

GENOVEVA RESOURCE INC. SCURRY - RAINBOW OIL LTD.

CALGARY, ALBERTA

próposed annno road, taseko lake -

 based on a somewhat extended examination that I made during the summer of 1926. At that time transportation conditions in this district were very difficult, costs were high and gold was only $\$ 20.67$ per ounce and my principals did not proceed wíth development work though I considered that these properties were worth development. Under present conditions I think that there is warrant for careful testing of these properties, particularly the Spokane group.

Both properties are low grade and in both ceses it is difficult to obtain conclusive evicence as to probable values and continuity. This is particularly the case with the Empress Group as described later. Transportation conditions are still difficult but are much improved and still greater improvement is to be expected as this district is now being opened up quite rapidly.

SPOKANE GROUP
This grow which at the time of my examination consisted of four claims and another three claims which we staked (see stetch accompanyinc) is located near the head of McClure Creek which flows into whitewater (Taseko) River from the west, the confluence being a few miles south of the south end of Whitewater (Taseko) Lake.

The showings are nesr the centre of the four main claims ai the roup, at an elevation of about 7250 feet above tide-water.

The doposit covers a considerable area. We were not able to decermine its outline accurately but as I remember it, it was over 100 feet wlae and several hundred feet long. We were unable to determine struciure or continuity.

The material of the deposit is a somewhat heavily mineralized Francilorfte or similar rock, the ferromannesian minerals being \&lmost corpletely reglaced by sulphides, principally pyrite with some calcopyrite. Copper is present but have no idea what the defnec copper content is likely to be as we were not equipped to run corper assaye.. Copper is observatie in most of the material and woild increase thr aversace value somewhat but how much I do nut know. The cold values, however, are mos: important and it is the possibillty of developing a lar e tonrare of zold ore that Elves this property its interest.

Acomparyjne is a list a" aemalos taken durine our examination. You will note tha: m ve or :.. somples were tal:en by the Whiter art gome by the prossetra me 200 serlas were prospect-

These samples were obtrined from a large number of cuts that we sank to get as solid ground as possible. We had difficulty in reaching, solid ground as this deposit was until comparatively recent times under ice. Water has soaked into the cracks, frozen there and caused the surface to be badly broken up and this broken material lies in place. I think, however, that the material sampled though broken was in situ and that, therefore, the samples we obtained were reliable as a mulde to the values to be expected.

These .surface conditions make it difficult and expensive to obtain completely reliable information from surface work. We did not obtain conclusive results as we had not sufficient time. We sank a large number óf cuts systematically intending later to join them up and thus systematically expose the body for Sampling. I think that more reliable reaults and certainly quicker results would be obtained by drilling, as sufficient surface work has been done to enable drill holes to be lald out intelligently.

Provided suitable price and terms are arranged and the terms should take into account the transportation conditions and the extenced time required to develop this deposit to the exonomic stage I consider that a preliminary expenditure of, say, \$10,000 is warranted to test this property. The work should be designed to determine average values to be expected and possible tonnage. Unless there is a liklihood of developing large tonnage values are too low for the property to be attractive. There is a possib111ty that sections of the zone are better grade. A few diamond drill noles through the deposit would test these possibilities and provide information for further work if results were satisfsctory.

EMPRESS GROUP

I have no sketch of this group but it consists of four mineral claims, lying at the foot of the hill below the Motherlode aroup, partly on the flats near the moyth of Granite Creek.

These claims ere of more interest considered in conjunction with the Motherlode Group than they are on their own. They lie on the contact between the Coast Range granite and the tuffs of the Denain iormation. This contact is deeply buried in the valley o: "aseko River.

We examined some interestine sulphide exposures on this Eroup. We could not definitely determine that these exposures were in place but I was stronsly of the opinion that they were in place.

The Coast Range-Denain contact crosses this group in an approximately east-west direction, about the middle of the group. Its a proximate position is determinable by float. Near this consent are boulders of heavily minumilzed pranodiorite that, I was of the opinion, are practically in situ. Some of this material is completely replace th pyite und manetite. Samples z of

 and 0.12 ouse. fold with O.... os. silver:. A sample of leached silicified tuff from the sure local: ty assayed 0.12 nos. mil.

Surface stripping is emos fmoosirile as the surface wete:s have leached iron from the mineralized turf beds and this has resulted in a deposit of demented ravel on bedrock. This material is too hard to pic. and 1 s difficult to drill and fist. Thus about, the only way to test this croup would be by drilling along. the contact. This would be a lone shot but there is a possibility that important slilphide bodies might be found. I think it is too long s shot to make a relatively expensive drilling contract attractive but it is probably worth while to put down few short holes with a licit drill. If favourable results were obtained a more extensive campaim could be initiated.

I think that one would be fully wamgnted in going ahead and arranging to to some work on those properties. In consicieing them however, the question of ore treatment should receive carefurl consideration from the start. There will? he relatively diffscult transportation conditions to contend with for some time to cone and shippiap \quad low trade concentrate from this area would not be feasible. As far as the Spokane material is concerned I think it would not be difficult to float out the copper and cyanide the residue. The material I found on the Empress group wold probably offer rester difficulties. However, it would not be possible to express a reliable opinion of this matter until the exact nature of the material to be treated has been determined.

Number

21 22 23 24 25 26 27 29

Width
48
2^{1}
Leaohed Capping slight copper stalned Sample of sulphide
Gouge in X fracture at out. Altered stained granite
Selected specimens of leached honeycombed capping Pyritized granite
4' Across N.W. end of pit. White leached granite
$P \quad$ Partially oxidized sulphides. Not from bedrock but practioally in place
Partially oxidized heavily pyritized granite from square stripping surface . of bedrock
Partially oxdized sulphides from 40' S.E. of No. l Post

ABOVE SAMPLES TAKEN BY H.L.B.

No. l cut. Deoomposed granite with some cu. Light colored soft material from near cross	
fracture. No. l cut. jecomposed granite with oxidized	
sulphides and a little cu.	0.20
do do	0.20
No. 3 cut. : do	0.12
No. 4 cut. do	0.14
No. 2 cut. do	0.20
No. 5 cut. Heavily mineralized granite	0.08
No. 6 cut. Oxidized granite slightly	
mineralized.	0.20
Heary sulphides. $\mathrm{c}^{\text {a }}$ and fe.	0.26

5'5'	Oxidized soft granite from S. end of Pit \#8	0.12
61	Across center of Pit \#8	0.10
61	Across N. end of Pit \#8	0.10
41	Across bottom of Pit \#l. Sil. granite with	!
	spots of fe and a little sulphide	0.10
4^{\prime}	Similar to 304. Silver 0.0	0.08
	Sample reprezentative of sulphide on dump	
	of Pit \#l. Silver 0.8	0.16

Across bottom of Pit \#2. Fresh granite slightly mineralized with fe and cu. Not oxidized. Silver 1.ó
0.16

Much oxidized mín fair amount of cu. Silver 0.8. 0.12 S. end of Pit 布3. The E. 3^{\prime} well mineralized. Fair amount cu. Silver 1.0
Across 6^{\prime} from bottom of P , $\mathrm{t}^{\prime} 3$ and $3^{\prime} \mathrm{E}$. of
pit. Fair cu. in bottom ol pit
0.14
E. side of Pit $\# \neq 0$. Oxidized granite
0.10

5' from S. end of Pit $\# 8$. Ox. granite
Numb
313
314
315
310
317
318
319
320
321

Description

Middle Pit \#8. Oxidized granite Oxidized granite. Well Cu. stained 5' from S. end of Pit \#4 Middle of Pit \#\#4 N. end of Pit if 4
4^{\prime} by 23^{\prime} General sample of stripping Across S. end of Pit \#i0. Much ox. disintegrated granite
do do
Sample of oxidized disintegrated granite from 50' N. or Pit io. Not solid but practically in place. of Pit \#6 General sample of Pit \#b. Silver 1.0 General sample N. end of Pit \#b 5' Granite near dyke S. end Pit \#9 Composite of all samples (300 series) omitting sample lb. 321. Silver 0.0

Gold uss.
0.22

- 0.14
0.95
0.12
0.48
0.08
0.08
0.10
0.48
0.48
0.34
0.20
0.08
0.12
0.12

