP, DISS PY, CB, GY
R
                 END OF HOLE.
R
                 EOH
                 SAMPLES
R
A001
                                                   Мо
AUMM
                     SAMPLE
                                             Cu
                                Ag
                                      Au
R
                               ppm
                                     ppb
                                            ppm
                                                  ррт
ALAB
                 PDI RESEARCH
ATYP
                 SPLIT CORE
AMTH
                 WET GEOCHEM A.A.
       00
             610 CASING - NO RECOVERY
R
A001
       610
             800
                                .8
                      54001
                                           320
                                                    8
                                      10
A001
       800
             1110
                      54002
                                .6
                                      10
                                            880
                                                    4
                                .7
A001
      1110
             1372
                      54003
                                      15
                                           1970
                                                    6
                      54004
             1612
                               1.0
                                      40
                                           4400
                                                   10
A001
      1372
A001
      1612
             1791
                      54005
                                .4
                                       3
                                           1740
                                                    8
A001
      1791
             2012
                      54006
                                .6
                                      25
                                           4200
                                                   10
A001
      2012
             2235
                      54007
                                .4
                                       3
                                           2830
                                                    6
A001
      2235
                                                   12
             2500
                      54008
                                .4
                                       3
                                           1500
      2500
             2790
                      54009
                                .3
A001
                                       3
                                           1000
                                                   12
A001
      2790
             2982
                                .3
                                           1360
                      54010
                                      20
                                                   16
A001
      2982
            3231
                      54011
                                .3
                                      10
                                           1160
                                                    6
A001
      3231
             3460
                      54012
                                .3
                                      15
                                           1340
                                                   54
A001
      3460
            3536
                      54013
                                .2
                                       3
                                           1050
                                                   24
A001
      3536
             3840
                      54014
                                .3
                                      20
                                           1360
                                                   20
                                .3
A001
      3840
             4145
                      54015
                                           1080
                                      20
                                                   10
A001
      4145
             4400
                      54016
                                .2
                                       3
                                           720
                                                    4
      4400
             4426
                                .3
                                      10
                                           1030
A001
                      54017
                                                    6
            4855
                                .3
A001
      4426
                      54018
                                      15
                                           1330
                                                    4
A001
      4855
             5250
                      54019
                                .4
                                       3
                                           1300
                                                    4
A001
      5250
            5590
                      54020
                                .4
                                       3
                                           1520
                                                    1
A001
      5590
            5670
                      54021
                                .3
                                       3
                                           1020
                                                    1
A001
      5670
            5974
                      54022
                                .3
                                           940
                                       3
                                                    1
                                .3
      5974
A001
            6232
                      54023
                                       3
                                           1040
                                                    2
A001
      6232
            6252
                      54024
                                .3
                                       3
                                           1020
                                                    2
A001
      6252
            6412
                      54025
                                .4
                                           1600
                                       3
                                                    6
A001
      6412
            6484
                      54026
                                .5
                                       3
                                           1080
                                                    1
A001
      6484
            6714
                      54027
                                .7
                                       3
                                           1530
                                                   24
A001
      6714
            6795
                      54028
                               1.2
                                       3
                                           1250
                                                   30
      6795
A001
                                .4
                                                    4
            6930
                      54029
                                       3
                                           1270
A001
      6930
             7070
                      54030
                                .4
                                       3
                                           900
                                                    1
      7070
A001
            7493
                      54031
                                .4
                                       3
                                           1220
                                                    1
A001
      7493
            7793
                      54032
                                .4
                                       3
                                           1150
                                                    2
A001
      7793
            7978
                      54033
                                .6
                                       3
                                           1270
                                                    1
                      54034
                                .9
A001
      7978
            8028
                                       3
                                           1400
                                                   56
A001
      8028
            8332
                      54035
                                .5
                                       3
                                           1860
                                                    4
A001
      8332
            8552
                      54036
                                .9
                                                    8
                                      20
                                           3600
                      54037
                                .9
                                                    1
A001
      8552
            8779
                                      10
                                           4200
                      54038
                                .4
A001
      8779
            9062
                                       3
                                           1580
                                                    1
                      54039
A001
      9062 9347
                                .4
                                       3
                                          1000
                                                    1
```

A001	9347	9607	54040	.5	3	1330	2
A001	9607	9884	54041	.4	3	970	2
A001	9884	10179	54042	.4	3	1220	6
A001	10179	10366	54043	.3	3	970	1
A001	10366	10571	54044	.6	25	2660	1
A001	10571	10831	54045	.7	55	3100	4
A001	10831	11116	54046	.6	3	2760	10
A001	11116	11430	54047	.4	3	860	1
A001	11430	11740	54048		3	1400	1
A001		12050	54049		3	1800	1
A001		12131	54050		3	1950	1
A001	12131	12246	54051	.6	3	2120	2
					3		
A001		12314	54052			1840	2
A001	12314	12619	54053		3	2400	6
A001		12940	54054		3	1740	12
A001		13072	54055		3	1390	26
A001	13072	13259	54056	.6	3	800	4
A001	13259	13564	54057	.5	3	360	1
A001	13564	13843	54058	.5	3	317	1
A001	13843	14028	54059	.5	3	490	1
A001	14028	14369	54060	.6	3	328	1
A001	14369	14813	54061	.8	3	580	2
A002							
AUMM				RECOVY	RQD		
R	000	610	CASING -				
A002	610	792	onorno i	84.1	6.5		
A002	792	1097		69.8	25.2		
A002	1097	1372		83.6	13.1		
A002	1372	1676		96.7	47.4		
A002	1676	1829		100.0	48.5		
A002	1829	2012		68.9	0.0		
A002	2012	2225		39.9	0.0		
A002	2225	2347		32.8	0.0		
A002	2347	2408		29.5	۵.٥		
A002	2408	2621		100.0	65.3		
A002	2621	2926		92.5	81.0		
A002	2926	3231		73.8	51.8		
A002	3231	3536		84.3	42.6		
A002	3536	3840		92.1	62.5		
A002	3840	4145		92.8	52.1		
A002	4145	4450		95.1	77.2		
A002	4450	4755		91.1			
A002	4755	5060		95.1			
A002	5060	5364		94.4			
A002	5364	5670		94.4			
A002	5670	5974		88.5			
A002	5974	6279		97.4			
A002	6279	6584		86.9			
A002	6584	6888		97.4			
A002	6888			91.8			
A002	7193			97.4			
A002	7498	7803		88.5	80.0		
A002	7803	8108		95.7	72.5		
A002	8108	8412		91.5	86.5		
A002	8412	8717		95.7	94.4		
A002	8717	9022		89.2	55.7		
A002	9022	9327		94.4	80.7		
A002	9327	9632		86.2	37.4		
A002	9632	9936		91.8			
A002		10241		79.3	55.7		

A002	10241	10546	84.6	76.7		
A002	10546	10841	94.1	79.6		
A002	10841	11156	90.8	81.0		
A002	11156	11460	91.1	75.0		
A002	11460	11765	96.7	87.2		
A002	11765	12070	89.2	72.8		
A002	12070	12314	100.0	88.9		
A002	12314	12619	90.8	65.9		
A002	12619	12954	83.0	62.1		
A002	12954	13259	87.9	66.2		
S00A	13259	13564	90.2	75.7		
A002	13564	13868	93.8	75.3		
A002	13868	14204	74.4	45.3		
A002	14204	14508	85.5	70.4		
A002	14508	14813	89.5	79.0		
A003						
AUMM			AG	AU	CU	MO
R			ppm	ppb	ррт	ррт
R		5.0 metre		• •	• •	• •
R		Casing to				
A003	610	1000	.7	10	607	6
A003	1000	1500	.8	20		7
A003	1500	2000	.6	20		9
A003	2000	2500	.4	3	2158	9
A003	2500	3000	.3	9	1144	13
A003	3000	3500	.3	12	1234	29
A003	3500	4000	.3	19	1248	17
A003	4000	4500	.3	10	931	6
A003	4500	5000	.3	11	1321	4
A003	5000	5500	.4	3	1410	2
A003	5500	6000	.3	3	1062	1
A003	6000	6500	.4	3	1240	4
A003	6500	7000	.7	3	1326	16
A003	7000	7500 7500	.4	3	1174	1
A003	7500	8000	.5	3	1205	4
A003	8000	8500	.7	8	2419	8
			.7	8		2
A003	8500	9000 9500			2980	1
A003	9000		.4	3	1173	3
	9500	10000	.4	3	1105	2
	10000	10500	.4	9	1512	
	10500	11000	.7	33	2923	6
	11000	11500	.4	3	1376	3
	11500	12000	.5	3	1608	1
	12000	12500	.6	3	2127	3
	12500	13000	.5	3	1855	12
	13000	13500	.5	3	673	6
		14000	.5	3	377	1
		14500	.6	3	403	1
A003	14500	14813	.8	3	580	2
/END						

4:--

```
IDEN6B0201 V250 DDH90-2 NQ 22APR90KME ATLSAPR90S38
                                                       RBPUTM 0.0
I PR.J
          PDI/Salor Scientific
                                              KNUT PROPERTY
S000
      00 12712MT 154.23270.0 -45.00
                                                     3900.
                                                               2585.
                                                                          936.
$001 12712 15423 154.23270.0 -45.5
/SCL
            MT.2
LSCL
                           LCTM
/NAM
                                                        QZEPCLCYMSKFPYCPMOSL
LNAM
                                                        I IPI MGHEGYMCCB
                THIS DDH COLLARED TO TEST CU-AU SOIL AND COINCIDENT IP ANOMALY
R
            305 CASING TO 3.05 M
R
       00
       00
            305
                       OVRD
1
      305 1869
                                             P <<
                                                        P1E=P3P/ 0=<1<*
1
                       HYDIPFHB PAEC
                                 <<
                                          0001
                                                        <1 Q1 A(
L
                          44
R
                HYDI: HYBRID DIORITE: GENERALLY MED - COARSE GRAINED BUT SOME
R
                AREAS ARE DK FINE GRAINED W ABUND PY AND DISS MG. PY AND PO IN
R
                MICROVEINS PRODUCE FINE MESH.
R
                HYBRID AREAS POLYGONAL IN SHAPE BOUNDED BY PY VEINS, EP ALTN
                    ZONES CONTAIN PERV. QZ ALTN, BOUNDARIES VAGUE.
R
R
                    REPRESENT XENOLITHS PARTIALLY FUSED.
R
                EP OCCURS +/- PY AS VEINS AND ENVELOPES ALSO OCCURS AS PERV.
R
                    ALTN IN BRECCIA ZONES AND AREAS OF LESS XENOLITHS.
R
               PY VEINS PRODUCE FINE MESH THROUGHOUT, UP TO 10 - 20% PY
R
               PY ALSO IN PATCHES, INCREASING AT BTM OF INTERVAL.
R
                1561 - 1581 BRECCIA: EP,CY ALTN, PERV AND VEIN CB.
R
                    FRIABLE. PERV QZ, LI ALTN IN PY VEINS.
R
                    GRADES INTO CG DIOR W SOME XENOLITHS.
                1859: MASSIVE PERV EP ALTN.
R
                1850: CP AND PO VEIN.
R
R
                GY IN SOME LGE INFREQUENT VEINS
R
                CY ALTH DOMINANT AS PF ALTH. KF ALTH PRESENT BUT UNKNOWN.
R
                CONTACT W FG UNIT W ABUNDANT MG AT 4.57M AT 45.
               CONTACT CONTAINS EP AND PY VEIN.
R
      1869 2027
                      MSSF
                                  MXPA
                                                        D=02P2
                                                                    ۵4
1
L
                           3U
                                                            Q4
                                                                    D1
R
                ZONE OF MASSIVE SULFIDE, ORIGINAL ROCK NOT IDENTIFIED.
R
                INTENSE CL-EP ALTN W SOME QZ.
R
                CARB PRESENT AS VEINS AT 50 DEGREES AND IN AREAS INSTEAD OF QZ
R
                MG ACCURS NEAR TOP OF INTERVAL AS PATCHES W SOME XCUTTING EP
                    AND CB VEINS. PY OCCURS AS PATCHES IN MG AND AS IRREG VEINS
R
R
                PY DOMINANT NEAR BTM OF INTERVAL W CB-CL ALTN. MG AS SML DISS
R
                    XALS IN PY MATRIX.
R
                GRADES INTO PF RICH ROCK W HB, COARSE GR. SOME KF ALTN.
1
     2027 4659
                      HYDIPFHBQZ1PAEC
                                             P <<
                                                        P1<2P4
                                                                  02<1
                                                            D= <= <+
L
                          5AYF
               SIMILAR TO FIRST UNIT EXCEPT COARSER GRAINED.
R
R
                HAS AREAS OF XENO OF OTHER MATERIAL. XENO COMMONLY FG W DISS
R
                    MG(5-10%).
R
                    HAVE NETWORK OF PY VEINS. EP DOMINANT IN HOST ROCK RATHER
R
                    THAN XENO. ROCK CHANGES COARSENESS.
               EP AS VEINS AND EVELOPES MED TO HIGH ANGLE TO AXIS. MAY CROSS
R
R
                    PY VEINS
R
               PY VEINS IRREG AND DISCONT +/- EP, CB, MG.
R
               GY VEINS COMMON AT 31.0 TO 32.0.
        - 25.
R
                SOME DISS PY BUT MAY BE LINKED TO MICROVEINS.
R
               3229 - 33.24 XENO OF FELSIC MATERIAL - QZ MONZ?
R
                    CONTACT IRREG W CONC'N OF PY, GY, CB, AND CL AT 70 DEG.
                    ROCK IS COMPETENT W LITTLE MINERALIZATION OR EP.
R
R
               3511 - 38.2 FAULT GOUGE. ABUN EP, CL, GY.
R
                    SOME KF ALTN, GY VEINS THROUGHOUT.
```

PY MAINLY CLOSE TO PERV AND VEIN EP.

```
R
                    MG IS MINOR ALONG SML SHEARS.
R
                    GRADES INTO EP RICH, KF RICH ALTERED ZONE.
R
                    SML GOUGE AT 39.2M
                ROCK BECOMES COARSER GRAINED AT BTM W PY INCREASING IN IRREG
R
R
                    MICROVEIN SYSTEM. ALTN OF FSP T CY EXTENSIVE.
      4659 4732
/
                       MSSE
                               AC2
                                              Р
                                                        Q1Q2 P1
                                                                    M6<1
                                                            M6<=
                                                                    <1
R
                MASSIVE SULFIDE GRADING FROM PY AT TOP TO MX MG AT BTM.
R
                INTERMED TO PY AND MG IS LESS ALTERED DI W FAULT GOUGE +EP,CL,QZ
                W MG IS PY MICROVEINS ABOUT 10 - 20%
R
R
                CB AS VEINS IN MG
R
                LGE ACTINOLITE XALS(AC) THROUGHOUT, DISS IN PY ANF MG MASS.
                CLAY ALTH EXTENSIVE, SOME POWDERY SECTIONS.
R
/
      4732 7910
                       HYDIPFHBXE2
                                                        P1P2P302
                                                                    <=<.
                                                            <+ <= P1
L
                RELATIVELY FRESH, PF ALTERED TO CLAY.
R
                49.7 CRUMBLED CY-CB RICH ZONE.
R
R
                MG DISS IN VEINS W PY
R
               XENO COMMON AT END.
R
               50.25 SML GOUGE W BLACK MATERIAL W DISS PY.
               51.35 - 53.79 BRECCIA: GRN COLOUR, HIGH EP , CL CONTENT.
R
R
                    EP AS VEINS AND PERV.
R
                    CB PERV AT TOP, BECOMES SML VEINS AT BTM.
R
                    PY PATCHY AND IN VEINS AT BTM (5%), MINOR VEINS AT TOP
R
                    PF ALTERED TO LT GRN CLAY
R
                    PY AND EP VEINS OFFSET BY SML FRACTURES
R
                    BLACK GOUGE AT 5379 AT 55 - 60 DEG. EXTENSIVE QZ-CB VEINS
R
                CB VEINS PRODUCING STOCKWORK, BECOMES PROMINENT AFTER BRECCIA
R
                67.44 - 71.6 FELSIC XENO
R
                73.3 - 77.8 PATCHY KSP ALTN, DISTINCT PINK FSP IN DI, NOT XENO
      7910 8327
                                                       V+P3P3P2 P*<=
/
                       HYDIPFHB EC<<
                                           P <<
L
                           4G
                                          0101
R
                 FEW XENO, VERY COARSE
R
                 EP IS PERV, REPLACING PF, ALSO AS MICROVEINS W ASSOC PY
R
                    SOMETIMES QZ
R
                 CY ALTN OF FSP DOMINANT WHERE EP IN VEINS
R
                 PY DISS 2.5 - 5%, PATCHY AT BTM OF INTERVAL
R
                 CB GENERALLY FOUND IN CRUMBLES AREAS (79.25 - 79.8)
R
                 SAMPLES 54100 - 54101
      8327 8387
                                                        D=P2P2
                       MSSFPYMGAC2
                                                                    Q3
L
                                                            Q1 <= D=
R
                 SOME VEINING OF MG AND PY, EP VEINS XCUT SOME PY-MG-PO PATCHES
R
                 MG INCREASES TOWARD BIM
R
                 PO? PROXIMAL TO PY W ADUN MG DISS'N
R
                 30% ORIGINAL ROCK REMAINS, DESCR IN CODES AS CL-CY ALTN.
/
      8387 8750
                       HYDIPFHBXE4EQ<<
                                              P <<
                                                        P+P3P3P3
L
                           5G
                                                            D2 <+
R
                 COARSE GRAIN TIL 84.55 THEN HYBRID UNIT, CARB NO LONGER PRESENT
R
                 EP PERV IN AREAS OR PRODUCING LGE ENVELOPES
R
                 PY VEINS ASSOC W EP AND SOME PF ALTN TO CY
R
                 DK FINE GRAIN XENO USUALLY NO EP. LITTLE PY BUT DISS MG
R
                    PRODUCES POLYGONAL EFFECT W PY-EP CIRCLING FG AREAS
/
      8750 9996
                       HYDIPFHBXE2EC<<
                                              P <<
                                                        P1E1P1P3 Q1<1
        ----
L
                           6A
                                          1111
                                                            D(
R
                 SLIGHTLY MORE FELSIC, SOME DK FG AREAS INTERMITTENT
R
                 RELATIVELY CG, PF APPROX 50-60%
                 PF ALTERED TO LT GRN, KF ALTN PATCHY AT 88.2,93.7
R
R
                 PY IN IRREG XCUTTING VEINS AND IN SUBHEDRAL CONC'N UP TO 1BY5CM
R
                 GY VEINS ANG, XCUTTING, OFTEN AT LGE ANGLE TO AXIS
```

EP AS ENV AROUND VEINS ASSOC W PY, NOT EXTENSIVE

```
R
                 PY CONC'N AT 96.6,93.2,88.9M
R
                 FELSIC QZ MONZ XENO AT 92.62, APPROX 20CM
                                                         <=<2P3P4 01<1
      9996 10588
                       HYDIPFHBXE=EM<<
                                              P <<
L
                           5A
                                           0001
                                                             D* <1
R
                 MORE EP RICH
R
                 MED TO CORSE GRAIN, XENO RARE, SOME AT 103 TO 103.3
R
                 EP AS VEINS, IRREG AND DISCOUNT. AND AS ENVEL AROUND QZ-PY AND
R
                    GY-PY VEINS
R
                 101.74 - 102.76 PY VEINS W QZ AT 30 DEG TO RT. SOME REMOB PY IN
R
                    XCUT GY VEIN. EP AS ENV TO QZ-PY VEINS.
R
                 PERV EP AT 101.7. ASSOC W KF ALTN W MORE DISS PY (10%)
                 103.7 - END COARSER, SOME PY VEINS ALSO DISS AND AS BLEBS W MG
R
                 105.45 SML QZ MONZ XENO
     10588 10731
                       FGQMPFBI EQVV
                                                         0=P3
                                              P V/
                                                                     Ω=
L
                           64
                                                                 ٧3
                 UNUSUAL ROCK FRAGMENT, CONTACTS SHARP W EP ALTN, VEINING
R
R
                 GY VEIN UP TO 4CM WIDE, CONTAINS ANG FRAGS OF FGMZ, CLEAR GY
                 PY IRREG IN GY VEIN AND IN MICROVEIN FOR LAST 30CM OF INTERVAL
R
                 107.0 LGE BLEB OF PY, LITTLE EP, SOME CY ALTN OF PF, LITTLE GY
R
     10731 10963
                       HYDIPFHBXE1EC<<
                                              P <<
                                                        E=<+P3P3
                                                                     <1
                           5G
                                                                 <1
L
R
                COARSE GRAIN, FEW XENO
R
                IRREG PY VEINS ASSOC W QZ AND EP
R
                SILICIFIED AREA W PATCHY PY AT 108.13M
R
                DISS PY, 2.5 TO 5%
                EP ASSOC W SILICIFICATION BUT XCUT BY SOME PY VEINS
R
     10963 11236
                       HYDIPFHBXE4VG
                                              P <<
                                                        E1Q2P3P3 Q+<1
L
                           AG<<
                                                                ٧2
R
                SIMILAR TO ABOVE BUT W MORE XENO, PY EP AND GY VEINS
R
                MORE FRACTURES, COMPOSITION VARIES EXTENSIVELY
R
                111.6 SML GOUGE W BLACK MATERIAL
R
                GY DECREASES THROUGH INTERVAL, QZ ENV INCREASE
                PY IN TOP OF INTERVAL, PATCHY; BTM IS VEINS W QZ AND GY
     11236 12055
                       HYDIPFHBXE3EQ<<
                                              P <<
                                                        E2<1P3P3
                           4A
                                          0102
                                                                <1
R
                COMPOSITION VARIES, MANY XENO
R
                EP MOST EXTENSIVE AND PERV IN MAFIC AREAS ASSOC W PY
                CY ALTN OF PF MORE DOMINANT THEN EP
                PY MICROVEINS IRREG, SOME BLEBS AND IN GY VEINS
R
R
                GY VEINS LESS EXTENSIVE
R
                113.56 - 114.4 QZ RICH AREA, PY-QZ ASSOC, CY-KF ALTN
R
                115.9 SML FAULT GOUGE
                11710 SML FAULT GOUGE W GY VEIN PERPENDICULAR TO AXIS
                CY ALTN EXTENSIVE AT BTM OF CORE. HAS BLUE-GRN TINGE
R
R
                117.2 - END EQ, IRREG PY VEIN, LGE ANGLE GY VEIN, ONE KF VEIN
     12055 12507
                       HYDIPFHBXE4<<
                                              P <<
                                                        E(P4P4 V=D=
                                          0101
                                                          D1 <=
                           3G
L
                MORE MAFIC UNIT, MORE XENO
R
                EP AS ENV AROUND VEINS AND NEAR KF ZONES
                PY DISS BUT IN MICROVEINS AND SOME PATCHY AREAS
                ROCK BLUE-GRN TINGE, EXT. CY ALTN AROUND KF ZONES
R
R
                123.9 - 124.05 FAULT GOUGE AND ZONE OF KF ANF CY ALTN
R
                KF ALTN AT 123.34, 123.0, 122.7
        - "5"]
                    ASSOC W ALTN UNKNOWN SAND- BRONZE MICA-SERICITE?
R
     12507 14342
                       FGQMPFBIXE1EQ<<
                                              P <<
                                                        E=P1P2 E1D+D.
                                                               <= 0*
                           6T
                                  SWPP
                                          1212
L
                BECOMES PINKER W DEPTH, MORE VEINING AND SW, PHENO(PF) SPORADIC
R
                XENO ARE ANG TO RND, MOSTLY VOLCANIC OR HYDI. SOME XENO HAVE
R
R
                    ALTN HALOES W PY IN CENTRE
```

EP VERY MINOR EXC. IN BRECCIA ZONES, INTERSTITIAL BIWN CLASTS

```
R
              PY DISS 5%, VEINS 5%, INCREASIN W DEPTH. ASSOC BTWN CLASTS IN
R
                  BRECCIA W EP
R
              KF AS HALOES IN PY-SW VEINS AND IN BRECCIA ZONES
R
              PY VEINS ALSO W CY ALTN
R
              GY VEINS ANGULAR AT ALL ANGLES THROUGHOUT INTERVAL
R
              BRECCIA AT: 131.04, 133.19, 137.84, 139.69 - 140.34(CONTAINS CB)
R
                  142.04(CONTAINS CB)
                  BRECCIA ZONES CONTAIN MANY ROCK FRAGS, DIOR, GRAN, FGQM,
R
1
    14342 15423
                     HYDIPFHBXE4<<EQ
                                          P <<
                                                   <=<1P3P3
                                                      D+ <1
L
                        46
R
              NETWORK OF SML EP-PY VEINS THROUGHOUT
R
              PY DISS IN ROCK 2.5%; LESS IN FG XENO W MG ASSOC
R
              MG DISS IN FNE GRAIN XENO PROMINANT AT:
R
                  145 - 146, 148.8 - 150, APPROX 150M
R
              QZ AS MINOR ENV AND VEINS ASSOC W PY, EP. DICONTINUOUS
R
              GY VEINS XCUT ALL ROCK, SOME PY
              MINOR SHEETING OF PY VEIN AT 147.7, SOME SI FLOODING
R
R
              MED TO COARSE GRAIN ROCK SUSCEPTIBLE TO EP-PY ALTN RATHER THAN
R
                  FINE GRAIN CLASTS
R
              END OF HOLE!
              SAMPLES
R
A001
AUMM
                  SAMPLE
                           Ag
                                 Au
                                      Cu
                                           Mo
                               ppb
R
                          ppm
                                     ppm
                                          ppm
ALAB
              PDI RESEARCH
ATYP
              SPLIT CORE
HTMA
              WET GEOCHEM A.A.
      00
            305 CASING - NO RECOVERY
A001
     305
           560
                   54062 6.0
                                 3
                                     212
                                          1.0
A001
      560
           800
                   54063
                           .4
                                 3
                                     101
                                          1.0
                  54064 .1
A001
     800 1100
                                     159
                                          1.0
                                 3
A001 1100
          1400
                   54065 .1
                                          .5
    1400 1492
                   54066 .1 3
A001
                                     17
                                          1.0
A001
     1492
          1630
                   54067
                          .2
                                 3
                                      34
                                          2.0
                                 3
A001 1630
          1807
                   54068 .2
                                      69
                                          2.0
A001 1807 1826
                   54069 .3
                                 3 850
                                          .5
A001 1826 1869
                   54070
                          .3
                                 3
                                     246
                                          3.0
                          .7
A001 1869 1942
                   54071
                                15 1490
                                           .5
A001 1942 2027
                   54072 1.0
                                15 1530
                                          2.0
A001 2027 2251
                   54073
                                 3
                                     180
                                          3.0
                          .1
A001 2251 2560
                   54074
                          .2
                                 3
                                     116
                                          2.0
A001 2560 2768
                   54075 .1
                                 3 72
                                          1.0
A001 2768 3052
                   54076 .1
                                 3
                                         1.0
                                      42
A001 3052 3229
                   54077
                           .1
                                 3
                                      24
                                          3.0
A001 3229 3324
                   54078 .8
                                 3
                                          1.0
A001 3324 3511
                   54079 .2 3
                                          2.0
A001 3511 3820
                   54080 .4 3
                                          3.0
                                      53
                          .2
A001 3820 3962
                   54081
                                 3
                                      48
                                          4.0
A001 3962 4289
                   54082
                         .3
                                 3
                                      38
                                          1.0
A001 4289 4470
                   54083
                          .2
                                 3 253
                                          1.0
A001 4470 4659
                   54084
                          .3
                                 3
                                     410
                                          3.0
A001 4659 4732
                  94085 2.1
                               545 8400
                                          4.0
A001 4732 4954
                   54086
                         .8
                                30
                                     980
                                          4.0
A001 4954 5135
                   54087
                           .3
                                 5
                                     278
                                          5.0
                          .3
A001 5135 5379
                   54088
                                 3
                                     126
                                          2.0
A001 5379 5614
                   54089
                          .9
                              3 375
                                          1.0
                                          1.0
                   54090
A001 5614 5825
                          .2
                              3 152
A001
    5825
          6159
                   54091
                          .1
                                10
                                     133
                                           .5
                                          2.0
                   54092
                                    225
A001 6159 6382
                          .2
                                3
A001 6382 6625
                   54093 .2
                              3 325 20.0
```

A001	6625	6734	54094	.2	10	386	2.0
A001	6734	7183	54095	.3	3	207	1.0
A001	7183	7330	54096	.2	3	136	.5
A001	7330	7495	54097	.2	3	232	2.0
A001	7495	7781	54098	.3	5	136	.5
A001	7781	7910	54099	.3	30	215	.5
A001	7910	8138	54100	.1	25	128	1.0
A001	8138	8327	54101	1.2	40	265	1.0
A001	8327	8387	54102	.1	225	2060	6.0
A001	8387	8455	54103	.1	30	350	2.0
A001	8455	8675	54104	.1	55	200	3.0
A001	8675	8750	54105	.1	25	119	.5
A001	8750	9010	54106	.1	10	199	6.0
A001	9010	9280	54107	.2	3	310	.5
A001	9280	9440	54108	.1	3	236	7.0
A001	9440	9571	54109	.2	10	229	2.0
A001	9571	9666	54110	1.1	20	320	4.0
A001	9666	9798	54111	.1	3	260	4.0
A001	9798	9996	54112	.2	3	270	9.0
A001	9996	10174	54113	.2	30	370	2.0
A001	10174	10276	54114	.2	5	345	8.0
A001	10276	10369	54115	.1	3	195	3.0
A001	10369	10588	54116	.1	3	277	6.0
A001	10588	10678	54117	.2	5	233	3.0
A001	10678	10731	54118	.1	3	184	10.0
A001	10731	10823	54119	.1	3	290	7.0
A001	10823	10963	54120	.1	10	256	3.0
A001	10963	11100	54121	.3	3	320	4.0
A001	11100	11236	54122	.2	10	580	13.0
A001	11236	11356	54123	.1	15	660	7.0
A001	11356	11589	54124	.4	10	650	7.0
A001	11589	11720	54125	.1	15	300	2.0
A001	11720	11920	54126	.1	20	288	4.0
A001	11920	12055	54127	.4	30	290	5.0
A001	12055	12365	54128	.2	20	370	4.0
A001	12365	12507	54129	.1	20	350	5.0
A001	12507	12706	54130	.2	15	320	6.0
A001	12706	12969					5.0
	12969			.1			7.0
	13289						9.0
	13548			.2			8.0
	13658			.1			14.0
	13959						
	14037						
	14279				3		5.0
	14342					320	
	14598					340	
	14813			.3		440	
	15078						
	15150			.2		620	
	15305						
A002	נטנני	17453	J4 144 250		,	102	٠.٠
R	000	ፈ ሰፍ	CASING - N	n pero	VEDV		
AUMM				ECOVY			
	305			32.8			
	200	761		0	,.0		

R	000	305	CASING -	NO RECOVERY			
AUMM	-191	•		RECOVY	RQD		
A002	305	427		32.8	9.0		
A002	427	747		82.8	65.3		
A002	747	975		43.9	12.3		
A002	975	1097		68.0	15.6		
A002	1097	1128		25.8	0.0		
A002	1128	1250		32.0	0.30		

	1250			87.5			
A002		1676		85.8			
A002	1676	1859		81.4			
-A002	1859	2012		100.0			
A002	2012	2103		93.4	17.6		
A002	2103	2316		90.6	49.3		
A002	2316	2560		80.7	26.1		
A002	2560	2713		87.6	26.1		
A002	2713	2926		89.2	30.0		
A002	2926	3109		85.2	5.5		
A002	3109	3413		95.7	66.2		
A002	3413	3719		78.4	37.6		
A002	3719	3810		60.0	0.0		
A002	3810	4115		82.0	42.3		
A002	4115	4328		82.2	42.3		
A002	4328	4450		73.8	54.9		
A002	4450	4724		62.8	12.0		
		4999		44.4	15.3		
		5121		42.6			
		5364		67.9			
		5578		77.6			
		5669		86.8			
		5974		88.5			
		6279		95.7			
		6584		73.8			
		6888		56.6			
	6888			7.4			
	7132			64.5			
A002				95.4			
A002				59.2			
A002				8.2			
A002				62.8			
A002				35.5			
A002		8382		62.0			
A002				37.7			
A002	8687			87.2			
	8992			41.1			
	9296			91.1			
		9921		80.3			
		10226		82.8			
		10546		53.4			
		10851		92.4			
		11156		43.3			
		11460		95.4			
		11720		76.2			
A002	11720	12040		83.8			
A002	12040	12360		81.3			
A002	12360	12664		96.7			
A002	12664	12969		91.8			
A002	12969	13289		73.7			
A002	13289	13594		91.1	53.4		
A002	13594	13899	2.00	93.4	90.1		
A002	13899	14204		93.4	59.0		
A002	14204	14508		82.6	51.Ô		
A002	14508	14813		94.1	73.8		
A002	14813	15118		95.1			
		15423		94.7			
A003							
AUMM				AG	AU	CU	MO
R				ppm			
						• •	• •

R		5	.0 metre	Composite	Geo	chem	
R		c	asing to	3.05 m			
A003	3 05	500		6.0	3	212	1.0
A003	500	1000		1.0	3	138	1.0
A003	1000	1500		.1	3	45	.7
A003	1500	2000		.4	6	482	1.8
A003	2000	2500		.2	4	221	2.4
A003	2500	3000		.1	3	63	1.1
A003	3000	3500		.3	3	14	2.1
A003	3500	4000		.3	3	49	3.1
A003	4000	4500		.3	3	138	1.1
A003	4500	5000		.8	94	1818	3.8
A003	5000	5500		.4	4	227	2.6
A003	5500	6000		.3	5	196	.8
A003	6000	6500		.2	5	219	5.8
A003	6500	7000		.3	5	276	6.0
A003	7000	7 500		.2	3	194	1.2
A003	7500	8000		.3	15	155	.6
A003	8000	8500		.5	58	448	1.9
A003	8500	9000		.1	28	187	4.1
A003	9000	9500		.2	4	274	2.9
A003	9500	10000		.3	7	272	5.7
A003	10000	10500		.2	13	308	4.5
A003	10500	11000		.1	5	259	5.1
A003	11000	11500		.3	10	567	8.0
A003	11500	12000		.2	19	356	4.2
	12000			.2	21	356	4.4
	12500			.2	12	324	5.5
A003	13000	13500		.1	16	399	7.8
A003	13500	14000		.1	5	356	11.3
	14000	14500		.1	6	361	3.9
A003	14500	15000		.2	4	373	6.0
	15000	15423		.2	5	390	3.9
/END							

क्षेत्रम

```
IDEN6B0201 V250 DDH90-3 NQ 21APR90 MDKMEATLSAPR90S38
                                                       RRPLITM 0.0
IPRJ
          PDI/Salor Scientific
                                              KNUT PROPERTY
S000
       00
           8168MT 163.37266.00-45.00
                                                      3874.
                                                                2703.
                                                                           920.
$001 8168 16337
                    163.37266.00-45.00
/SCL
            MT.2
LSCL
                           I CTM
/NAM
                                                         QZEPCLCYMSKFPYCPMOSL
LNAM
                                                         LIPLMGHEGYMCCR
R
                THIS DDH COLLARED TO TEST A WEAK CU-AU SOIL AND COINCIDENT
R
                IP CHARGEABILITY HIGH.
           1372 CASING TO 13.72
R
       00
/
       00
            1372
                       OVRD
/
      1372 1676
                       HYDIPFHBXE7XESW
                                              P <<
                                                         <+E3P2P2O)D*<)
L
                           YGKFQZ)KR
                                          2314
                                                         C4 D)T)<+ <.
R
                HIGHLY OXYDIZED ZONE-CLAY ALT. IS ABUNDANT
R
                PY OCCURS MAINLY AS VEINLETS AND LESSER DISS X-TALS
                XENO'S RANGE FROM 0.5-5.0CM AND CONSIST OF VOLCANICS(ANGULAR) &
R
R
                INTRUSIVE (ROUNDED)
R
                PROPYLITIC ALT. IS ABUNDANT W. EPIDOTE (ENV. & PATCHES) & CHLOR
R
                (PERVASIVE).
      1676 4450
                       HYDIPFHBXE7XESW
                                              P <<
                                                         <+E3P2P)0*
                           6GKFQZ)BRKR
                                          2222 FZ
L
                                                             D = < 
R
                ROCK CONSISTS OF 50-75% XENO'S: ANGUL. VOLCS & ROUNDED INTRUS.
R
                FROM 0 5-5 OCM
R
                CONTACTS ARE MORE GRADATIONAL (PART.DIGESTED FRAGS); TEXT.SHOWS
                FINE-MED GRAIN W.HIGHLY FRACTURED SECTIONS IN CORE
R
R
                ALT. IS PREDOM. PROPYLITIC AND SHOW PERV. CHLOR. ALT.W.PATCHES
                & ENV. OF EPIDOTE
R
R
                ROCK DISPLAYS A STOCKWK.OF MICROVEINS INFILLED W. SI (<5%), GYPS
R
                W.ASSOC QZ & EP (UP TO 1%),EP (<30%) & PY (UP TO 1%) AS VEINLET
R
                & DISS). PY APPEARS ASSOC W.EP & ALT'D MAFIC XENO'S. VEINLETS
R
                SOMETIMES SHOW VUGGY SPACES. MG IS PRESENT AS DISS X-TAL MASSES
R
                21.24-21.44 SHOWS A MORE FELSIC SEGMENT OF THE HYBRID DIOR W.UP
R
                TO 20% KF-RICH FRAGS. SOME PY SHOWS DISTINCT CUBIC X-TAL SHAPES
R
                32.51-32.61 IS A NARROW FAULT ZONE CHARACT. BY A MORE BRECCIATE
R
                TEXT W.FELSIC & MAFIC CLASTS, UP TO 0.5CM VEINLETS OF SI & GY
R
                PY OCCURS INTERSTITIALY TO CLASTS
      4450 4838
/
                       HYDIPFKFXE7XESW
                                              P <<
                                                        Q1Q4P2
                                                                   Q1D(
L
                           7GHBQZ1EF
                                          1122
                                                            D* <) <.
R
                ROCK DISPLAYS A FINER-GRAIN TEXT W.ABUNDANT EP-CHLOR ALT.
R
                KF ALT INCREASED, OCCURING AS PATCHES & ENV.WITHIN THE MATRIX
R
                & XENO'S. MG IS LESS FREQUENT & PY OCCURS AS SMALL DISS X-TALS
                48.00-48.20 DISPLAYS A MUCH COARSER GRAIN FELSIC XENO'S OF KF-
                SI INTERMIXED W. MAFICS
R
      4838 6260
                       HYD I PFHBXE8XESW
                                              P <<
                                                         <+Q4P3<*
                                                                     <)
                                          1122 VG
L
                           6G QZ+EM
                                                            D=C(<) <.
R
                ROCK DISPLAYS A LIGHT-GREEN TO GREYISH-BLACK COLOUR DUE TO STRG
R
                PROPYLITIC ALT IN THE FORM OF 40% EP (PATCHES, ENV, MICROVEINS) &
R
                PERV CHLOR 30%
R
                XENO'S AGAIN ARE DOMINANT THROUGHOUT W.MOSTLY ANGULAR TO ROUNDE
R
                FRAG OF VARIOUS SIZES (UP TO8CM), TEXT & COMP IN A DIORITIC MTX
R
                ROUNDED INTR.XENO'S ARE MOST ABUNDANT CONSIST. OF FINE-MED GRAI
R
                DIOR & COARSE-GRAIN GABBRO. ANGULAR VOLC.XENO'S APPEAR SCATTE'D
                THROUGHOUT ROCK.
R
                STOCKWK OF VEINLETS CROSSCUT THE ROCK & CONSIST OF SOME QZ,ENV
R
R
                OF EP, GY W. ASSOC. PY (PY ALSO AS SINGLE VEINLETS)
                PY OCCURS AS FRACT FILLING & VEINLETS UP TO 1%
R
                MG APPEARS DISS UP TO 20% IN SOME INTERVALS WHERE MAFIC XENO'S
R
                ARE ABUNDANT. FRACT INTENSITY IS LOW
                57.31 M :A 1-2CM VEIN OF WHITISH TO TRANSPARENT GYPSUM W.HEM STG
R
```

```
/
      6260 7347
                       HYDIPFHBXE8XESW
                                             P <<
                                                       #= P)P1 D1D-
L
                           5G QZ+BREM
                                         2222 FZ
                                                       C* D+C(<= <+
R
                THIS INTERV IS SIMILAR TO PREVIOUS BUT DISPLAYS A MORE INTENSE
                PROPYLITIC ALT, POSS DUE TO A FAULT ZONE? TEXT SHOWS A MORE
R
                BRECCIATED NATURE & FRACTURING IS MORE INTENSE
R
                COLOUR IS DARKER GREEN, WEATHERING IS EVIDENT FROM LIMONITE STG
R
                PY VEINLETS W. ENV OF GY & SI ARE MORE ABUNDANT (UP TO 2%)
                CARB ALT IS ALSO INCREASED IN THIS INTERV AS STOCKWK
R
                62.60-64.39 IS POSSIBLY A FAULT ZONE EVIDENT FROM THE BRECCIA-
                TION & INTENSE ALT W. GY VEINLETS UP TO 1.5 CM WIDE
R
                73.15-73.47 SHOWS A DARKER, FRESHER ROCK W. A GY STOCKWK & ELEV-
R
                ATED MAGN CONTENT
R
      7347 7625
                       SIBRPFQZXE5RWBR
                                             P <<
                                                       #= P)P1 D1D-
L
                           GTHBQZ2XE
                                         1111 FZ
                                                       T) D-C)<1 Q=
R
                THIS INTERV DISPLAYS A MORE PROMINENT FELSIC COMP & MUCH LOWER
R
                LEVEL OF PROPYLITIC ALT
                EP & CHLOR OCCUR SCATTERED, TRACES OF PY, CARB ALT IS MORE FRE-
R
                QUENT AS PATCHES & VEINLETS
                ROCK APPEARS TO HAVE BEEN REWORKED POSS ALONG A FAULT ZONE, W.
R
R
                SI INJECTIONS (PATCHES)
                SOME SCATTERED XENO'S OF MAFIC VOLC (UP TO 3 CM) OCCUR IN A FI-
R
                NE-GRAIN DIORITIC MATRIX
R
R
                73.47-73.90 SHOWS A HIGHLY CLAY ALT'D BRECC'D, LIM ST'D FAULT Z
R
                A NARROW 4 CM FAULT ZONE OCCURS FROM 76.21-76.25
      7625 7766
                       HYD I P F H B X E 2 S W E M
                                             P <<
                                                       P*D1P5<)
                           4G QZ*XE
                                         3346
                                                       T) D=C(<= K1
1
                THIS INTERV GRADES BACK INTO A PROPYLITIC ALT'D FINER-GR'D DIOR
                W. LESSER XENO'S BUT DISPLAYING A PROMINENT CARB STOCKWK
R
R
                CHLOR ALT IS PREDOMINENT, TRACES OF PY, MG IS FINELY DISS
      7766 8266
                                             P <<
                                                       #+ P3G1<+#3Q*
                      HYDIPFFXXE5RWBR
                                                               <+ K)
                           AGHBQZ+SWXE
                                         2335 FZ
                                                       T-
L
R
                THIS INTERV GRADES BACK INTO A MORE FELSIC HYDI W.A GREYISH-
                GREEN COLOUR; CHLOR ALT IS LESS ABUNDANT; XENO'S ARE MORE COM-
R
                MONLY INTR IN A FINE-GRAIN DIORITIC MATRIX
                CARB STOCKWK IS AGAIN PRESENT ALONG W.GY VEINLETS, TRACES OF PY
R
                80.66-80.86 & 81.29-82.66: CLAY-ALT'D BRECC'D FAULT ZONES, THE
R
                LATTER INTERV BEING MORE OF A SILICA BRECCIA W.A MORE DEVELOPED
R
                STOCKWK & ANGULAR FRAGS, POSS A REWORKED FAULT ZONE?
      8266 8530
                      HYDIPFHBXE6XESW
                                            P <<
                                                       <+P)P4G) #*D(
                                                           D*P2<= K1
                           RU 07+RUFM 3346
L
                SIMILAR INTERV TO 76.25-77.66 BUT DISPLAYING A MORE REDDISH
R
                BROWN COLOUR DUE TO HEM STAIN'G
                STOCKWK OF CARB & GYPSUM
                REWORKED SECTIONS SHOW A BRECCIATED TEXT W. PATCHES, LENSES &
R
                FRAGS OF SILICA/FELDSPAR? TRACES OF PY.
R
      8530 9929
                      HYD1PFHBXE7XESW
                                             P <<
                                                      <)Q3P4
                           5G QZ)EMBR
                                         2425 FZ
                                                       T- D+C)<1
L
                INTERV CHARACT'D BY STRONG PROPYLITIC ALT GIVING ROCK A MORE
               DARKISH-GREEN COLOUR; CHLOR IS PERV & EP IS PATCHY & ENV.
R
                GY VEINLETS OCCUR RANDOMLY W. SOME ASSOC HEM STAIN'G
R
               XENO'S ARE INTRUS (ROUNDED) W. LESSER SCATTERED VOLC (ANGULAR)
               PY OCCURS SCATTERED AS MICROVEINS & DISS; INTERV 97.22-98.24 IS
R
                SLIGHTLY MORE MINERALIZED
        - 71
               91.54-91.66 & 92.64-92.96: NARROW BRECCIATED FAULT ZONES
R
      9929 10213
                       SIBRPFQZXE3BRSW
                                             P FZ
                                                       #3 P1#= D)Q)
                           TA QZ3RWEF 3336 <<
L
                                                           D(C(<1 <(
R
                INTERV OF ROCK WHICH HAS BEEN REWORKED & BRECCIATED W.SI & FX
R
                INJECTIONS; GY VEINLETS ARE AGAIN COMMON
                ALT OCCURS AS MINOR PERV CHLOR & LESSER CLAY
R
                PY OCCURS AS PATCHES (UP TO 2 CM), MICROVEINS & DISS
```

```
R
                COLOUR IS PINKISH-GREY
/
     10213 11400
                       HYDIPFHBXE6XESW
                                              P FZ
                                                        Q+Q2P4#1 D)Q+
L
                                          2334 <<
                                                            D)C*K1 <*
                           GAQZ BREF
R
                GREENISH-GREY INTERV OF MOD PROPYLITIC ALT'D ROCK CHARACT'D BY
R
                GY STOCKWK & VEINS UP TO 10 CM WIDE
R
                XENOLITHIC TEXT ALSO DISPLAYS NUMEROUS CLAY-ALT'D FAULT ZONES
R
                W. REMNANT FRAGS OF SI/FX
                PY OCCURS MAINLY AS PATCHES, MICROVEINS & DISS, UP TO 2%
R
R
                105.21-105.61 SHOWS A POSS FAULT ZONE, REWORKED INTO A SILICIF'D
R
                BRECCIA W. 2-3% PATCHES OF PY
R
                107.68-109.11 & 111.15-113.10 SHOW STRONG CLAY-ALT'D FAULT ZONE
R
                BRECCIATED & WEAKLY MINERALIZED
     11400 12100
                                              P <<
                                                        <*Q4P3G= D*<)
/
                       HYDIPFHBXE7XEBR
                                          2223 FZ
                                                            D+ <) <-
L
                           6GQZKF RWEM
R
                STRONG PROPYLITIC ALT'D INTERV OF THE HYBRID DIOR
                TEXT OF MATRIX & XENO'S IS MORE GRAINIER (EM). FRAGS ARE MOSTLY
R
R
                FINE-MED GRAIN DIOR & GABBRO W. LESSER FELSIC & SILIC'D XENO'S
R
                EPIDOTE ALT IS PATCHY & VEINY; CLAY ALT OCCURS IN NARROW FAULT
                ZONES. 114.40-114.80, 117.56-118.21 & 120.08-121.00 SHOW INCR'D
R
R
                EP & CLAY ALT AS WELL AS A BRECCIATED TEXT.
R
               PY IS ALSO MORE ABUNDANT, OCCUR'G AS PATCHES (UP TO 2 CM) & VLTS
R
                117.16-117.56 DISPLAYS A CONCENTRATION OF FELSIC & SILIC'D FRAG
R
                MAGN SOMETIMES OCCURS AS ENV. AROUND THE PY
                                                        Q+Q202G= Q+<)
/
     12100 12715
                       HYDIPFHRXF7XFFM
                                              P <<
                                         2324 FZ
L
                           GAQZKF+BRSW
                                                            D) <=
R
                THIS INTERV IS OF A SIMILAR ROCK TYPE BUT W. LESSER PROPYLITIC
R
                ALT, A SLIGHTLY COARSER-GRAIN MATRIX & MORE FINE-GRAIN FELSIC
R
               & SILIC'D FRAGS (UP TO 5 CM LONG)
R
                PY OCCURS AS PATCHES W. LESSER VEINLETS & DISS
R
                124.26-124.66 & 126.25-126.65 DISPLAY CLAY-ALT'D, BRECC'D FAULTS
     12715 14610
                       HYDIPFHBXE7XESW
                                             P <<
                                                        <)Q3P5G+ D*<)
/
L
                           5GQZKF EMBR
                                         2224 FZ
                                                            D+ <+
               HIGHLY PROPYL ALT'D HYBRID DIOR W.UP TO 80% OF XENO'S, MAINLY
R
R
                INTRUS IN COMP (MED-GRAIN DIOR?) & SCATTERED MAFIC VOLC (BASALT
               OR ANDESITE?)
R
R
               TEXT IS FINE-MED GRAIN, EP, GY & LESSER QZ STOCKWK
                128.33-128.63, 129.33-129.43, 136.50-137.10, 141.20-141.83 ALL
R
R
               SHOW NARROW CLAY-ALT'D, BRECC'D FAULT ZONES
R
                SOME INTERV SHOW EVIDENCE OF REACTIVATION W. INCREASES IN FRAC-
R
               TURING, EP ALT & PY CONTENT
                MOST OF THE FRACTURING HAS BEEN INFILLED W. GY OFTEN ALONG W. PY
R
               & LESSER AMOUNTS OF SI. EP OFTEN ENV THESE GY-PY VEINLETS BUT
R
R
               MOST OFTEN OCCURS AS PATCHES
               PY OCCURS MOSTLY AS VEINLETS W. LESSER PATCHES & DISS
R
                133.45-138.93: INCREASED PY CONTENT ASSOC W. STRONGER ALT &
R
R
                FRACTURING (0.5 CM WIDE VEIN)
R
               MG OCCURS AS VEINLETS ENV'G THE GY ALONG FRACT ZONES & DISS IN
R
               THE MAFIC XENO'S
     14610 15017
                       MGMZPFKFXE2XERW
                                              P <<
                                                        D+E+E)G1 P4<*
                                         3334 FZ
                                                           D* <1
                           GTQ7 RR
L
R
                INTERV IS MARKED AT BEGIN'G BY CLAY-ALT'D FAULT GOUGE & IS
R
               CHARACT'D BY A GREYISH-TAN, MED-COARSE GRAIN INTRUS POSS MONZON.
R
               ROCK DISPLAYS AREAS OF LATE STAGE ACTIVITY WHERE TENSION FRACT.
        20
R
               & VEINLETS HAVE BEEN FILLED UP BY GY W. ENV OF EP
R
               PY OCCURS IN LESSER AMOUNTS W. THE GYPSUM
R
               149.57-150.17: CLAY ALT IS INTENSIVE IN NARROW BRECC'D FAULT ZO
                149.00-149.57 SHOWS A SECTION OF PROPYLITIC ALT'D HYBRID DIOR
R
               W. NARROW FAULT GOUGING & TRACES OF PY, CONTACTS W. HOST ROCK
R
R
               ARE QUITE SHARP
```

15017 15410

SYDKKFPFXE1FGXE

P D/

D+E+Q*G+ P7D*

```
L
                          R$QZ <<
                                        2345 <<
                                                          Q* <=
R
               DYKE ROCK OF SYENITIC COMP CHARACT'D BY SEMI-ROUNDED MAFIC INTR
               XENO'S (HYDI OR GABBRO?), SIZES VARY FROM 1-10 CM W. DISS MG
R
R
               STOCKWK OF GY W. ENV OF EPIDOTE
R
                151.87-154.02 SHOWS A 1-2 CM WIDE FAULT GOUGE WHERE GY, EP & MG
R
                HAVE FILLED IN. PY IS DISS IN THE MAFIC XENO'S
     15410 15610
                      HYD1PFHBXE4XESW
                                            P FZ
                                                      D+Q3P4G2 **<+
/
L
                                        3215 <<
                          GAQZKF1BREM
                                                          D) <+
R
               INTERV OF TYPICAL GREENISH-GREY, STRONGLY PROPYLITIC ALT'D HYDI
               W. VARIABLE XENO'S OF DIOR, GABBRO & VOLC
R
R
               FRACT'G IS HIGH & INFILLED W.GY & LESSER PY, ENV & PATCHES OF EP
R
               CHLOR ALT IS PERV. PY CONTENT CAN BE UP TO 2.5% OCCURING AS
R
               VEINLETS, DISS & PATCHES
R
                155.60-156.10: STRONGLY CLAY-ALT'D FAULT ZONE W. SOME BRECCIAT
     15610 16262
                      SYMZKFPFXE1PABR
                                            P FZ
                                                      D=Q=E+G1 P3<*
1
                                        2325 <<
                                                            C*<=
                          RAQZ <<XE
L
               ROCK OF REDDISH-GRAY COLOUR, POSS A SYENITIC MONZ W. A PATCHY &
R
R
               BRECCIATED TEXT. DIFFICULT TO TELL IF LIGHT/DARK PATCHES ARE
R
               FRAGS OR ALT PATTERN. SOME MED-GRAIN DIOR XENO'S UP TO 5 CM
R
               WIDE OCCUR RANDOMLY
R
               GY VEINLETS OCCUR THROUGHOUT & SOMETIMES CARRY MINOR PY. EP ENV
R
               OCCUR W. THE GY & ALSO AS PATCHES
               15610-15681 DISPLAY A CLAY-ALT'D, BRECC'D FAULT ZONE W.MINOR PY
R
     16262 16337
/
                      RYDKQZKFHB EFMX
                                            P D/
                                                      P3<*
                                                                Р3
L
                          5TPF <<
                                        1324 <<
                                                              <1
R
               TAN-PINK, FINE-GRAIN MASSIVE ROCK OF RHYOLITIC COMP, POSS A DYKE
R
               VERY WEAKLY ALT'D. GY OCCURS THROUGHOUT AS VEINLETS. CONTACTS
R
               ARE SHARP W. HOST ROCK. NO VISIBLE PY.
R
               SAMPLES
A001
AUMM
                   SAMPLE
                                        Cu
                                              Mo
                             Αq
                                   Au
R
                            ppm
                                  ppb
                                       ppm
                                             ppm
               PDI RESEARCH
ALAB
ATYP
               SPLIT CORE
HTMA
               WET GEOCHEM A.A.
      00
           1372 CASING - NO RECOVERY
A001 1372 1676
                             .2
                    54145
                                   3
                                               1
                                        64
A001 1676 2124
                    54146
                                   3
                             .1
                                        16
                                               2
                    54147
A001 2124 2144
                            . 1
                                   10
                                         2
                                               1
A001 2144 2430
                    54148
                                   10
                                        20
                           .1
                                               1
A001 2430 2713
                    54149
                            1.4
                                   5
                                         2
                                               4
A001 2713 2990
                                   3
                    54150
                                         1
                            . 1
                                               1
A001 2990 3251
                    54151
                            .2
                                   3
                                        36
A001 3251 3261
                    54152
                          1.1
                                  20
                                       353
                                               1
A001
     3261
           3536
                    54153
                            .5
                                   3
                                       117
                                               1
A001 3536 3734
                    54154
                            . 1
                                   3
                                        26
                                               1
A001 3734 4450
                    54155
                                        23
                            .2
                                   3
                                               1
A001 4450
           4663
                    54156
                            .3
                                   3
                                         4
                                               3
                            .1
                                               2
A001 4663 4838
                    54157
                                   3
                                         2
A001 4838 5120
                    54158
                            .2
                                   3
                                               3
A001 5120 5410
                                   3
                    54159
                             .2
                                         5
                                               1
                            .1
A001 5410 5665
                    34160
                                   3
                                         1
                                               3
A001 5665 5924
                    54161
                            .3
                                   3
                                        16
                                               2
A001 5925 6106
                    54162
                                   3
                                        32
                                               2
                            .1
A001 6106
           6260
                    54163
                            .3
                                   3
                                        19
                                               3
A001 6260
           6460
                    54164
                            .4
                                   3
                                       220
                                               1
A001 6460
           6660
                    54165
                            .4
                                   3 197
                                               3
                                   3
A001
     6660
           6857
                    54166
                            .4
                                       156
                                               5
A001
     6857
           7025
                    54167
                            .4
                                   3
                                       225
                                               1
A001 7025 7347
                    54168
                            .2
                                   3
                                       131
                                               1
```

A001	7347	7390	54169	.1	3	20	3
A001	7390	7625	54170	.2	20	7	5
A001	7625	7766	54171	.3	3	7	1
A001	7766	7986	54172	.1	15	14	2
A001	7986	8266	54173	-1	3	46	1
A001	8266	8530	54174	.5	3	32	2
A001	8530	8798	54175	.2	3	71	2
A001	8798	9090	54176	.3	5	28	3
A001	9090	9264	54177	.3	3	8	3
A001	9264	9296	54178	.5	3	49	2
A001	9296	9587	54179	.3	3	28	2
A001	9587	9722	54180	.3	3	195	2
A001	9722	9929	54181	.1	3	22	1
A001	9929	10213	54182	.1	3	7	2
A001	10213	10521	5418 3	.1	5 3	18 9	1
A001	10521 10561	10561 10768	54184 54185	.1	3	12	1
A001	10768	10766	54186	.1	3	28	1
A001	10700	11115	54187	.4	3	53	1
A001	11115	11310	54188	.2	3	14	2
A001	11310	11400	54189	.1	3	2	1
A001	11400	11440	54190	.2	3	47	1
A001	11440	11480	54191	.1	3	7	1
A001	11480	11756	54192	.1	3	33	1
A001	11756	11821	54193	.2	3	81	5
A001	11821	12008	54194	.1	3	152	2
A001	12008	12100	54195	.2	3	107	1
A001	12100	12426	54196	.1	3	21	2
A001	12426	12466	54197	.1	3	2	5
A001	12466	12715	54198	.1	3	- 57	2
A001	12715	12833	54199	.1	3	123	3
A001	12833	12863	54200	.2	15	13	2
A001	12863	13135	54201	.2	3	66	2
A001	13135	13345	54202	.2	3	46	1
A001	13345	13548	54203	.2	3	76	4
A001	13548	13650	54204	.2	3	244	1
A001	13650	13710	54205	.1	3	4	5
A001	13710	13873	54206	.2	10	17	6
A001	13873	14120	54207	.2	3	190	4
A001	14120	14183	54208	.1	3	4	3
A001	14183	14483	54209	.2	3	89	1
A001	14483	14610	54210	.1	3	131	1
A001	14610	14957	54211	.1	3	118	2
A001	14957	15017	54212	.1	3	10	2
A001	15017	15242	54213	.1	3	24	3
A001	15242	15410	54214	.1	3	33	2
A001	15410	15560	54215	.1	15	181	2
A001	15560	15610	54216	.3	25	168	3
A001	15610	15681	54217	.1	3	63	3
A001	15681	15970	54218	.1	3	56	3
A001	15970	16262	54219	.1	3	20	3
A001	16262	16337	54220	.1	3	4	4
A002	58	Cr					
MMUA			R	ECOVY	RQD		
R	000	1372	С	ASING	- NO RI	ECOVY	
A002		1701		31.9	0.0		
A002	1701			35.2	0.0		
A002	1829	2012		44.7	5.5		
A002	2012			31.1			
A002	2134	2345		42.7	4.7		

	A002	2345	2621		64.5	24.3
	A002	2621	2652		67.7	0.0
	A002	2652	2713		42.6	0.0
	A002	2713	2865		52.6	7.2
	A002	2865	2987		65.6	9.0
	A002	2987	3139		75.0	0.0
	1002	3139	3185		87.0	0.0
,	1002	3185	3261		34.2	0.0
,	A 002	3261	3444		72.1	19.7
,	1 002	3444	3536		76.1	0.0
,	1002	3536	3719		73.8	15.0
,	1002	3719	3840		28.9	0.0
,	1002	3840	3978		32.6	0.0
,	1002	3978	4145		7.2	0.0
,	1002	4145	4237		13.0	0.0
,	1002	4237	4450		16.5	0.0
,	1002	4450	4511		49.2	0.0
,	1002	4511	4541		83.3	0.0
,	1002	4541	4602		32.8	0.0
,	1002	4602	4663		50.8	0.0
,	1002	4663	4755		41.3	0.0
,	1002	4755	4923		68.9	18.0
,	1002	4923	5060		73.0	54.0
,	1002	5060	5105		66.7	26.7
	1002	5105	5365		82.7	48.9
,	1002	5365	5639			24.7
,	1002	5639	5761		86.1	27.9
,	1002	5761	5974		72.8	27.2
,	1002	5974	6096		57.4	12.3
	1002	6096	6218		26.2	0.0
,	1002	6218	6309		76.9	11.0
	1002	6309	6492		66.7	15.3
	1002	6492	6797		89.2	34.1
	1002	6797	6980		68.3	29.5
	1002	6980	7163		46.4	15.7
A	1002	7163	7315		55.9	20.4
	1002	7315	7498		82.0	45.9
A	1002	7498	7681		98.4	67.8
	1002	7681	7986		94.1	44.6
	1002	7986	8169		96.7	62.3
	1002	8169	8291		42.6	0.0
A	1002	8291	8595		84.2	58.9
	1002	8595	8778		79.2	30.1
	1002	8778	8900		57.4	13.9
	1002	8900	9144		79.9	28.7
A	1002	9144	9296		73.7	13.8
A	1002	9296	9632		80.4	51.5
	1002	9632	9784		80.3	15.1
A	1002	9784 1	0058		96.7	45.6
A	002 1	0058 1	0363		95.4	71.1
A	002 1	0363 1	8360	•	93.1	72.6
A	002 1	0668 1	0851	-624	78.7	42.6
A	002 1	0851,,1	0973		67.2	0.0
		0973 1			71.1	25.0
A	002 1	1125 1	1217			0.0
		1217 1				33.3
A	002 1	1460 1	1613			28.3
A	002 1	1613 1	1811			19.7
A	002 1	1811 1	2070			45.2
A	002 1	2070 1	2375		95.1	56.1

A002 12375 1246	4 02 /	42.4		
A002 12373 1248 A002 12466 1268		12.1		
A002 12680 1286				
A002 12863 1301		25.7		
A002 13015 1328				
A002 13289 1353				
A002 13533 1383				
A002 13838 1415				
A002 14158 1447				
A002 14478 1463				
A002 14630 1481		45.9		
A002 14813 1502	7 93.5	35.5		
A002 15027 1534	7 91.3	42.5		
A002 15347 1557	5 88.6	46.1		
A002 15575 1563	62.3	0.0		
A002 15636 1583	4 78.3	28.3		
A002 15834 1603	90.9	19.2		
A002 16032 1633	7 95.1	39.0		
A003				
AUMM	AG	AU	CU	MO
R	ррп	ppb	ppm	ppm
R	5.0 metre Composi		• -	• •
R	Casing to 13.72 m			
A003 1372 150		3	64	1
A003 1500 200		3	33	2
A003 2000 250		8	16	7
A003 2500 3000		4	2	2
A003 3000 3500		3	81	2
A003 3500 4000		3	31	1
A003 4000 4500		3	21	1
A003 4500 5000		3	3	3
A003 5000 5500		3	4	2
A003 5500 6000			13	2
		3		2
		3	116	
A003 6500 7000		3	189	3
A003 7000 7500		7	99	2
A003 7500 8000	-	13	11	2
A003 8000 8500		3	39	2
A003 8500 9000		4	51	2
A003 9000 9500		3	22	3
A003 9500 1000		3	68	2
A003 10000 1050		4	13	1
A003 10500 11000		3	24	1
A003 11000 1150		3	24	1
A003 11500 12000	.1	3	82	2
A003 12000 1250	.1	3	40	2
A003 12500 13000	.1	4	72	2
A003 13000 13500	.2	3	61	2
A003 13500 14000	.2	5	111	4
A003 14000 1450	.2	3	104	2
A003 14500 15000	.1	3	112	2
A003 15000 15500	.1	5	55	2
A003 15500 16000		7	81	3
A003 16000 1633		3	16	3
/END				

```
IDEN6B0201 V250 DDH90-4 NQ 28APR90KME ATLSAPR90S38 RBPUTM 0.0
IPRJ
          PDI/Salor Scientific
                                              KNUT PROPERTY
                                                                          952.
S000
      00 7361MT 147.22088.0 -45.00
                                                     3697.
                                                               2263.
S001 7361 14722
                    147.22088.0 -46.0
/SCL
            MT.2
LSCL
                           LCTM
/NAM
                                                        QZEPCLCYMSKFPYCPMOSL
LNAM
                                                        LIPLMGHEGYMCCB
                THIS DDH COLLARED TO TEST CU-AU SOIL AND COINCIDENT IP ANOMALY
R
             366 CASING TO 3.66M
R
       00
       00
             366
                       OVBD
                                              P
       366 1199
                       HYDIPFHBXE3EQBR
                                              P <<
                                                        Q/Q2P2P1 *=Q1
L
                           5G
                                                        C( D=C(<1
R
                HIGHLY MIXED UNIT; DK GRN, MED GRAIN HOST
                XENO INCLUDE GRANITE, VOLC, FG MAGNETIC UNIT (DACITE?)
R
                EP ALTN RESTRICTED TO PATCHES IN MAFIC HOST ROCK, SURROUNDING
                    ROCK FRAGMENTS OR INTERSTITIALLY IN BRECCIA
R
                PY ASSOC W EP. DISS UP TO 10%, LITTLE VEINING
R
                IN AREAS, FELSIC UNITS (DACITE) DOMINATE OVER DIOR
R
                4.06 - 5.49 INTENSE EP AND PATCHY PY ALTN
R
                    REPLACEMENT OF SOME XENO , SURROUNDING OTHERS
R
                10.67 - 11.99 ABUN FELSIC CLASTS - BRECCIA?
                    EP IN DIOR HOST, ASSOC W PY BLEBS, ENVELOPED BY MG.
R
      1199 2466
                       HYDIPFBIXE4EFPP
                                                        Q=<=P1P= P1D1Q-
L
                           4U
                                                            B) <1 </
                SIMILAR TO ABOVE BUT FINER GRAINED UNIT, HARDER, MORE FELSIC?
R
R
                    DOMINANT - MONZO DIORITE
R
                INTERVAL VARIES A LOT
                EP CONC'N DECREASES, FOUND DOMINANTLY AS MICROVEINS OR ENVELOPES
R
R
                18.29 - 20.8 EP AS PATCHES AND VEINS, MORE MAFIC AREA
R
                12.2 - 13.8 BRECCIA W HOST MZDI, PY-EP IN PATCHES BTWN CLASTS
R
                    SOME DISS PY
                14.34 - 14.77 SILICIFIED AREA, HIGH DISS AND PATCHY PY CONTENT
R
                    10CM QZ VEIN AT 70 DEG TO RT, CY ALTN INTERSTITIAL TO QZ
                    FLOODING. ROCK LITTLE EP
R
                GY - CB VEINS XCUT ALL ANGLES
                23.1 PY - MG CONC'N IN MAFIC UNIT
                23.1 - 24.66 VARIABLE UNIT. PORPH TO MED GRAIN DIOR W KF CLASTS
R
R
                    MINIMAL PATCHY EP AND PY <2.5%
R
                    GY IN ANG IRREG VEINS
1
      2466 3840
                       MZDIPFBIXE=EF<<
                                              P <<
                                                          P+P2G= V+P)
                           4T KF=PP
                                                      60
                                                BR
                                                            P( <1
R
                MZDI: MONZO DIORITE, BI PHENO 20%, KF5 - 10%, TAN TO GREY GRN
R
                EP AS MINOR PATCHES AND MICROVEINS
R
                SOME PY AS MICROVEINS AND ASSOC W EP AND MG IN FRESH ROCK
R
                PY ASSOC W GY AND CY IN GOUGED AREAS
R
                GOUGES AT: 26.0 - 27.5 CY 30%, DISS PY, CB
R
                    35.0 - 35.3 AT 40 DEG, DISS PY, GY. PY-QZ VEIN AT 40 - 50DEG
R
                    35.7 - 36.0 AT 60 DEG, DISS PY, GY VEIN, CB
R
                    PY BORDERING PINK GY-CB VEIN, CY 70%, SOME QZ
R
                29.7 - 30.0 SILICIFIED W DISS PY, LGE IRREG GY VEIN W ASSOC
R
                    PY PATCH, CY GOUGE AT END AT 45 DEG
/
      3840 5308
                       HYDIPFHBXE3EQ<<
                                              P <<
                                                          <=P3G3 *=Q=Q(
L
                           5G
                                  BR
                                          0001
                                                            <)C+<2 G/
R
                CONTAINS MANY XENOLITHS AND CY RICH GOUGED AREAS
R
                    XENO INCLUDE KF, FGDI, MZDI, GRANITE; ANG TO RND
R
                GENERAL ROCK HAS PATCHY AND MICROVEIN EP W CL ENVELOPES
                    AND ASSOC VEIN TO PATCHY PY AND MG UP TO 10%, SOME CP
R
                    MAFIC XENO SELECTIVELY REPLACED BY EP
                IN XENO RICH AREAS, EP AND PY INTERSTITIAL, SOME MG
```

```
44.5 - 47.5 LITTLE EP, PY IN MICROVEINS AND DISS 10%
R
                FAULT GOUGES AND BRECCIAS:
                38.4 - 39.76 CY 40%, LGE FSP CLASTS, CL ALTN EXTENSIVE, CB
                40.95 - 41.75 CY 10%, CL ALTH EXTENSIVE. CB AND GY VEIN
                    HE COATING ON GY VEIN AND FRACTURES
                    PY AND MG PATCHY AND MICROVEINS UP TO 10%
P
                44.5 - 45.56 NOT CONTINUOUS, CY-CL ALTN, PINK GY VEINS
                    SILICIFICATION AND HIGH DISS PY AT END
R
                48.02 - 49.9 CL-CY ALTN W HIGH XENO CONTENT, DISS PY 5%
                51.68 - 52.72 CY 70%, INTERSTITIAL EP-PY
R
      5308 6553
                                                                  P10*
                       MZDIPFBIKF=EF<<
                                              P <<
                                                        <+ P3
1
L
                           4U XE(
                                          0001 VG
                                                      35
                                                            Q) <1 <(
R
                VERY BORING, COMPETENT ROCK, SLIGHTLY PORPHYRITIC
                GY VEINS SOMETIMES ACCOMPANIED BY KF AND CY ALTN
Ð
R
                54.21 - 55.25 HIGHLY SILICIFIED AND KF ALTN
R
                    GRADES QUICKLY IN AND OUT TO MZDI
                    RELIC OF PF PHENO SOFT, POSS GY?
R
R
                    IN CENTRE OF ZONE HAVE GY-CB VEIN AT 35 DEG, CY ALTN ENV
R
                    SUBPARALLEL QZ VEINS AT 60 DEG
                63.09 - END PATCHY MG 20%, POSS KF ALTN
R
/
      6553 6792
                       PYSYQZKFXE*EF<<
                                              P <<
                                                              G1 <)D=
R
                           6TB1 BR
                                          1111
                                                                <1 G/
R
                PINKISH, POSS KF AND SI ALTERED MZDI
R
                COMPETENT, GY VEINS, MINOR PY AND MG VEIN AT 35 DEG, SOME CY
R
                67.27 - END ALTERED BRECCIA, SOME QZ VEIN
                    MADE OF FSDK CLASTS, SOME CY BTWN CLASTS W CB
R
R
                    MINOR KF VEIN, DISS PY
R
                15/05: EXAMINATION SHOWS THAT ROCK IS SIMILAR TO PYSY FROM
R
                    90-7. THIS INTERVAL LESS PINK WITH LESS DISS PY BUT
R
                    SIMILAR TEXTURE AND COMPOSTITION. FORMER NAME WAS FSDK.
      6792 7780
                       HYDIPFHBXE5BR<<
                                              P <<
                                                        E(Q(P3G+ 0=Q1
L
                           4G
                                  EF
                                          0101 BR
                                                            D = V2 G/
R
                BRECCIA ZONES COMMON, LOCALIZED XENO CONC'N UP TO 70%
R
                XENO INCLUDE ANG TO RND VOLC, GRANITE, FGDI, MZDI
R
                HOST ROCK COMP'N VARIES, DIFFICULT TO IDENTIFY
R
                GY VEINS CLEAR AND PINK
R
                PY DISS IN ROCK 5 - 10%, INTERSTITIAL IN BRECCIAS 15 - 20%
R
                    SPOTTY IN MAFIC UNITS 15 - 20%, DISS AND MICROVEINS THRUOUT
R
                PY ASSOC W CY IN GOUGED AREAS W GY VEIN
R
                LITTLE EP, CL IN GOUGED AREAS, PERVASIVE AND INTERSTIAL IN BRECC
R
                XENO CONC'N AT : 67.92 - 70.27, 73.25 - 73.55
R
                77.11 - END LGE FELSIC XENO
R
                CY RICH GOUGES AT 70.27 AT 75 DEG, 74.48, 77.0 - 77.31 AT 70 DEG
1
      7780 8870
                       HYDIPFHBXE4EMBR
                                              P \ll E(Q(P3G2 E(D2 <)
R
                           4G
                                  <<
                                          0101 BR
                                                            J) <2 </
R
                SIMILAR TO ABOVE, MORE MAFIC
R
                SOME EP IN SML PATCHES AND INTERSTITIAL
R
                BRECCIA AT: 77.8 - 78.7 PINK AND CLR GY, KF ENV W CY AND PY
R
                    MG INTERSTITIAL, CP BLEB AT 78.7
R
                    SOME FELSIC XENO FROM PREVIOUS INTERVAL
R
                    80.16 - 85.42 MOSTLY MAFIC DIOR FRAGMENTS, ANGULAR
                    INTERSTITIAL MG UP TO 30%, CP 1%, PY 20%, CL 20%
R
R
                    ANG GY VEINS THRUOUT, SOME KF OR QZ ENV ASSOC W GY
        - 1
R
                    CY ALTN 70% AT 81.6 AND 84.38
R
                85.42 - 85.82 GREY ZONE, EUHEDRAL PY 20%, SILICIFIED
R
                86.76 PY VEIN AT 50 DEG, 3CM WIDE, 70% PY, 1% CP, SILICIFIED ,CY
R
                86.76 - END EF DIOR, PY PATCHES 5-10%, SOME CP, FRESH
/
      8870 10126
                       HYDIPFHBXE2<<BR
                                              P <<
                                                        Q1Q)P3G) Q+Q1Q)
                                                            J) V1 G-
L
                                          0101
                           5G
                FEWER BRECCIA AREAS, LESS XENO, HOST MED TO COARSE GRAIN
```

```
EXTENSIVE CL ALTN, LITTLE EP
R
                HIGH PY CONC'N INTERSTITIAL IN BRECCIA ZONE IN MAFIC ROCKS
                    OTHERWISE DISS IN ROCK 5% OR IN MICROVEINS W QZ OR KF
R
                    ENV IN COMPETENT ROCK
R
                HIGH KF ALTN, PERV AND ENV AT 97.0 - 99.0
R
                    ASSOC CY ALTN, GY AND QZ VEIN
R
                    KF ALTN INTERMITTENT 99.0 - END
R
                BRECCIA AT:
R
                    91.88 - 94.04 15 - 20% INTERSTIAL PY, 5 - 10% MG
R
                    93.06 - 93.36 CY GOUGE, DISS PY 10%
R
                    94.84 - 96.0 LITTLE XENO, PY (5 - 10%) PATCHY W CP, EP
R
                99.0 - END COARSE GRAIN, PY VEINS, KF ENVELOPES.
     10126 11630
                                                        E(Q=P3
/
                       HYDIPFHBXE2EQ<<
                                              P <<
                                                                  E+Q1Q(
                                                             D2 V1
ı
R
                GRN, MED GRAIN, ABUNDANT XENO, ANGULAR, MOSTLY MZDI .5 - 40CM
R
                EP AND PY CONC'N AROUND XENO AND KF ALTN, EP ENV 1%
                SOME PY ALONG SIDES AND IN CENTRE OF GY VEINS
R
R
                DISS PY 2.5%, CP ASSOC W PY EVERYWHERE, MG DISS EVENLY
R
                MZDI: PY MICROVEINS (1-2%) W EP ENV AND OR CL ENV OR PINK QZ ENV
R
                    GY XCUT AND PARALLEL PY VEINS. GY VEINS PRODUCE STOCKWORK
N
     10446 10564
                      )CGGBPFHBKF+EC<<
                                              N XE
                                                      70 Q(P4
                                                                  Q+<(B)
                                          0000
L
                           7G
                                                            D1 <=
R
                ODD ROCK, SEVERAL PHASES OF CL ALTN???
R
                HIGH CONC'N OF PY IN VEIN IN KF ALTN W SOME CY
R
                SML SIMILAR XENO THRUOUT INTERVAL
                MZDI XENO AT: 105.64 - 106.68, 101.26 - 103.11, 107.81 - 108.39
R
R
                FGDI(PORPH) AT: 112.66 - 113.39, CL ALTN, NO MINERALIZATION
R
                103.11 GOUGE, CY, DISS PY 20%
R
                115.0 - 115.5 SILICIFIED ZONE, EUHEDRAL PY UP TO 30%
R
                    GY EXTENSIVE, SOME CY
                    CP AND PY IN VEINS AND DISS (CP 2.5%)
R
     11630 13164
                       MZDIPFBIKF=EF<<
                                              P <<
                                                      65P=Q)P2G2 Q=<1<)
                                          1335 FZ
1
                           5T XE1SW
                                                            Q) <2 G/
                EXTENSIVE STOCKWORK W GY VEINS, GENERALLY MED TO LGE ANGLE VEINS
R
R
                ROCK FG TO MED GRAIN W SML PHENOS OF BI (CL) AND OCCASIONAL PF
                    KF IN GROUND MASS W PF
R
                    AND XENO OF HYDI UP TO 40CM
R
                    LITTLE DISS PY IN IRREG VEINS W QZ ENV AND PATCHY EP
                    PY UP TP 10% OF ROCK IN MICROVEINS: SOME CB ASSOC W PY
                EP ISOLATED IN PATCHES IN HYDI, W PY IN MICROVEINS AND IN
R
                    SML XENO (FELSIC TO MAFIC)
R
                HAVE AREAS OF PERV TO ENV PINK ALTN - QZ OR KF?
R
                    AREAS HAVE HIGHER PY CONTENT IN FINE NET OF VEINS
                    CONTAIN MG AND CP ALTHOUGH MG DOMINANT IN XENO
                    COMMON 125.0 - END
R
                117.7 - 118.25 HYDI XENO, BTM CONTACT AT 25 DEG W GY VEIN
                122.2 - 122.6 GOUGE AT 65 DEG, CY 30 %, CB 10%, DISS PY 10%,
R
                    CB, MG. INTERMITTENT GY VEINS, SOME INTERSTITIAL PY IN
R
                    BRECCIA ZONES. ODD PURPLE MINERAL, POSS QZ
R
                130.69 - 131.69 QZ - KF ALTERED ZONE, FRACTURED W CY ALTN
                    DISS TO MICROVEIN PY, 10-15%, ODD GRN CY MINERAL COMMON
     13164 13544
                       HYDIPFHBXE4EM<<
                                              P <<
                                                        E+Q+P4G1
                                                                    <2<(
L
                                                            D= <2G-
        -34,0
R
                TYPICAL HYDI, SLIGHTLY MORE FELSIC AND FG AT END
R
                PY IN EXTENSIVE NET OF MICROVEINS THROUGHOUT
                SOME PY MICROVEINS W QZ ENV, REMOB PY IN GY VEINS
R
R
                PY CONC'N AT: 133.69 SML GOUGE W CY ALTN AND KF?? ALTN
                    PY AS ENV AROUND GY-QZ VEIN AT 35 DEG
R
                    134.39 GOUGE W GY-CB-CY ALTN, SOME QZ
                    134.64 PY W GY BLOB
```

```
13544 14722
                       MZDIPFBIXE(EFSW
                                               P <<
                                                         P1Q(P=G+ P2<2<(
L
                           5T
                                          0101
                                                             <) <1 G=
                                  <<
                MORE FELSIC TO BTM OF INTERVAL, KF- QZ FLOODING
R
R
                KF AREAS COARSER, RANGE ENV TO PERV, MAY BE DIFFERENT ROCK
R
                KF ENV AROUND QZ-PY VEINS
                PY IN FINE NETWORK OF MICROVEINS W ASSOC CP , MINOR MG
R
                PY-MG-CP IN MAFIC XENO, PATCHY
R
R
                GOUGES AT:
                137.27 AT 65 DEG, EUHEDRAL PY, CALCITE AND GRN MINERAL
R
                    MG AND CP IN MICROVEINS, ASSOC W PY
R
R
                138.07 SOME EP, GY VEIN. HIGH DISS PY CONTENT
R
                143.22 MINOR CY ALTN
                144.72 GY VEIN, MG-PY-CP VEINS, INTERSTITIAL PY, CY ALTN
R
                144.72 - END INTERMITTENT ROCK W GRN MINERAL SPOTTED THROUGHOUT
R
R
                    HIGH KF OR PINK QZ CONTENT
R
                    CONTAINS MICROVEINS W MG SELVEDGES/ENVELOPES
R
                FRACTURES THROUGHOUT ROCK, BUT NOT CONTINUOUS THEREFORE
R
                    FRACTURE COUNT LOW.
R
                EOH
R
                SAMPLES
A001
AUMM
                    SAMPLE
                                          Cu
                                                Mo
                              Αq
                                    Au
R
                                    ppb
                                         ppm
                                                ppm
                             ppm
ALAB
                PDI RESEARCH
ATYP
                SPLIT CORE
AMTH
                WET GEOCHEM A.A.
R
       00
             366 CASING - NO RECOVERY
             549
                                                6.0
A001
       366
                     54221
                             1.9
                                    35
                                         331
A001
       549
             780
                     54222
                              .6
                                    70
                                         335
                                                4.0
A001
       780
            1017
                     54223
                              .3
                                     3
                                         335
                                               4.0
A001
      1017
            1199
                     54224
                              .4
                                     3
                                          480
                                               5.0
                     54225
                                         323
                                               6.0
A001
      1199
            1479
                              .5
                                    20
      1479
            1840
                     54226
                                     3
                                          164
                                                4.0
A001
                              .2
                                         280
A001
      1840 2155
                     54227
                              .2
                                     3
                                               4.0
A001
      2155 2306
                     54228
                              .3
                                     3
                                         147
                                               3.0
A001
      2306 2466
                     54229
                              .2
                                     3
                                          72
                                               4.0
A001
      2466
           2621
                     54230
                                     3
                                          37
                                               7.0
                              .2
A001
      2621
            2760
                     54231
                              .1
                                     3
                                          23
                                               6.0
A001
      2760
            2975
                     54232
                                     3
                                          61
                                                6.0
                              . 1
      2975
            3094
                                     3
                                          50
                                                4.0
A001
                     54233
                              .4
     3094 3251
                     54234
                                     3
                                          100
                                               6.0
A001
                              .2
A001
      3251 3496
                     54235
                                     3
                                          72
                                               3.0
                              .2
A001
      3496
            3604
                     54236
                             1.1
                                   280
                                          100
                                               3.0
A001
      3604
            3844
                     54237
                              .5
                                     3
                                         620
                                               3.0
A001
      3844
           3976
                     54238
                             1.5
                                   160
                                        3400
                                               4.0
                     54239
A001
      3976
           4095
                              .7
                                    65
                                        2160
                                               2.0
      4095
            4175
A001
                     54240
                              .4
                                    20
                                         570
                                               2.0
      4175 4450
                                   250 2030
A001
                     54241
                             2.1
                                               2.0
                              .6
A001
      4450 4556
                     54242
                                    40
                                         600
                                               2.0
A001
      4556
           4802
                     54243
                              .2
                                    20
                                         257
                                                 .5
      4802
           4990
A001
                     54244
                                     5
                                         156
                                                 .5
                              .2
A001
      4990
            5168
                     54245
                              .2
                                     3
                                         176
                                                 .5
A001
      5168 5308
                     54246
                                     3
                                         164
                                                 .5
                              .2
      5308 5421
A001
                     54247
                                     3
                                          83
                                               1.0
                              .1
                                         295
A001
     5421 5525
                     54248
                              .3
                                     3
                                               1.0
A001
      5525
            5734
                     54249
                              .2
                                     3
                                         218
                                               2.0
A001
      5734
            5970
                     54250
                              .2
                                     3
                                         117
                                               3.0
A001
      5970
            6309
                     54251
                                     3
                                         113
                                               1.0
                              . 1
                     54252
A001
      6309
            6553
                              .3
                                     3
                                          110
                                               2.0
```

A001 6553 6727

54253

.6

240

770

.5

A001	6727	6792	E/3E/	,	30	980	1.0
	-		54254	.4			
A001	6792	7027	54255	.5	3	1200	.5
A001	7027	7198	54256	.9	20	2300	1.0
A001	7198	7325	54257	1.1	45	2420	2.0
A001	7325	7448	54258	.8	120	850	3.0
A001	7448	7731	54259	.6	50	680	1.0
A001	7731	7780	54260	.2	3	320	4.0
A001	7780	7870	54261	1.0	80	2530	4.0
A001	7870	8016	54262	1.1	80	2340	4.0
A001	8016	8190	54263	.7	40	1400	3.0
A001	8190	8355	54264	.9	50	1800	3.0
A001	8355	8438	54265	.7	115	1080	3.0
A001	8438	8671	54266	1.1	110	1720	4.0
A001	8671	8827	54267	.6	55	800	4.0
A001	8827	9110	54268	.7	3	1380	4.0
A001	9110	9188	54269	2.1	170	1510	5.0
A001	9188	9300	54270	.9	20	1540	4.0
A001	9300	9484	54271	.5	30	1000	4.0
A001	9484	9598	54272	.7	20	1360	5.0
A001	9598	9700	54273	.3	3	540	2.0
A001	9700	9896	54274	.4	20	600	5.0
A001	9896	10039	54275	.7	70	1450	5.0
A001	10039	10126	54276	.8	80	1520	6.0
A001	10126	10311	54277	.7	40	740	4.0
A001	10311	10446	54278	.5	45	1560	6.0
A001	10446	10564	54279	1.3	260	670	4.0
A001	10564	10668	54280	.6	35	780	4.0
A001	10668	10781	54281	.2	3	266	5.0
A001	10781	10751	54282	.8	25	790	5.0
A001	10951	11156	54283	.6	35	1200	3.0
A001	11156	11344	54284	.5	3	1020	2.0
A001	11344	11500	54285	.6	30	1350	4.0
A001	11500	11630	54286	1.4	125	3200	6.0
A001	11630	11775	54287	.6	30	1000	6.0
A001	11775	11855	54288	.5	25	1170	4.0
A001	11855	12115	54289	.7	40	1360	3.0
A001	12115	12220	54290	.3	3	710	4.0
A001	12220	12270	54291	.7	3	700	10.0
A001	12270	12389	54292	.4	3	570	6.0
A001	12389	12545	54293	.5	3	570	5.0
A001	12545	12774	54294	.3	3	520	4.0
A001	12774	12929	54295	.6	10	366	6.0
A001	12929		54296	.3	3	530	4.0
A001	13069	13164	54297	.5	70	48	4.0
A001	13164	13344	54298	.3	3	470	3.0
	13344						
A001		13544	54299	-4	3	670	3.0
A001	13544	13699	54300	.6	3	1240	3.0
A001	13699		54301	.2	3	195	2.0
A001	13810		54302	.2	3	338	3.0
	14112		54303	.1	3	182	3.0
	14322		54304	.3	15	480	3.0
A001	14475	14585	54305	.1	3	105	3.0
A001	14585	14722	54306	.2	10	276	3.0
R	17.50	^g ' (EOH				
A002							
AUMM			R	ECOVY	RQD		
R	000	366	CASING - N	O RECO	VY		
A002	366	549		56.3	0.0		
A002	549	762		62.4	20.2		
A002	762	914		78.9	9.2		
AUUZ	102	714		,	7.6		

A002	914	1067		92.8	43.1
A002	1067	1219		78.9	36.2
A002	1219	1372		69.9	26.7
-A002	1372	1707		46.6	9.5
A002	1707	1829		57.4	9.8
A002	1829	2012		71.0	21.3
A002	2012	2149		73.0	38.0
A002	2149	2316		92.8	79.6
A002	2316	2621		83.6	38.4
A002	2621	2743		27.9	0.0
A002	2743	2804		85.2	0.0
A002	2804	2926		27.9	0.0
A002	2926	2972		50.0	0.0
A002	2972	3094		73.8	43.4
A002	3094	3231		54.7	35.0
A002	3231	3414		65.6	18.0
A002	3414	3551		67.2	23.4
A002	3551	3719		64.9	36.9
A002	3719	3840		33.9	0.0
A002	3840	4145		96.1	77.4
A002	4145	4450		91.8	62.3
A002	4450	4755		90.8	75.1
A002	4755	5060		87.5	57.7
A002	5060	5273		73.2	40.4
A002	5273	5395		72.0	28.8
A002	5395	5669		85.0	34.3
A002	5669	5822		96.7	42.5
A002	5822	5974		92.1	55.9
A002	5974	6187		77.5	49.8
A002	6187	6309		70.5	<i>7</i> 5.4
A002	6309	6553		82.0	51.6
A002	6553	6675		75.4	38.5
A002	6675	6888		92.0	68.1
A002	6888	7193		95.1	72.8
A002	7193	7498		96.1	86.6
A002	7498	7711		51.6	36.6
A002		8016 8321		96.7 97.7	
		8626			
		8960		98.4	
				86.8	
		9266		91.8	
		9601		89.3	
		9906		91.8	
		10241		91.0	
		10546		100.0	
		10851		93.8	
		11156		97.0	
		11460		98.0	
		11765		97.7	
		12070		63.9	
	12070	12283		100.0	
R	4000-		LOCKS IN		
		12588		97.7	
		12741		85.0	
		12984		92.6	
		13289		94.8	
		13594		79.7	
		13807		96.2	
		14112		95.4	
A002	14112	14432		93.7	55.6

A002	14432	14722	100.0	69.3		
A003						
AUMM			Ag	Au	Cu	Мо
R			ррт	ppb	ppm	ppm
R		5	.0 metre Composi	te Geo	chem	
R		C	asing to 3.66 m			
A003	366	500	1.9	35	331	6
A003	500	1000	.6	37	334	4
A003	1000	1500	.4	12	373	5
A003	1500	2000	.2	3	201	4
A003	2000	2500	.2	3	156	3
A003	2500	3000	.1	3	44	6
A003	3000	3500	.2	5	76	4
A003	3 500	4000	.9	105	1319	3
A003	4000	4500	1.4	157	1678	2
A003	4500	5000	.2	16	255	1
A003	5000	5500	.2	3	170	1
A003	5500	6000	.2	3	167	2
A003	6000	6500	.2	3	111	1
A003	6500	7000	.5	58	906	1
A003	7000	7 500	.9	53	1745	1
A003	7 500	8000	.8	58	1409	2
A003	8000	8500	.8	65	1548	3
A003	8500	9000	.8	58	1315	4
A003	9000	9500	.9	43	1295	4
A003	9500	10000	.5	26	913	4
A003	10000	10500	.7	74	1144	4
A003	10500	11000	.7	53	694	4
A003	11000	11500	.6	21	1179	2
A003	11500	12000	.8	56	1703	4
A003	12000	12500	.5	11	794	5
A003	12500	13000	.4	5	478	4
A003	13000	13500	.4	15	460	3
A003	13500	14000	.3	3	615	2
A003	14000	14500	.2	6	304	3
A003	14500	14722	.2	7	210	3

*, ##¹2

de ve

/END

```
IDEN6B0201 V250 DDH90-5 NQ 29APR90MD
                                         ATLSAPR90S38 RBPUTM 0.0
IPRJ
          PDI/Salor Scientific
                                               KNUT PROPERTY
S000
       00
                                                                2503.
            6721MT 134.42270.0 -45.00
                                                      3598.
                                                                           964.
S001
      6721 13442
                    134.42270.0 -44.5
/SCL
            MT.2
LSCL
                           LCTM
/NAM
                                                         QZEPCLCYMSKFPYCPMOSL
LNAM
                                                         LIPLMGHEGYMCCB
R
                THIS DDH COLLARED TO TEST A WEAK CU-AU SOIL AND COINCIDENT HIGH
R
                IP CHARGEABILITY HIGH.
R
       00
             366 CASING TO 3.66M
       00
             366
                       OVBD
                                               Р
       366 1697
                                               P <<
                                                         D+Q+P+G2 Q2D+
                       MZDIPFKFXE1PASW
                                          3437 FZ
L
                           TAHBQZ+BRXE
                                                         T1C)
R
                OXYDIZED ZONE CHARACTERIZED BY STRONG WEATHERING & ALT & BROKEN
R
                CORE PIECES
R
                ROCK APPEARS TAN-GREY COLOUR W.PATCHY OR XENOLITHIC TEXT SOME
R
                FRAGS ARE OBVIOUS FINE-MED GRAIN INTRUSIVES (ROUNDED) WHILE
R
                OTHERS APPEAR SMALLER, ANGULAR & VOLC, BUT MOST OFTEN FRAG CON-
R
                TACTS ARE DIFFICULT TO RECOGNIZE
R
                MATRIX APPEARS MADE OF MED-GR'D INTERM COMP (MONZO-DIORITE?)
R
                EP ALT IS PATCHY W.LESSER ENV, WHILE CLAY ALT IS DOMINANT IN
R
                BRECCIATED FAULT ZONES
R
                GY OCCURS AS FRACT FILLING UP TO 0.5 CM WIDE (10%)
R
                PY OCCURS MOSTLY DISS (2-3%) W.LESSER MICROVEINS & PATCHES
R
                FRACT IS MOD AS SHOWN BY STOCKWK OF MICROVEINS
R
                14.02-14.63: HIGHLY CLAY ALT'D FAULT ZONE W. 3-5% DISS PY
                15.47-16.79: FRESHER, WEAKLY ALT'D INTERV OF SIMILAR COMP
R
      1697 2773
                       HYDIPFHBXE3XEBR
                                              P <<
                                                        D+Q)P+G1 Q1D=
1
                           TAKFQZ+EMSW
                                          3224 FZ
                                                            D( <=
R
                MED-GRAIN INTERM OF TAN-GREY COLOUR W.XENOS OF MED-GRAIN INTRU
R
                (DIOR?) & FINE-GRAIN INTRUS (MONZO, PINKISH?) AS SCATTERED ANGUL
R
                (2 CM) FRAGS OF VOLC. MATRIX APPEARS MED-GRAIN OF INTERM COMP
R
                STOCKWK OF GY VEINLETS OCCURS IRREGUR; LARGE VEINS (1 CM) OCCUR
R
                IN AREAS OF FAULTING/BRECCIATION
R
                PY OCCURS MOSTLY AS DISS VEINLETS & PATCHES. ZONES OF INCREASED
R
                FRACT'G, ALT & BRECC. SHOW INCREASES IN PY CONTENT (5%)
R
                16.97-17.22, 21.47, 24.39-25.86, 26.71-27.73 ALL SHOW AREAS OF
R
                FAULTING W. INCREASED FRACT'G, ALT (CLAY, EP, CHLOR, GY) & BRECC
R
                W. MORE PY
R
                17.22-18.57: MED-COARSE GRAIN, GREYISH-GREEN INTERV OF HYBRID
R
                DIOR W. HIGHER LEVEL OF EP-CHLOR ALT
     2773 3423
                       MGMZPFKFXE1EMXE
                                              P <<
                                                        D+ D)<+ Q1D+
L
                           TUHBQZ+SW
                                          1335 FZ
                                                            0( <1
R
                MED-GRAIN, LIGHT TAN-BROWN, WEAKLY ALT'D INTRUS OF POSS MONZ COMP
R
                LARGE XENOS OF ROUNDED DIOR OCCUR IRREG (5%) & ANGUL, UP TO 3 CM
R
                XENOS OF VOLCS OCCUR SCATTERED (3%)
R
                STOCKWK OF GY VEINLETS OCCURS THROUGHOUT
R
                PY OCCURS MAINLY AS DISS W.LESSER MICROVEINS, OFTEN ASSOC W.GY
P
                VEINLETS OR THE MAFIC PHASE OF THE ROCK (5%)
R
                21.18-28.48: FRACT'D BRECCIA ZONE W. ABUNDANT GY
R
                29.66.30.16, 33.83-34.23: INCREASE IN FRACT'G
                                                        P+ *)G) <*D+
     3423 4146
                       FGDIPFHBXE1EF<<
                                              P <<
        4
L
                           7A QZ+XEBR
                                          1345 FZ
                                                                 <1
R
                FINE-GRAIN, LIGHT GREY, WEAKLY ALT'D DIORITE?
R
                STOCKWK OF GY VEINLETS, OFTEN ASSOC W. PY ON OUTER EDGES (1%)
R
                XENOS OCCUR IN LESSER AMOUNTS, IRREG AS ROUNDED MED-GRAIN DIOR
R
                (UP TO 5 CM) & ANGUL VOLCS (UP TO 3 CM)
R
                PY OCCURS MOSTLY DISS & AS MICROVEINS (2-3%), ASSOC W.GY &
R
                MAFIC PHASES
```

```
R
                34.23-34.63, 36.70-36.85: HIGHLY FRACT'D, PART'LY CLAY ALT'D
R
                FAULT ZONES
R
                38.94-41.46: LARGE PORPH. XENOS + FAULT ZONE W. CLAY ALT/BRECC
      4146 4450
                       MGMZPFKFXE=EMXE P <<
                                                      D+
                                                              <) Q+D)<*
L
                           TUHBQZ+SW
                                          1324 FZ
R
                SIMILAR TO INTERV 27.73-34.23
                TAN-BROWN, MED-GRAIN, WEAKLY ALT'D INTRUS OF MONZ COMP
R
                GY OCCURS AS STOCKWK W. VEINLETS UP TO 1 CM, LESSER PATCHES
R
                ANGULAR VOLC XENOS OCCUR SCATTERED (UP TO 2 CM)
                PY OCCURS MOSTLY AS DISS W. LESSER MICROVEINS
R
/
      4450 5429
                       FGD I P F H B X E = S WE F
                                              P <<
                                                        D+E(0)G+ Q)<+
L
                                          2325 FZ
                           5AQZ XE
                                                            D. <1
R
                FINE-GRAIN, MED-GREY INTRUS (POSS DIOR); SIMILAR TO 34.23-41.46
                FRACT'G IS A LITTLE MORE DEVELOPED, MOSTLY FILLED BY GY VEINLE'S
R
R
                & PY (2%)
R
                XENOS OCCUR SCATTERED IRREG & CONSIST MAINLY OF ANGULAR FRAGS
R
                OF VOLC UP TO 2 CM WIDE
R
                ALT IS WEAK & OCCURS MAINLY IN INTENSE FRACT ZONES
R
                PY OCCURS AS MICROVEINS & DISS W.LESSER PATCHES (2-3%)
R
                44.85-44.45, 50.15, 51.10: ALL SHOW ZONES OF FAULTING W.INCREAS
R
                IN FRAT'G & ALT (GY, CLAY, KF, CHLOR)
      5429 6998
/
                       FGDIPFHBKF)EFPA
                                                        P2Q)P1G) Q=<=
L
                           4AQZXE=SWXE
                                          2223
                                                            D( <2
R
                VERY FINE-GRAIN, MED DARK-GREY, PATCHY & FRACT'D INTRUS (POSS
R
                DIOR?), SILICA FLOODING OCCURS THROUGHOUT UP TO 20%
R
                FRACT INTENSITY INCREASES AS WELL AS PY CONTENT
R
                XENOS ARE LESS OBVIOUS (MORE OF A PATCHY TEXT) BUT STILL APPEAR
R
                INTRUS & VOLC IN NATURE
R
                ALT APPEARS MAINLY CHLORITIC W.LESSER EP (PATCHES) W.SOME KF
R
                ALT OCCURING AS FRACT & PATCHES
R
                PY IS ABUNDANT IN MICROVEINS & PATCHES W.LESSER DISS (5%)
R
                54.29-56.69: FRACT & BRECC ZONE W. LESSER CLAY ALT IN GOUGE
R
                59.64-61.38: SLIGHTLY MORE MAFIC PHASE OF A FINE-GRAIN DIOR
R
                63.03-65.83: INCREASE IN FRACT'G W.SOME PINKISH ANGUL CLASTS
R
                (SYENITIC COMP?) UP TO 5 CM; ABUNDANT GY VEINLETS W.ASSOC PY
R
                OCCURING AS DISS & PATCHES
      6998 7308
                       FGD I P F H B X E 1 E F X E
                                              P <<
                                                        P+E*P3G= Q*<)
L
                           GA QZ+SWPA
                                          2345 FZ
                                                            D) <=
R
                DARKER GREENISH-GREY, FINE-GRAIN INTRUS (POSS DIOR COMP) W.STOCK
R
                TEXT OF GY-EP-PY VEINLETS
R
                XENOS OCCUR SCATTERED & CONSIST OF ANGUL VOLCS UP TO 3 CM, MAFIC
                MINERALS 2-3 MM ALSO OCCUR SCATTERED GIVING ROCK A PORPH TEXT
R
R
                ALT IS PREDOMINANTLY CHLOR (30% PERV); EP OCCURS AS ENV IN FRACT
R
                CLAY OCCURS MAINLY IN FAULT GOUGES
R
                PY OCCURS AS VEINLETS (OFTEN ASSOC W.GY) & LESSER AS DISS, PATCH
                69.98-70.18: HIGHLY CLAY-ALT'D FAULT ZONE (LIGHT GREEN COLOUR)
R
/
     7308 7483
                       FGD I PFHBQZ1EFSW
                                              P <<
                                                        P1 <)G1
                                                                    <)Q-
L
                                          2335 FZ
                           7A XE=PABR
R
                LIGHTER GREY, FINE-GRAIN INTRUS (DIOR?) W. PATCHY & XENOLITH TEXT
R
                GY OCCURS AS STOCKWK W.LESSER AMOUNTS OF ASSOC PY VEINLETS
R
                ALT IS GENERALY WEAK W. UP TO 10% SILICA FLOODING? LESSER CHLOR
R
                AS FROT FILLING & CLAY ALT IS ABUNDANT IN FAULT GOUGES
R
                73.58-73.70: HIGHLY CLAY ALT'D FRACT'D FAULT ZONE & ALSO AT 75.6
R
                PY OCCURS MAINLY AS MICROVEINS (1%)W. LESSER DISS & PATCHES
        2740
                                             P <<
     7483 9265
/
                       HYDIPFHBXE1EMXE
                                                        P*Q=P4G+ Q+D+Q(
L
                           AG KF SW
                                          1324
                                                            D+ <+
                MED-GRAIN, DARK GREYISH-GREEN INTRUS OF DIORITIC COMP?
R
R
                ALT IS MOSTLY PERV CHLOR (40%) W.LESSER PATCHES, ENV OF EP (WELL
R
                DEVELOPED FROM 81.08) 7 MINOR SILICA FLOODING
R
                XENOS OCCUR SCATTERED IRREG & CONSIST MAINLY OF ANGUL VOLC UP TO
```

```
5 CM W.LESSER MED-GRAIN INTRUS, PART'LY ROUNDED & STRONGLY ALT'D
R
               STOCKWK OF GY W.LESSER PY OCCUR IRREG, GY VEINS UP TO 1CM W.
R
               LESSER PATCHES UP TO 3 CM
R
               PY OCCURS MOSTLY AS DISS (2-3%) W.LESSER MICROVEINS
R
               CP OCCURS IN MINOR AMOUNTS AS 3-4 MM PATCHES AT 75.68M
               MAFIC MINERALS (HB?) 2-3 MM, OCCUR SCATTERED UP TO 15%
R
               76.66-77.26: SHOWS A GRAINIER TEXT & MORE ABUNDANT K-SPAR ALT
R
R
               IN SMALL INTERSTITIAL PATCHES
R
               90.53-90.63: HIGH PERV K-SPAR ALT GIVING ROCK A REDDISH COLOUR
1
     9265 9580
                      FGDIPFHBKF+PASW
                                            P <<
                                                       P)E)P2G+ Q4<)
                                         3537 FZ
L
                          RA XE)XE
                                                           $= <)
R
               FINE-MED GRAIN, REDDISH-GREY INTRUS (DIOR?) CHARACT'D BY KF-ALT
               FLOODING AS PATCHES (POSS FRACT CONTROLED)
R
R
               ALT ALSO DISPLAYED BY EP ENV AROUND GY & MG VEINLETS, CHLOR ALT
R
               IS PERV (20%); STOCKWK OF GY W.ASSOC MINOR PY MICROVEINS
               93.10-95.80: ABUNDANT MG VEINLETS IN SHEETING TEXT W.ASSOC PY
R
R
               92.65-93.05: CLAY-ALT'D FAULT GOUGE W.UP TO 5% PY VEINLETS &
R
               LESSER DISS
R
               95.60-95.80: HEAVIER FRACT'G W. INCREASED PY CONTENT
     9580 10043
                      PPDIPFHBXE+PPEF P << P)0=0)<) Q1D+
                          AUKF SWXE 1335 FZ
L
R
               LIGHT GREYISH-BROWN UNIT OF FINE-GRAIN, MICRO-PORPH DIOR W.PHENOS
R
               OF PLAG/K-SPAR, SOME PART'LY EPIDOTIZED
R
               XENOS ARE SCARCE BUT DO RANDOMLY OCCUR AS MED-GRAIN DIOR, LARGELY
               EPIDOTIZED, W.LESSER SMALLER SCATTERED ANGUL VOLC FRAGS (1.5 CM)
               ALT IS WEAK & FRACT'G IS LOW, MOST FRACT ARE FILLED W. GY & PY
R
               PY OCCURS MAINLY AS FINELY DISS X-TALS
               99.73-100.43: SECTION OF COARSER GRAIN W. PORPH TEXT
R
               100.33-100.43: HIGHLY CLAY-ALT'D FAULT GOUGE
                                          P <<
    10043 10424
                      FGDIPFHBXE=EFSW
                                                       <=F+P+<) 0+<=
                          4AQZKF)XE
                                         2346
L
R
               GREY-BROWN TO DARK GREY, FINE-GRAIN EQUIV OF DIOR?
R
               HEAVILY FRACT'D & MINERALIZED W.PY MICROVEINS & DISS & LESSER
R
               LOCALIZED MG ASSOC W.PY (OCCURING AS VEINLETS & PATCHES)
               FEW SCATTERED XENOS OF MED-GRAIN INTRUS & ANGUL VOLC,OFTEN
R
               EPIDOTIZED. EP ALSO OCCURS AS ENV IN FRACT ZONES
               GY SHEETING OCCURS THROUGHOUT W.LESSER QZ VEINLETS (ASSOC PY)
R
               K-SPAR OCCURS AS PERV FLOODING IN SOME FRACT ZONES
    10424 10888
                      MGD I P F H B X E ) E M S W
                                             P << P)E)Q+<+ Q3<+
L
                          RAQZ XEPA 1435 FZ
                                                               <=
R
               SIMILAR TO INTERV 92.65-95.80
               MED-GRAIN, REDDISH BROWN-GREY INTRUS OF DIORITIC COMP, CHARACT'D
R
R
               BY ABUNDANT PATCHY KF-ALT FLOODING, POSS FRACT CONTROLLED
R
               ALT ALSO DISPLAYED BY EP ENV & PATCHES (MINOR) W.SOME CHLOR ALT
R
               OF MAFIC MINERALS THROUGHOUT
               STOCKWK OF GY VEINLETS, TRANSPARENT, WHITISH TO PINK
               CLAY ALT OCCURS IN NARROW FRACT ZONES (FAULT GOUGE) AT BEGINING
R
R
               AND END OF INTERVAL
R
               PY OCCURS AS MICROVEINS ALONG W.GY VEINLETS, & LESSER AS DISS(EF)
R
               A FEW SCATTERED ANGULAR VOLC XENOS
                                            P <<
    10888 11256
                      MGDIPFHBKF=KRSW
                                                       P) <*G1 Q+<=
                          5AQZXE+XEPA 2435 FZ
L
R
               FINE-MED GRAIN, GREYISH INTRUS OF DIOR COMP CHARACT'D BY INTENSE
R
               FRACT'G & FAULT GOUGING
               A PATCHY TEXT APPEARS IN AREAS WHERE IT IS DIFFICULT TO DIFFER-
R
               ENTIATE W. XENOS
R
               ALT IS MAINLY CLAY IN FRACT ZONES W.MINOR CHLOR ALT IN FRACT
R
               K-SPAR OCCURS LOCALIZED
```

PY IS ABUNDANT AS VEINLETS W.LESSER DISS (4-5%)

```
R
                STOCKWK OF GY VEINLETS OCCURS IRREG W.MINOR ASSOC PY
R
                111.71-112.56: HIGHLY FRACT'D, REWORKED, CLAY-ALT'D ZONE
/
     11256 11836
                       FGDIPFHBXE)EFSW
                                             P <<
                                                       P)Q)P3<+ <)<1
                                         3447 FZ
L
                           GAQ7 PA
                                                           0) <1
R
                FINE-GRAIN, GREENISH-GREY INTRUS CHARACT'D BY WELL DEVELOPED
R
                STOCKWK OF GY & LESSER PY MICROVEINS W. LOCALIZED ENV & PATCHES
R
                OF EPIDOTE, CHLOR ALT IS MORE PERV THROUGHOUT & STRONGER IN SOME
R
                FRACT ZONES WHERE CLAY ALT IS DOMINANT
R
                PY OCCURS ABUNDANTLY AS VEINLETS, PATCHES & DISS (UP TO 10%)
                112.56-113.76: LIGHTER GREEN COLOUR W. HEAVIER FRACT'G & REWORK
R
                ING W.LOCALIZED PATCHES & ENV OF K-SPAR, LOCALIZED MG PATCHES
R
                116.75-118.11: MORE INTENSE FRACT'G & ALT
     11836 12049
/
                       MGD I PFHBXE+EMSW
                                             P <<
                                                       P)Q* G+ Q4<+
L
                          RAQZ PABR
                                         3335 FZ
                                                               <1
R
                SIMILAR TO INTERV 104.24-108.88
R
                MED-GRAIN.REDDISH-GREY INTRUS OF DIORITIC COMP CHARACT'D BY
                K-SPAR ALT FLOODING W.HIGHLY CLAY ALT'D FAULT & BRECCIA ZONES
                STOCKWK OF GY VEINLETS W.LESSER ASSOC PY
R
R
                FEW SCATTERED ANGULAR VOLC XENOS UP TO 2 CM WIDE
R
                PREDOMINANT K-SPAR ALT AS PATCHES (UP TO 10 CM), APPEAR TO BE
R
                FRACT CONTROLED
R
                PY OCCURS AS MICROVEINS, OFTEN W. GY, & LESSER AS PATCHES & DISS
R
                118.36-118.46, 119.26; HIGHLY CLAY-ALT'D FAULT GOUGES
R
                118.86-118.96: HIGHLY CLAY-ALT'D BRECCIA ZONE W.K-SPAR FRAGS UP
R
                TO 3 CM WIDE
     12049 12543
                      FGDIPFHB
                                 BREF
                                             P <<
                                                       P) <=G3 *1Q1
                          GAQZ PASW
L
                                               FΖ
                                                               <1
                FINE-GRAIN.LIGHT GREENISH-GREY INTRUS CHARACT'D BY INTENSE FRACT
R
R
                FAULTING & BRECCIATION ACCROSS NUMEROUS SECTIONS
R
                ALT IS PREDOMINANTLY CLAY IN FAULT/BRECCIA ZONES
                STOCKWK OF GY VEINLETS (UP TO 1 CM) W.LESSER ASSOC PY
R
                PY IS MOST ABUNDANT AS PATCHES IN ZONES OF INTENSE FRACT'G & ALT
R
                (UP TO 3 CM) W.LESSER OCCURENCES OF VEINLETS & DISS
R
               K-SPAR OCCURS AS CLASTS IN ALT ZONES
1
     12543 13442
                      PPDIPFFXXE)PPSW
                                             P <<
                                                       P2E=P1G1<=E)<)
                                         2436 FZ
L
                          7GHB BREF
                                                          D+ <) <(
R
               SIMILAR TO 95.80-100.43
R
                FINE-GRAIN, LIGHT GREEN, MICRO-PORPH DIOR CHARACT'D BY 2-3 MM
R
               PHENOS OF FELDSPARS & MICROVEINS OF PINKISH SERICITE?
R
                ROCK SEEMS PART'LY SILICIFIED (UP TO 20%)
               PY OCCURS IN MINOR AMOUNTS AS MICROVEINS & DISS
R
R
               MG OCCURS AS SMALL DISS X-TALS (2-3%)
R
                125.43-125.83, 126.43-126.68: CLAY-ALT'D, BRECCIATED FAULT ZONES
R
               125.98-126.13: CLAY-ALT'D FAULT GOUGE
R
               126.43-127.81: INTERV OF FINE-GRAIN, PATCHY, BRECCIATED INTRUS
R
               (FINE-GRAIN DIOR?)W.1% PY VEINLETS. K-SPAR ALT OCCURS AS LOCA-
               LIZED PATCHES
A001
AUMM
                   SAMPLE
                                               Mo
                             Αa
                                   Au
                                         Cu
R
                                  ppb
                            ppm
                                        ppm
                                              ppm
ALAB
               PDI RESEARCH
ATYP
               SPLIT CORE
AMTH
               WET GEOCHEM A.A.
      00
            366 CASING - NO RECOVERY
A001 366 1036
                    54307
                             .4
                                    3
                                       500
                                              1.0
A001 1036 1547
                    54308 .2
                                    3 316
                                              .5
A001 1547
           1697
                    54309 .4
                                 15
                                        96
                                              1.0
A001 1697
           1857
                    54310 .4
                                    5
                                       330
                                              .5
A001 1857
           2157
                    54311 .2
                                   3
                                       126
                                              1.0
                    54312 .2 3 100
A001 2157 2439
                                             1.0
```

A001	2439	2586	54313	.3	3	87	2.0
A001	2586	2671	54314	.2	3	72	.5
A001	2671	2773	54315	.2	3	56	1.0
A001	2773	3091	54316	.3	3	57	1.0
A001	3091	3423	54317	.2	3	33	1.0
A001	3423	3725	54318	.2	5	21	3.0
A001	3725	3894	54319	.2	3	56	2.0
A001	3894	4146	54320	.1	3	60	3.0
A001	4146	4450	54321	.2	3	43	.5
A001	4450	4755	54322	.2	3	22	3.0
A001	4755	5055	54323	.1	3	26	3.0
A001	5055	5244	54324	.2	5	132	1.0
A001	5244	5429	54325	.2	3	96	2.0
A001	5429	5669	54326	.3	3	560	1.0
A001	5669	5964	54327	.2	3	193	1.0
A001	5964	6300	54328	.2	3	275	1.0
A001	6300	6583	54329	.3	3	332	1.0
A001	6583	6826	54330	.2	3	82	.5
A001	6826	6998	54331	.1	3	87	2.0
A001	6998	7308	54332	.2	3	23	2.0
A001	7308	7483	54333	.5	3	85	3.0
A001	7483	7766	54334	.1	3	96	2.0
A001	7766	8050	54335	.1	3	35	1.0
A001	8050	8350	54336	.2	3	28	3.0
A001	8350	8626	54337	.2	3	81	3.0
A001	8626			.2		267	
A001	8921	8921 9022	54338	.3	3		2.0
			54339		3	370	1.0
A001	9022	9265	54340	.3	3	176	1.0
A001	9265	9310	54341	.3	3	103	2.0
A001	9310	9580	54342	.3	3	55 157	.5
A001	9580	9795	54343	.1	3	157	.5
A001	9795	9973	54344	.2	3	142	1.0
A001	9973	10043	54345	.1	3	90	1.0
A001	10043	10228	54346	.3	15	360	1.0
A001	10228	10424	54347	.1	15	247	.5
A001	10424	10678	54348	.2	5	118	.5
A001	10678	10888	54349	.1	15	85	.5
A001	10888		54350	.1	5	151	.5
A001	11171		54351	.8	100	250	9.0
A001	11256		54352		3	460	1.0
A001	11555	11836	54353	.3	10	500	1.0
A001	11836	12050	54354	.1	15	237	2.0
A001	12050		54355	.1	10	86	1.0
A001	12326	12543	54356	.1	10	65	2.0
A001	12543	12643	54357	.1	10	62	3.0
A001	12643	12781	54358	.2	3	37	2.0
A001	12781	13034	54359	.2	3	28	2.0
A001	13034	13238	54360	.2	3	16	2.0
A001	13238	13442	54361	.1	3	24	2.0
R			END OF HOLE				
A002							
AUMM			R	ECOVY	RQD		
R	000	366	CASING - N	O RECO	VY		
A002	366			32.8	0.0		
A002	488			38.5	0.0		
A002	579			10.0			
A002	732			36.7			
A002		884		21.7			
	884			19.7			
A002	-			5.2			
				-	_		

```
A002 1265
                           25.5
                                  0.0
           1402
                                  0.0
A002
     1402
            1463
                           32.8
A002
      1463
            1707
                           86.1
                                 50.0
A002
     1707
            2012
                           96.7 48.2
A002
     2012
            2286
                           93.1 56.9
A002
     2286
           2499
                           100.0 47.4
A002
     2499
                           91.8 59.0
            2621
A002
     2621
           2743
                           91.8 43.4
A002
     2743
           2896
                           77.8 23.5
     2896
                           60.8 31.7
A002
           3016
A002
     3016
                           86.0 44.2
           3231
A002
     3231
           3383
                           97.4 38.2
A002 3383
           3536
                           73.2 49.7
A002
     3536
           3749
                           90.6 42.3
A002
     3749
           3993
                           82.0 35.2
A002 3993
                           83.1
           4176
                                  6.0
                           97.8 76.3
A002
     4176
            4450
A002
     4450
            4755
                           70.5 29.8
                           97.7 23.4
A002
     4755
           5060
A002
     5060
                           91.4 42.1
           5364
A002
     5364
           5669
                           85.2 35.7
                           91.1 50.2
A002
     5669
            5974
A002
     5974
            6248
                           98.5 40.9
                           52.5 72.1
A002
     6248
            6553
           6706
A002
     6553
                           78.4 51.0
A002
     6706
            6888
                           100.0 61.5
A002 6888
           7193
                           99.0 48.5
A002
     7193
           7498
                           91.8 55.4
                           83.1 33.3
A002
     7498
           7681
A002
     7681
           7986
                           96.1 61.0
A002 7986
                           94.3 73.8
           8108
A002 8108
           8412
                           96.4 69.4
                           91.8 59.3
A002
     8412
           8717
                           96.7 55.4
A002 8717
           9022
A002 9022
                           65.6
           9083
                                0.0
A002 9083
           9174
                           68.1 27.5
A002 9174
           9235
                           78.7 36.1
A002 9235
                           88.1 54.7
           9555
A002 9555
           9632
                           71.4 28.6
A002 9632 9935
                           97.4 50.5
A002 9935 10196
                           77.4 41.8
A002 10196 10424
                           74.6 24.7
A002 10424 10698
                           82.1 28.8
A002 10698 11034
                           89.3 46.1
A002 11034 11156
                           96.7 34.4
A002 11156 11460
                           95.7 72.4
                           73.8 43.2
A002 11460 11826
A002 11826 11979
                          100.0 37.3
A002 11979 12283
                           96.4 59.5
A002 12283 12558
                           78.2 56.0
A002 12558 12771
                           82.2 36.6
A002 12771 12954
                           79.2 32.2
A002 12954 13228
                           76.6 24.1
A002 13226 13442
                           79.4 10.3
               END OF HOLE
R
A003
AUMM
                             Ag
                                   Au
                                         Cu
                                               Мо
R
                            ppm
                                  ppb
                                        ppm
                                              ррп
R
               5.0 metre Composite Geochem
               Casing to 3.66 m
```

A003	366	500	.4	3	500	1.0
A003	500	1000	.4	3	500	1.0
A003	1000	1500	.2	3	329	.5
A003	1500	2000	.3	7	200	.8
A003	2000	2500	.2	3	107	1.1
A003	2500	3000	.3	3	64	1.1
A003	3000	3500	.2	3	3 5	1.3
A003	3500	4000	.2	4	41	2.7
A003	4000	4500	.2	3	46	1.5
A003	4500	5000	.2	3	24	3.0
A003	5000	5500	.2	4	168	1.6
A003	5500	6000	.2	3	323	1.0
A003	6000	6500	.2	3	298	1.0
A003	6500	7000	.2	3	125	1.1
A003	7000	7 500	.3	3	47	2.4
A003	7 500	8000	.1	3	67	1.5
A003	8000	8500	.2	3	45	2.8
A003	8500	9000	.2	3	236	2.1
A003	9000	9500	.3	3	132	.9
A003	9500	10000	.2	3	132	.7
A003	10000	10500	.2	12	256	.7
A003	10500	11000	.1	9	112	.5
A003	11000	11500	.4	20	319	2.2
A003	11500	12000	.2	11	409	1.3
A003	12000	12500	.1	11	94	1.4
A003	12500	13000	.2	5	40	2.2
A003	13000	13442	.2	3	20	2.0
/END						

Album .

```
IDEN680201 V250 DDH90-6 NQ 03MAY90KME ATLSMAY90S38 RBPUTM 0.0
TOD.I
          PDI/Salor Scientific
                                              KNUT PROPERTY
s000
       00 12711MT 154.23090.0 -45.50
                                                     3400.
                                                                2250.
                                                                           954.
s001 12711 15423
                    154.23090.0 -45.00
            MT.2
/SCL
LSCL
                           LCTM
/NAM
                                                        QZEPCLCYMSKFPYCPMOSL
LNAM
                                                        LIPLINGHEGYMCCB
R
                THIS DDH COLLARED TO TEST CU-AU SOIL AND COINCIDENT IP ANOMALY
R
                    AND POSSIBLE NORTHERN EXTENSION OF KNOWN CU MINERALIZATION
R
            2621 CASING TO 26.21 M
       00
            2621
                       OVBD
/
      2621 3871
                       MZDIBIPFKF=EF
                                              P <<
                                                        E(E+P1G+ P=D)
                           5A XE=
L
                                                                 <)P=
R
                HIGHLY JUMBLED ROCK, RQD LOW, FRACTURE COUNT IMPOSSIBLE
R
                GENERALLY VERY FINE GRAINED W VARYING BI 5 - 10%, SOME PHENOS
                32.0 - 33.5 PHENOCRYSTS BI OR PF REPLACED BY GY?
R
R
                35.31 - END MORE MAFIC, FINE GRAINED, ANG XENO W QZ-EP-CL HALOES
R
                    W CENTRALIZED PY
R
                    XENO UP TO 3CM, MAFIC W EP-PY-PINK MINERAL ALTN, SOME CB
R
                MINOR PY AND GY VEINS
                CB IN MORE JUMBLED AREAS, SOME MICROVEINS. SEE 34.75, 36.16,
R
R
                    36.58M
      3871 5359
                       MZDIPF XE+EM
                                              P <<
                                                        E+*)P1G+Q(E)D)
L
                                          1113
                           AT
                                                                 <1 E)
                SERICITE: EMERALD GRN, SOFT, SURROUNDED BY CB. SEE 48.4 M
R
R
                PY VEINS (<1%) 60 - 70 DEG, STRAIGHT, PURE, MOST PY DISS;D
R
                ROCK MORE PINK W SML ANG MAFIC XENO UP TO 3CM
R
                SOME PF PHENO, SML ERRATIC
                EP AND PY ASSOC W XENO
R
R
                GY VEINS CLR AND CLOUDY, SOME PY REMOBILIZED
R
                SML FRACTURES AND GOUGES W CY, CB, GY, BLACK MINERAL COATING,
R
                    DISS PY (2%)
                    HAVE KF? ALTN ASSOC W SUCH BLACK FRACTURES
R
R
                    SEE 48.4 TO 49.0 M, 45.78, 42.60 M
R
                ROCK MAY BE MORE FELSIC THAN MZDI, POSS GRANODI OR TL?
R
                42.36 PY MICROVEINS 10 - 20%, CY, CB, HIGHLY FRACTURED
      5359 6400
                       MZDIPFBI EM<<
                                                                  Q2D1
                                              P <<
                                                        E) P1
L
                           5A
                                  PPSW
                                          1103
                                                                 V= <=
                MORE MAFIC, GRADING TO MORE FELSIC AT END, PF AND BI PHENO
R
R
                    INTERMITTENT
R
                EXTENSIVE STOCKWORK OF CB, SML IRREG VEINS, LITTLE ASSOC PY
R
                CB ALSO IN GOUGED AREAS (10%) W GY, CY, BLACK MINERAL
                53.59 - 53.69 XENO? AT 40 DEG CB - GRN CY- GY ZONE W 40 % PY
R
R
                    SOME BLACK MINERAL AND POSS KF
R
                57.38 - 58.10 COARSER GRAINED, PERV TO PATCHY KF ALTH IN
R
                    GROUND MASS
R
                    PY IN MICROVEINS W QZ ENV, SOMEWHAT PATCHY
                    BOUNDED BY CB-CY-GY-PY VEINS
R
                59.05 - 59.35 CY ALTN ZONE, GY-CB-PY (SELVEDGES) PARALLEL TO
                    AXIS. ROCK QUITE FELSIC W PF PHENOCRYSTS
R
R
                SOME 'UZ FLOODED FRACTURES W PY LAYER W IN ENV 62.0M
/
      6400 7769
                       PYSYPFBI EFUF
                                              P <<
                                                        P/
                                                              G+Q( <)
        -
L
                           6T
                                          0112
                                                                 <) <1
R
                FRESH, FEW MAFIC MINERALS, LITTLE DISS PY(1%?)
                PY IN MICROVEINS W MAFIC SELVEDGES, QZ, SOMETIMES CB AND GY
                    PY ALSO IN GOUGES W CY-CB-GY-BLACK MINERAL
R
R
                EMERALD GRN SERICITE IN SML PATCHES, SOMETIMES W PY
                GOUGES/BRECCIAS AT:
R
```

66.1 BLACK ROCK FRAGMENTS W LOOSE PY XALS, CY,CB ALTN

```
R
                69.2 - 70.8 FSDK GROUND UP. CY-CB ALTN EXTENSIVE, NO CHANGE
R
                    IN PY CONTENT FROM NORMAL ROCK
R
                73.86 QZ FLOODED FRACTURE W PY AND KF SPOTS IN ENV
R
                74.26 SMALL GOUGE
                16/05: NAME CHANGED TO PYSY. CORRESPONDS TO PYSY IN 90-7 AND
R
R
                    90-4. MORE SIMILAR TO 90-4, LESS PINK THAN 90-7. ALMOST
R
                    ALL PHENO ARE PY WITH LITTLE ELSE.
1
      7769 8331
                       PYSYPFBI EM<<
                                              P <<
                                                            E)G= P+<+
L
                           6T
                                          1334
                                                                 <) P1
R
                SIMILAR TO ABOVE, MORE BI AND STOCKWORK VEINING
R
                FRACTURING AND GOUGES MORE COMMON
Ð
                PY DOMINANT IN MOCROVEINS UP TO 3%, ASSOC W CY ENV AND
R
                    PROMINANT BLACK MICROVEINS AND STRINGERS
                MINIMAL GY AND EP, MOSTLY CB AS PERV AND UP TO 15% IN GOUGES
R
                    CB MICROVEINS ACCOUNT FOR MOST OF STOCKWORK EXCEPT WHERE
R
R
                    BLACK MINRAL DOMINATES AND DYKE MORE MAFIC
R
                    SEE 79.53 - 80.63
R
                GOUGES:
                78.15 - 78.38 QZ VEIN W KF-PY ENV AND CENTRAL CY-CB-PY VEIN
R
                78.70 - 79.13 QZ VEIN W LARGE CY PEBBLY ZONE, DISS PY AND MICROV
R
R
                79.63 CY - BLACK MINERAL
R
                TO END VARIOUS CY RICH ZONES, SML, LITTLE MINERALIZATION
R
                GY USUALLY PINK
R
                16/05: SIMILAR TO PYSY IN 90-4, POSS SOME BI BUT MOST PY.
      8331 8590
/
                       PPDKPFKFMS1PPEF
                                              P <<
                                                      60<*
                                                              P+D1E)D(
                                                                <= <*
L
                           6G
                                  <<
                                          1314
R
                UNUSUAL DK GRN MINERAL, DISS REPLACING BI PHENO?
R
                    ALSO IN MINOR MICROVEINS WHICH XCUT PINK GYVEINS
R
                HAVE SML PF PHENO ALTERED TO CY, VERY CLOUDY
R
                KF? VERY PINK ALTN AROUND FRACTURES BUT ALSO FINELY DISS'D
R
                MOST VEINS AT APPROX 60 DEG TO AXIS ALTHOUGH SOME PARALLEL
R
                    ( GRN VEINS)
                ZONE BOUNDED BY FAULT GOUGES W ABUNDANT BLACK MINERAL, UP TO
R
                    40% CY
      8590 8997
                       FSDKPFBIXE1PM<<
                                              P <<
                                                            <=P= P1<)
L
                           6TKF
                                          1113
                                                                <(
R
                VERY JUMBLED AND ALTERED, BI 1 - 10%, COMPOSITION VARIES
R
                CHANGES AT 88.77 TO MORE FELSIC ROCK SIMILAR TO PREVIOUS
R
                    FSDK. QZ RICH
                ROCK GENERALLY MED GRAINED W 1% DISS PY
                OCCASIONALLY PY IN IRREG VEINS AND PATCHES , REMOB IN GY VEINS
R
R
                87.78 - 88.77 BI (CL) PRODUCES SHEETING W INCREASED DISS PY
R
                    5 - 7% . POSS CP ALSO, KF ALTN
R
                    SHEETING AT 25 - 30 DEG, XCUT BY 50 - 70DEG GY-PY VEIN,
R
                    AND BLACK MINERAL VEINS
R
                CB EXTENSIVE THROUGHOUT, PERV AND IN GOUGES
R
                GY VEINS IRREG , ANG, AND PINK
     8997 9906
/
                       BRDIPFHBXE7BR<<
                                              P <<
                                                            P)G) *1J1
L
                                  PA
                                                BR
                                                                <1 P=
R
                BRECCIATED DIORITE: ANG FELSIC XENO UP TO 80% W BLACK
R
                    DIORITIC? MATERIAL INTERSTIAL. VERY FINELY CRYSTALLINE
                    BOUNDARIES W XENO SHARP TO HAZY
R
R
                    XENO UP TO 50CM, SOME W DISS PY 5 - 10%
        -19
R
                MOST CB PERV AND IN MICROVEINS BTWN 92.6 - 93.7
                    XENO? QZ FLOODED, PATCHY KF ALTN, GREY GRN COLOUR
R
R
                PY UP TO 10% INTERSTITIAL, SOME MICROVEINS W BLACK ENV (1-2%)
R
                    VEINS XCUT AND CONTAINED W IN XENO
R
                PATCHY KF ALTH AT END SELECTIVELY REPLACING XENO
                96.60 LAGE KF-QZ-GY VEIN
R
```

9906 11113

BRDIPF XE7BR <<

P <<

E(Q*P+G+ Q=J=

```
4AHB EF
L
                                         1113 RR
                VARIOUS COMPOSITION, POSS MIXTURE OF VARIOUS XENOS
R
                BRECCIA UNITS AT: 105.76 - 108.98, 104.24
R
                BTWN BRDI ARE XENOS? OR OTHER SML UNITS
N
      9906 10514
                      =FGQDPFQ7XF1<<
                                                        E(C* G+ E+<=
                                              N <<
L
                                          1111
                QUITE FRACTURED W PY IN MICROVEINS AND PATCHES ASSOC W BLACK
R
R
R
                SOME CY GOUGES W DISS PY 5%, SOME CB
     10514 10576
                      *MGQDPFQZ EM
N
                                              N <<
                                                                <)
L
                           5TKF
N
     10898 11113
                      )MGQD
                                                          <1
                                                                    <1
L
                                                                    <+
R
                MAY POSS BE BRDI W XENO MUCH MORE CONSUMED
R
                SOME EP, GRADATIONAL W LOWER INTERVAL
                CY RICH GOUGE AT END OF INTERVAL, COARSER
R
     11113 12493
                       MZDIPFBIXE+EM<<
                                              P <<
                                                        P)E+P1P+ Q1<+
L
                           4TKF UF
                                          1224
                                                                <= <1
R
                MED GRAINED DIOR 15-20% BI, 70-75% PF, SOME KF ORIGINAL
                    OR REPLACING. DIFFICULT TO DISTINGUISH
R
R
                    CONSTANT TEXTURE, ALTHOUGH SOME KF AND QZ OVERPRINTING
R
                    FROM 120.0 - END
R
                PERV TO ENV KF, PERV TO ENV CB, ENV TO PATCHY EP ALL INCREASES
                    W DEPTH
R
R
                SELECTIVE BLUE CY ALTN APPROX 2-5%, BI TO CL 10%
                111.6 SML BRDI, MINOR ASSOC W GOUGE
R
R
                112.46 - 114.40 FG QZ RICH XENO
R
                    IRREG PY MICROVEINS AND PATCHES W BLACK ENV. PY 5-7%, LITTLE
R
                    ALTERATION
R
                120.0 - END QZ, KF, EP ALTN INCREASED, SOME ORIGINAL TEXTURE LOST
R
                    PY IN FINE MESH THROUGHOUT ROCK 5% AND IN MICROVEINS 2%
R
                    MICROVEINS TEND TO HAVE LGE 1CM KF ENV W INNER EP ENV
R
                    W CENTRAL PY ALTHOUGH PY FOUND ALONE, GY VEINS SHOW SAME ENV
                    POSS SOME CP AT 121.5, SLIGHTLY TARNISHED
R
     12493 12893
                       FGMZPFKFXE2EFUF
                                              P <<
1
                                                          <)J1G(
L
                           5T
                                  <<
                                          1213
                                                                <+ J+
R
                VERY COMPETENT, SOME BRECCIA W INTERSTIAL CL-EP-CB-PY(2.5%)
                PY ALSO IN MICROVEINS W BLACK MINERAL, EP ENV. UP TO 5%? PY
R
R
                    PATCHES 1CM BY 1CM
     12893 13426
                       MZD1PFKFXE3<<EM
                                              P <<
                                                      P=Q2P1G( P2<=
/
                          5TBI PASW 1234
                                                                <1 <1
L
R
                EXTENSIVE STOCKWORK OF ANG CLEAR GY AND PY +/- CB MICROVEINS
R
                EP ENV TO PATCHY, ASSOC CLOSELY W PY AND KF ENV TO PERV ALTN
R
                KF PATCHY TO PERV ASSOC W EP OFTEN AS OUTER HALO AROUND EP ENV
R
                    AROUND IRREG PY MICROVEIN
R
                SOME XENO - SEE 128.93, 131.90
R
                    W EP ENV, KF PERV IN XENOS (FELSIC)
R
                KF THROUGHOUT EXCEPT WHEN BLUISH CY MINERAL W PERV CB DOMINATES
R
                    SEE 130.0, 133.76 - END
R
                    EP AS ENV ALONG FRACTURES
R
                PY IN MICROVEINS W SOME CP? ASSOC W EP AND KF IN KF ALTERED
R
                    PATCHES, BUT ALONE IN LESS ALTERED ROCK
R
                    SOME PATCHY PY
        -17:0
R
                BLACK MINERAL - CL? ALSO INTERSTIAL OR IN MICROVEINS
R
                    TRUNCATED BY EP ENV ALONG LATER FRACTURES
R
                GY VEINS XCUT ALL, CONTAINS SOME PY
     13426 13911
                                                         D10+
                       PPDIPFKF PPUF
                                             P <<
                                                                  D1
1
L
                                  SW
                                          0224
                                                                <( <2
                          4A
R
                PORPHYRITIC DIORITE, COMPETENT, GOOD RECOVERY
```

PF PHENOCRYSTS, EUHEDRAL, SELECTIVELY ALTERED TO EP OR KF

```
R
                  GIVING MULTICOLOURED ROCK. TWO TYPES OF PHENOS?
R
               BI ALTERED TO CL. MICA 5-7% OF ROCK
R
               PHENOS 15-20% OF ROCK, REST VERY FINE GRAINED
R
               STOCKWORK TO MICROVEINS OF CB, NO MINERALIZATION
R
               SOME PINK GY VEINS
1
    13911 15423
                                          P <<
                                                   <=Q1P2G) Q2<)
                     MZDIPFBIXE=EMUF
L
                         6A
                               PP
                                      1334
                                                       Q( <+ P1
R
               SIMILAR TO MZDI ABOVE, SLIGHTLY LESS KF ALTN, MORE MAFIC
R
               NUMEROUS MICROFRACTURES, IRREG, DISCONTINUOUS, FILLED W
R
R
              EP AS ENV ALONG SOME FRACTURES, PATCHY ALONG LARGER FRACTURES
R
                  OFTEN ASSOC W GY VEINS, THERFORE MAY BE LATER
R
                  ALWAYS ASSOC W KF PERV TO ENV ALTN
R
               SOME QZ VEIN AND LARGER PY VEINS W AREAS OF PATCHY EP-KF ALTN
R
              CB MORE PERV IN AREAS OF INTENSE KF-EP ALTN, PINK CB
R
              PY VEINS AND EP-KF AREAS XCUT BY BLACK MINERAL -CL? VEINS
R
               139.11 - 140.25 MORE MAFIC, EM, LITTLE KF-EP ALTN
R
                  LARGE PATCH OF MG W CL ALTN HALO
R
                  PY FINELY DISPERSED IN MG, MG UP TO 20-30%
               144.48 - 146.58 BRECCIATED ZONE W CY, AT 25 DEG
R
R
                  INTERSTITIAL CB-CL-PY, EP-KF ALTN OF CLASTS
R
              CLOSE TO END, SELECTIVE ALTN OF PF XALS TO KF
R
                  KF ALTH NOT SO PERV AND DOMINANT 148.0 - END, MORE SELECTIVE
R
              END OF HOLE!
R
              EOH
R
              SAMPLES
A001
AUMM
                  SAMPLE
                           Ag
                                 Au
                                      Cu
                                            Mo
R
                          ppm
                                ppb
                                           ppm
ALAB
              PDI RESEARCH
ATYP
              SPLIT CORE
AMTH
              WET GEOCHEM A.A.
      00
           2621 CASING - NO RECOVERY
R
A001 2621
           2946
                   54362 .1
                                      20
                                           2.0
A001
     2946
           3353
                   54363
                           . 1
                                  3
                                       16
                                           2.0
A001 3353
          3556
                   54364
                         .1
                                       4
                                           .5
                                 3
A001 3556 3736
                   54365 .1
                                      17
                                           2.0
A001 3736 3870
                   54366 .1
                                           2.0
                                 3
                                      81
A001 3870
           4100
                   54367 .1
                                 3
                                      37
                                           1.0
A001 4100
           4267
                   54368 .1
                               3
                                      33
                                          2.0
                   54369 .1
A001 4267
          4508
                               3
                                     185
                                           1.0
A001
     4508
           4830
                   54370
                          . 1
                                 3
                                      17
                                           1.0
A001 4830
           4907
                                 3
                                           1.0
                   54371 .1
                                      16
A001 4907
           5184
                   54372 .1
                                          1.0
                   54373 .1
A001 5184
           5359
                                          1.0
                                 3
                          .1
A001 5359
           5738
                                 3
                   54374
                                     114
                                           1.0
                                      60
A001 5738 5810
                   54375 .1
                                 3
                                          2.0
A001 5810
          5905
                   54376 .1
                                3
                                     5
                                          1.0
A001
     5905 6120
                   54377
                           . 1
                                 3
                                      14
                                           .5
A001 6120
                         .1
                                          1.0
           6400
                   54378
                                 3
                                      14
A001 6400
           6610
                   54379 .1
                                          1.0
A001 6610
           6920
                   54380
                                 3
                                       3
                                          1.0
                         .1
                         .1
A001 6920
           7090
                   54381
                                 3
                                       5
                                           1.0
A001 7096# 7193
                   54382 .1
                                 3
                                       3
                                          1.0
A001 7193 7446
                   54383 .1
                                 3
                                       8 1.0
A001
     7446
           7769
                   54384
                          . 1
                                 3
                                       3
                                          1.0
                   54385 .1
A001 7769
          7870
                                 3
                                       5
                                          2.0
A001 7870
          7973
                   54386 .5
                                 3
                                       7 2.0
                                       3 2.0
A001 7973 8100
                   54387 .3
                                 3
```

A001 8100 8331

54388

.3

3

4 2.0

A001	8331	8434	54389	.9	75	44	2.0
A001	8434	8590	54390	.1	10	61	3.0
A001	8590	8778	54391	.3	70	6	3.0
A001	8778	8877	54392	.1	5	5	1.0
A001	8877	8997	54393	.2	3	9	2.0
A001	8997	9196	54394	.2	3	128	2.0
A001	9196	9378	54395	.1	3	80	3.0
A001	9378	9632	54396	.2	3	214	3.0
A001	9632	9760	54397	.2	3	460	1.0
A001	9760	9906	54398	.1	3	8	2.0
A001	9906		54399	.1	3	33	2.0
A001	10241	10514	54400	.1	5	11	2.0
A001	10514	10576	54401	.1	10	57	2.0
A001	10576	10898	54402	.1	5	91	2.0
A001	10898	11113	54403	.1	3	243	1.0
A001	11113	11244	54404	.1	5	34	2.0
A001	11244	11460	54405	.1	15	6	2.0
A001	11460	11718	54406	.1	3	38	3.0
A001	11718	11868	54407	.1	3	193	3.0
A001		12000	54408	.1	3	300	1.0
A001	12000	12310	54409	.5	10	1460	4.0
A001	12310	12493	54410	.3	15	640	1.0
A001	12493	12643	54411	.4	3	750	2.0
A001	12643	12893	54412	.2	3	690	2.0
A001	12893	13000	54413	.1	3	59	.5
A001	13000	13183	54414	.1	3	62	2.0
A001		13316	54415	.1	3	42	2.0
A001	13316	13426	54416	.1	3	93	2.0
A001	13426	13625	54417	.1	3	6	2.0
A001	13625	13810	54418	.1	3	11	3.0
A001	13810	13911	54419	.1	3	44	3.0
A001	13911	14025	54420	.1	3	62	4.0
A001	14025	14219	54421	.1	3	100	3.0
A001		14402	54422	.1	3	221	4.0
A001		14538	54423	.1	3	540	2.0
A001	14538	14694	54424	.1	10	266	4.0
A001		14868	54425	.1	10	177	5.0
A001	14868	14938			3		4.0
A001	14938	15239	54427		3		5.0
A001	15239	15423	54428	.3	5	350	4.0
R			END OF	HOLE			
A002							
MMUA			R	ECOVY	RQD		
R			CASING - N				
A002	2621	2682		45.1			
A002				36.9			
A002	2804	2896		59.8	30.4		
A002	2896	3048		30.9			
A002	3048	3200		40.1			
A002	3200	3353		63.4	10.5		
A002	3353	3475		23.8	0.0		
A002		3658		62.3			
A002	3658	3871		81.2			
A002				62.3	0.0		
200A	3993	4054		59.0	0.0		
A002	4054	4206		75.7	27.6		
A002	4206	4267		100.0	16.4		
A002	4267	4389		48.4	8.2		
A002	4389	4618		84.7	36.7		
A002	4618	4907		90.0	50.5		

```
A002 4907 4990
                         90.0 14.9
A002 4990 5075
                         92.9 58.8
A002 5075 5227
                         53.3
                               6.6
A002 5227 5349
                         59.8 0.0
A002 5349 5578
                         13.1 0.0
A002 5578 5700
                         73.0 20.5
A002 5700 5883
                         85.2 21.9
A002 5883 6005
                        100.0 16.4
A002 6005 6126
                         46.7 8.3
A002 6126 6187
                         54.1 0.0
A002 6187 6279
                         73.9 13.8
A002 6279 6401
                         11.5 0.0
A002 6401 6584
                         62.8 20.8
A002 6584
          6645
                         78.7 16.4
A002 6645 7010
                         36.7 9.0
A002 7010 7193
                         83.6 30.6
A002 7193 7376
                         95.6 39.3
A002 7376 7513
                         89.1 26.3
A002 7513 7803
                         90.0 45.3
                         87.9 53.4
A002 7803 8108
A002 8108 8291
                         95.6 37.0
A002 8291 8565
                         80.3 50.0
A002 8565 8778
                         86.9 60.1
                         95.1 62.7
A002 8778 9022
A002 9022 9266
                         93.4 53.3
A002 9266 9449
                         93.4 53.6
A002 9449 9754
                         98.4 74.4
A002 9754 9906
                         95.4 50.7
A002 9906 10058
                         73.7 9.9
A002 10058 10241
                         82.0 38.8
A002 10241 10424
                         65.0 38.8
A002 10424 10576
                         83.0 37.5
A002 10576 10790
                        59.8 20.1
A002 10790 11064
                        100.0 69.3
A002 11064 11156
                         88.0 23.9
A002 11156 11460
                         52.6 30.9
A002 11460 11613
                         78.4 34.9
A002 11613 11918
                         91.8 27.5
A002 11918 12070
                        100.0 17.8
A002 12070 12375
                        91.5 63.9
A002 12375 12588
                         77.9 33.8
A002 12588 12878
                         95.0 71.1
A002 12878 13183
                         99.7 69.5
A002 13183 13472
                        100.0 83.0
A002 13472 13594
                         76.2 56.6
A002 13594 13655
                         83.6 0.0
A002 13655 13807
                         71.1 36.2
A002 13807 14021
                         86.4 24.3
A002 14021 14219
                         89.9 50.0
A002 14219 14508
                         95.5 86.2
A002 14508 14813
                         93.4 61.6
A002 14813 15118
                         92.5 73.8
A002 15118 15423
                         93.4 75.1
A003
AUMM
                           Αg
                                 Au
                                      Cu
                                            Мо
R
                                ppb
                                           ppm
                          ppm
                                     ppm
              5.0 metre Composite Geochem
              Casing to 26.21 m
A003 2621 3000
                  .1
                                 3
                                      19
                                           2.0
                         .1 3
A003 3000 3500
                                      12 1.6
```

A003	3500	4000	.1	3	38	1.6
A003	4000	4500	.1	3	105	1.3
A003	4500	5000	.1	3	19	1.0
A003	5000	5500	.1	3	39	1.0
A003	5500	6000	.1	3	67	1.0
A003	6000	6500	.1	3	12	.9
A003	6500	7000	.1	3	3	1.0
A003	7000	7500	.1	3	6	1.0
A003	7500	8000	.2	3	4	1.5
A003	8000	8500	.4	19	20	2.1
A003	8500	9000	.2	30	17	2.4
A003	9000	9500	.2	3	132	2.6
A003	9500	10000	.2	3	183	2.0
A003	10000	10500	.1	4	22	2.0
A003	10500	11000	.1	5	116	1.8
A003	11000	11500	.1	9	69	1.9
A003	11500	12000	.1	3	154	2.5
A003	12000	12500	.4	12	1150	2.9
A003	12500	13000	.2	3	572	1.7
A003	13000	13500	.1	3	55	2.0
A003	13500	14000	.1	3	25	2.9
A003	14000	14500	.1	3	229	3.2
A003	14500	15000	.1	8	222	4.3
A003	15000	15423	.2	4	248	4.6
/END						

= 17°5 ×

≹∞* ·

```
IDEN6B0201 V250 DDH90-7 NQ 03MAY90 MD ATLSMAY90S38
                                                        RBPUTM 0.0
I PR.I
          PDI/Salor Scientific
                                              KNUT PROPERTY
       00 7800MT 156.36 86.0 -46.5
S000
                                                               2147.
                                                                           945.
                                                     3264.
s001 7800 15636
                    156.36 86.0 -44.5
/SCL
            MT.2
LSCL
                           LCTM
/NAM
                                                        QZEPCLCYMSKFPYCPMOSL
LNAM
                                                        LIPLMGHEGYMCCB
R
                THIS DDH COLLARED TO TEST THE PERIPHERY OF AN IP ANOMALY AND
R
                PREVIOUSLY INTERSECTED MINERALIZATION IN OLDER DDH'S
R
       000 4145 CASING TO 4145 M (BOX 1 BEGINS AT 35.36M BUT CONSISTS OF OVBD
R
                 UP TO 41.45M)
       000 4145
                       OVBD
      4145 5060
                       FGSYKFPFQZ=PAEF
                                                        <)01
                                                                    B+
L
                           RUHB PP
                                          1313
                                                                     <*
R
                FINE-GRAIN, REDDISH-BROWN INTRUS OF SYENITIC COMP CHARACT'D BY A
R
                SPOTTY TEXT OF EP UP TO 1 CM IN DIAM
R
                SMALL 2-3 MM MAFIC MINERALS OCCUR SCATTERED (UP TO 5%)
R
                FRACTURING IS LOW & COMMONLY INFILLED BY QZ & CARB MICROVEINS
                PY OCCURS AS BLEBS (UP TO 0.5 CM WIDE) SCATTERED THROUGHOUT
R
                (2-3%) & COMMONLY ASSOC W. THE EP SPOTS
R
                MOST OF THE CORE IS VERY BROKEN UP
      5060 5364
                       FSDKFXPFQZ+PAFF
                                              P FZ
                                                        0)<( G3
                                                            <*
L
                           8AHB UF<<
                                                <<
R
                FINE-GRAIN, PALE GRAY (W. GREENISH TONE) INTRUS OF FELSIC COMP
R
                (POSS A DYKE) W. A HIGH LEVEL OF FRACT'G & CLAY ALT
R
                ALT IS DOMINATED BY CLAY ALT IN FAULT GOUGES GIVING ROCK A
R
                FRAGMENTED TEXT
R
                PY OCCURS MAINLY AS PATCHES UP TO 3 CM WIDE & LESSER AS VEINLETS
R
                (W. OCCASIONAL ASSOC MAGN)& DISS
R
                51.71-53.64: HIGHLY CLAY-ALTD FAULT GOUGE
                ROCK TO ALT'D TO MEASURE FRACT INTENSITY, CRUMBLES IN HAND
      5364 7437
                       PPSYKFQZXF+PPEF
                                              P <<
                                                        <1
                                                              G=
                                                                    D+
L
                           RUHB <<
                                          1334
                FINE-GRAIN, REDDISH-BROWN INTRUS OF SYENITIC COMP CHARACT'D BY
R
R
                A MICRO-PORPH TEXT OF 2-3 MM ROUNDED FELSIC X-TALS IN A FINE
R
                GRAIN SYENITIC MATRIX
                ALT IS WEAK & OCCURS AS VEINLETS OF QZ-CARB THROUGHOUT; CLAY ALT
R
R
                IS MORE INTENSE IN AREAS OF FAULT GOUGING
R
                PY OCCURS IN MINOR AMOUNTS AS FINELY DISS X-TALS & AS MICROVEINS
                A FEW SCATTERED ANGULAR VOLC XENOS (UP TO 1 CM) OCCUR IRREG
                54.44-55.00: SECTION OF MED TAN, BROKEN UP ROCK W. PATCHES OF
R
R
                 DARK-GREEN MIN & UP TO 5% DISS PY, CHLOR ALT IN FRACT
R
                57.00-61.87: INTERV OF FINE-GRAIN, TAN COLOURED SYENITE, LESS
R
                 PORPH & HIGHER CONTENT OF QZ VEINLETS & PATCHES
R
                60.71-60.96: HIGHLY CLAY-ALT'D FAULT GOUGE
R
                63.20-64.20: HIGHLY FRACT'D, BROKEN UP, CLAY-ALT'D FAULT ZONE
                69.19-72.62: INTERV OF SAME ROCK BUT W.HIGHER % OF MAFIC MINER
                 (UP TO 25%), SLIGHT INCREASE IN QZ-CARB VEINLETS
R
R
                71.52: 3 CM WIDE FAULT GOUGE
R
                72.27-72.62: HIGHLY CLAY-ALT'D FAULT GOUGE
R
                73.00: 3 CM WIDE SILICIFIED FAULT ZONE
                74.32: 3 CM WIDE, HIGHLY CLAY-ALT'D FAULT GOUGE, BRECCIATED
     7437 7772
                       MONZKFHBQZ+EFUF
                                              P F7
                                                        <+ <)G2
                                                                    D*
                           5TPFXF)<<PP
R
                FINE-GRAIN, MED TAN INTRUS OF MONZONITIC COMP CHARACT'D BY UNI-
                FORM TEXT, SPECKLED BLACK W.1-2 MM MAFIC MIN (HORNB?) TEXT ALSO
R
R
                APPEARS LOCALLY PORPH
R
                ALT MAINLY CLAY IN FAULT GOUGES, QZ MICROVEINS OCCUR IREG, A FEW
                SCATTERED ROUNDED GREEN ALT MINERALS
```

```
R
                PY OCCURS FINELY DISS IN SMALL AMOUNTS
R
                74.88-75.95: HIGHLY CLAY-ALT'D FAULT GOUGE
R
                76.50-76.70: VERY FRACT'D & MIDLY CLAY ALT'D FAULT ZONE? SOME
R
                 MINOR CHLOR ALT IN FRACT
R
                77.00-77.20: HIGHLY CLAY-ALT'D FAULT GOUGE
R
                77.42: LARGE 8 CM ROUNDED VOLC XENO
R
                77.20-77.72: INTERV OF REDDISH-TAN, MICRO-PORPH SYENITE W. GRADA-
R
                 TIONAL CONTACTS
                ROCK TO BROKEN UP TO MEASURE FRACT INTENSITY BUT APPEARS WEAK
R
      7772 8535
                                                        <+ <*G4 #(<+
                       FGSYKFQZHB+EF<<
                                              P FZ
L
                           TAPFXE)KRPP
                                          3346 <<
                                                            P)
R
                FINE-GRAIN, LIGHT TAN-GRAY INTRUS OF SYENITIC COMP W. VERY LITTLE
                MAFIC MIN, CHARACT'D BY WIDE ZONES OF ALT'D & BRECC FAULT ZONES
R
                & A HIGH FRACT INTENSITY
R
R
                ALT PREDOMINANTLY CLAY IN HIGHLY FRACT ZONES & FAULT GOUGES, QZ-
                CARB MICROVEINS SCATTERED THROUGHOUT
R
                PY OCCURS MOSTLY AS MICROVEINS & IS ASSOC W.QZ-CLAY (GRAY)
R
                A FEW SCATTERED MED-GRAIN ANGULAR X-TALS OF ALT MIN?
R
                77.72-78.12: FINE-GRAIN, GRAYISH, FELSIC INTRUS (LOTS OF PLAG?) W.
R
R
                 PATCHES & MICROVEINS OF MAGN W.ASSOC PY IN VEINLETS
R
                78.12-80.47: HIGHLY FRACT'D, CLAY-ALT'D, BRECC'D FAULT ZONE W.
R
                 SOME SILICEOUS FRAGS
R
                81.90: 4 CM WIDE, CLAY-ALT'D FAULT GOUGE
R
                83.25-83.55: CLAY-ALT'D FAULT GOUGE
                85.00: 5 CM WIDE CLAY-ALT'D FAULT GOUGE
R
      8535 8800
                       MONZFXPFHB)PAEF
                                              P FZ
                                                        <= <)G2 V+D)
L
                           8AKFQZ+<<
                                          3214 <<
R
                FINE-GRAIN, PALE GRAY (W.TAN PATCHES) INTRUS OF MONZONITIC COMP
R
                CHARACT'D BY MOD FRACT'G, STRONG CLAY ALT AS WELL AS QZ-KF ALT
                OCCURING AS VEINS & PATCHES. TEXT PATCHY FROM FRACT'G & ALT
R
R
                QZ ALT OCCURS AS VEINLETS UP TO 0.5 CM AS WELL AS KF ALT WHICH
                OCCURS AS PATCHES & VEINLETS, MINOR CARB ALT
R
R
                CLAY ALT IS PERV IN FRACT ZONES (WHITE TO DARK GRAY COLOURED)
R
                PY OCCURS AS FINELY DISS X-TALS & LESSER AS MICROVEINS
                85.35-86.25: MORE TAN COLOURED ROCK
R
                85.95-88.00: INCREASE IN FRACT'G, QZ-KF ALT & HIGHLY CLAY-ALT'D
R
R
                 LAST 10 CM SHOWS CLAY ALT'D FAULT GOUGE
R
                ROCK MAY POSS REPRESENT A MORE FELSIC PHASE OF SYENITE OR AN
R
                ALT'D FELSIC DYKE?
                                                        <) <)G1 Q*<*
      8800 9205
                       SYMZKFPFQZ+EMUF
                                              P FZ
/
                           RUHBXE(<<
                                          2314 <<
                                                              Q*
L
                MED-GRAIN, REDDISH-BROWN INTRUS OF SYENITIC MONZ COMP CHARACT'D
R
R
                BY ZONES OF HIGH FRACT'G & CLAY ALT, STOCKWK OF QZ-CARB MICROVEIN
R
                & LOCAL CHANGES IN GRAIN SIZE & COLOUR (FINER GRAIN, TAN-BROWN)
R
                ALT PATCHES OF KF & HEM OCCUR IRREG (UP TO 2 CM WIDE)
R
                PY OCCURS MAINLY AS MICROVEINS & FRACT FILLS & LESSER AS DISS
R
                88.00-88.90: HIGHLY FRACT'D & CLAY-ALT'D FAULT ZONE?
R
                89.87-90.93: INTERV OF FINER-GRAIN, TAN-BROWN, PARTLY SILICIFIED
R
                 INTRUS W.FEW SCATTERED XENOS OF HEMAT'D VOLC
      9205 9495
1
                       FGSYKFPFHB+EFSW
                                              P <<
                                                              <+<+ D)
L
                           TUQZ UF
                                          3405
R
                FINE-GRAIN, TAN-BROWN INTRUS OF SYENITIC COMP CHARACT'D BY HIGH
R
                FRACT'G FILLED W.QZ-CARB MICROVEINS
R
                ALT ALSO DISPLAYED BY MINOR CHLOR, SERICITE & CLAY IN FRACT FILLS
R
                PY OCCURS FINELY DISS & LESSER AS MICROVEINS W.ASSOC CLAY
                92.60-92.90: HIGHLY FRACT'D & SILICIFIED FAULT ZONE?
R
                93.20-94.49: INCREASE IN FRACT'G & ALT (VERY BROKEN UP CORE)
R
      9495 9988
                                                        P1
                                                              P5
                       FAULCYQZ BRRW
                                              P FZ
                                                                    D+
1
L
                           WAFX EF
                FINE-MED GRAIN, WHITE-GRAY, INTENSELY CLAY-ALT'D INTRUS (ORIGIN-
```

R

```
R
                ALY A SYEN-MONZ?) PROB REPRESENT A FAULT ZONE W.LOCALIZED ZONES
R
                OF WEAKER ALT & SOME HIGHLY SILICEOUS ZONES
R
                TEXT APPEARS BRECCIATED & REWORKED, PATCHES & FRAG OF QZ REMAIN
R
                W. CLAY ALT OCCURING INTERSTITIALY
R
                PY OCCURS FINELY DISS UP TO 3%
R
                ALT ALSO DISPLAYED BY MINOR QZ-CARB MICROVEINS
R
                95.25-95.40: WEAKER ALT'D ZONE
R
                96.05-96.65: INTERV OF LIGHT RED-BROWN, LESS CLAY-ALT'D SYENITE?
                99.05: 10 CM INTERV OF VERY SILICEOUS, PATCHY, FRACT'D ROCK (REWK)
R
R
                99.48: 12 CM INTERV OF REWORKED, SILICEOUS, FRACT'D ROCK
R
                ROCK TO FRACT'D TO MEASURE FRACT INTENSITY
      9988 10992
                      MZDIKFHBXE)EMUF
                                             P <<
                                                       <)E+<)<+
L
                           RUPF <<
                                                           D+<)
                                                                   <)
                FINE-MED GRAIN, DARK REDDISH-BROWN, WEAKLY ALT'D INTRUS OF MONZ-
R
R
               DIORITIC COMP CHARACT'D BY COLOUR & HIGH % OF 2-3 MM MAFIC MIN
R
                SPECKLED THROUGHOUT & ALSO MOD FRACT INTENSITY
R
                A FEW SCATTERED MAFIC XENOS (VOLC/HORNB/FINE GRAIN GABBRO?), AN-
R
                GULAR & MOD MAGNETIC (1-2%)
R
                STOCKWK OF QZ-CARB MICROVEINS OCCURING MORE OFTEN AS SHEETING W.
R
               LESSER CLAY-ALT'D FRACT
R
               ALT OCCURS ALSO AS ENV OF EP AROUND FRACT, CHLOR & HEM OCCUR AS
R
                FRACT FILLS
R
               PY OCCURS AS FINELY DISS (2%) & LESSER AS MICROVEINS W.SOME EP E
R
                MG OCCURS FINELY DISS (2-3%)
               103.53-103.63: CLAY-ALT'D FAULT GOUGE, BROKEN UP CORE PIECES
R
     10992 12450
                      PYSYKFFXQZ)EFUF P FZ <) G2 Q)O1
1
                           5TPFXE)BR
                                         3214
                                                               <( <(
R
                FINE GRAIN, LIGHT-MED TAN INTRUS OF SYENITIC COMP CHARACT'D BY
R
               SPOTTY & BLEBBY PY (2-4 MM) & A FEW SCATTERED, FINE GR'D, FELSIC,
R
               ROUNDED INTRUS XENOS W.PY HALOS
R
               ALT IS DOMINATED BY HIGH CLAY ALT IN FAULT GOUGE ZONES WHICH
R
               ALSO DISPLAY HIGHER FRACT INTENSITY & BRECCIATION
R
               KF ALT OCCURS AS IRREG PATCHES IN HIGH FRACT ZONES
R
               PY OCCURS UP TO 10% AS SPOTS & BLEBS (LESSER AS PATCHES) THROUGH
R
               SOMETIMES AS HALOS AROUND FELSIC XENOS
R
               115.46-116.54: HIGHLY CLAY-ALT'D, FRACT'D & BRECC'D FAULT ZONE
R
               118.25-118.95: BROKEN UP, CLAY ALT'D & FRACT'D FAULT ZONE?
R
               121.11-121.31: SAME AS ABOVE
R
               122.37-124.50: HIGHLY FRACT'D W.LOCALIZED AREAS OF INTENSE CLAY
R
                ALT & SOME BRECCIATION
R
               124.05-124.50: HIGH % OF PY MICROVEINS.BLEBS & DISS ASSOC W.INTE
R
               109.92-111.77: MORE MINERALIZED SYENITE
    12450 13838
/
                      MZDIKFPFQZ+EMSW
                                                       <+Q*<(G2 Q)<+
                                          P FZ
L
                           RUHBXE+XEPA 2356 <<
                                                           D+
R
               MED-GRAIN, DARK REDDISH-BROWN (W.LOCALIZED ZONES OF LIGHTER TAN-
R
               BROWN) INTRUS OF MONZ-DIOR COMP CHARACT'D BY MOD FRACT'G, STOCKWK
R
               OF QZ-CARB VEINLETS, LOCALIZED AREAS OF INTENSE FRACT'G/CLAY ALT
R
               ALT DISPLAYED BY INTENSE CLAY ALT IN FAULT ZONES (GOUGES?), VERY
R
               BROKEN UP CORE PIECES
R
               QZ-CARB VEINLETS OCCUR THROUGHOUT, KF ALT OCCURS AS LOCALIZED
R
               PATCHES IN MORE FRACT'D AREAS
R
               PATCHY TEXT DISPLAYED BY LOCALIZED CONCENTRATION OF MAFIC MIN
R
               ANGULAR XENOS OF FINE-MED GRAIN INTRUS (DIOR?) 0.25-2.0 CM WIDE
        -19
R
               OCCUR SCATTERED
R
               PY OCCURS AS MICROVEINS ASSOC W.QZ & LESSER AS DISS & PATCHES
R
               (0.5 CM WIDE) 2-3%, MG OCCURS FINELY DISS
R
               126.63-127.48: INCREASED FRACT'G, QZ CONTENT W.LOCALIZED FAULT ZN
R
               127.67-128.32:
                                14
                                        11
                                                & FAULT GOUGE IN FIRST 10 CM
R
               131.43-134.05 : MORE FELSIC INTERV, HIGHER FRACT'G W. HIGHLY CLAY
                ALT'D FAULT GOUGE FROM 132.13-133.09
```

```
R
               135.23-138.38: VERY BROKEN UP CORE, HIGHER CHLOR ALT, HIGHER
R
                FRACT'G_PATCHY TEXT
               136.00-136.45: HIGHLY CLAY ALT'D FAULT GOUGE
R
R
               137.26-137.66: HIGHLY FRACT'D & MOD CLAY-ALT'D FAULT ZONE?
/
     13838 15636
                      PYSYKFFXQZ)EFUF
                                            P FZ
                                                    <+ <2 Q=01
L
                          5TPFXE)BRPA
                                        3446 <<
                                                                 <1
R
               SIMILAR TO INTERV 109.92-124.50
R
               FINE-GR'D, LIGHT GRAY-MED TAN INTRUS OF SYENITIC COMP CHARACT'D
R
               BY SPOTTY & BLEBBY PY (2-5 MM), HIGH FRACT INTENSITY, CLAY-ALT'D
R
               FAULT ZONES & LOCALIZED SILICIFIED BRECCIA ZONES
               A FEW SCATTERED ROUNDED XENOS OF DIORITIC COMP OCCUR IRREG UP TO
               3 CM WIDE
R
               FRACT FILLED BY QZ-CLAY & CARB: CLAY IS PERV IN FAULT GOUGES
R
R
               KF ALT OCCURS AS PATCHES IN LOCALIZED AREAS OF HIGH FRACT'G
R
               PY OCCURS UP TO 10% MOSTLY AS FINELY X-TALIZED SPOTS, BLEBS, DISS
R
               & LESSER AS PATCHES & FRACT FILLS, ALSO AS HALOS AROUND XENOS
               PY CONTENT MORE ABUNDANT IN BRECCIA & KF-ALT'D ZONES, OCCURING
R
               AS FRACT FILLS & PATCHES UP TO 20%
R
               139.08-141.68: HIGHLY FRACT'D & CLAY ALT'D FAULT ZONE
R
               145.18-145.68: SAME AS ABOVE
R
               148.68-150.57: MORE ABUNDANT PY AS SPOTS & FRACT FILLS (UP TO
               20%) AS WELL AS ABUNDANT KF-ALT PATCHES, LAST 10 CM IS FAULT GOUG
R
R
               150.57-152.40: HIGHLY FRACT'D, KF-ALT'D. FRACT FILLED W.WHITE/BLAC
R
                QZ W.ASSOC PY (ALSO OCCUR AS BRECC'D PATCHES)
R
               152.24-152.40: BRECCIA ZONE
R
               154.47-156.36: HIGHLY FRACT'D, FINE GRAIN, KF-ALT'D, QZ-CARB STCKWK
                GREENISH CLAY MIN OCCURING AS SPOTS & FRACT FILLS, MINOR DISS PY
               END OF HOLE
R
               SAMPLES
A001
AUMM
                   SAMPLE
                                        Cu
                            Aa
                                  Au
                                             Ma
                            ppm
                                 ppb
                                       ррп
                                             ppm
               PDI RESEARCH
AL AR
ATYP
               SPLIT CORE
HTMA
               WET GEOCHEM A.A.
      00 4145 CASING - NO RECOVERY
A001 4145 4826
                    54429
                            .5
                                   5
                                       186
                                            1.0
A001 4826 5060
                    54430
                            .2
                                  15
                                        22
                                            1.0
A001 5060 5171
                    54431
                            .3
                                15
                                        47
                                             .5
A001 5171 5364
                    54432
                            .5 120
                                        34
                                            3.0
A001 5364 5444
                    54433
                            .1
                                  15
                                        22
                                             1.0
A001 5444 5500
                    54434
                            . 1
                                   5
                                        4
                                            1.0
A001 5500 5700
                    54435
                            .1
                                  10
                                        42
                                            1.0
A001 5700 6187
                    54436
                            . 1
                                  15
                                        46
                                             .5
                            .1
A001 6187 6320
                    54437
                                  10
                                       16
                                             .5
A001 6320 6420
                    54438
                            . 1
                                3
                                        27 1.0
A001 6420 6767
                    54439
                            .1
                                  10
                                             .5
                                        11
A001 6767 6919
                    54440
                            .1
                                  5
                                        55
                                             .5
A001 6919 7262
                                   3
                                        33
                    54441
                                            1.0
                          .1
A001 7262 7437
                    54442
                                  15
                                        35
                                            1.0
                            .1
A001 7437 7720
                                   3
                    54443
                            .1
                                        4
                                            2.0
A001 7720 7772
                    34444
                            .1
                                   3
                                        10
                                            1.0
A001 7772 7812
                    54445 1.1
                                 290
                                        13 90.0
                                      344 51.0
A001 7812 8047
                    54446 1.1
                                 370
A001 8047 8321
                                   3
                    54447
                            . 1
                                        60
                                            1.0
A001 8321 8535
                    54448
                          .1
                                   3
                                        35 1.0
A001 8535 8800
                    54449 .1 3 25 1.0
A001
     8800 8890
                    54450
                            .1
                                   3
                                        66 1.0
                    54451
                                       21 1.0
A001
     8890 8987
                            .1
                                   3
A001 8987 9093
                    54452
                          .1 3 7 1.0
```

A001	9093	9205	54453	.1	5	18	1.0
A001	9205	9312	54454	.1	3	10	1.0
A001	9312	9495	54455	.1	5	5	1.0
-A001	9495	9740	54456	.3	20	289	3.0
A001	9740	9988	54457	.8	65	98	4.0
A001	9988	10282	54458	.1	3	39	2.0
A001	10282	10526	54459	.1	5	44	2.0
A001	10526	10750	54460	.1	5	36	1.0
A001	10750	10992	54461	.1	10	66	1.0
A001	10992	11177	54462	.1	10	8	.5
A001	11177	11546	54463	.1	3	2	1.0
A001	11546	11654	54464	.1	3	2	2.0
A001	11654	11938	54465	.1	5	3	1.0
A001	11938	12237	54466	.1	10	16	1.0
A001	12237	12450	54467	.2	5	15	.5
A001	12450	12748	54468	.1	5	24	1.0
A001	12748	13045	54469	.1	3	64	2.0
A001	13045	13143	54470	.1	3	33	1.0
A001	13143	13405	54471	.1	5	25	2.0
A001	13405	13600	54472	.1	15	22	.5
A001	13600	13838	54473	.1	3	44	1.0
A001	13838	13980	54474	.2	10	21	3.0
A001	13980	14168	54475	.1	10	14	1.0
A001	14168	14518	54476	.1	15	24	3.0
A001	14518	14568	54477	.1	5	6	2.0
A001	14568	14868	54478	.1	5	8	3.0
A001	14868	15057	54479	.1	15	21	4.0
A001	15057		54480	.2	75	20	4.0
A001	15224	15240	54481	2.4	715	150	10.0
A001	15240	15447			30	39	2.0
7001	12240	12441	24402	.1	20	27	L.V
A001		15636	54482 54483	.1	3		3.0
		15636	54483 END OF HOLE			255	
A001		15636	54483				
A001 R		15636	54483 END OF HOLE				
A001 R A002		156 3 6	54483 END OF HOLE R	.1	3 RQD		
A001 R A002 AUMM	15447	156 3 6	54483 END OF HOLE R	.1	3 RQD		
A001 R A002 AUMM R	000 4145	15636 I 4145 4267	54483 END OF HOLE R	.1 ECOVY O RECO	RQD VY		
A001 R A002 AUMM R A002	000 4145 4267	15636 4145 4267 4359	54483 END OF HOLE R	.1 ECOVY O RECO 2.5	RQD VY 0.0 0.0		
A001 R A002 AUMM R A002 A002	000 4145 4267 4359	4145 4267 4359 4481	54483 END OF HOLE R	.1 ECOVY O RECO 2.5 21.7	3 RQD VY 0.0 0.0		
A001 R A002 AUMM R A002 A002	000 4145 4267 4359 4481	4145 4267 4359 4481 4542	54483 END OF HOLE R	.1 ECOVY O RECO 2.5 21.7 20.5	3 RQD VY 0.0 0.0		
A001 R A002 AUMM R A002 A002 A002	000 4145 4267 4359 4481 4542	4145 4267 4359 4481 4542 4755	54483 END OF HOLE R	.1 ECOVY O RECO 2.5 21.7 20.5 32.8 20.2	RQD VY 0.0 0.0 0.0 0.0		
A001 R A002 AUMM R A002 A002 A002 A002	000 4145 4267 4359 4481 4542 4755	4145 4267 4359 4481 4542 4755 4816	54483 END OF HOLE R	.1 ECOVY O RECO 2.5 21.7 20.5 32.8	RQD VY 0.0 0.0 0.0 0.0 0.0		
A001 R A002 AUMM R A002 A002 A002 A002 A002	000 4145 4267 4359 4481 4542 4755 4816	4145 4267 4359 4481 4542 4755 4816 4846	54483 END OF HOLE R	.1 ECOVY O RECO 2.5 21.7 20.5 32.8 20.2 41.0 83.3	RQD VY 0.0 0.0 0.0 0.0 0.0 0.0 46.7		
A001 R A002 AUMM R A002 A002 A002 A002 A002 A002	000 4145 4267 4359 4481 4542 4755 4816	4145 4267 4359 4481 4542 4755 4816 4846 4938	54483 END OF HOLE R	.1 ECOVY O RECO 2.5 21.7 20.5 32.8 20.2 41.0	RQD VY 0.0 0.0 0.0 0.0 0.0		
A001 R A002 AUMM R A002 A002 A002 A002 A002 A002 A002	000 4145 4267 4359 4481 4542 4755 4816 4846 4938	4145 4267 4359 4481 4542 4755 4816 4846 4938 5060	54483 END OF HOLE R	.1 ECOVY O RECO 2.5 21.7 20.5 32.8 20.2 41.0 83.3 86.9 20.5	RQD VY 0.0 0.0 0.0 0.0 0.0 46.7		
A001 R A002 AUMM R A002 A002 A002 A002 A002 A002 A002	000 4145 4267 4359 4481 4542 4755 4816 4846 4938 5060	4145 4267 4359 4481 4542 4755 4816 4938 5060 5121	54483 END OF HOLE R	.1 ECOVY O RECO 2.5 21.7 20.5 32.8 20.2 41.0 83.3 86.9 20.5 32.8	RQD VY 0.0 0.0 0.0 0.0 0.0 46.7 0.0 0.0		
A001 R A002 AUMM R A002 A002 A002 A002 A002 A002 A002 A0	000 4145 4267 4359 4481 4542 4755 4816 4846 4938 5060 5121	4145 4267 4359 4481 4542 4755 4816 4846 4938 5060 5121 5212	54483 END OF HOLE R	.1 ECOVY O RECO 2.5 21.7 20.5 32.8 20.2 41.0 83.3 86.9 20.5	RQD VY 0.0 0.0 0.0 0.0 0.0 46.7 0.0 0.0		
A001 R A002 AUMM R A002 A002 A002 A002 A002 A002 A002 A0	000 4145 4267 4359 4481 4542 4755 4816 4846 4938 5060 5121 5212	4145 4267 4359 4481 4542 4755 4816 4846 4938 5060 5121 5212 5364	54483 END OF HOLE R	.1 ECOVY O RECO 2.5 21.7 20.5 32.8 20.2 41.0 83.3 86.9 20.5 32.8 71.4	RQD VY 0.0 0.0 0.0 0.0 0.0 46.7 0.0 0.0 0.0		
A001 R A002 AUMM R A002 A002 A002 A002 A002 A002 A002 A0	000 4145 4267 4359 4481 4542 4755 4816 4846 4938 5060 5121 5212 5364	4145 4267 4359 4481 4542 4755 4816 4846 4938 5060 5121 5212 5364 5517	54483 END OF HOLE R	.1 ECOVY O RECO 2.5 21.7 20.5 32.8 20.2 41.0 83.3 86.9 20.5 32.8 71.4 38.2	RQD VY 0.0 0.0 0.0 0.0 0.0 0.0 46.7 0.0 0.0 22.0		
A001 R A002 AUMM R A002 A002 A002 A002 A002 A002 A002 A0	000 4145 4267 4359 4481 4542 4755 4816 4846 4938 5060 5121 5212 5364	4145 4267 4359 4481 4542 4755 4816 4846 4938 5060 5121 5212 5364 5517 5639	54483 END OF HOLE R	.1 ECOVY O RECO 2.5 21.7 20.5 32.8 20.2 41.0 83.3 86.9 20.5 32.8 71.4 38.2 65.4	RQD VY 0.0 0.0 0.0 0.0 0.0 46.7 0.0 0.0 22.0 11.8 7.8		
A001 R A002 AUMM R A002 A002 A002 A002 A002 A002 A002 A0	000 4145 4267 4359 4481 4542 4755 4816 4846 4938 5060 5121 5212 5364 5517	4145 4267 4359 4481 4542 4755 4816 4938 5060 5121 5212 5364 5517 5639 5700	54483 END OF HOLE R	.1 ECOVY O RECO 2.5 21.7 20.5 32.8 20.2 41.0 83.3 86.9 20.5 32.8 71.4 38.2 65.4 49.2	RQD VY 0.0 0.0 0.0 0.0 0.0 46.7 0.0 0.0 22.0 11.8 7.8 0.0		
A001 R A002 AUMM R A002 A002 A002 A002 A002 A002 A002 A0	000 4145 4267 4359 4481 4542 4755 4816 4846 4938 5060 5121 5212 5364 5517 5639	4145 4267 4359 4481 4542 4755 4816 4846 4938 5060 5121 5212 5364 5517 5639 5700 5913	54483 END OF HOLE R	.1 ECOVY O RECO 2.5 21.7 20.5 32.8 20.2 41.0 83.3 86.9 20.5 32.8 71.4 38.2 65.4 49.2 45.9	RQD VY 0.0 0.0 0.0 0.0 0.0 46.7 0.0 0.0 22.0 11.8 7.8 0.0		
A001 R A002 AUMM R A002 A002 A002 A002 A002 A002 A002 A0	000 4145 4267 4359 4481 4542 4755 4816 4846 4938 5060 5121 5212 5364 5517 5639 5700	4145 4267 4359 4481 4542 4755 4816 4938 5060 5121 5212 5364 5517 5639 5700 5913	54483 END OF HOLE R Casing - N	.1 ECOVY O RECO 2.5 21.7 20.5 32.8 20.2 41.0 83.3 86.9 20.5 32.8 71.4 38.2 65.4 49.2 45.9 7.0	RQD VY 0.0 0.0 0.0 0.0 0.0 46.7 0.0 0.0 22.0 11.8 7.8 0.0 0.0		
A001 R A002 AUMM R A002 A002 A002 A002 A002 A002 A002 A0	000 4145 4267 4359 4481 4542 4755 4816 4846 4938 5060 5121 5212 5364 5517 5639 5700 5913 6096	4145 4267 4359 4481 4542 4755 4816 4846 4938 5060 5121 5212 5364 5517 5639 5700 5913 6096	54483 END OF HOLE R Casing - N	.1 ECOVY O RECO 2.5 21.7 20.5 32.8 20.2 41.0 83.3 86.9 20.5 32.8 71.4 38.2 65.4 49.2 45.9 7.0 97.3	RQD VY 0.0 0.0 0.0 0.0 0.0 46.7 0.0 0.0 22.0 11.8 7.8 0.0 0.0		
A001 R A002 AUMM R A002 A002 A002 A002 A002 A002 A002 A0	000 4145 4267 4359 4481 4542 4755 4816 4846 4938 5060 5121 5212 5364 5517 5639 5700 5913 6096	4145 4267 4359 4481 4542 4755 4816 4846 4938 5060 5121 5212 5364 5517 5639 5700 5913 6096 6187 6248	54483 END OF HOLE R Casing - N	.1 ECOVY O RECO 2.5 21.7 20.5 32.8 20.2 41.0 83.3 86.9 20.5 32.8 71.4 38.2 65.4 49.2 45.9 7.0 97.3 18.7	RQD VY 0.0 0.0 0.0 0.0 0.0 0.0 46.7 0.0 0.0 22.0 11.8 7.8 0.0 0.0		
A001 R A002 AUMM R A002 A002 A002 A002 A002 A002 A002 A0	000 4145 4267 4359 4481 4542 4755 4816 4846 4938 5060 5121 5212 5364 5517 5639 5700 5913 6096 6187 6248	4145 4267 4359 4481 4542 4755 4816 4846 4938 5060 5121 5212 5364 5517 5639 5700 5913 6096 6187 6248 6370	54483 END OF HOLE R Casing - N	.1 ECOVY O RECO 2.5 21.7 20.5 32.8 20.2 41.0 83.3 86.9 20.5 32.8 71.4 38.2 65.4 49.2 45.9 7.0 97.3 18.7 41.0 52.5	RQD VY 0.0 0.0 0.0 0.0 0.0 46.7 0.0 0.0 22.0 11.8 7.8 0.0 0.0 0.0		
A001 R A002 AUMM R A002 A002 A002 A002 A002 A002 A002 A0	000 4145 4267 4359 4481 4542 4755 4816 4846 4938 5060 5121 5212 5364 5517 5639 5700 5913 6096 6187 6248	4145 4267 4359 4481 4542 4755 4816 4846 4938 5060 5121 5364 5517 5639 5700 5913 6096 6187 6248 6370	54483 END OF HOLE R Casing - N	.1 ECOVY O RECO 2.5 21.7 20.5 32.8 20.2 41.0 83.3 86.9 20.5 32.8 71.4 38.2 65.4 49.2 45.9 7.0 97.3 18.7 41.0 52.5 62.1	RQD VY 0.0 0.0 0.0 0.0 0.0 46.7 0.0 0.0 22.0 11.8 7.8 0.0 0.0 0.0 0.0		
A001 R A002 AUMM R A002 A002 A002 A002 A002 A002 A002 A0	000 4145 4267 4359 4481 4542 4755 4816 4846 4938 5060 5121 5212 5364 5517 5639 5700 5913 6096 6187 6248 6370	4145 4267 4359 4481 4542 4755 4816 4846 4938 5060 5121 5364 5517 5639 5700 5913 6096 6187 6248 6370 6523	54483 END OF HOLE R Casing - N	.1 ECOVY O RECO 2.5 21.7 20.5 32.8 20.2 41.0 83.3 86.9 20.5 32.8 71.4 38.2 65.4 49.2 45.9 7.0 97.3 18.7 41.0 52.5	RQD VY 0.0 0.0 0.0 0.0 0.0 46.7 0.0 0.0 22.0 11.8 7.8 0.0 0.0 0.0		
A001 R A002 AUMM R A002 A002 A002 A002 A002 A002 A002 A0	000 4145 4267 4359 4481 4542 4755 4816 4846 4938 5060 5121 5212 5364 5517 5639 5700 5913 6096 6187 6248 6370 6523 6706	4145 4267 4359 4481 4542 4755 4816 4846 4938 5060 5121 5212 5364 5517 5639 5700 5913 6096 6187 6248 6370 6523 6706 6767	54483 END OF HOLE R Casing - N	.1 ECOVY O RECO 2.5 21.7 20.5 32.8 20.2 41.0 83.3 86.9 20.5 32.8 71.4 38.2 45.9 7.0 97.3 18.7 41.0 52.5 62.1 19.1 62.3	RQD VY 0.0 0.0 0.0 0.0 0.0 46.7 0.0 0.0 22.0 11.8 7.8 0.0 0.0 0.0 0.0 0.0		
A001 R A002 AUMM R A002 A002 A002 A002 A002 A002 A002 A0	000 4145 4267 4359 4481 4542 4755 4816 4846 4938 5060 5121 5212 5364 5517 5639 5700 5913 6096 6187 6248 6370 6523 6706 6767	4145 4267 4359 4481 4542 4755 4816 4846 4938 5060 5121 5212 5364 5517 5639 5700 5913 6096 6187 6248 6370 6523 6706 6767	54483 END OF HOLE R Casing - N	.1 ECOVY O RECO 2.5 21.7 20.5 32.8 20.2 41.0 83.3 86.9 20.5 32.8 71.4 38.2 45.9 7.0 97.3 18.7 41.0 52.5 62.1 19.1	RQD VY 0.0 0.0 0.0 0.0 0.0 0.0 46.7 0.0 0.0 22.0 11.8 7.8 0.0 0.0 0.0 0.0 0.0 0.0 11.8 7.8 0.0 0.0		

	7010				22.8
	7102	7315			38.8
A002		7437		83.6	8.2
A002				62.3	
A002		7620		47.5	
A002				72.1	
A002		7894			14.5
		8047		85.0	
	8047			88.5	
		8321			14.3
	8321			77.6	
	8504			76.9	
	8595				48.6
	8809			93.4	
	8900			41.0	
A002				72.4	
200A		9205		73.8	
A002				86.1	0.0
A002	9327			36.9	0.0
A002	9449			82.0	
A002	,,,,	9815		88.5	
A002		10058		95.5	
	10058			100.0	
	10119			85.6	6.5
	10272			82.4	
	10363			88.2	32.7
	10516			81.4	52.9
A002	10790	10912		77.9	38.5
	10912			100.0	47.4
	11064			47.5	0.0
	11125	11217		82.6	0.0
	11217	– . –		62.2	0.0
	11262	11308		90.0	0.0
	11308			58.9	0.0
	11415			55.7	0.0
	11521			100.0	
A002	11674	11735		49.2	0.0
A002	11735	11918		60.1	0.0
	11918			78.3	13.2
	12070			95.1	36.1
A002	12131	12177		32.6	0.0
	12177			67.9	0.0
	12314			45.1	15.4
A002	12405	12603		80.3	17.7
A002	12603	12832		69.9	19.7
	12832			94.4	55.4
A002	13045	13198		72.5	34.6
A002	13198	13259		27.9	0.0
A002	13259	13533		30.3	0.0
A002	13533	13625		52.2	0.0
A002	13625	13746		76.9	8.3
	13746		4. ~	77.9	
	13868			52.8	
	1418C			89.1	48.1
	14508			42.6	0.0
	14569			65.6	
	14630			59.0	
	14691			87.0	0.0
	14737			92.1	
A002	14813	14966		75.8	10.6

A002	14966	15057	22.0	0.0		
A002	15057	15194	65.7	23.4		
A002	15194	15240	97.8	0.0		
A002	15240	15286	39.1	0.0		
A002	15286	15362	55.3	0.0		
A002	15362	15444	100.0	58.5		
A002	15444	15636	60.4	8.9		
R		END OF	HOLE			
A003						
MMUA			Ag	Au	Cu	Mo
R			ppm	ppb	ppm	ppm
R		5.0 me	etre Composi	te Geo	chem	
R		Casing	g to 41.45 m	ì		
A003	4145	4500	.5	5	186	1.0
A003	4500	5000	.4	8	129	1.0
A003	5000	5500	.3	54	30	1.7
A003	5500	6000	.1	13	44	.7
A003	6000	6500	.1	10	29	.6
A003	6500	7000	.1	7	28	.6
A003	7000	75 00	.1	7	30	1.1
A003	7 500	8000	.6	164	133	27.4
A003	8000	8500	.2	38	78	5.7
A003	85 00	9000	.1	3	32	1.0
A003	9000	9500	.1	4	12	1.0
A003	9500	10000	.5	42	188	3.5
A003	10000	10500	.1	4	41	2.0
A003	10500	11000	.1	8	50	1.0
A003	11000	11500	.1	5	4	.8
A003	11500	12000	.1	5	4	1.2
A003	12000	12500	.1	7	16	.8
E00A	12500	13000	.1	4	44	1.5
A003	13000	13500	.1	6	29	1.5
A003	13500	14000	.1	8	32	1.5
A003	14000	14500	.1	13	21	2.3
A003	14500	15000	.1	7	12	3.2
A003	15000	15500	.2	62	57	3.3
E00A	15500	15636	.1	3	255	3.0
/END						

·•

```
IDEN6B0201 V250 DDH90-8 NQ 07MAY90 MD ATLSMAY90S38 RBPUTM 0.0
IPRJ
                                              KNUT PROPERTY
          PDI/Salor Scientific
S000
                                                     3300.
      00 3536MT 35.36271.0 -45.00
                                                               1758.
                                                                          955.
/SCL
            MT.2
LSCL
                           LCTM
/NAM
                                                        QZEPCLCYMSKFPYCPMOSL
LNAM
                                                        LIPLMGHEGYMCCB
                                                                          PO
R
                THIS DDH COLLARED TO TEST THE PERIPHERY OF AN IP ANOMALY & PRE-
R
                VIOUSLY INTERSECTED MINERALIZATION IN OLDER DDH'S
R
       00 2743 CASING TO 2743 M
1
      00
           2743
                       OVBD
/
      2743 3536
                       OVBD
R
                OVERBURDEN COMPOSED OF GLACIAL TILL (BASAL TILL?) & ASSORTED BLD
R
                CASING WAS PUT DOWN TO APPROX 2743 M THEN DRILLED BUT BEDROCK
R
                BEGAN ACTUALLY AT 44.5 M. CONSEQUENTLY, CASING GOT STUCK DUE TO
                HOLE COLLAPSING; UNABLE TO CONTINUE, THEREFORE HAD TO PULL OUT
R
R
                AND COLLAR DDH90-8A, 30 CM WEST OF DDH90-8
R
                NO SAMPLES TAKEN, ALL OVERBURDEN
R
A001
AUMM
                    SAMPLE
                                    Au
                                         Cu
                                               Мо
                              Ag
                             ppm
                                  ppb
                                         ppm
                                              ppm
               PDI RESEARCH
ALAB
ATYP
                SPLIT CORE
AMTH
               WET GEOCHEM A.A.
R
                No Samples
A002
AUMM
                         RECOVY RQD
R
      000 2743 CASING - NO RECOVY
A002 3231 3383
                            16.4 0.0
A002 3383 3536
                            54.2 15.0
R
               END OF HOLE
               ALL OVERBURDEN, CASING WAS STUCK AT APPROX 27.43 M, HAD TO PULL
R
R
               OUT AND COLLAR DDH90-8A,30 CM WEST OF DDH90-8
A003
AUMM
                                         Cu
                             Αg
                                    Au
                                               Mo
R
                            ppm
                                  ppb
                                        ppm
                                              ppm
R
               5.0 metre Composite Geochem
R
               All Overburden, no samples
/END
```

```
IDEN680201 V250 DDH90-8A NQ 07MAY90KME ATLSMAY90S38 RBPUTM 0.0
IPRJ
                                              KNUT PROPERTY
          PDI/Salor Scientific
S000
       00 5578MT 111.56270.0 -45.00
                                                      3300.
                                                                1758.
                                                                           955.
S001
      5578 11156
                   111.56270.0 -44.50
/SCL
            MT.2
LSCL
                           LCTM
/NAM
                                                         QZEPCLCYMSKFPYCPMOSL
LNAM
                                                        LIPLMGHEGYMCCB
R
                THIS DDH COLLARED TO TEST CU-AU SOIL ANOMALY AND VLF ANOMALY
R
       00
           4572 CASING TO 45.72 M
       00
            4572
                       OVBD
                                              P
1
      4572 6825
                       MZDIPFQZKF+EMMX
                                                         E*E*D=
                                                                   E)D*
/
                           RA XE)UFPP
                                                            D1
R
                VERY UNIFORM ROCK W FEW TEXTURAL CHANGES. OCCASIONAL MAFIC XENO
R
                    APPROX 2-5% QZ, 15% MAFICS(CL AND MG), 75% ANG PF PHENOS
R
                SOME OR ALL OF KF MAY BE SECONDARY. IT OCCURS AS ENVELOPES,
R
                    ALONG FRACTURES W CL INFILL, SOME ASSOC W QZ ENVELOPES
R
                CB OCCURS AS SMALL FRACTURE FILLINGS AND POSS DISS'D THROUGHOUT
R
                    ROCK, AMOUNT UNKNOWN
R
                NO GY, LITTLE CLAY ALTN, EP ALTN MINIMAL ALONG REHEALED FRACTURE
R
                CL ALTN OF MAFIC MINERALS, ASSOC W MG, AND AS FRACTURE FILLINGS
R
                PY DISS'S UNIFORMLY THROUGHOUT ROCK, <1%
R
                MG MORE DOMINANT AS DISS'NS AND OCCASIONAL FRACTURE FILL W CL
R
                    ALSO CONCENTRATED IN XENOLITHS
R
                ROCK VERY FRACTURED, VERY LOW RQD, FRACURE COUNT IMPOSSIBLE.
R
                NEAR END ROCK LOSES SOME TEXTURE, CL, PERV KF, SOME EP ALTN
R
                    DOMINATE AND INCREASES W DEPTH
      6825 7498
                       FAULCYCL FZBR
                                                         *+ P3P3
                                              P FZ
L
                                                               C=
                                                                     P2
R
                FAULT ZONE: BOUNDED AT EACH END W 10 -12 CM ALTERED ZONE
R
                ALTERED ZONE CONSISTS OF CB (20%), CY, HE, ROUND QZ CLASTS
R
                    AND OTHER FRAGMENTS
                CL - CY ALTN INCREASES CENTRALLY, TO 80% CL - CY RICH FAULT ZONE
R
R
                NO ORIGINAL ROCK REMAINING
R
                NO MINERALIZATION
      7498 8910
                       MZDIPFQZXE+PPEM
                                                           E+P=G) E=D*
L
                                                            D1
                                                                     <+
R
                SAME AS FIRST INTERVAL, UP TO 20% MAFIC MINERALS
R
                ANG XENO MORE COMMON, UP TO 5CM
R
                EP AND KF ENVELOPES INCREASE UP TO 5%, PROMINANT AT END
R
                CB MICROVEINS MORE COMMON AT END
R
                END OF INTERVAL TRANSITIONAL W NEXT INTERVAL
R
                MINERALIZATION SIMILAR TO 45.72 M- 68.25 M
     8910 9226
                                                        P+<1P1P+ E=D)
                       MZDIPFQZ SWFM
                                              Р
L
                           64
                                                            D+C+
R
                ROCK TRANSITIONAL W UPPER AND LOWER MZDI.
R
                    CHARACTERIZED BY A LOSS OF MG AND INCREASES IN EP. KF. QZ
R
                CB STOCKWORK AND PY INCREASES AS WELL
R
                ORIGINAL TEXTURE OVERPRINTED BY ALTN
R
                EP GENERALLY IN HEALED FRACTURES, IRREG AND ANASTOMIZING,
R
                    OFTEN ASSOC W CB VEINS, SOME HE STAINING
R
                QZ AND CB ALTH INCREASES TO CENTRE AT 90.26 TO 90.76M
R
                DISS'D PY UP TO 2 - 4% ASSOC W QZ RICH ZONE
        - 15,1
R
                ROCK MOST COMPETENT HERE
     9226 11156
                                                          E+P1
                       MZDIPF KF)EM
                                                                  E+D*
L
                           4A XE)
                                                            D1
                                                                   <)
R
R
                SIMILAR ROCK AS BEGINNING OF HOLE
R
                SLIGHT INCREASE IN EP - KF ALONG FRACTURES UP TO 5% OF ROCK
```

CB OCCURS AS MINOR ANGULAR STOCKWORK ASSOC W EP AND PY

R

```
PY UP TO 2%
R
                ALTN DECREASES AWAY FROM UPPER CONTACT
R
                MG RETURNS LARGELY AS DISS'NS, ALTHOUGH SOME IN MICROFRACTURES
R
                    AND XENOS
     10698 10851
                                                           P2P2 **D)
N
                     1FAULCYCLXE5FZ
L
                                                                    P2
                           AGCB
R
                LESS INTENSE THAN PREVIOUS FAULT.
R
                MAINLY MZDI CLASTS IN CL - CY MATRIX W CB
R
                DISS PY 2%, SOME KF ALTN
R
                IRREG CB VEINS AT 30 DEG
R
                EOH
R
                SAMPLES
A001
AUMM
                    SAMPLE
                              Ag
                                    Au
                                         Cu
                                               Mo
R
                             ppm
                                   ppb
                                               ppm
ALAB
                PDI RESEARCH
ATYP
                SPLIT CORE
AMTH
                WET GEOCHEM A.A.
R
       00
            4572 CASING - NO RECOVERY
A001 4572
           5060
                    54484
                              .1
                                    3
                                         18
                                              4.0
     5060
           5517
                    54485
                                               4.0
A001
                              .1
                                    3
                                         10
           5700
                    54486
                                    3
                                         11
                                              3.0
A001
     5517
                             .1
A001
     5700
           6279
                    54487
                                         16
                                              4.0
                             .1
                                    3
A001
      6279
            6825
                    54488
                              .1
                                    5
                                          7
                                              2.0
A001
     6825
           7498
                    54489
                                    5
                                         14
                                              3.0
                              .1
A001
     7498
           8169
                    54490
                             .1
                                    3
                                         16
                                              1.0
A001 8169
           8707
                    54491
                             .1
                                         31
                                              3.0
                                    3
A001 8707
           8910
                    54492
                                    3
                                         15
                                              2.0
                              .1
A001 8910
           9026
                    54493
                                    5
                                         16
                                              3.0
                             . 1
A001 9026
           9226
                    54494
                                              3.0
                             .1
                                   40
                                         36
     9226
           9367
                    54495
                                              3.0
A001
                              .4
                                   15
                                         10
A001 9367 9632
                    54496
                                    5
                                          9
                                              4.0
                              .1
                                          7
A001 9632 9876
                    54497
                             .1
                                    3
                                              3.0
A001 9876 10241
                    54498
                                   50
                                          5
                                              2.0
                              .1
A001 10241 10698
                    54499
                              .1
                                    3
                                         17
                                              3.0
A001 10698 11156
                    54500
                              .1
                                   25
                                          6
                                              3.0
               POOR RECOVERY FOR MANY OF THE INTERVALS, THEREFORE,
R
R
               SAMPLE INTERVALS MAY BE LONG
A002
MMUA
                         RECOVY
                                   RQD
      000 4572 CASING - NO RECOVY
A002 4572
           4755
                           26.3
                                  0.0
A002 4755
           5060
                           16.4
                                  0.0
A002 5060
           5182
                           34.4
                                  0.0
A002 5182
           5273
                           19.8
                                  0.0
A002 5273
           5364
                           11.0
                                  0.0
A002 5364
           5517
                           10.5
                                  0.0
                           33.3
A002 5517
           5547
                                  0.0
           5578
A002 5547
                           64.5
                                  0.0
A002 5578
                           49.2
           5639
                                  0.0
A002 5639
           5700
                           44.3
                                  0.0
A002 5700
           5745
                           22.2
                                  0.0
A002 5745
           5974
                           10.9
                                  0.0
A002 5974
           6187
                           14.1
                                  0.0
                                  0.0
                           23.9
A002 6187
           6279
A002 6279
           6584
                           11.5
                                  0.0
                           19.8
                                  0.0
A002 6584
           6675
A002 6675
                           43.5
                                  0.0
           6767
A002
     6767
           6828
                           45.9
                                  0.0
A002 6828 6949
                            8.3
                                  0.0
```

A002	6949	7193		15.6	5.3		
A002	7193	7498		6.6	0.0		
A002	7498	7803		5.9	0.0		
A002	7803	7879		19.7	0.0		
A002	7879	8169		9.7	0.0		
A002	8169	8260		14.3	0.0		
A002	8260	8321		44.3	0.0		
A002	8321	8382		21.3	0.0		
A002		8717		6.0	0.0		
A002	8717	8839		16.4	0.0		
A002	8839	8900		55.7	0.0		
A002	8900	8976		96.1			
A002	8976	9174		66.7	33.3		
A002	9174	9266		56.5	14.1		
A002	9266	9327		63.9	0.0		
A002	9327	9479		64.5	6.6		
A002	9479	9571		13.0	0.0		
A002	9571	9632		95.1	36.1		
A002	9632	9754		12.3	0.0		
A002	9754	9815		54.1	0.0		
A002	9815	9876		16.4	0.0		
A002	9876	9936		30.0	0.0		
A002	9936	9967		54.8	0.0		
A002	9967	10028		29.5	0.0		
A002	10028	10241		8.5	0.0		
A002	10241	10455		9.3			
A002	10455	10546		18.7	0.0		
A002	10546	10698		9.7	0.0		
A002	10698	10851		38.2	6.5		
200A	10851	11034		9.8	0.0		
A002	11034	11156		17.2	0.0		
R		END	OF	HOLE			
A003							
MMUA				Ag	Au	Çu	Мо
R				ppm	ppb	ppm	ppm
R		10.	0 me	tre Compos	ite Ge	ochem	
R		Cas	ing	to 45.72 m			
A003	4572	5000		.1	3	18	4.0
A003	5000	6000		.1	3	12	3.8
A003	6000	7000		.1	4	11	2.7
A003	7000	8000		.1	4	15	2.0
A003	8000	9000		.1	3	24	2.4
A003	9000	10000		.1	19	14	3.1
A003	10000	11000		.1	21	11	2.7
A003	11000	11156		.1	25	6	3.0
/END							

APPENDIX III

Petrographic Report

- 25

KNUT PROPERTY '90

Character Rock Samples Sent to Vancouver Petrographics

43334 - FGDI: Fine-Grained Diorite

<u>Location</u>: DDH90-1, Box 8, @ 110.0 metres (Sample #54046)

Remarks: Stockwork of potassium feldspar veins with

associated pyrite, quartz envelopes.

Contains 2760 ppm copper.

43335 - HYDI: Hybrid Diorite

Location: DDH90-1, Box 23 @ 136.48 metres (Sample

#54058)

Remarks: Fragments of intrusive and volcanic nature in

a dioritic matrix, epidote, chlorite

alteration, disseminated pyrite. contains 317

ppm copper.

43336 - MSSF: Massive Sulphide

Location: DDH90-2, Box 8 @ 47.0 metres (Sample #54085)

Remarks: Contains pyrite and magnetite patches within a

hybrid diorite. Contains 0.85% copper, 545

ppb gold.

43337 - RYDK: Rhyolitic Dyke

Location: DDH90-3, Box 2, @ 163.27 metres (Sample

#54220)

Remarks: Moderately fractured, tan coloured felsic

dyke? with minor disseminated pyrite and some

patchy chloritic alteration. No values.

43338 - MGMZ: Medium-Grained Monzonite

Location: DDH90-5, Box 4, @ 32.0 metres (Sample #54317)

Remarks: Contains disseminated pyrite in a massive,

greyish-tan monzonite, some gypsum fracture

filling. No values.

43339 - BRDI: Brecciated Diorite

<u>Location</u>: DDH90-6, Box 12, @ 94.1 metres (Sample #54396)

Remarks: Contains rounded and angular felsic fragments

in a dioritic matrix. Some disseminated and

patchy pyrite. Contains 214 ppm copper.

PYSY: Pyritic Syenite 43340 -

- 7

DDH90-7, Box 14, @ 120.90 metres (Sample Location:

#54466)

Contains spotty blebs, 2 - 4 millimetres wide, of pyrite scattered in a fine-grained syenitic matrix. No values. Remarks:

Vancouver Petrographics Ltd.

JAMES VINNELL, Manager
JOHN G. PAYNE, Ph.D. Geologist
CRAIG LEITCH, Ph.D. Geologist
JEFF HARRIS, Ph.D. Geologist
KEN E. NORTHCOTE, Ph.D. Geologist

Report for: Marc Deschenes,
Placer Dome Inc.,
401 - 1450 Pearson Place

KAMLOOPS, B.C., VIS 1J9

PHONE (604) 888-1323 FAX. (604) 888-3642

8080 GLOVER ROAD.

FORT LANGLEY, B.C.

P.O. BOX 39

Invoice 97 June 1990

Samples: 43334 - 43340

Summary:

Samples 43334, 43337, 43338, 43339 and 43340 are of porphyritic, hypabyssal, plagioclase-rich rocks, herein designated hypabyssal diorite to granodiorite. Sample 43339 is strongly brecciated and altered.

Sample 43335 is of an altered gabbro, which was partly replaced by epidote-pyrite-(chalcopyrite) skarn.

Sample 4336 is a skarn dominated by pyrite-actinolite.

Sample 43334 is a hypabyssal porphyritic quartz diorite containing strongly zoned plagioclase phenocrysts and less hornblende phenocrysts in a groundmass dominated by plagioclase and quartz, with less biotite and magnetite, and minor epidote. Early veins of quartz-gypsum-pyrite-epidote-chlorite have halos of sericite/K-feldspar. Later veins are of quartz-gypsum with minor pyrite and chalcopyrite.

<u>Sample 43335</u> is a medium to coarse grained <u>gabbro</u> which was altered and replaced strongly, probably in a <u>skarn environment</u>. It contains three main zones.

- dominated by actinolite with less epidote and ilmenite/Ti-oxide.
- 2) dominated by plagioclase.
- 3) dominated by epidote and actinolite, with less pyrite, and minor chalcopyrite-(bornite).

Gypsum forms irregular replacement patches and veinlets. The epidote-rich replacement patch and gypsum veinlets are cut by a late breccia zone in which the rock was granulated strongly.

<u>Sample 43336</u> is a medium to coarse grained, patchy skarn dominated by pyrite and actinolite, with less apatite, magnetite, epidote, and ankerite. Magnetite is earlier than pyrite and chalcopyrite, and actinolite and apatite are earlier than epidote.

(continued)

- sample 43337 is a hypabyssal quartz diorite containing a few phenocrysts of plagioclase and abundant finer plagioclase grains in a sparse groundmass dominated by quartz and biotite/chlorite, with minor epidote, ankerite, apatite, and sphene/Ti-oxide/ilmenite. Veinlets are of a few types, dominated by one or more of chlorite/serpentine, quartz, and epidote.
- <u>sample 43338</u> is a hypabyssal pyritic quartz diorite dominated by fine grained plagioclase with much less biotite and interstitial quartz. Pyrite forms ragged, disseminated grains and skeletal clusters. The hand sample contains a parallel set of fractures; these were not obvious in the thin section.
- sample 43339 is a brecciated and altered hypabyssal diorite(?)

 containing ragged relic plagioclase phenocrysts in an extremely fine grained plagioclase altered strongly to sericite and ankerite. Pyrite and tourmaline are disseminated replacement minerals. The rock was brecciated coarsely, with the matrix being dominated by quartz, with veinlets of ankerite and minor pyrite.
- Sample 43340 is a porphyritic hypabyssal granodiorite containing phenocrysts of plagioclase in a finer grained groundmass dominated by plagioclase and K-feldspar with minor biotite, ankerite, quartz, and pyrite.

- 1969 - 196 John G. Payne 604-986-2928

The Glaye

sample 43334

Hypabyssal Porphyritic Quartz Diorite; Early Veins of Quartz-Pyrite-Gypsum-Chlorite-Epidote, and Later Vein of Quartz-Gypsum-(Pyrite-Chalcopyrite)

The rock contains strongly zoned plagioclase phenocrysts and less hornblende phenocrysts in a groundmass dominated by plagioclase and quartz, with less biotite and magnetite, and minor epidote. Early veins of quartz-gypsum-pyrite-epidote-chlorite have halos of sericite/K-feldspar. Later veins are of quartz-gypsum with minor pyrite and chalcopyrite.

```
phenocrysts
plagioclase
                  35-40%
hornblende
                  4-5
quartz
                 minor
groundmass
plagioclase (coarser) 3- 4
quartz (coarser)
                   1- 2
plagioclase/quartz (finer) 30-35
biotite
                   2- 3
                  1- 2
magnetite
pyrite
                      1
chlorite
                    Ø.3
epidote
                    Ø.3
chalcopyrite
                minor
apatite
                  trace
veins
quartz-pyrite-epidote-chlorite-gypsum(?)
                                            3 - 4
                                            7 - 8
quartz-gypsum-(pyrite-chalcopyrite)
```

Plagioclase forms subhedral, equant to prismatic phenocrysts averaging $\emptyset.3-\emptyset.7$ mm in size. Zonation is strong from more-calcic cores (andesine) to more-sodic rims (oligoclase/andesine). Alteration is slight to locally moderate to patches of sericite and lesser ones of epidote, and is concentrated in calcic cores.

Hornblende forms subhedral to anhedral prismatic phenocrysts up to 1.7 mm long. Some grains are altered to pale to medium green, pseudomorphic actinolite, which in places is replaced by extremely fine grained aggregates of chlorite, quartz, and Ti-oxide. Other grains are altered completely to aggregates of chlorite and less epidote, quartz, and Ti-oxide.

Quartz forms a few irregular phenocrysts up to 1 mm in size. Interstitial to plagioclase phenocrysts are minor anhedral plagioclase and quartz grains averaging 0.07-0.2 mm in size. These are intergrown with interstitial patches of intimate intergrowths of plagioclase and quartz averaging 0.015-0.025 mm in grain size.

Biotite forms ragged, equant flakes averaging $\emptyset.2-\emptyset.3$ mm in size, with a few up to 1.2 mm long. Alteration generally is complete to pseudomorphic chlorite and minor Ti-oxide. A few elongate biotite flakes up to 1.2 mm long are replaced by patches of epidote and less chlorite.

Magnetite forms equant grains averaging 0.05-0.15 mm in size, with a few up to 0.3 mm across. A few are altered slightly to moderately to patches of hematite. A few are replaced partly by pyrite and less chalcopyrite.

Pyrite forms anhedral grains averaging 0.05-0.15 mm in size. Some contain minor to abundant blebby inclusions of chalcopyrite and/or pyrrhotite averaging 0.01-0.02 mm in size.

Chlorite forms a few irregular interstitial patches up to $\emptyset.3~\text{mm}$ in size.

Epidote forms anhedral patches averaging 0.1-0.2 mm in size. Apatite forms a grain 0.2 mm long associated with the hornblende phenocryst.

A set of subparallel, early veinlets averaging 0.1-0.3 mm wide are dominated by very fine grained quartz and gypsum, with less pyrite, epidote, and chlorite, and minor chalcopyrite. Gypsum commonly is concentrated in cores of veins, and was removed partly from the section during weathering and/or sample preparation. Veinlets are rimmed by balos up to 2 mm wide in which plagioclase and chlorite are altered to sericite and probably K-feldspar, which give these parts of the stained offcut block a light yellow color. These are offset by the main vein.

The main late vein up to 2 mm wide is dominated by patches of anhedral, slightly interlocking quartz grains averaging 0.2-0.5 mm in grain size, and others of anhedral gypsum aggregates ranging from patches of 0.01-0.02 mm grain size up to others of 0.05-0.1 mm in grain size. Pyrite forms a few anhedral, equant grains up to 0.3 mm across and moderately abundant anhedral grains averaging 0.01-0.03 mm in size, mainly in the gypsum-rich part of the vein. Chalcopyrite forms scattered anhedral grains averaging 0.03-0.5 mm in size in the quartz-rich part of the vein. Molybdenite forms a cluster of ragged flakes averaging 0.01-0.03 mm in length associated with quartz-gypsum. Epidote forms a few anhedral grains up to 0.1 mm in size.

Wispy gypsum veinlets average 0.01-0.02 mm in width; some are associated with the other veins, and some are late.

Sample 43335 Gabbro/Skarn(?): Actinolite-Epidote-plagioclaseIlmenite-pyrite-Gypsum; Gypsum Veinlets; Late Breccia Seam

The sample is a medium to coarse grained gabbro which was altered and replaced strongly, probably in a skarn environment. It contains three main zones. The first (at one end of the section) is dominated by actinolite with less epidote and ilmenite/Ti-oxide. The second (in the center) is dominated by plagioclase. The third (at the other end) is dominated by epidote and actinolite, with less pyrite, and minor chalcopyrite-(bornite). The medium to coarse texture and the presence of abundant ilmenite suggests that the original rock was a gabbro. Gypsum forms irregular replacement patches and veinlets. The epidote-rich replacement patch and gypsum veinlets are cut by a late breccia zone in which the rock was granulated strongly.

actinolite	35-40%	ankerite	1%
epidote	30-35	chlorite	Ø.5
plagioclase	17-20	gypsum	Ø.2
pyrite	3-4	chalcopyrite	Ø.1
ilmenite/Ti-oxide	2- 3	bornite	trace
veinlets, replacem	ent patches		
gypsum	1		
breccia zone	1- 2		

Actinolite forms ragged prismatic grains averaging $\emptyset.3-1$ mm in size, with a few up to 2.5 mm long. Pleochroism is from pale to light green. Some grains are replaced partly by irregular patches of epidote in the epidote-rich replacement zone.

Epidote forms patches up to 1.5 mm in size with a variety of replacement textures. Grain size ranges from extremely fine to fine.

Plagioclase forms grains up to 2.5 mm in size. Alteration in the plagioclase-rich zone is moderate to sericite and less epidote. Elsewhere, irregular patches of extremely fine to fine grained epidote probably represent completely altered plagioclase.

Ilmenite forms irregular patches with subrounded borders averaging 0.2-0.5 mm in size. Alteration is variable. At one end of the section, grains are relatively fresh, with minor to moderately abundant plates of Ti-oxide along a few crystallographic directions. With increasing alteration, Ti-oxide ribs are preserved, and ilmenite is replaced by cryptocrystalline silicates. Ilmenite patches may be loci for pyrite replacement in the epidote-pyrite replacement zone.

Pyrite is concentrated at one end of the section, where it forms anhedral grains averaging $\emptyset.1-\emptyset.5$ mm in size. In some patches, pyrite grains are skeletal and intergrown intimately with epidote. Elsewhere it forms discontinuous, wispy veinlets averaging $\emptyset.02-0.03$ mm wide. A few grains contain blebby inclusions of chalcopyrite or pyrrhotite averaging 0.01-0.02 mm in size; a few chalcopyrite inclusions are from 0.05-0.1 mm long.

Ankerite forms anhedral grains averaging 0.2-0.4 mm in size. Gypsum forms patches of very fine grains interstitial to epidote. Chlorite forms a few interstitial patches up to 0.2 mm in size and wispy veinlets up to 0.02 mm wide.

Chalcopyrite forms irregular patches averaging 0.03-0.15 mm in size. Bornite occurs with chalcopyrite as grains averaging 0.02-0.03 mm in size.

Gypsum forms replacement patches and veinlets of grains averaging $\emptyset.05-0.1$ mm in size. One replacement patch up to 1.5 mm across contains grains up to $\emptyset.5$ mm in size.

At one end of the sample is an irregular breccia zone up to $\emptyset.4$ mm wide in which the rock was granulated strongly. This zone cuts the gypsum veinlets.

Sample 43336 Pyrite-Actinolite-Magnetite-Apatite-Epidote-Ankerite

The rock is a medium to coarse grained, patchy skarn dominated by pyrite and actinolite, with less apatite, magnetite, epidote, and ankerite. Magnetite is earlier than pyrite and chalcopyrite, and actinolite and apatite are earlier than epidote.

pyrite	30-35%
actinolite	25-30
magnetite	10-12
apatite	10-12
epidote	8-10
ankerite	5- 7
chalcopyrite	Ø.1
sphene	*
pyrrhotite	*

Actinolite forms anhedral, commonly ragged, prismatic grains averaging 0.5-1.5 mm in size, with a few up to 3.5 mm long. Color in thin section is pale green. In some patches, actinolite grains appear to be granulated slightly, and in others they appear to be replaced by epidote.

Magnetite forms anhedral grains up to a few mm across. It is strongly granulated, and fragments are enclosed in a matrix of pyrite and less chalcopyrite, and locally of calcite. Locally, magnetite grains are altered in small patches along their margins to hematite.

Pyrite forms patches up to a few mm across. Pyrite/magnetite textures range from pure pyrite grains through pyrite grains with moderately abundant inclusions of magnetite, to magnetite grains with fractures filled by pyrite. Some pyrite grains are intergrown intimately with silicates and some contain moderately abundant inclusions of silicates.

Apatite forms patches up to 2 mm across of aggregates of anhedral to prismatic grains averaging 0.05-0.15 mm in size. Interstitial to apatite in some patches is minor to moderately abundant ankerite, and in a few other patches is minor epidote.

Ankerite forms interstitial grains averaging $\emptyset.5-1$ mm in size intergrown with actinolite. It forms skeletal grains up to 2 mm across interstitial to and in fractures in sulfide patches and in apatite aggregates.

Epidote forms patches up to a few mm across of anhedral grains averaging $\emptyset.05-0.15$ mm in size. Commonly it is intergrown with, and may be a replacement of actinolite. In a few patches it is intergrown intimately with apatite. Epidote forms a few discontinuous veinlets up to $\emptyset.05$ mm wide.

Chalcopyrite forms interstitial patches up to 0.2 mm in size, in part alone and in part associated with pyrite in fractures in magnetite. A few irregular inclusions up to 0.06 mm in size occur in large pyrite grains.

Sphene forms anhedral grains averaging 0.1 mm in size.

Pyrrhotite forms blebby to cuspate inclusions averaging 0.01-0.02

mm in size in pyrate.

'Sample 43337 Hypabyssal Quartz Diorite; Veins of Chlorite-Epidote-Ankerite-(Sphene); Quartz

A few phenocrysts of plagioclase and abundant finer plagioclase grains are set in a sparse groundmass dominated by quartz, and biotite/chlorite, with minor epidote, ankerite, apatite, and sphene/Ti-oxide/ilmenite. Veinlets are of a few types, dominated by one or more of chlorite/serpentine, quartz, and epidote.

plagioclase	82-85%	veins, veinlets	
quartz	7-8	<pre>1) chlorite</pre>	1- 2%
biotite/chlorite	4 – 5	epidote	1
ankerite	1	ankerite	Ø.5
epidote	1	sphene	Ø.2
apatite	Ø.5	Ti-oxide	minor
sphene	Ø.3	2) quartz	Ø.3
Ti-oxide/ilmenite	Ø.3	epidote	Ø.1
zircon	*	opaque (pyrite?)	minor

Plagioclase forms a few subhedral, stubby prismatic phenocrysts averaging 1-1.5 mm in size. Alteration is strong to patches of epidote and flakes of sericite. Plagioclase also forms anhedral to subhedral, stubby prismatic to slightly interlocking grains averaging 0.3-0.6 mm in length. Alteration is slight to moderate to disseminated sericite and patches of calcite and of epidote. Plagioclase contains abundant dusty inclusions, giving it a pale brown color in plane light.

Quartz forms anhedral grains averaging 0.1-0.4~mm in size, interstitial to plagioclase.

Biotite forms flakes averaging $\emptyset.5-\emptyset.8$ mm long. Alteration is complete to pseudomorphic chlorite with minor patches of Ti-oxide along cleavage, and minor patches of ankerite and/or epidote disseminated in chlorite.

Ankerite forms interstitial patches up to 1.2 mm in size, generally of single grains or fine grained aggregates.

Sphene forms anhedral to euhedral grains averaging $\emptyset.05-0.2$ mm in size. Ti-oxide forms clusters of anhedral grains averaging 0.03-0.05 mm in size. Many patches have ragged cores of ilmenite up to 0.05 mm in size.

Apatite forms patches up to 1 mm in size of aggregates of anhedral to subhedral prismatic grains averaging 0.05-0.1 mm in size.

Zircon forms a few subhedral, stubby prismatic grains averaging $\emptyset.05-\emptyset.07$ mm long.

A lensy vein up to 0.7 mm wide is dominated by very fine to fine grained intergrown with patches of subhedral to anhedral epidote, lesser anhedral ankerite, and minor very fine to extremely fine grained sphene and Ti-oxide. Two veinlets up to 0.2 mm wide are of very fine grained chlorite; these are preserved poorly in the section.

A vein up to 0.3 mm wide is dominated by quartz with minor epidote; associated with the vein is a patch of anhedral opaque (pyrite?) grains sveraging 0.1-0.4 mm in size.

A few veinlets up to 0.1 mm wide are of one or more of ankerite, chlorite, and epidote.

'Sample 43338 Hypabyssal Pyritic Quartz Diorite

The rock is dominated by fine grained plagioclase with much less biotite and interstitial quartz. Pyrite forms ragged, disseminated grains and skeletal clusters. The hand sample contains a parallel set of fractures; these were not obvious in the thin section.

phenocrysts plagioclase	3- 4%
groundmass	
plagioclase	82-85
biotite	4-5
quartz	3-4
pyrite	3 - 4
apatite	Ø.3
epidote	Ø.2
pyrrhotite	trace
Ti-oxide/sphene	trace
zircon	*
veinlets	
calcite	trace

Plagioclase forms a few subhedral to anhedral phenocrysts averaging ranging from $\emptyset.5-1.4$ mm in size. These are surrounded by anhedral plagioclase grains averaging $\emptyset.1-\emptyset.5$ mm in size. Alteration generally is slight to disseminated flakes of sericite. Less common alteration minerals include patches of calcite and of epidote averaging $\emptyset.03-0.07$ mm in size.

Biotite forms disseminated, stubby to locally slender flakes averaging 0.1-0.5 mm in size, and one patch 1.5 mm across of a few grains. Alteration is complete, generally to pseudomorphic chlorite with minor to abundant patches of epidote, and less commonly and in smaller flakes to pseudomorphic muscovite. In both alteration types, irregular patches of calcite are common. A few grains are replaced completely by patches of calcite and epidote.

Quartz forms anhedral, interstitial grains and clusters of grains averaging 0.05-0.08 mm in grain size.

Apatite forms a few unusual, subhedral prismatic grains up to 1 mm in length. Some grains appear to be aggregates of grains averaging $\emptyset.03-0.05$ mm in size in subparallel orientation. Other grains are replaced slightly by very irregular to skeletal patches of calcite.

Epidote forms a few replacement patches up to 0.4 mm in size.

Pyrite forms skeletal clusters up to 1 mm across of very irregular grains averaging 0.05-0.15 mm in size, intergrown with and interstitial to silicates. A few grains are up to 0.5 mm across. Several pyrite grains contain one to a few blebby inclusions of pyrrhotite averaging 0.01-0.02 mm in size.

Ti-oxide forms disseminated grains averaging $\emptyset.02-0.05$ mm in size. Some are associated with similar grains of sphene.

Zircon forms subhedral, prismatic grains averaging 0.03-0.05 mm long.

Calcite forms a few discontinuous veinlets up to 0.05 mm wide.

Sample 43339 Brecciated and Altered Hypabyssal Diorite(?); Matrix of Quartz; Veinlets of Ankerite-(Pyrite)

Ragged relic plagioclase phenocrysts are set in an extremely fine grained plagioclase altered strongly to sericite and ankerite. Pyrite and tourmaline are disseminated replacement minerals. The rock was brecciated coarsely, with the matrix being dominated by quartz, with veinlets of ankerite and minor pyrite.

phenocrysts			
plagioclase	8-10%		
hornblende	minor		
groundmass			
plagioclase	30-35	chlorite	1%
sericite	25-30	Ti-oxide	Ø.5
ankerite	10-12	chalcopyrite	trace
pyrite	2- 3	tetrahedrite	*
tourmaline	1	magnetite	*
matrix		pyrrhotite	*
quartz	10-12		
ankerite	2- 3		
pyrite	1- 2		
sericite	Ø.3		

Plagioclase forms anhedral, ragged phenocrysts averaging $\emptyset.5-1.5$ mm in size. Alteration is moderate to strong to sericite.

Hornblende(?) forms a subhedral phenocryst $\emptyset.6$ mm long; it is altered completely to ankerite and sericite.

The groundmass is dominated by plagioclase, which is altered strongly to extremely fine grained sericite with ragged patches of extremely fine grained ankerite. Ti-oxide forms disseminated grains averaging $\emptyset.005-0.01$ mm in size and is concentrated locally in ragged patches up to $\emptyset.2$ mm in size of similar grains.

Pyrite forms disseminated subrounded to irregular grains and clusters of grains averaging $\emptyset.05-0.2$ mm in size, with a few up to $\emptyset.7$ mm across. A small percentage of these contain one or several blebby inclusions of pyrrhotite averaging $\emptyset.007-0.015$ mm in size. A moderate percentage contain abundant tiny inclusions of silicates.

Tourmaline forms disseminated prismatic grains and clusters, in part radiating, of a few grains averaging $\emptyset.1-\emptyset.2$ mm in length. A few dense patches consist of unoriented, stubby prismatic grains averaging $\emptyset.03-0.07$ mm in length. Most single tourmaline grains and those in radiating clusters and dense patches are colorless; in most subradiating clusters tourmaline grains are pleochroic from pale to medium green.

Chlorite forms a few irregular replacement(?) patches up to 2 mm in size, which contain minor disseminated Ti-oxide.

Chalcopyrite forms an anhedral patch 0.2 mm across. Tetrahedrite occurs on the borders of this patch as several anhedral grains averaging 0.01-0.03 mm in size.

Magnetite forms a few ragged relic grains averaging 0.05-0.08 mm in size.

Quartz occurs mainly in irregular replacement patches with diffuse borders against the host rock. Grain size averages 0.03-0.1 mm, and varies moderately between patches. In a few patches, grains are strongly interlocking and average 0.01-0.015 mm in size. Sericite forms extremely fine grained seams and patches. Ankerite is most common in irregular veins averaging 0.2-0.4 mm wide; locally these veins contain pyrite grains up to 0.5 mm long.

'Sample 43346 Porphyritic Hypabyssal Granodiorite; Ankerite Veinlets

Phenocrysts of plagioclase are set in a finer grained groundmass dominated by plagioclase and K-feldspar with minor biotite, ankerite, quartz, and pyrite.

phenocrysts	
plagioclase	40-45%
groundmass	
plagioclase	25-30
K-feldspar	15-17
ankerite	3-4
biotite	3-4
quartz	2- 3
pyrite	1- 2
pyrrhotite	*
veinlets	
ankerite	minor

Plagioclase forms subhedral, prismatic phenocrysts averaging $\emptyset.3-\emptyset.8$ mm in size, with a few up to 1.7 mm long. Alteration is moderate to disseminated and patchy sericite and ragged patches of ankerite.

Interstitial to coarser grained plagioclase are extremely fine grained intergrowths of plagioclase and K-feldspar and ragged patches of ankerite. Plagioclase is altered slightly to sericite.

Biotite forms ragged flakes averaging 0.15-0.5 mm in size, with a few up to 1.8 mm long. Alteration is complete to carbonate (ankerite and or calcite) with minor to moderately abundant chlorite or muscovite and minor Ti-oxide. Most large grains are replaced by single grains or a few grains of calcite whose texture reflects some of that of the original biotite grains.

Quartz forms interstitial grains averaging 0.05-0.2 mm in size, and locally up to 0.7 mm long. A few interstitial patches up to 0.2 mm in size are of extremely fine grained, slightly interlocking aggregates of quartz.

Pyrite forms anhedral grains averaging 0.05-0.2 mm in size. It is concentrated moderately in patches surrounding coarser biotite grains. A few pyrite grains contain one or two blebby inclusions of pyrrhotite averaging 0.01 mm in size.

Veinlets averaging 0.05-0.07 mm in width are dominated by ankerite grains averaging 0.03-0.07 mm in size.