093L 239

## D.D.H. GEOMANAGEMENT LTD.

860295

#### REPORT

#### ON THE

# POPLAR COPPER - MOLYBDENUM - GOLD - SILVER

## PORPHYRY DEPOSIT

CONSISTING OF 233 MINERAL CLAIMS (DAVE 1-2, 4-5; DON 1-15, 26-32, 34-35, 45-54; HILL 15-18; LAKE 1-36; PINE 1-22; POPLAR #1 FR.-#2 (FR.); POPLAR 1-20, 33, 35, 37, 48-97; TAG 1-2 (FR.); TAG 1-16, 23-42, 195-212)

#### LOCATED

ON NORTH SHORE OF TAGETOCHLAIN (POPLAR) LAKE, SOUTH OF HOUSTON, BRITISH COLUMBIA

#### OMINECA MINING DIVISION

54 DEGREES 01 MINUTES NORTH LATITUDE 126 DEGREES 58 MINUTES WEST LONGITUDE (N.T.S. 93 E/15W, 93 L/02W & 93 L/3E)

#### FOR

### NEW CANAMIN RESOURCES LTD. 304 - 255 WEST 1ST. STREET, NORTH VANCOUVER, B.C. V7M 3G8

BY

A.D. DRUMMOND, PH.D., P.ENG.

#### GEOLOGICAL ENGINEER

AUGUST 1, 1991

422 - 470 Granville Street, Vancouver, B.C. Canada V6C 1V5 • Telephone (604) 681-4413

TABLE OF CONTENTS

|                                                                                                                                                                                                                                                                                                    | Page                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| SUMMARY                                                                                                                                                                                                                                                                                            | 1                                                                    |
| INTRODUCTION                                                                                                                                                                                                                                                                                       | 2                                                                    |
| LOCATION AND ACCESS                                                                                                                                                                                                                                                                                | 2                                                                    |
| PROPERTY AND TITLE                                                                                                                                                                                                                                                                                 | 5                                                                    |
| HISTORY                                                                                                                                                                                                                                                                                            | 11                                                                   |
| REGIONAL GEOLOGY                                                                                                                                                                                                                                                                                   | 12                                                                   |
| PROPERTY GEOLOGY<br>A. HOST ROCKS<br>B. INTRUSIVE ROCKS<br>C. DYKE ROCKS<br>D. ALTERATION AND MINERALIZATION<br>E. SOIL GEOCHEMICAL RESPONSE<br>F. GEOPHYSICAL SURVEY RESPONSE<br>Magnetometer Survey<br>Induced Polarization Survey<br>G. DIAMOND DRILLING<br>H. UNDEFINED MINERALOGICAL FEATURES | 12<br>17<br>17<br>18<br>19<br>21<br>21<br>24<br>24<br>24<br>24<br>26 |
| MODELLING THE MINERALIZATION<br>A. DISTRIBUTION OF COPPER - MOLYBDENUM MINERALIZATION<br>B. GRADE VARIABILITY<br>C. MINERAL INVENTORY OF THE POPLAR DEPOSIT<br>D. MINERAL POTENTIAL - DISCUSSION                                                                                                   | 27<br>27<br>32<br>33<br>34                                           |
| METALLURGY                                                                                                                                                                                                                                                                                         | 36                                                                   |
| ENVIRONMENTAL ASPECTS                                                                                                                                                                                                                                                                              | 36                                                                   |
| INFRASTRUCTURE                                                                                                                                                                                                                                                                                     | 37                                                                   |
| CONCLUSIONS AND RECOMMENDATIONS                                                                                                                                                                                                                                                                    | 37                                                                   |
| ESTIMATED COST OF PROPOSED WORK PROGRAM                                                                                                                                                                                                                                                            | 38                                                                   |
| REFERENCES                                                                                                                                                                                                                                                                                         | 40                                                                   |
| CERTIFICATION                                                                                                                                                                                                                                                                                      | 42                                                                   |

.

## ILLUSTRATIONS

|         |    |                                                                                                           | Page |
|---------|----|-----------------------------------------------------------------------------------------------------------|------|
| FIGURE  | 1  | LOCATION MAP                                                                                              | 3    |
| FIGURE  | 2  | ROAD ACCESS LOCATION MAP                                                                                  | 4    |
| FIGURE  | 3  | CLAIM MAP                                                                                                 | 6    |
| FIGURE  | 4A | REGIONAL GEOLOGY AND STRUCTURE<br>(Modified after Carter (1981) p. 29)                                    | 13   |
| FIGURE  | 4B | REGIONAL GEOLOGY AND STRUCTURE<br>(Modified after Carter (1981) p. 38)                                    | 14   |
| FIGURE  | 4C | REGIONAL GEOLOGY AND STRUCTURE<br>(Modified after Carter (1981) p. 46)                                    | 15   |
| FIGURE  | 5  | GEOLOGY OF THE POPLAR COPPER-<br>MOLYBDENUM DEPOSIT<br>(After Mesard, Godwin and Carter<br>(1979) p. 138) | 18   |
| FIGURE  | 6  | MINERALIZATION AND ALTERATION MAP<br>(After Mesard (1979))                                                | 20   |
| FIGURE  | 7A | DISTRIBUTION OF COPPER SOIL<br>GEOCHEMISTRY (> 500 PPM)                                                   | 22   |
| FIGURE  | 7B | DISTRIBUTION OF COPPER CONTOURS<br>BASED ON 100 M. COMPOSITES<br>(TREND SURFACE)                          | 23   |
| FIGURE  | 8  | 100 M. VERTICAL COMPOSITE ASSAY<br>PLAN, COPPER TREND SURFACE,<br>900 - 800 M. ELEVATION                  | 28   |
| FIGURE  | 9  | 100 M. VERTICAL COMPOSITE ASSAY<br>PLAN, COPPER TREND SURFACE,<br>800 - 700 M. ELEVATION                  | 29   |
| FIGURE  | 10 | 100 M. VERTICAL COMPOSITE ASSAY<br>PLAN, COPPER TREND SURFACE,<br>700 - 600 M. ELEVATION                  | 30   |
| TABLE ] | 1  | TABLE OF FORMATIONS<br>(After Carter (1981) p. 31)                                                        | 16   |

#### SUMMARY

New Canamin Resources Ltd. has acquired an option on 233 mineral claims covering the Poplar porphyry copper-molybdenum-silver-gold deposit, located on a 900 m elevation overburden covered plain some 75 road kms south-southwest of Houston, B.C.

Utah Mines Ltd. carried out a geophysical, geochemical, geological and drilling program on the property during the period 1974 to 1982 for an expenditure of \$ 2,500,000 (uninflated 1982 dollars) and reported global reserves of 260,000,000 tonnes of 0.37% copper "equivalent" at a 0.25% copper "equivalent" cut-off grade.

The disseminated mineralization is centered on a differentiated Late Cretaceous calc-alkaline stock which intruded Lower and Upper Cretaceous volcanic and epiclastic rocks. Late Cretaceous volcanic rocks partly cap the stock. The Poplar stock is zoned with a hornblende monzodiorite-diorite border phase grading into a central biotite monzonite porphyry (K-Ar age determination at 76.2 +/- 2.7 million years). Alteration and mineralization zoning consists of a 600 m by 500 m potassic facies annulus with chalcopyrite and molybdenite surrounding a 300 m by 150 m core of argillic alteration with low copper grades. The above zones occur within a wide east-west trending phyllic alteration zone peripheral to which is a weak propylitic alteration assemblage.

There are two separate drill tested copper - molybdenum - silver - gold mineralization zones:

(1) a main zone (west) consists of an annular body of Cu-Mo mineralization subcropping below shallow overburden and which is cut to two large north-northwest striking, steeply dipping post mineral dykes (BLOCK A), and

(2) a buried zone to the east of the main zone which has a domical shape in its upper portion and which expands laterally and to depth (BLOCK B).

Mineral inventories at different cut-off values have been calculated for each of the drill tested zones and combined. At a cut-off value of 0.20% T. Cu, BLOCK A is estimated to contain 69,718,000 tonnes with an average grade of 0.32% T. Cu, 0.014% Mo, 0.05 opt Ag (1.7 g/tonne Ag) and 0.003 opt Au (0.1 g/tonne Au). Combining BLOCK A plus BLOCK B at the same cut-off value, the mineral inventory is in the order of 116,122,000 tonnes with an average grade of 0.32% T. Cu, 0.009% Mo, 0.06 opt Ag (2.07 g/tonne Ag) and 0.003 opt Au (0.1 g/tonne Au).

During the review of mineral inventories, it was noted that the mineral potential of the Poplar deposit is still open as the continuation of copper mineralization to the west and southwest has never been drill tested. The lateral and depth extent of the mineralization in the eastern zone (BLOCK B) is also open.

In light of untested areas, the mineral potential of the Poplar deposit could be in excess of 400 million tonnes of similar grade. In addition to the mineral potential of the immediate drill tested area, there are three other areas that have good near surface exploration potential.

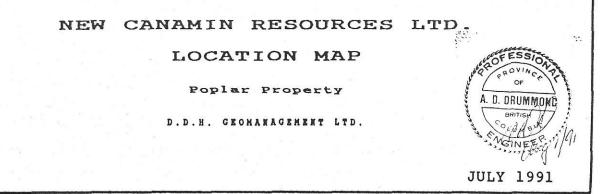
A program for additional drilling, metallurgical testing and environmental studies has been recommended. The estimated cost of the proposed work program is \$ 900,000.00

#### INTRODUCTION

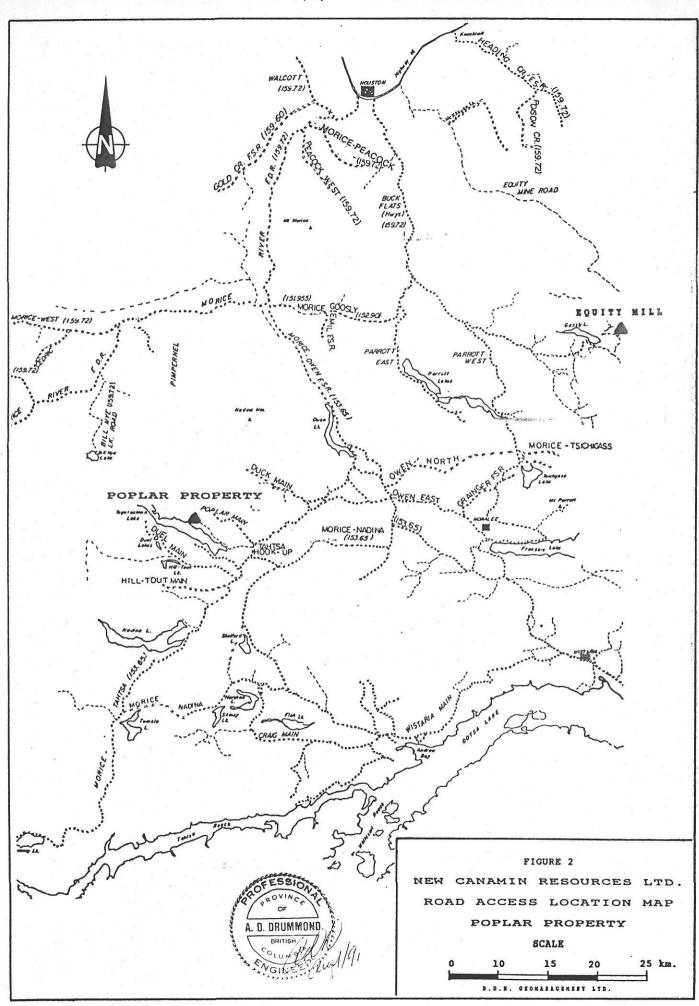
The firm of D.D.H. Geomanagement Ltd., 422 - 470 Granville St., Vancouver, B.C., V6C 1V5 has been requested by New Canamin Resources Ltd., 304 - 255 West 1st. Street, North Vancouver, B.C., V7M 3G8 to investigate the exploration potential of the Poplar copper - molybdenum - gold - silver porphyry deposit located on the north side of Tagetochlain (Poplar) Lake, south of Houston, B.C. and to recommend an exploration program, if warranted, to test that potential.


To accomplish this assignment, all available data both public and private, has been reviewed. The property was visited by the writer on July 3, 1991.

## LOCATION AND ACCESS


The Poplar copper - molybdenum - gold - silver porphyry deposit of New Canamin Resources Ltd. is located in west central British Columbia, some 270 kms (168 miles) west of Prince George, B.C. and some 75 road kms (45 miles) south of Houston, B.C. Equity Silver Mines is 50 kms (29 miles) to the northeast of the property. Coordinates of the deposit are 54 degrees 01 minutes North latitude and 126 degrees 58 minutes West longitude. The claims are contained within N.T.S. areas 93E/15W, 93L/2W and 93L/3E. See Figure 1 - Location Map.

Access to the property is by 2-wheel drive via Highway 16 to Houston, B.C. then via good gravel road using the western Tahtsa Reach road at the junction to the immediate south of Owen Lake. A new main forest haul road has been constructed with upgraded bridges the location of which is just to the east of the above mentioned Tahtsa Reach road. The two roads are connected via the "Tahtsa Hook-Up" (See Figure 2 - Access Map).


The deposit lies beneath an overburden covered plain on the south slope of Poplar Mountain just north of Tagetochlain (Poplar) Lake at an elevation of approximately 900 m (2,953 feet) above sea

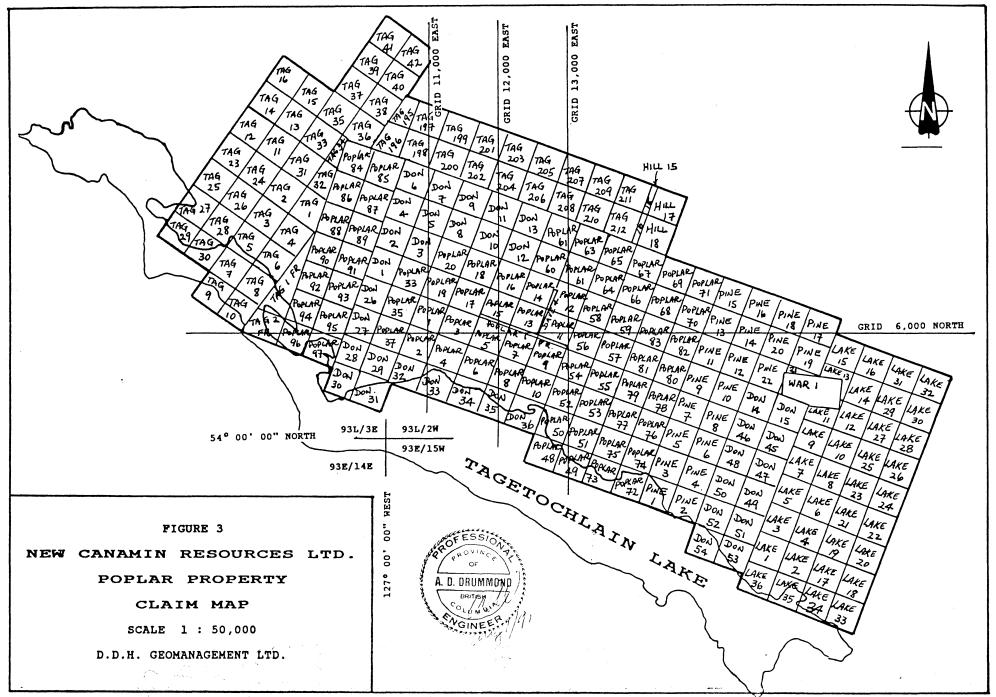






(3)




(4)

level. The area has moderately rolling topography with grassy open meadows alternating with local stands of aspen, fir and pine.

### PROPERTY AND TITLE

The property comprises 233 mineral claims (233 units) which claims cover the corner of three mineral title map sheets: 93E/15W, 93L/2W and 93L/3E. Most of the claims were originally staked during 1974 - 1975 as two-post claims. The current property contains the following claims outlined below. All claims lies within the Omineca Mining Division. Mineral tenure numbers are given for each claim. (See Figure 3 - Claim Map)

| CLAIM NAME | RECORD NO. | MINERAL TENURE NO. | EXPIRY DATE   |
|------------|------------|--------------------|---------------|
|            | (15M)      |                    |               |
| DAVE 1     | 133103     | 246089             | Nov. 27, 1992 |
| DAVE 2     | 133104     | 246090             | Nov. 27, 1992 |
| DAVE 4     | 133105     | 246091             | Nov. 27, 1992 |
| DAVE 5     | 133106     | 246092             | Nov. 27, 1992 |
|            |            |                    |               |
| DON 1      | 132366     | 245972             | Oct. 03, 1992 |
| DON 2      | 132367     | 245973             | Oct. 03, 1992 |
| DON 3      | 132368     | 245974             | Oct. 03, 1992 |
| DON 4      | 132369     | 245975             | Oct. 03, 1992 |
| DON 5      | 132370     | 245976             | Oct. 03, 1992 |
| DON 6      | 132371     | 245977             | Oct. 03, 1992 |
| DON 7      | 132372     | 245978             | Oct. 03, 1992 |
| DON 8      | 132373     | 245979             | Oct. 03, 1992 |
| DON 9      | 132374     | 245980             | Oct. 03, 1992 |
| DON 10     | 132375     | 245981             | Oct. 03, 1992 |
| DON 11     | 132376     | 245982             | Oct. 03, 1992 |
| DON 12     | 132377     | 245983             | Oct. 03, 1992 |
| DON 13     | 132378     | 245984             | Oct. 03, 1992 |
| DON 14     | 132379     | 245985             | Oct. 03, 1992 |
| DON 15     |            | 245986             | Oct. 03, 1992 |
|            |            |                    | •             |
| DON 26     | 132381     | 245987             | Oct. 03, 1992 |
| DON 27     | 132382     | 245988             | Oct. 03, 1992 |
| DON 28     | 132383     | 245989             | Oct. 03, 1992 |
| DON 29     | 132384     | 245990             | Oct. 03, 1992 |
| DON 30     | 132385     | 245991             | Oct. 03, 1992 |
| DON 31     | 132386     | 245992             | Oct. 03, 1992 |
| DON 32     | 132387     | 245993             | Oct. 03, 1992 |
|            |            |                    | ·             |
| DON 34     | 132388     | 245994             | Oct. 03, 1992 |
| DON 35     | 132389     | 245995             | Oct. 03, 1992 |
| DON 36     | 132390     | 245996             | Oct. 03, 1992 |
|            |            |                    | . –           |
| DON 45     | 132399     | 245997             | Oct. 03, 1992 |
| DON 46     | 132400     | 245998             | Oct. 03, 1992 |
|            |            |                    | ,             |



.

(6)

| CININ NAME                  | RECORD NO. | MINERAL TENURE NO. | EXPIRY DATE                    |
|-----------------------------|------------|--------------------|--------------------------------|
| <u>CLAIM NAME</u><br>DON 47 | 132401     | 245999             | Oct. 03, 1992                  |
|                             | 132402     | 246000             | Oct. 03, 1992                  |
| DON 48                      | 132402     | 246001             | Oct. 03, 1992                  |
| DON 49                      |            | 246001             | -                              |
| DON 50                      | 132404     |                    |                                |
| DON 51                      | 132405     | 246003             | Oct. 03, 1992                  |
| DON 52                      | 132406     | 246004             | Oct. 03, 1992                  |
| DON 53                      |            | 246005             | Oct. 03, 1992                  |
| DON 54                      | 132408     | 246006             | Oct. 03, 1992                  |
| HILL 15                     |            | 246009             | Oct. 30, 1992                  |
| HILL 16                     |            | 246010             | Oct. 30, 1992                  |
| HILL 17                     | 132560     | 246011             | Oct. 30, 1992                  |
| HILL 18                     | 132561     | 246012             | Oct. 30 ,1992                  |
| LAKE 1                      | 132574     | 246035             | Oct. 16, 1992                  |
| LAKE 2                      | 132575     | 246036             | Oct. 16, 1992                  |
| LAKE 3                      | 132576     | 246037             | Oct. 16, 1992                  |
| LAKE 4                      | 132577     | 246038             | Oct. 16, 1992                  |
| LAKE 5                      | 132578     | 246039             | Oct. 16, 1992                  |
| LAKE 6                      | 132579     | 246040             | Oct. 15, 1992                  |
| LAKE 7                      | 132580     | 246041             | Oct. 16, 1992                  |
| LAKE 8                      | 132581     | 246042             | Oct. 16, 1992                  |
| LAKE 9                      | 132582     | 246043             | Oct. 16, 1992                  |
| LAKE 10                     | 132583     | 246044             | Oct. 16, 1992                  |
| LAKE 11                     | 132584     | 246045             | Oct. 16, 1992                  |
| LAKE 12                     | 132585     | 246046             | Oct. 16, 1992                  |
| LAKE 13                     | 132586     | 246047             | Oct. 16, 1992                  |
| LAKE 14                     | 132587     | 246048             | Oct. 16, 1992                  |
| LAKE 15                     | 132588     | 246049             | Oct. 16, 1992                  |
| LAKE 16                     | 132589     | 246050             | Oct. 16, 1992                  |
| LAKE 17                     | 132590     | 246051             | Oct. 16, 1992                  |
| LAKE 18                     | 132591     | 246052             | Oct. 16, 1992                  |
| LAKE 19                     | 132592     | 246053             | Oct. 16, 1992                  |
| LAKE 20                     | 132593     | 246054             | Oct. 16, 1992                  |
| LAKE 21                     | 132594     | 246055             | Oct. 16, 1992                  |
| LAKE 22                     | 132595     | 246056             | Oct. 16, 1992                  |
| LAKE 23                     | 132596     | 246057             | Oct. 16, 1992                  |
| LAKE 24                     | 132597     | 246058             | Oct. 16, 1992                  |
| LAKE 25                     | 132598     | 246059             | Oct. 16, 1992                  |
| LAKE 26                     | 132599     | 246060             | Oct. 16, 1992                  |
| LAKE 27                     | 132600     | 246061             | Oct. 16, 1992                  |
| LAKE 28                     | 132601     | 246062             | Oct. 16, 1992                  |
| LAKE 29                     | 132602     | 246063             | Oct. 16, 1992                  |
| LAKE 30                     | 132603     | 246064             | Oct. 16, 1992                  |
| LAKE 31                     | 132604     | 246065             | Oct. 16, 1992                  |
| LAKE 32                     | 132605     | 246066             | Oct. 16, 1992<br>Oct. 16, 1992 |
| LAKE 33                     | 132606     | 246067             | Oct. 16, 1992<br>Oct. 16, 1992 |
| LAKE 33                     | 132607     | 246068             | Oct. 16, 1992<br>Oct. 16, 1992 |
| LAKE 34<br>LAKE 35          | 132608     | 246069             | -                              |
|                             |            |                    | Oct. 16, 1992                  |
| LAKE 36                     | 132609     | 246070             | Oct. 16, 1992                  |

|   |                                      | DECODD NO  | MINEDAL MENUDE NO          |                                     |
|---|--------------------------------------|------------|----------------------------|-------------------------------------|
|   | LAIM NAME                            | KECURD NU. | MINERAL TENURE NO.         | $\frac{EXPIRY DATE}{Oct. 10, 1992}$ |
|   | PINE 1                               | 132492     | 246013                     |                                     |
|   | PINE 2                               | 122495     | 246013<br>246014<br>246015 | Oct. 10, 1992                       |
|   | PINE 2<br>PINE 3<br>PINE 4<br>PINE 5 | 122494     | 246015                     | Oct. 10, 1992                       |
|   | PINE 4                               | 132495     | 246017                     | Oct. 10, 1992<br>Oct. 10, 1992      |
|   | PINE 5<br>PINE 6                     | 122490     | 246018                     | Oct. 10, 1992<br>Oct. 10, 1992      |
|   | PINE 6                               | 122497     | 246018                     | Oct. 10, 1992<br>Oct. 10, 1992      |
|   | PINE 7                               |            |                            | Oct. 10, 1992<br>Oct. 10, 1992      |
|   |                                      |            | 246020                     | Oct. 10, 1992<br>Oct. 10, 1992      |
|   |                                      |            | 246022                     | Oct. 10, 1992<br>Oct. 10, 1992      |
|   |                                      |            |                            |                                     |
|   |                                      |            | 246023                     | Oct. 10, 1992                       |
|   |                                      |            | 246024                     | Oct. 10, 1992<br>Oct. 10, 1992      |
|   |                                      |            | 246025                     |                                     |
|   | PINE 14                              |            | 246026                     | Oct. 10, 1992                       |
|   |                                      | 132506     |                            | Oct. 10, 1992                       |
|   | PINE 16                              |            | 246028                     | Oct. 10, 1992                       |
|   |                                      |            | 246029                     | Oct. 10, 1992                       |
|   | PINE 18                              |            |                            | Oct. 10, 1992                       |
|   | PINE 19                              |            | 246031                     | Oct. 10, 1992                       |
| P | PINE 20                              | 132511     | 246032                     | Oct. 10, 1992                       |
| P | PINE 21                              |            | 246033                     | Oct. 10, 1992                       |
| P | PINE 22                              | 132513     | 246034                     | Oct. 10, 1992                       |
| F | POPLAR #1 FR                         | 110648     | 245457                     | Jul. 01, 1992                       |
| F | POPLAR #2                            | 130951     | 245898                     | Aug. 14, 1992                       |
| F | POPLAR 1                             | 96902      | 245318                     | Jan. 29, 1992                       |
| F |                                      | 96903      | 245319                     | Jan. 29, 1992                       |
| F |                                      | 96904      |                            | Jan. 29, 1992                       |
|   |                                      | 96905      | 245321                     | Jan. 29, 1992                       |
|   |                                      | 96906      | 245322                     | Jan. 29, 1992                       |
|   |                                      | 96907      | 245323                     | Jan. 29, 1992                       |
| E |                                      | 130933     |                            | Aug. 14, 1992                       |
|   |                                      | 130934     | 245891                     | Aug. 14, 1992                       |
| E | POPLAR 9                             | 130935     | 245892                     | Aug. 14, 1992                       |
|   | POPLAR 10                            | 130936     | 245893                     | Aug. 14, 1992                       |
|   | POPLAR 11                            | 130937     | 245894                     | Aug. 14, 1992                       |
|   | POPLAR 12                            | 130938     | 245895                     | Aug. 14, 1992                       |
|   | POPLAR 13                            | 130939     | 245896                     | Aug. 14, 1992                       |
|   | POPLAR 14                            | 130940     | 245897                     | Aug. 14, 1992                       |
|   | POPLAR 15                            | 98818      | 245331                     | May 27, 1992                        |
|   | POPLAR 16                            | 98819      | 245332                     | May 27, 1992                        |
|   | POPLAR 17                            | 98820      | 245333                     | May 27, 1992                        |
|   | POPLAR 18                            | 98821      | 245334                     | May 27, 1992                        |
|   | POPLAR 19                            | 98822      | 245335                     | May 27, 1992                        |
|   | POPLAR 20                            | 98823      | 245336                     | May 27, 1992                        |
| ] | POPLAR 33                            | 110642     | 245454                     | Jun. 01, 1992                       |
|   |                                      | 220644     |                            |                                     |
| ] | POPLAR 35                            | 110644     | 245455                     | Jun. 01, 1992                       |
|   |                                      |            |                            |                                     |

|         | CLAIM N          |    | RECORD           | NO. |        | TENURE NO. |      |     |      |
|---------|------------------|----|------------------|-----|--------|------------|------|-----|------|
|         | POPLAR           | 37 | 110646           |     | 245456 |            | Jun. | 01, | 1992 |
|         |                  |    |                  |     |        |            |      |     |      |
|         | POPLAR           |    | 131404           |     | 245910 |            | Sep. | 23, | 1992 |
|         | POPLAR           | 49 | 131405           |     | 245911 |            |      |     | 1992 |
|         | POPLAR           | 50 | 131406           |     | 245912 |            | Sep. | 23, | 1992 |
|         | POPLAR           | 51 | 131407           |     | 245913 |            |      |     | 1992 |
|         | POPLAR           | 52 | 131408           |     | 245914 |            |      |     | 1992 |
|         | POPLAR           | 53 | 131409           |     | 245915 |            |      |     | 1992 |
|         | POPLAR           |    | 131410           |     | 245916 |            | _    | -   | 1992 |
|         | POPLAR           |    |                  |     | 245917 |            |      |     | 1992 |
|         | POPLAR           |    | 131412           |     | 245918 |            |      |     | 1992 |
|         | POPLAR           |    |                  |     | 245919 |            | -    |     | 1992 |
|         | POPLAR           |    | 131414           |     | 245920 |            |      |     | 1992 |
|         | POPLAR           |    |                  |     | 245921 |            |      |     | 1992 |
|         | POPLAR           |    |                  |     | 245922 |            |      |     | 1992 |
|         | POPLAR           |    |                  |     | 245923 |            |      |     | 1992 |
|         | POPLAR           |    | 131418           |     | 245924 |            |      |     | 1992 |
|         | POPLAR           |    |                  |     | 245925 |            |      |     | 1992 |
|         | POPLAR           |    | 131420           |     | 245926 |            | -    |     | 1992 |
|         | POPLAR           |    |                  |     | 245927 |            | _    |     | 1992 |
| · · · · | POPLAR           |    | 131422           |     | 245928 |            |      |     | 1992 |
|         | POPLAR           |    |                  |     | 245929 |            | -    |     | 1992 |
| k       | POPLAR           |    | 131424           |     | 245930 |            |      |     | 1992 |
|         | POPLAR           |    | 131425           |     | 245931 |            |      |     |      |
|         | POPLAR           |    | 131425           |     | 245932 |            |      |     | 1992 |
|         | POPLAR           |    | 131420           |     | 245933 |            |      |     | 1992 |
|         | POPLAR           |    | 131427           |     | 245933 |            | -    |     | 1992 |
|         | POPLAR           |    | 131428           |     | 245935 |            |      |     | 1992 |
|         | POPLAR           |    | 131429           |     | 245935 |            | _    |     | 1992 |
|         |                  |    |                  |     |        |            |      |     | 1992 |
|         | POPLAR           |    | 131431           |     | 245937 |            |      |     | 1992 |
|         | POPLAR<br>POPLAR |    | 131432           |     | 245938 |            | -    |     | 1992 |
|         |                  |    | 131433           |     | 245939 |            |      |     | 1992 |
|         | POPLAR           |    | 131434           |     | 245940 |            | -    | •   | 1992 |
|         | POPLAR<br>POPLAR |    | 131435<br>131436 |     | 245941 | •          |      |     | 1992 |
|         |                  |    |                  |     | 245942 |            |      |     | 1992 |
|         | POPLAR           |    | 131437           |     | 245943 |            |      |     | 1992 |
|         | POPLAR           |    | 131438           |     | 245944 |            |      |     | 1992 |
|         | POPLAR           |    | 131439           |     | 245945 |            |      |     | 1992 |
|         | POPLAR           |    | 132231           |     | 245957 |            |      |     | 1992 |
|         | POPLAR           |    | 132232           |     | 245958 |            | Sep. |     |      |
|         | POPLAR           |    | 132233           |     | 245959 |            | Sep. |     |      |
|         | POPLAR           |    | 132234           |     | 245960 |            | Sep. |     |      |
|         | POPLAR           |    | 132235           |     | 245961 |            | Sep. |     |      |
|         | POPLAR           |    | 132236           |     | 245962 |            | Sep. |     |      |
|         | POPLAR           |    | 132237           |     | 245963 |            | Sep. |     |      |
|         | POPLAR           |    | 132238           |     | 245964 |            | Sep. |     |      |
|         | POPLAR           |    | 132239           |     | 245965 |            | Sep. |     |      |
|         | POPLAR           |    | 132240           |     | 245966 |            | Sep. |     |      |
|         | POPLAR           |    | 132241           |     | 245967 |            | Sep. |     |      |
|         | POPLAR           |    | 132242           |     | 245968 |            | Sep. | 30, | 1992 |
|         | POPLAR           | 96 | 132243           |     | 245969 |            | Sep. |     |      |
|         |                  |    |                  |     |        |            |      |     |      |

|            | I <u>M NAME</u><br>JAR 97 | <u>RECORD_NO.</u><br>132244 | MINERAL TENURE NO.<br>245970 | EXPIRY DATE<br>Sep. 30, 1992   |  |
|------------|---------------------------|-----------------------------|------------------------------|--------------------------------|--|
|            | • •                       | 133101                      | 246087                       | Nov. 27, 1992                  |  |
| TAG        | 2 (FR)                    | 133102                      | 246088                       | Nov. 27, 1992                  |  |
| TAG        | 1                         | 133184                      | 246095                       | Nov. 04, 1992                  |  |
| TAG        | 2                         | 133185                      | 246096                       | Nov. 04, 1992                  |  |
| TAG        | 3                         | 133186                      | 246097                       | Nov. 04, 1992                  |  |
| TAG        | 4                         | 133187                      | 246098                       | Nov. 04, 1992                  |  |
| TAG        | 5                         | 133188                      | 246099                       | Nov. 04, 1992                  |  |
| TAG        | 6                         | 133189                      | 246100                       | Nov. 04, 1992                  |  |
| TAG        | 7                         | 133190                      | 246101                       | Nov. 04, 1992                  |  |
| TAG        | 8                         | 133191                      | 246102                       | Nov. 04, 1992                  |  |
| TAG        | 9                         | 133192                      | 246103                       | Nov. 04, 1992                  |  |
| TAG        |                           | 133193                      | 246104                       | Nov. 04, 1992                  |  |
| TAG        |                           | 133194                      | 246105                       | Nov. 04, 1992                  |  |
| TAG        |                           | 133195                      | 246106                       | Nov. 04, 1992                  |  |
| TAG        |                           | 133196                      | 246107                       | Nov. 04, 1992                  |  |
| TAG        |                           | 133197                      | 246108                       | Nov. 04, 1992                  |  |
| TAG        |                           | 133198<br>133199            | 246109<br>246110             | Nov 04, 1992                   |  |
| TAG        | 10                        | 122133                      | 240110                       | Nov. 04, 1992                  |  |
| TAG        | 23                        | 133206                      | 246111                       | Nov. 04, 1992                  |  |
| TAG        | 24                        | 133207                      | 246112                       | Nov. 04, 1992                  |  |
| TAG        |                           | 133208                      | 246113                       | Nov. 04, 1992                  |  |
| TAG        |                           | 133209                      | 246114                       | Nov. 04, 1992                  |  |
| TAG        |                           | 133210                      | 246115                       | Nov. 04, 1992                  |  |
| TAG        |                           | 133211                      | 246116                       | Nov. 04, 1992                  |  |
| TAG        |                           | 133212                      | 246117                       | Nov. 04, 1992                  |  |
| TAG        |                           | 133213                      | 246118                       | Nov. 04, 1992                  |  |
| TAG        |                           | 133214                      | 246119                       | Nov. 04, 1992                  |  |
| TAG        |                           | 133215                      | 246120                       | Nov. 04, 1992                  |  |
| TAG        |                           | 133216                      | 246121                       | Nov. 04, 1992                  |  |
| TAG        |                           | 133217                      | 246122                       | Nov. 04, 1992                  |  |
| TAG        |                           | 133218                      | 246123                       | Nov. 04, 1992                  |  |
| TAG        |                           | 133219                      | 246124                       | Nov. 04, 1992                  |  |
| TAG<br>TAG |                           | 133220<br>133221            | 246125                       | Nov. 04, 1992                  |  |
| TAG        |                           | 133222                      | 246126<br>246127             | Nov. 04, 1992                  |  |
| TAG        |                           | 133223                      | 246128                       | Nov. 04, 1992<br>Nov. 04, 1992 |  |
| TAG        |                           | 133224                      | 246129                       | Nov. 04, 1992<br>Nov. 04, 1992 |  |
| TAG        |                           | 133225                      | 246130                       | Nov. 04, 1992<br>Nov. 04, 1992 |  |
| ING        | 72                        | 133223                      | 240130                       | NOV. 04, 1992                  |  |
| TAG        |                           | 133368                      | 246131                       | Nov. 04, 1992                  |  |
|            | 196                       | 133369                      | 246132                       | Nov. 04, 1992                  |  |
|            | 197                       | 133370                      | 246133                       | Nov. 04, 1992                  |  |
| TAG        |                           | 133371                      | 246134                       | Nov. 04, 1992                  |  |
|            | 199                       | 133372                      | 246135                       | Nov. 04, 1992                  |  |
|            | 200                       | 133373                      | 246136                       | Nov. 04, 1992                  |  |
|            | 201                       | 133374                      | 246137                       | Nov. 04, 1992                  |  |
| TAG        | 202                       | 133375                      | 246138                       | Nov. 04, 1992                  |  |
|            |                           |                             |                              |                                |  |

| CLAI | IM NAME | RECORD NO. | MINERAL | TENURE | <u>NO.</u> | EXI  | PIRY | DATE |
|------|---------|------------|---------|--------|------------|------|------|------|
| TAG  | 203     | 133376     | 246139  |        |            | Nov. | 04,  | 1992 |
| TAG  | 204     | 133377     | 246140  |        |            | Nov. | 04,  | 1992 |
| TAG  | 205     | 133378     | 246141  |        |            | Nov. | 04,  | 1992 |
| TAG  | 206     | 133379     | 246142  |        |            | Nov. | 04,  | 1992 |
| TAG  | 207     | 133380     | 246143  |        |            | Nov. | 04,  | 1992 |
| TAG  | 208     | 133381     | 246144  |        |            | Nov. | 04,  | 1992 |
| TAG  | 209     | 133382     | 246145  |        |            | Nov. | 04,  | 1992 |
| TAG  | 210     | 133383     | 246146  |        |            | Nov. | 04,  | 1992 |
| TAG  | 211     | 133384     | 246147  |        |            | Nov. | 04,  | 1992 |
| TAG  | 212     | 133385     | 246148  |        |            | Nov. | 04,  | 1992 |
|      |         |            |         |        |            |      |      |      |
| WAR  | 1       | 302        | 300580  |        |            | May  | 27,  | 1992 |

The records in the office of the Mining Recorder as of July 16, 1991 indicate that all of the above claims are owned by Mr. Michael J. Callaghan as to one-third, Mr. Frank Onucki as to one-third and Mr. Clyde V. Critchlow as to one-third. Messers Onucki and Critchlow have recently entered into an option agreement with Metamin Enterprises Inc. which company in turn has an option agreement with New Canamin Resources Ltd. The terms of the option agreements are beyond the scope of the report.

#### HISTORY

Carter (1974) and Jones (1972) report that the Poplar porphyry prospect was originally staked by M. Callaghan, F. Onucki and C. Critchlow in 1971 for El Paso Mining and Milling Co. During 1971 - 1972, El Paso conducted soil geochemistry, geological mapping and bulldozer trenching. Results were disappointing and the property was subsequently acquired by the original stakers.

According to Mesard, Godwin and Carter (1979) the Poplar property was optioned by Utah Mines Ltd. in 1974. Development work to 1977 included geological and topographic mapping, soil geochemistry, magnetometer and induced polarization surveys as well as forty diamond drill holes for a total of 8,281 metres (Bowen, 1975 and 1976). In 1978, P.M. Mesard conducted fieldwork for an M.A.Sc. thesis at the University of British Columbia and N.C. Carter obtained biotite monzonite porphyry samples for K/A age dating.

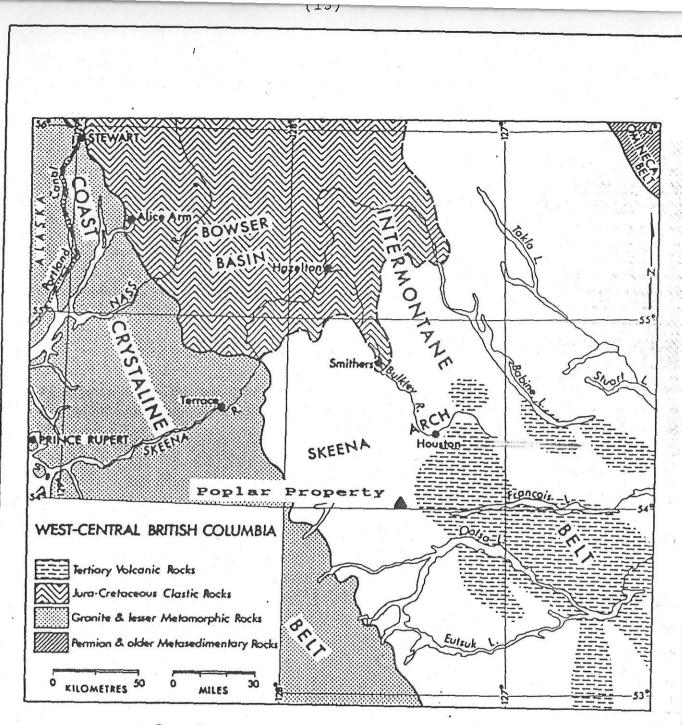
By 1982, Utah Mines Ltd. had diamond drilled a total of 17,900 metres in 73 holes, expended \$ 2,500,000 and estimated a global reserve of 260,000,000 tonnes of 0.37% copper "equivalent" at a 0.25% copper "equivalent" cut-off (Janes (1982)). In April 1982, Utah Mines Ltd. filed ten years of assessment work on the claims, allowed the option to lapse and returned the property to the original vendors. There has been no additional work done on the property since 1982.

In 1991, Metamin Enterprises Inc. optioned the property and subsequently reoptioned the property to New Canamin Resources Ltd.

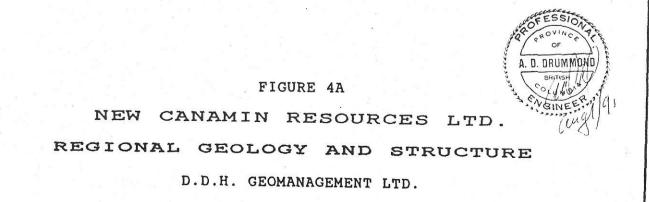
## REGIONAL GEOLOGY

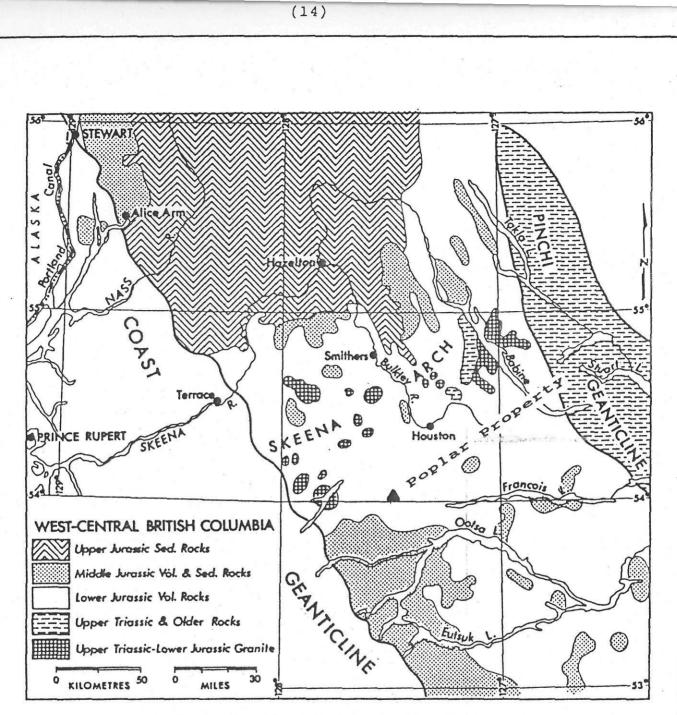
The geology of the Smithers - Houston region has been studied by many workers (Tipper and Richards(1976); Carter and Kirkham (1969); Tipper (1976) and Carter (1981)).

The description of the regional geological setting that follows is taken from Carter (1981). The Poplar porphyry deposit lies within the Intermontane Belt to the east of the Coast Crystalline Belt and south of the Skeena Arch (See Figure 4 - A). The Intermontane Belt is underlain principally by Mesozoic volcanic and sedimentary rocks. The Skeena Arch which was a prominent transverse structure during Early Mesozoic time, marks the boundary between the Bowser successor basin to the north and a broad area to the southeast covered by a veneer of Early to Late Tertiary volcanic rocks (See Figures 4 - B and 4 - C).

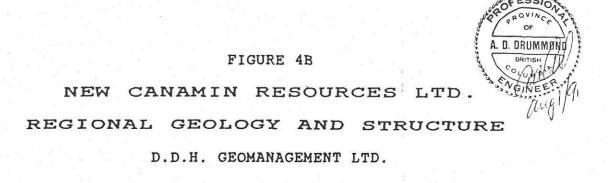

The Table of Formations, Table 1 is reproduced from Carter (1981), p. 31.

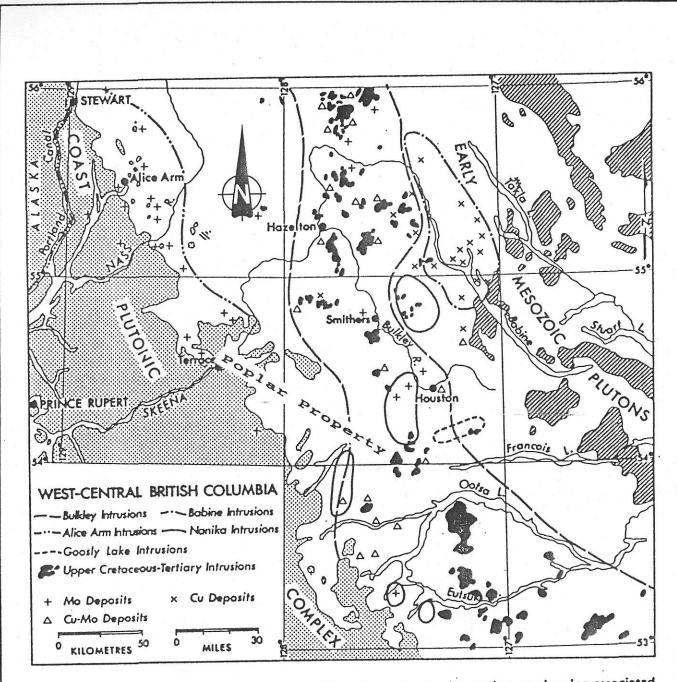
Mesard, Godwin and Carter (1979) have reported two biotite potassium-argon age dates from a 'biotite monzonite porphyry' which rock is associated with the Poplar porphyry copper deposit as being 71.9 +/- 2.5 and 75.1 +/- 2.3 million years. This age places the intrusions in Late Cretaceous time which correlates with the Bulkley Intrusions. Regional distribution of the Bulkley Intrusions is shown in Figure 4 - C.


The Skeena Arch was a positive feature only during Jurassic time and provided one of the controls for the emplacement of Upper Triassic and Lower Jurassic plutons. Most smaller intrusions of Late Cretaceous and Tertiary age show no apparent relationship to the Skeena Arch according to Carter (1981). Figure 4 - C demonstrates the regional intrusive setting as a north - south trending zone of porphyry copper +/- molybdenum +/- gold +/- silver disseminated deposits each of which is associated with one of four intrusive types.


### PROPERTY GEOLOGY

The Poplar copper-molybdenum deposit is centered on a Late Cretaceous differentiated calc-alkaline stock which intruded Lower and Upper Cretaceous volcanic and epiclastic rocks. Late Cretaceous volcanic flows cap the stock. The Poplar stock is zoned with a hornblende monzodiorite border phase grading into a central





Generalized tectonic map (modified after Sutherland Brown, et al., 1971). (Modified after Carter, 1981, page 29)





Distribution of Late Triassic and Jurassic rocks (Modified after Carter, 1981, page 38)





(15)

Classification and distribution of intrusive suites in the study area showing associated mineral deposit types. (Modified after Carter, 1981, page 46)

FIGURE 4C



NEW CANAMIN RESOURCES LTD.

D.D.H. GEOMANAGEMENT LTD.

#### TABLE 1. TABLE OF FORMATIONS

(16)

#### SEDIMENTARY AND VOLCANIC ROCKS

| ERA                      | PERIOD                     | EPOCH                                           | FORMATION                                                        | LITHOLOGY                                                                                                                                           |
|--------------------------|----------------------------|-------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Cenozok                  | Quaternary<br>Tertiary     | Pleistocene and<br>Recent<br>Eocene and Miocene | Endako Group,<br>Goosly Lake and Buck Creek volcanic rocks       | Basalt flows and cinder cones.<br>Basalt and andesite flows and brecclas; some<br>rhyolite and dacite.                                              |
|                          |                            |                                                 | Unconformity                                                     |                                                                                                                                                     |
| Mesozoic and<br>Cenozoic | Cretaceous<br>and Tertlary | Upper Cristaceous<br>and Paleocene              | Ootse Leke Group,<br>Tip Top Hill volcenic rocks<br>Sustut Group | Basalt, andesite, dacite, and related tuffs and<br>breccias; some rhyolite flows and breccias.<br>Sandstone, conglomerate, and shale.               |
|                          |                            |                                                 | Unconformity                                                     | •                                                                                                                                                   |
|                          | Creteceous                 | Lower Cretaceous                                | Skeena Group,<br>Brian Boru and Redrose Formations               | Siltstone, aendstone, shale; porphyritic andesite<br>flows; breccias and tuffs.                                                                     |
|                          |                            |                                                 | Unconformity                                                     |                                                                                                                                                     |
|                          | Jurassic and<br>Cretaceous | Upper Jurassic and<br>Lower Cretaceous          | Hazelton Group (in part)                                         | Siltstone, greywacke, sandstone, conglomerate, arglilite; minor limestone and coal.                                                                 |
|                          |                            |                                                 | Local Unconformity                                               |                                                                                                                                                     |
| Mesozoic                 |                            | Middle Jurassic                                 | Hazelton Group                                                   | Andesite, baselt, dacite tuffs and brecclas; volcanic sendstone and conglomerate; siltstone and greywacks.                                          |
|                          | Jursesic                   | · · ·                                           | Unconformity                                                     | ••••••••••••••••••••••••••••••••••••••                                                                                                              |
| 9<br>20<br>21            |                            | Lower Jurassic                                  | Hazelton Group                                                   | Green, red, and purple andesite and baselt tuffs and<br>brecclas; volcanic sandstone and conglomerate;<br>argillite and greywacke.                  |
|                          |                            |                                                 | Local Unconformity                                               |                                                                                                                                                     |
| Mesozoic                 | Triessic                   | Upper Triassic                                  | Takia Group (in part)                                            | Mafic volcanic rocks: volcanic sandstone; argillite,<br>limestone, chert; some acid metavoicanic rocks;<br>chlorite, sericite, and blotite schists. |
|                          | ·····                      |                                                 | Unconformity                                                     | · · · · · · · · · · · · · · · · · · ·                                                                                                               |
| Paleozoic                | Permian and older ?        |                                                 | Cache Creek Group                                                | Andesite flows and breccias; chert, limestone,<br>quartzite; chlorite and hornblende schists.                                                       |

#### METAMORPHIC ROCKS

| 2         |                                                       |
|-----------|-------------------------------------------------------|
|           | Gnelss complex: almandine-amphibolite facies gnelsees |
| Paleozoic | and related migmatite; greepstone, amphibolite, and   |
|           | schist.                                               |

.

#### INTRUSIVE ROCKS

|                              |                                         | Oligocene                          |                            | Lamprophyre dyke swarms.                                                                             |
|------------------------------|-----------------------------------------|------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------|
|                              |                                         |                                    | Portland Canal dyke swarms | Granitic rocks                                                                                       |
|                              | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - |                                    | Goosly Lake intrusions     | Gabbro syenomonzonite.                                                                               |
| Cenozoic                     | Tertiary                                | Eocene                             | Alice Arm Intrusions       | Quartz monzonite and granite porphyry.                                                               |
|                              |                                         |                                    | Nanika intrusions          | Quartz monzonite porphyry, feldspar porphyry, and felsite.                                           |
|                              |                                         |                                    | Babine Intrusions          | Quartz diorite and granodiorite porphyry.                                                            |
| Cenozoic and<br>Mesozoic (?) | Tertiary and<br>older (?)               |                                    | Coast Plutonic Complex     | Granitic rocks: quartz diorite, granodiorite, quartz<br>monzonite; locally foliated and/or gnelssic. |
| ." Cretaceous                |                                         | Upper Cristaceous                  | Bulkley intrusions         | Porphyritic quartz monzonite and granodiorite.                                                       |
|                              | Jurassic and<br>Cretaceous              |                                    | Kitsault Intrusions        | Feldspar porphyry, augite porphyry, hornblende<br>diorite.                                           |
| Mesozoic                     |                                         | Upper Jurassic                     | Francols Lake Intrusions   | Porphyritic quartz monzonite, granodiorite, and<br>quartz diorite.                                   |
|                              | Jurassic                                | Lower and Middle<br>Jurassic       | Omineca Intrusions         | <ul> <li>Granodiorite, quartz diorite, syenite, gabbro,<br/>monzonite, and diorite.</li> </ul>       |
|                              | Triassic and<br>Jurassic                | Upper Triassic —<br>Lower Jurassic | Topley intrusions          | Quartz monzonite, granodiorite, and quartz diorite;<br>porphyritic varieties.                        |
|                              |                                         | A                                  | Intrusive Contact          |                                                                                                      |
| Paleozoic                    | Permian                                 | 1                                  | Trembleur Intrusions       | Ultramafic rocks                                                                                     |

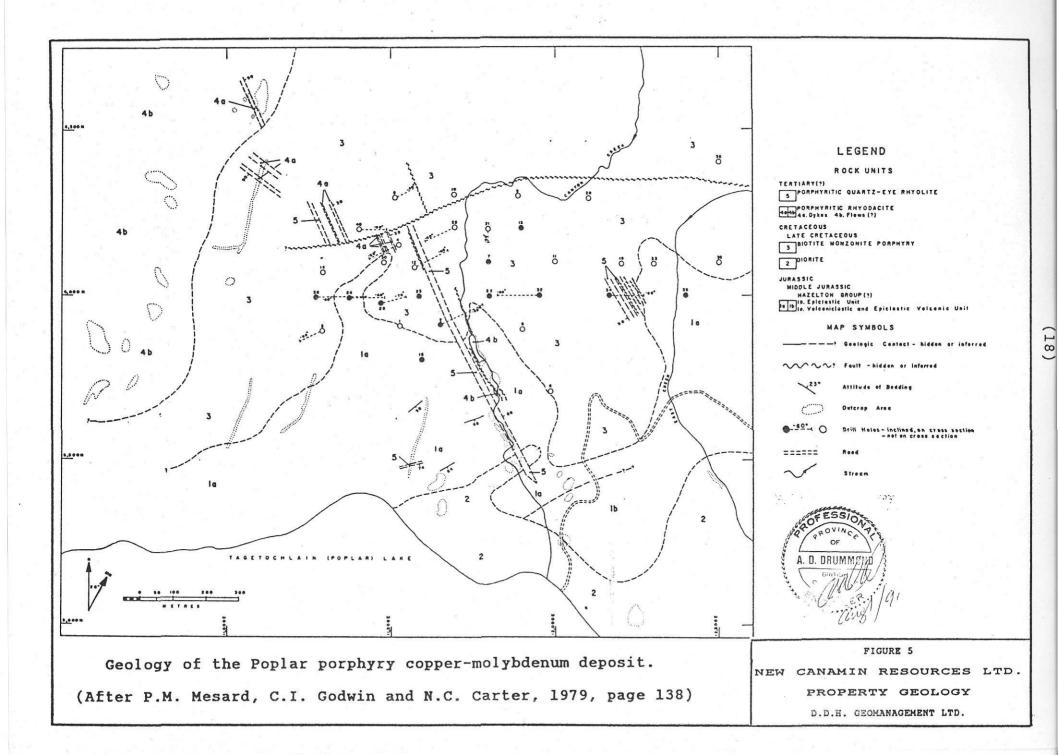
(after Carter, 1981, page 31)

biotite monzonite porphyry. Several types of northwest trending post-mineral dykes cut the stock.

### A. HOST ROCKS (Unit la and lb)

Volcanic and sedimentary rocks of the Hazelton Group of Early to Middle Jurassic age can be subdivided into two units on the property (Bowen, 1975 and 1976, Mesard et al, 1979). A lower volcanic units consists of a dark grey to pale tan dust and lapilli tuff, agglomerate, massive andesite and chlorite-zeolite-carbonate amygdaloidal flows, argillaceous tuff and siltstone. This is Unit la which is defined by Mesard et al (1979) as a volcaniclastic and epiclastic volcanic member. Bedding attitudes are 050 to 075 degrees with dips of 50 to 80 degrees southwesterly. The overlying unit consists of moderately sorted polylithic conglomerate and sandstone. This is Unit 1b - an epiclastic member as defined by Mesard et al (1979) (See Figure 5 - Geology Map).

### B. INTRUSIVE ROCKS (Unit 2 and 3)


Diorite (Unit 2)

The diorite is generally porphyritic with 20% coarse-grained hornblende in an aphanitic pinkish tinged groundmass. Magnetite is a common accessory. The diorite has a chilled margin against Unit lb.

#### Biotite Monzonite Porphyry (Unit 3)

The biotite monzonite porphyry has distinctive medium-grained euhedral phenocrysts of plagioclase (up to 70% of the rock) and biotite (7 to 10% of the rock) in a pink to dark grey aphanitic groundmass. Hydrothermal alteration and sulphide mineralization are most abundant in this Unit. Pyrite, chalcopyrite and molybdenite are largely fracture controlled in this Unit (Bowen, 1975).

Contact relations against Hazelton rocks are typically steep and sheared. Potassium-argon age dates on biotite from Unit 3 gave 71.9 +/- 2.5 and 75.1 +/- 2.3 million years suggesting a Late Cretaceous age and a part of the Buckley Intrusions. These intrusive rocks are also associated with disseminated copper-molybdenum mineralization at the Huckleberry and Ox Lake porphyry deposits to the south.



C. DYKE ROCKS (Unit 4a, 4b and 5)

Unit 4 a, a porphyritic rhyodacite has fine to medium-grained plagioclase phenocrysts in a maroon aphanitic groundmass. Locally quartz eyes (up to 5 mm), medium-grained biotite, elongated amygdales and a trachytoid texture occur.

Unit 4b, a porphyritic flow(?) rock is composed of up to 50% fine to medium-grained phenocrysts of plagioclase, biotite, hornblende and potassium feldspar in a reddish brown to pink aphanitic groundmass. Mesard et al (1979) noted that these flows(?) are typically fresh and unmineralized.

Unit 5, a white to tan porphyritic quartz eye rhyolite is composed of abundant well-rounded quartz eyes (up to 6 mm) with mediumgrained euhedral plagioclase and biotite phenocrysts in an aphanitic groundmass. Unit 5 is the most abundant dyke rock and intruded all other units except Unit 4b (Mesard et al, 1979) (See Figure 5 - Geology Map).

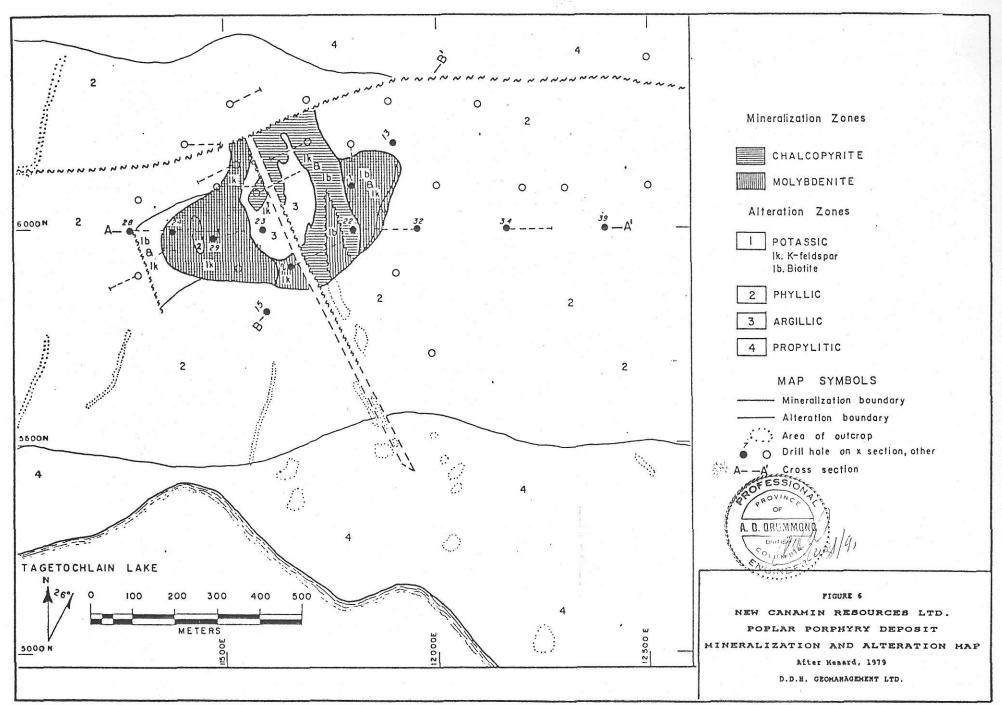
The dyke swarms shown in Figure 5 appear to be an expression of a dominant north northwestern structural trend which can have a width of 200 metres or more (Bowen, 1976).

#### D. ALTERATION AND MINERALIZATION

All significant hydrothermal alteration and sulphide concentrations are restricted to the Poplar stock and its thermal aureole. Hornfelsing in the volcanic rocks occurs up to 300 metres from the biotite monzonite contact (Bowen, 1976). Within the hornfelsed aureole, there is an increase in quartz-pyrite veining towards the stock contact. Outside of the aureole, chlorite-epidote or quartzepidote+/-pyrite veining occurs in a propylitic facies.

Mesard (1979) and Mesard et al (1979) report that the major alteration assemblages are:

(1) Potassic: potassium feldspar+secondary biotite+magnetite+
 gypsum+/-quartz+/-hematite;


(2) Phyllic: quartz+sericite+pyrite+/-gypsum+/-clay+/-carbonate +/-hematite;

(3) <u>Argillic</u>: clay+/-sericite+/-carbonate+/-quartz, and

(4) Propylitic: chlorite+/-carbonate+/-epidote+/-albite(?).

The most widespread alteration is phyllic followed by potassic and propylitic. Argillic alteration is minor.

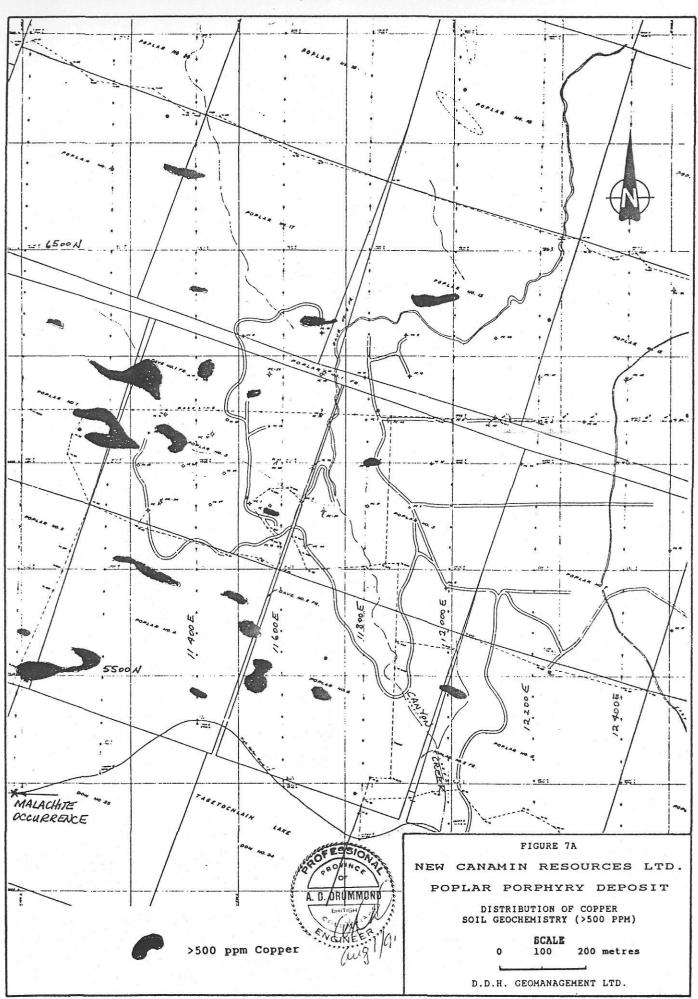
Distribution of alteration facies was compiled by Mesard (1979) for the main mineralized area of the Poplar deposit which map is reproduced as Figure 6.

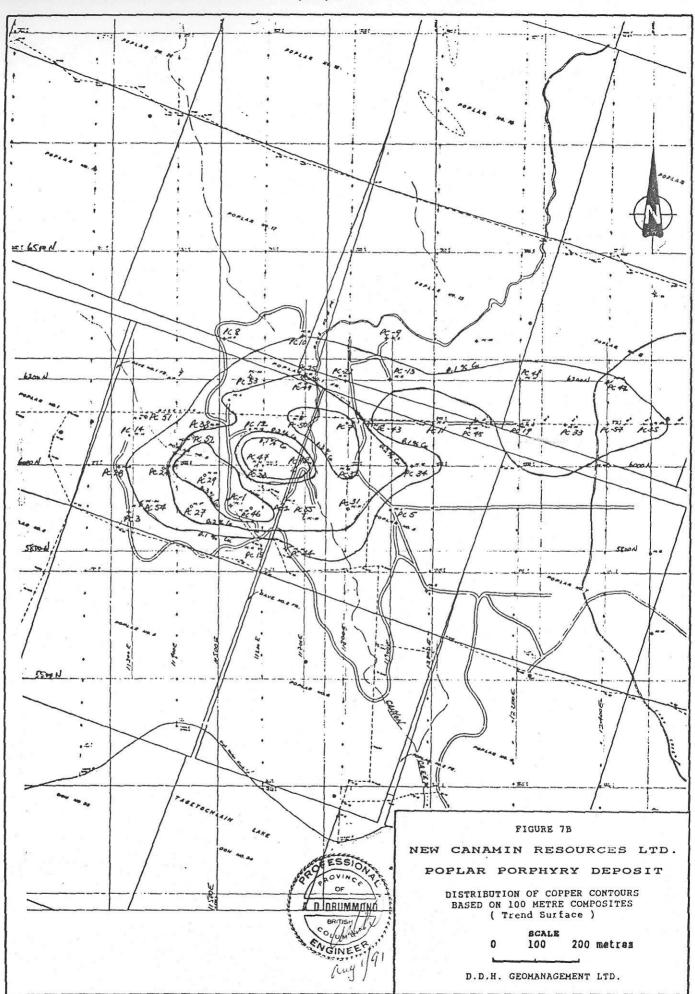


(20)

Sulphide minerals, in order of decreasing abundance, include: pyrite, chalcopyrite and molybdenite. Traces of sphalerite, galena, tetrahedrite, covellite and chalcocite occur in veins. Chalcopyrite is commonly disseminated and closely associated with sericitized biotite. Molybdenite occurs mainly in veins associated with gypsum and quartz.

Distribution of sulphide minerals is shown in Figure 6 for the main of the mineralized area Poplar deposit. Alteration and mineralization zoning in and around the Poplar stock consists of a 600 metre by 500 metre potassic facies annulus with chalcopyrite and molybdenite surrounding a 300 metre by 150 metre core of weakly mineralized argillic alteration. The above zones occur within a metre wide east-west trending phyllic alteration 750 zone peripheral to which is a weak propylitic alteration assemblage.


#### E. SOIL GEOCHEMICAL RESPONSE


El Paso Mining and Milling Co. conducted a "B" horizon geochemical survey on the Poplar 1 - 20 mineral claims area (Jones, 1972). A 7,400 foot baseline was established at 110 degrees azimuth with cross lines at 020 degrees azimuth every 200 feet with stations every 100 feet. A total of 2,231 soil samples were collected and analyzed for copper, molybdenum and silver. Molybdenum results were of little significance (Jones (1972), p.4). Copper indicated a collection of 500 ppm (parts per million) highs within a wider area of 200 ppm copper areas west of Canyon Creek (See Figure 7A). The distribution of the 500 ppm copper areas suggests a glacial dispersion from west to east which is in agreement with Tipper (1963) who has shown west to east ice movement in the adjacent Nechako River Map-Area. Silver geochemical response was one of scattered greater than 4 ppm silver, some of which coincided with greater than 500 ppm copper. Figure 7B illustrates the position of a 100 metre thick trend surface for copper. Comparing Figures 7A and 7E, anomalous copper values in soil are not explained by known mineralization or by reported ice movement in the area. This suggests that additional near surface mineralization exists to the northwest, west and south of the drill defined zones. Further exploration by drilling is warranted.

#### F. GEOPHYSICAL SURVEY RESPONSE

Assessment reports have indicated that line cutting covered an area of 13 square kms (Bowen, 1976). The following line-kms of grid have been utilized by Utah Mines Ltd. for the outlined activity: magnetometer survey - 114.6 line-kms; induced polarization (I.P.) survey - 54.8 line-kms; altimeter (topographic) survey - 76.8 linekms, and geological mapping - 81.5 line-kms. Line spacing was 200







metres on north-south lines with stations every 50 metres.

Magnetometer Survey

Magnetic susceptibility according to Bowen (1976) showed a very subdued response. The main feature was a large central area of very gentle magnetic relief surrounded by areas of more magnetic activity. Maximum anomaly values were in the order of 1,500 gammas. These findings from ground magnetometer surveys are in agreement with the regional aeromagnetic maps (Map 7750G -Whitesail Lake, B.C. - Sheet 93E and Map 7760G - Smithers, B.C. -Sheet 93L). Magnetic declination in the area is 24.5 degrees east.

Induced Polarization Survey

In 1974 and 1975, induced polarization surveys were conducted by Utah Mines Ltd. Bowen (1975) reported that n=2 and n=4 data show anomalous chargeability values from line 10,400E to 13,400E and form 5,100N to 6,750N or an anomaly length of 3.0 kms east-west and 1.6 kms north-south. Bowen (1975) pointed out that the position of Tagetochlain (Poplar) Lake prevented closing off the anomaly to the south. Bowen (1975) correlated the high chargeability response to widespread pyrite (sulphides) and possibly to clay alteration. He mentioned that apparent resistivity values do not show any correlation with chargeability data. obvious The apparent resistivity values varied from 50 to 2,400 ohm-metres with most of the area showing 150 to 500 ohm-metres. The size of the drill tested copper zone is small relative to the 3.0 km by 1.6 km induced polarization anomaly reported. The copper geochemistry and mineralization lie within the induced polarization anomaly and together cover an area of 1.5 km by 1.0 km which area is about twice the dimensions of the drill tested area. If conductive overburden is not the source of the chargeability, then the Poplar copper deposit, as currently defined, is part of a very large sulphide system, the limits of which are still not defined.

#### G. DIAMOND DRILLING

Utah mines Ltd. drilled 17,900 metres in 73 NQ size diamond drill core holes during the period 1974 to 1981. Locations are listed below. Hole No. North East Depth Dip Dir. O.B. Date Drilled (m) (m) (Azi) (m) (m) Mo., Yr. PC - 01 5905 11526 300.8 090 -0.6 Oct. 1974 PC - 02 5909 11648 285.6 060 065 7.6 Oct. 1974

(25)

| Hole No.                                 | North<br>(m)                 | East<br>(m)                      | Depth<br>(m)                     | Dip                      | Dir.<br>(Azi)        | O.B.<br>(m)                 | Date Drilled<br>Mo., Yr.                         |
|------------------------------------------|------------------------------|----------------------------------|----------------------------------|--------------------------|----------------------|-----------------------------|--------------------------------------------------|
| PC - 03<br>PC - 04<br>PC - 05<br>PC - 06 | 5890<br>6151<br>5895<br>5707 | 11291<br>11523<br>11898<br>11986 | 153.3<br>197.2<br>179.2<br>172.5 | 060<br>060<br>090<br>090 | 245<br>245<br>-<br>- | 16.7<br>8.2<br>23.5<br>18.6 | Nov. 1974<br>Nov. 1974<br>May 1975<br>May 1975   |
| PC - 07<br>PC - 08<br>PC - 09            | 6100<br>6297<br>6299         | 11798<br>11510<br>11889          | 229.2<br>153.0<br>200.5          | 090<br>060<br>090        | -<br>065<br>-        | 25.0<br>19.2<br>26.0        | May 1975<br>May 1975<br>May 1975                 |
| PC - 10<br>PC - 11<br>PC - 12            | 6305<br>6100<br>6085         | 11693<br>11999<br>11571          | 191.4<br>188.4<br>230.7          | 090<br>090<br>060        | -<br>-<br>065        | 24.7<br>21.0<br>3.4         | Jun. 1975<br>Jun. 1975<br>Jun. 1975              |
| PC - 13<br>PC - 14<br>PC - 15            | 6200<br>6075<br>5804         | 11900<br>11375<br>11594          | 160.9<br>153.9<br>152.7          | 090<br>090<br>090        | -                    | 21.0<br>11.6<br>3.7         | Jun. 1975<br>Jun. 1975<br>Jun. 1975              |
| PC - 16<br>PC - 17<br>PC - 18            | 5672<br>5611<br>5797         | 12703<br>12505<br>12501          | 260.9<br>230.7<br>191.1          | 090<br>090<br>090        | -                    | 12.5<br>6.1<br>3.0          | Jun. 1976<br>Jun. 1976<br>Jun. 1976              |
| PC - 19<br>PC - 20<br>PC - 21            | 6096<br>6293<br>6200         | 12203<br>12102<br>11797          | 188.1<br>200.5<br>227.7          | 090<br>090<br>080        | -<br>-<br>180        | 6.7<br>12.0<br>33.5         | Jun. 1976<br>Jun. 1976<br>Jun. 1976              |
| PC - 22<br>PC - 23<br>PC - 24<br>PC - 25 | 5998<br>5998<br>5993<br>6206 | 11801<br>11587<br>11374<br>11696 | 184.1<br>206.4<br>214.6<br>196.9 | 090<br>090<br>060<br>060 | -<br>-<br>090<br>115 | 27.9<br>6.7<br>6.7<br>32.3  | Jun. 1976<br>Jul. 1976<br>Jul. 1976              |
| PC - 26<br>PC - 27<br>PC - 28            | 5494<br>5904<br>5996         | 12704<br>11436<br>11271          | 185.3<br>303.9<br>306.6          | 090<br>090<br>090        | - 090                | 16.0<br>7.5<br>21.3         | Jul. 1976<br>Jul. 1976<br>Sep. 1976<br>Oct. 1976 |
| PC - 29<br>PC - 30<br>PC - 31            | 5977<br>6101<br>5899         | 11468<br>11476<br>11803          | 239.6<br>260.9<br>252.1          | 070<br>060<br>080        | 077<br>090<br>090    | 15.4<br>11.5<br>33.0        | Oct. 1976<br>Oct. 1976<br>Oct. 1976<br>Oct. 1976 |
| PC - 32<br>PC - 33                       | 6000<br>6096                 | 11950<br>12301                   | 257.3<br>370.0                   | 060<br>090               | 270                  | 29.2<br>3.5                 | Oct. 1976<br>Oct. 1976/<br>Nov. 1979             |
| PC - 34<br>PC - 35                       | 6100                         | 12162<br>ded to<br>12500         | 215.2<br>367.9<br>182.0          | 060<br>090               | 090                  | 7.5<br>3.0                  | Oct. 1976/<br>May, 1981<br>May, 1977             |
| PC - 35<br>PC - 36<br>PC - 37            | 6407<br>6400                 | ded to<br>12507<br>14621         | 608.7<br>185.0<br>119.5          | 090<br>045               | _<br>055             | 3.0<br>15.0                 | May, 1981<br>May, 1977<br>May, 1977              |
| PC - 38<br>PC - 39<br>PC - 40            | Missing<br>6217              | Data<br>11400                    | Missing                          |                          |                      | 4 0                         | Nov. 1070                                        |
| PC - 41<br>PC - 42<br>PC - 43<br>PC - 44 | 6200<br>6200<br>6101<br>5806 | 12000<br>12400<br>11846<br>11657 | 300.8<br>287.6<br>303.9<br>306.9 | 090<br>090<br>060<br>060 | -<br>-<br>090<br>090 | 4.0<br>4.0<br>30.5<br>6.1   | Nov. 1979<br>Nov. 1979<br>May, 1980<br>May, 1980 |
| PC - 45<br>PC - 46<br>PC - 47            | 6100<br>5900<br>5998         | 12100<br>11576<br>11589          | 337.4<br>306.9<br>319.1          | 090<br>060<br>060        | 090<br>-<br>090      | 6.0<br>7.1<br>6.1           | May, 1980<br>May, 1980<br>May, 1980<br>May, 1980 |
| PC - 48                                  | 5988                         | 11673                            | 151.2                            | 060                      | 090                  | 7.0                         | May, 1980<br>May, 1980                           |

....

| Hole No.  | North<br>(m) | East<br>(m)          | Depth<br>(m) | Dip | Dir.<br>(Azi) | O.B.<br>(m) | Date Drilled<br>Mo., Yr. |
|-----------|--------------|----------------------|--------------|-----|---------------|-------------|--------------------------|
| PC - 49   | 6210         | 11700                | 303.9        | 060 | 090           | 34.0        | May, 1980                |
| PC - 50   | 6113         | 11693                | 180.4        | 090 | -             | 39.6        | May, 1980                |
| PC - 51   | 6121         | 11331                | 374.0        | 060 | 090           | 16.0        | Jun. 1980                |
| PC - 52   | 6069         | 11438                | 300.8        | 060 | 090           | 16.0        | Jun. 1980                |
| PC - 53   | 6207         | 11571                | 200.3        | 060 | 270           | 9.7         | Jun. 1980                |
| PC - 54   | 5908         | 11320                | 201.2        | 060 | 090           | 15.2        | Jun. 1980                |
| PC - 55   | 5887         | 11700                | 215.5        | 060 | 090           | 9.1         | Jun. 1980                |
| FC - 56   | 5898         | 12383                | 309.7        | 090 | -             | 7.6         | Apr. 1981                |
| PC - 57   | 6093         | 12403                | 456.3        | 090 | -             | 6.7         | Apr. 1981                |
| PC - 58   | 6298         | 12307                | 306.9        | 090 | -             | 10.4        | Apr. 1981                |
| PC - 59   | 6194         | 12015                | 361.8        | 070 | 090           | 9.8         | Apr. 1981                |
| PC - 60   | 5895         | 12115                | 334.4        | 060 | 090           | 9.1         | Apr. 1981                |
| PC - 61   | 5998         | 12042                | 312.7        | 070 | 090           | 17.1        | May, 1981                |
| PC - 62   | 5706         | 12123                | 238.7        | 070 | 090           | 7.1         | May, 1981                |
| PC - 63   | 5807         | 11355                | 278.3        | 045 | 090           | 18.9        | May, 1981                |
| PC - 64   | 5770         | 10796                | 203.3        | 073 | 270           | 5.2         | May, 1981                |
| PC - 65   | 6117         | 11694                | 349.6        | 090 | -             | 23.5        | May, 1981                |
| PC - 66   | 6095         | 12604                | 303.9        | 090 | -             | 3.0         | Jun. 1981                |
| PC - 67   | 6198         | 12494                | 294.8        | 070 | 090           | 3.0         | Jun. 1981                |
| PC - 68   | 6195         | 12316                | 316.1        | 090 | -             | 10.1        | Jun. 1981                |
| PC - 69   | 6000         | 12000                | 337.1        | 090 | -             | 28.0        | Oct., 1981               |
| PC - 70   | 5900         | 12000                | 306.7        | 066 | 090           | 20.0        | Nov. 1981                |
| PC - 71   | 6300         | 12400                | 218.2        | 090 | -             | 0.8         | Nov. 1981                |
| PC - 72   | 6300         | 12400                | 309.6        | 060 | 090           | 8.0         | Nov. 1981                |
| PC - 73   | 6000         | 12500                | 328.0        | 090 | -             | 9.0         | Nov. 1981                |
| Note: O.B | . refers     | to overburden depth. |              |     |               |             |                          |

Core and records for holes PC - 38, - 39 and - 40 have not been reviewed and are listed as missing. These holes were reportedly used as a bulk sample and send for testing to a Utah Mines Ltd. facility in Palo Alto, California where 27 barrels of material are said to be in storage.

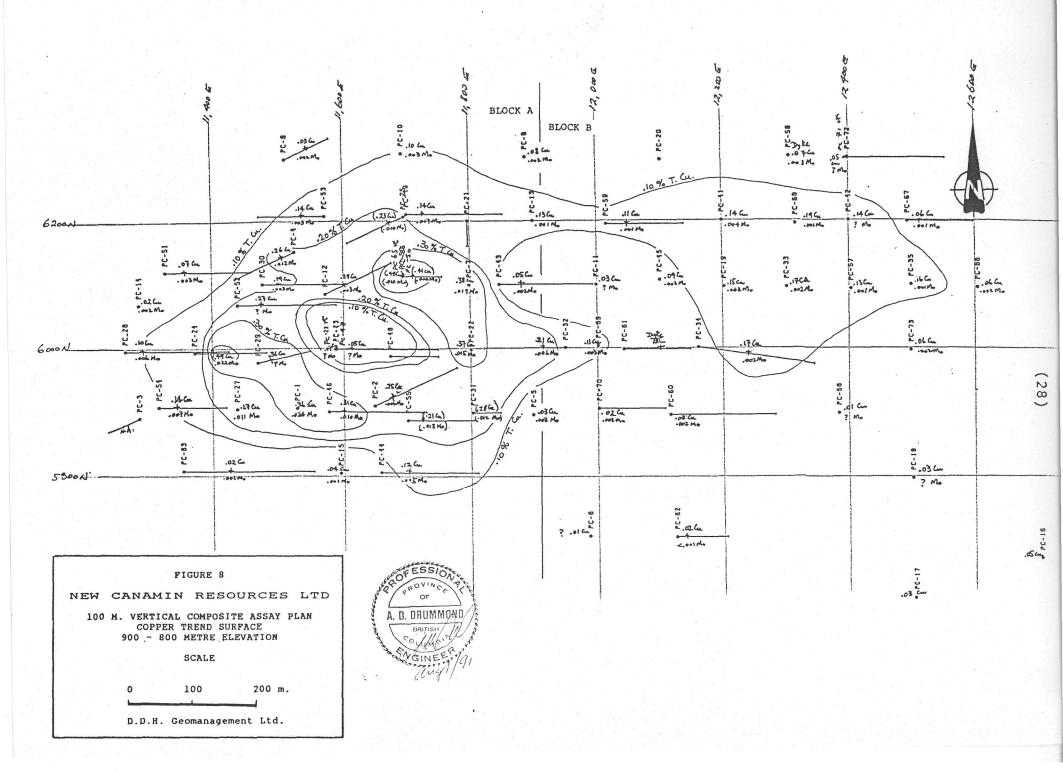
The area in which the majority of holes were drilled is contained within the Poplar 3, 5, 7, 11, 13, 15, 17, and on Poplar No. 1 Fractional mineral claims (See Figure 7B).

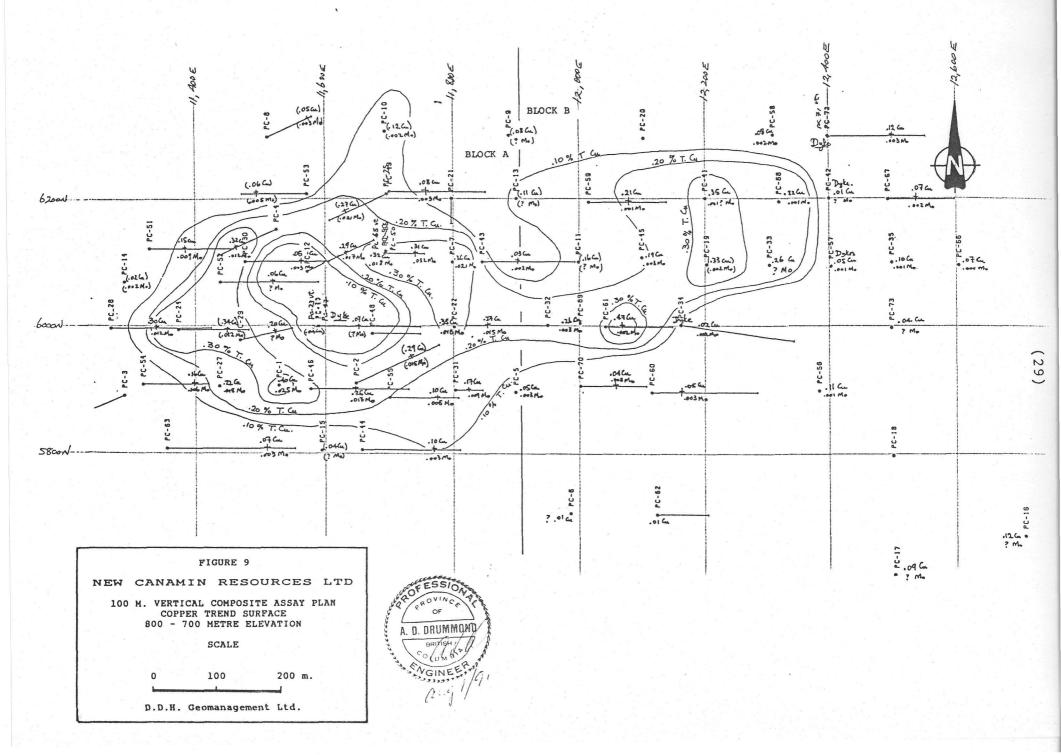
## H. UNDEFINED MINERALOGICAL FEATURES

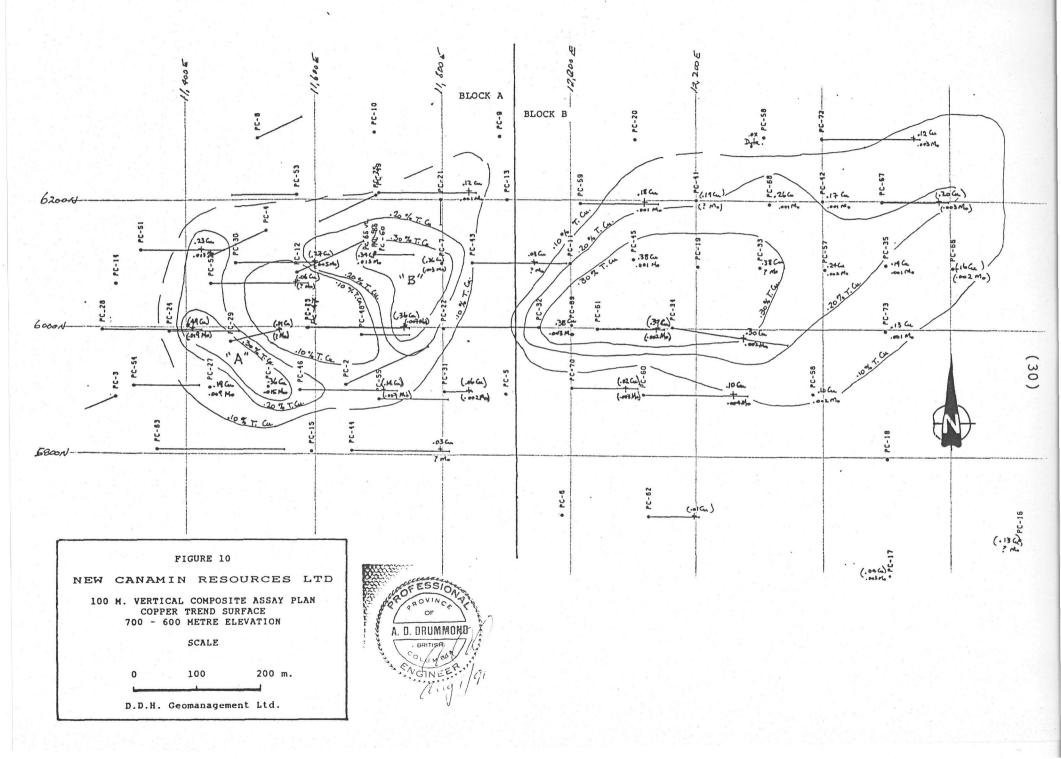
There are three additional areas in which mineralization was reported and these areas remain undefined in the opinion of the writer. The first relates to the WAR mineral claim (See Figure 3 for location) on which the association of antimony-gold was noted in a sulphide-bearing shear(?) zone. The second feature is the existence of malachite-stained mineralization along the north shore of Tagetochlain (Poplar) Lake and located south of the copper geochemical anomalies (See Figure 7A). These anomalies have yet

(26)

to be drill tested. The occurrence of the malachite was an influencing factor in the decision of Mr. F. Onucki and partners to stake the original claims. The third area is one of strong argillic alteration associated with low copper values according to Mr. F. Onucki and which area is located on Poplar 58 mineral claim (See Figure 3 for location). This location had been previously staked by Mr. J.R. Woodcock in period of 1973(?) or 1974(?) according to Mr. F. Onucki. These features will be discussed under the section of Mineral Potential.


#### MODELLING THE MINERALIZATION


A model of the zones of disseminated mineralization was developed using plans and sections. Geology and available copper (Cu), molybdenum (Mo), gold (Au) and silver (Ag) assay data were 'geolog' codes by Placer Dome Inc. and reproduced on east-west sections. Copper-molybdenum values were compared to silver-gold values where available in each mineralization type of which there are two distribution types: one being copper with higher molybdenum in the main (west) zone and the second being copper with lower molybdenum in the buried (east) zone. The 15 m bench composites were calculated and then combined into 100 m vertical composites for the depth intervals of 900 to 800 m elevation, 800 to 700 m elevation and 700 to 600 m elevation. These data were plotted in plan and contoured (See Figures 8, 9 and 10). Copper is reported as % total copper (% T. Cu) in the absence of oxide or sulphide copper assays.


## A. DISTRIBUTION OF COPPER - MOLYBDENUM MINERALIZATION

Copper and molybdenum distribution has been calculated for the upper 300 m of rock below overburden cover (900 to 600 m elevation) by segregating data in "<u>BLOCK A"</u> - area west of about line 11,900E and <u>"BLOCK B"</u> - area east of about line 11,900E (See Figures 8, 9 and 10).

| <u>BLOCK A</u> - (Cu - Mo) |                         |                |                |  |  |  |
|----------------------------|-------------------------|----------------|----------------|--|--|--|
| Tonnage and grade          | at a <u>0.10% total</u> | copper cut-off | is as follows: |  |  |  |
| Elevation                  | Tonnes                  | % T. Cu        | % Mo           |  |  |  |
| 900 to 800 m               | 52,556,000              | 0.26           | 0.009          |  |  |  |
| 800 to 700 m               | 42,700,000              | 0.25           | 0.014          |  |  |  |
| 700 to 600 m               | 34,400,000              | 0.28           | 0.010          |  |  |  |
|                            |                         |                |                |  |  |  |
| Total tonnes               | 129,625,000             |                |                |  |  |  |
| Average % T. Cu            |                         | ·0.26          |                |  |  |  |
| Average % Mo 0.011         |                         |                |                |  |  |  |







| Tonnage and grade at<br>Elevation<br>900 to 800 m<br>800 to 700 m<br>700 to 600 m | t a <u>0.20% total</u><br>Tonnes<br>30,000,000<br>25,518,000<br>6,200,000  | <u>copper cut-off</u><br>% T. Cu<br>0.32<br>0.30<br>0.36 | is as follows:<br>% Mo<br>0.012<br>0.010<br>0.016 |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------|
| Sub "B"                                                                           | 8,200,000                                                                  | 0.33                                                     | 0.010                                             |
| Total tonnes<br>Average % T. Cu<br>Average % Mo                                   | 69,718,000                                                                 | 0.32                                                     | 0.014                                             |
|                                                                                   | t a <u>0.10% total</u><br>Tonnes<br>23,780,000<br>29,444,000<br>58,741,000 | copper cut-off<br>% T. Cu<br>0.15<br>0.26<br>0.23        | is as follows:<br>% Mo<br>0.002<br>0.002<br>0.002 |
| <br>Total tonnes<br>Average % T. Cu<br>Average % Mo                               | 111,965,000                                                                | 0.22                                                     | 0.002                                             |
| Tonnage and grade a<br>Elevation<br>900 to 800 m<br>800 to 700 m<br>700 to 600 m  | t a <u>0.20% total</u><br>Tonnes<br>NIL<br>18,330,000<br>28,074,000        | <u>copper cut-off</u><br>% T. Cu<br><br>0.30<br>0.32     | is as follows:<br>% Mo<br><br>0.002<br>0.002      |
|                                                                                   |                                                                            |                                                          |                                                   |

 Average % T. Cu
 0.31

 Average % Mo
 0.002

46,404,000

Total tonnes

Consideration of BLOCK A compared to BLOCK B suggests that BLOCK A is the target for economic consideration. Taken together, BLOCKS A and B indicate a large porphyry system. Combining BLOCKS A and B to a depth of 300 m, there are 241,000,000 tonnes of 0.24% T. Cu and 0.007% Mo at a 0.10% T. Cu cut-off while at a 0.20% T. Cu cutoff, there are 116,122,000 tonnes of 0.32% T. Cu and 0.009% Mo.

The ultimate size of the porphyry system at the Poplar deposit is undefined. Hole PC - 35 in BLOCK B was drilled to a depth of 600 m and indicated 0.23% T. Cu and 0.002% Mo for the vertical interval between 600 to 500 m elevation; 0.35% T. Cu and 0.002% Mo for the vertical interval between 500 to 400 m elevation and 0.27% T. Cu and 0.008% Mo for the vertical interval between 400 to 300 m elevation. The average for hole PC - 35 is 0.22% T. Cu over a vertical depth of 600 m and indicates that the overall mineral potential could be very large to huge.

## B. GRADE VARIABILITY

. . .

The following intercepts contain assay information on all four elements and are here presented to illustrate the grade variability.

| <u>BLOCK A</u><br>HOLE<br>NO.<br>SECTION<br>PC - 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | INTERVAL                | 0% T. Cu c<br>T. Cu<br>ft) %<br>28 0.25 | •                                         | Ag<br>opt.<br>0.10                   | Au<br>opt.<br>0.005                       |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------|-----------------------------------------|-------------------------------------------|--------------------------------------|-------------------------------------------|--|
| SECTION<br>PC - 65<br>PC - 30<br>PC - 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6100 N | 64 2                    | 70 0.37<br>10 0.30<br>63 0.36           | 0.015<br>0.005<br>0.020                   | 0.06<br>0.04<br>0.03                 | 0.003<br>0.003<br>0.004                   |  |
| SECTION<br>PC - 28<br>PC - 24<br>PC - 29<br>PC - 22<br>PC - 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | 207 6<br>189 6<br>152 4 | 480.36790.43200.31990.37510.24          | 0.013<br>0.019<br>0.002<br>0.017<br>0.010 | 0.02<br>0.05<br>0.02<br>0.07<br>0.05 | 0.003<br>0.005<br>0.003<br>0.004<br>0.002 |  |
| SECTION<br>PC - 01<br>PC - 27<br>PC - 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5900 N | 122 4                   | 71 0.42<br>00 0.27<br>28 0.28           |                                           | 0.05<br>0.03<br>0.16                 | 0.003<br>0.003<br>0.004                   |  |
| Total meters 1,971 (5847 ft)<br>Average copper is 0.33% T. Cu<br>Range of copper is 0.24 to 0.43% T. Cu<br>Average molybdenum is 0.014% Mo<br>Range of molybdenum is 0.002 to 0.028% Mo<br>Average silver is 0.05 opt Ag (1.7 g/tonne Ag)<br>Range of silver is 0.02 to 0.16 opt Ag (0.69 to 5.52 g/tonne Ag)<br>Average gold is 0.003 opt Au (0.21 g/tonne Au)<br>Range of gold is 0.002 to 0.005 opt Au (0.07 to 0.17 g/tonne Au).<br>The higher gold and silver values are contained within the areas<br>of higher copper and molybdenum. |        |                         |                                         |                                           |                                      |                                           |  |

| BLOCK B |        |         |      |        |        |      |      |       |
|---------|--------|---------|------|--------|--------|------|------|-------|
| SECTION | 6100 N |         |      |        |        |      |      |       |
| HOLE    |        | INTERVA | L    | T. Cu  | Мо     |      | Ag   | Au    |
| NO.     |        | (m)     | (ft) | 8      | 8      |      | opt. | opt.  |
| PC - 45 |        |         |      |        |        |      |      | _     |
| 005 -   | 110    | 105     | 344  | 0.14   | 0.003  |      | 0.02 | 0.002 |
| 110 -   | 195    | 85      | 279  | 0.23   | 0.003  |      | 0.07 | 0.003 |
| 195 -   | 222    | 27      | 95   | ( late | barren | dyke | )    |       |
| 222 -   | 337    | 115     | 377  | 0.38   | 0.002  |      | 0.15 | 0.004 |
|         |        |         |      |        |        |      |      |       |
| PC - 33 |        |         |      |        |        |      |      |       |
| 045 -   | 120    | 75      | 246  | 0.21   | 0.002  |      | 0.04 | 0.003 |
| 120 -   | 180    | 60      | 196  | 0.20   | 0.001  |      | 0.06 | 0.003 |
| 180 -   | 327    | 227     | 745  | 0.37   | 0.001  |      | 0.13 | 0.003 |

Within BLOCK B, gold and molybdenum values remain low but silver and copper values increase with depth.

BLOCK B mineralization is distinct from that in BLOCK A based on the copper/molybdenum ratios. Gold and silver indicate a slight increase in value with increase in copper in both mineralization types.

## C. MINERAL INVENTORY OF THE POPLAR DEPOSIT

The mineralized porphyry system at the Poplar deposit is very large and remains undefined laterally and at depth.

Two distinct mineralization types are present in the Poplar deposit. The Cu-Mo-Ag-Au mineralization occurs near surface at the base of the overburden in the main (west) zone or BLOCK A while the buried (east) zone or BLOCK B has low grade near surface with >0.2% copper being encountered at a depth of 100 meters. Figure 10 illustrated that the two zones are separated at 300 m depth (600 m elevation) with the main (west) BLOCK A mineralization tapering with depth while the east BLOCK B mineralization is expanding laterally with depth (suggestive of a domical shape).

Mineral inventory for the Poplar deposit based on BLOCK A only and contained within an annular body to a depth of 300 m is determined to be:

(a) at a 0.10% T. Cu cut-off,

129,625,000 tonnes of 0.26% T. Cu, 0.011% Mo, 0.03 opt Ag (1 g/tonne Ag) and 0.003 opt Au (0.10 g/tonne Au);

(33)

(b) at a 0.20% T. Cu cut-off, 69,718,000 tonnes of 0.32% T. Cu, 0.014% Mo, 0.05 opt Ag (1.7 g/tonne Ag) and 0.003 opt Au (0.10 g/tonne Au). Mineral inventory for the Poplar deposit based on BLOCK A plus BLOCK B is calculated from available drilling to a depth of 300 m to be in the order of: (a) at a 0.10% T. Cu cut-off, 241,590,000 tonnes of 0.24% T. Cu, 0.007% Mo, 0.03 opt Ag (1 g/tonne Ag) and 0.003 opt Au (0.1 g/tonne Au). (b) at a 0.20% T. Cu cut-off, 116,122,000 tonnes of 0.32% T. Cu. 0.009% Mo,, 0.06 opt Ag (2.1 g/tonne Ag) and 0.003 opt Au (0.1 g/tonne Au).

Mineral inventory for the Poplar deposit based on the presence of 0.3% T. Cu material extending to depth and expanding laterally beneath the domical shaped zone of BLOCK B, could be in excess of 400 million tons of similar grade to a depth of 600 m. This mineral inventory does not include the areas of mineral potential for additional near surface mineralization outside of the presently drill defined zones.

## D. MINERAL POTENTIAL - DISCUSSION

The indicated grades for the disseminated mineralization of the Poplar porphyry deposit lead to the concept of open pit mining. Stripping ratio or amount of "waste" mined to obtain one unit of "ore" is one of the major considerations in open pit mining, i.e., deposits with a low stripping ratio may have better economic aspects than those deposits with high stripping ratios. During this review, several possibilities suggested themselves to the writer which could increase the amount of near surface mineralization. These possibilities enhance the mineral potential of the property.

(34)

The writer noted that the copper gradient on the western side of BLOCK A is steep as is the copper gradient into the 0.06% T. Cu core area of BLOCK A (See Figures 8, 9 and 10). The writer also noted that there are insufficient drill holes to the west of BLOCK A mineralization to conclude that copper mineralization does not continue further to the west (See Figure 7B). Further, it is noted that the copper soil geochemical anomalies are located to the west, northwest and south of the drilled mineralization (See Figure 7A) and that there has been no drilling to define the presence or absence of copper beneath those anomalies which lie within a 3.0 km by 1.6 km induced polarization anomaly. The secondary copper mineral malachite was observed on the northern shore of Tagetochlain (Poplar) Lake just outside of the geochemical grid and south of the copper anomalies (See Figure 7A). These factors indicate that additional diamond drilling is warranted to test the area northwest and south of the drilled area.

Correlating hole PC - 04 and PC - 46, drilled at the location of 500 ppm Cu soil anomalies, with vertical overburden depth, it was noted that the depth in PC - 04 was 7.1 m (23 ft) and in PC - 46, it was 6.1 m (20 ft). Both holes intersected significant copper mineralization below the overburden cover. The rest of BLOCK A and B mineralization is not overlain by any geochemical response greater than 500 ppm Cu. Vertical overburden depth over BLOCK A and B averages 12.9 m (42 ft) and ranges from 0.6 m (2 ft) to 37.2 m (122 ft). (BLOCK A has an average vertical overburden depth of 15.5 m (51 ft) and a range of 0.6 m (2 ft) to 37.2 m (122 ft). BLOCK B has an average vertical overburden depth of 9.5 m (31 ft) and a range of 2.8 m (9 ft) to 28.0 m (92 ft).) The above suggests that the overburden is too deep to correlate surface soil geochemistry to underlying mineralization with any degree of reliability. Since the overburden depth fluctuates and since there are no drill holes in the vicinity of the soil copper geochemical anomalies, the potential for intersecting near surface copper mineralization is good. A minimum of ten holes to a depth of 200 m will be recommended to test for low stripping ratio copper mineralization.

The occurrence of antimony-gold on the War 1 mineral claim is approximately 3.0 kms east of the disseminated copper mineralization of BLOCK B (See Figure 3 showing the relative position of War 1 and Poplar 13 mineral claims). It has been well documented that porphyry copper mineral systems are zoned outward from a copper-molybdenum core to epithermal precious metal occurrences that fringe the porphyry chemical system (Titley and Hicks (1966) and CIM Special Volume 15 (1976). As the Poplar deposit is essentially overburden covered, it is not possible at this time, to conclude that the War 1 occurrence is related to or not related to the Poplar porphyry system. It would not be unreasonable to suggest that it is associated with the porphyry system which would reinforce the suggestion that the Poplar

porphyry system could be very large. If the mineral zoning is consistent, the diameter of the system could be in the order of 8 to 10 kms. The point here is that there could be a porphyry system several times as large as that drilled in the past. The mineral potential can be considered as open considering the geochemical, geophysical data and the area of Poplar 58 mineral claim.

#### METALLURGY

Utah Mines Ltd. has conducted some metallurgical testing (holes PC - 38, 39 and 40 were reportedly sent to Palo Alto, California), the results of which are not available to the writer. In an unsigned 1982 preliminary economic study, the following recoveries were mentioned: copper recovery, 83 to 88%; molybdenum recovery, 74%; silver recovery, 49% and gold recovery, 56%. Specific gravity was taken at 2.60. Grindability (Work Index) was not noted. It is not known if metallurgical studies were conducted to determine the grade of the copper and molybdenum concentrates nor if the precious metal component of these concentrates was determined. It has been verbally reported by Mr. B. Bowen that the <u>Utab Mines</u> Ltd. metallurgical work was of a preliminary nature only. New Canamin Resources Ltd. will have to undertake metallurgical definition studies both for conventional flotation processing and for heap leaching of low grade dump material.

## ENVIRONMENTAL ASPECTS

Sulphide-bearing low grade and/or waste rock moved during the course of an open pit operation may be "an acid generator" (oxidation of sulphide minerals contributes hydrogen ion with the consequence being an increase in pH in the contained solution). Separate studies will be required to determine the degree of acid generation of waste dump and low grade copper material. The concept of "liquid ion exchange" (LIX) - solvent extraction should be investigated for low grade copper dump leaching. Utilization of this technology is currently employed by Gibraltar Mines near Williams Lake, B.C. If this technique could be successfully applied to the Poplar deposit, some of the "waste" rock may be converted to productive rock such that the relative amount of "waste" might be reduced effecting a reduction in stripping ratio.

Baseline environmental data collection should be started prior to any development in order to define the environmental parameters associated with development permitting. Within this aspect, the definition of cultural items such as trap-lines and status of native land claims in the region should be addressed.

#### INFRASTRUCTURE

The proximity of the Poplar deposit to Houston, B.C. would permit an operation without a townsite similar to Gibraltar Mines near Williams Lake, B.C. Rail at Houston, B.C. could serve for delivering concentrates to tide water at either Prince Rupert, B.C., 350 kms to the west or to Kitimat, the proposed site of a B.C. copper smelter, 300 kms to the west. Power supply from the B.C. Hydro grid is available at Houston, B.C. and may be available from the Equity Silver mine site after closure of that mine which is currently planned for late 1992. The Bell Copper mine on Babine Lake, north of Houston, B.C., is also reportedly facing closure in two to four years. The area could have a substantial unemployed but skilled work force available in the next few years.

## CONCLUSIONS AND RECOMMENDATIONS

The Poplar porphyry copper-molybdenum-silver-gold deposit of New Canamin Resources Ltd. contains, at least, two distinct mineralized blocks, associated with a Late Cretaceous (72 to 75 million year) biotite monzonite porphyry and, overlain by a thin veneer of overburden.

Utah Mines Ltd. drilled 73 holes during the period 1974 to 1981, had expenditures totalling \$ 2,500,000 by April 1982 and estimated a global reserve of 260,000,000 tonnes of 0.37% copper "equivalent" at a 0.25% copper "equivalent" cut-off value.

The majority of the drill holes intersected significant coppermolybdenum-silver-gold mineralization and defined two separate zones of mineralization. The western zone (BLOCK A) is defined as a vertical annular body while the eastern zone (BLOCK B) suggests a deeper mineralized body with a domical shape, expanding laterally with depth. Geochemical and possibly geophysical data suggest that BLOCK A is open to the northwest, west and south.

Mineral inventories at different cut-off values for the drill defined area have been suggested for each zone and combined. At a cut-off value of 0.20% T. Cu, BLOCK A is estimated to contain 69,718,000 tonnes at an average grade of 0.32% T. Cu, 0.014% Mo, 0.05 opt Ag and 0.003 opt Au. Combining BLOCK A plus BLOCK B at the same cut-off value, the mineral inventory is in the order of 116,122,000 tonnes with an average grade of 0.32% T. Cu, 0.009% Mo, 0.06 opt Ag and 0.003 opt Au. The mineral potential of the Poplar deposit could be in excess of 400 million tonnes and is still open as the continuation of copper mineralization to the west, north and south has never been drill tested. This project has comparable grade and tonnage potential to other bulk deposits that are under active consideration in British Columbia at this time such as Fish Lake, Taseko and the Hushamu and Red Dog deposits of Moraga Resources Ltd.

In light of the above, it is recommended that

(1) 12 NQ (minimum) sized fill-in holes be drilled in and around the annular body of >0.30% T. Cu in BLOCK A to define the copper gradient in space and 5 fill-in holes in BLOCK B;

(2) preliminary metallurgical testing be undertaken to determine Work Index, mineral recoveries and to determine to what degree the precious metals report to the copper concentrate using 6 inch diameter drill core from representative mineralization;

(3) 10 NQ (minimum) holes to a minimum depth of 200 m be drilled to test the area west and southwest of BLOCK A to determine the significance of (a) the copper soil geochemical anomalies and (b) the presence of malachite on the shore of the lake;

(4) baseline environmental studies be organized and the data collection process started;

(5) sulphide material be collected from the west and east zones and tested by accepted methodology to determine the degree of acid generating potential, and

(6) column bacterial leaching be undertaken for initial evaluation of copper heap leach recovery from low grade (<0.2% copper) material.

## ESTIMATED COST OF PROPOSED WORK PROGRAM

In light of the above recommendations, the estimated cost of the proposed program is outlined below.

| Diamond drilling       (a) 12 fill-in holes to 200 m       2,400 m         (b) 10 holes to 200 m       2,000 m         (c) 5 fill-in holes to 300 m       1,500 m         Cost per m of \$ 75.00 times       5,900 m | \$ 442,500      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| <u>Assaying</u><br>1,960 samples at \$ 17.00 each<br>freight to Laboratory                                                                                                                                           | 33,320<br>1,000 |
| Drill site preparation<br>D-7 dozer, 8 days at 10 h/d at \$ 125.00/h<br>fuel for 8 days at \$ 200.00/d                                                                                                               | 10,000<br>1,600 |
| <u>Vehicle rental</u><br>3/4 Ton 4X4 with insurance times 2<br>fuel                                                                                                                                                  | 3,735<br>1,600  |

| <u>Supervision, core logging, surveying</u><br>45 days at \$ 450.00/d                                     | 21,150     |
|-----------------------------------------------------------------------------------------------------------|------------|
| Core logging<br>45 days at \$ 300.00/d                                                                    | 13,500     |
| <u>Meals and accommodation</u><br>2 men at \$ 70.00/d for 45 days (drillers camp)                         | 6,300      |
| <u>Metallurgical sample</u><br>100 feet of 6 inch diameter core at<br>\$ 100.00 per foot with mob./demob. | 18,000     |
| <u>Metallurgical laboratory testing</u><br>allow                                                          | 170,000    |
| Environmental studies<br>allow                                                                            | 50,000     |
| Compilation and final report<br>allow                                                                     | 10,000     |
| Subtotal                                                                                                  | \$ 782,705 |
| Contingency @ about 15%                                                                                   | \$ 117,295 |
| Total estimated cost of proposed work program                                                             | \$ 900,000 |

Respectfully submitted,

A. D. DRUMMOND BRITISH U NGINE

A.D. Drummond, Ph.D., P.Eng.

August 1, 1991

## REFERENCES

- Bowen, B.K. (1975) Geological and Geophysical Report on the Poplar Groups 1, 2, 3, 5, and 6, Omineca Mining Division: Assessment Report No. 5679, for Utah Mines Ltd. dated Oct. 30, 1975.
- Bowen, B.K. (1976) Geological, Geophysical, Geochemical and Drilling Report on the Poplar Groups 1 to 7, Omineca Mining Division: Assessment Report No. 6065, for Utah Mines Ltd. dated Nov. 23, 1976.
- Bowen, B.K. and Holland, G.L. (1980) Drilling Report on the Poplar Group 1, Omineca Mining Division: Assessment Report for Utah Mines Ltd. for work in the period Nov. 18 to Dec. 1, 1979.
- Carter, N.C. (1975) Poplar (93L-239): Geology, Exploration and Mining in B.C. - 1974; B.C. Dept. Mines and Petroleum Resources, pp. 256 - 257.
- Carter, N.C. (1981) Porphyry Copper and Molybdenum Deposits West-Central British Columbia: B.C. Ministry of Energy, Mines and Petroleum Resources, Bulletin 64, 150 p.
- Carter, N.C. and Kirkham, R.V. (1969) Geological Compilation Map of the Smithers, Hazelton and Terrace Areas, Prelim. Map Series 1.
- Holland, G.L. (1980a) Drilling Report for the Poplar Groups 3 - 5, Omineca Mining Division: Assessment Report for Utah Mines Ltd. for work in the period May 10 to July 5, 1980.
- Holland, G.L. (1980b) Drilling Report for the Poplar Group 2, Omineca Mining Division: Assessment Report for Utah Mines Ltd. for work in the period May 18 - 31, 1980.
- Holland, G.L. (1980c) Drilling Report for the Poplar Groups 3 - 5, Omineca Mining Division: Assessment Report No. 8186 for Utah Mines Ltd. dated July 18, 1980.
- Holland, G.L. (1981) Drilling Report for the Poplar Groups 1 - 3, Omineca Mining Division: Assessment Report for Utah Mines Ltd. for work in the period April 12 to June 28, 1981.
- Holland, G.L. (1982) Drilling Report for the Poplar Groups 1 - 2, Omineca Mining Division: Assessment Report for Utah Mines Ltd. for work in the period Oct. 28 to Nov. 16, 1981.

#### (40)

- Janes, T.W. (1982) Poplar Lake Reserves: internal Utah Mines Ltd. letter, dated Sept. 8, 1982.
- Jones, H.M. (1972) Geological Geochemical Report on the Poplar Mineral Claims, Tagetochlain Lake Area, 93L/2W: Assessment Report No. 3665 for El Paso Mining and Milling Co. dated Jan. 6, 1972.
- Mesard, P.M. (1979) The Alteration And Mineralization Of The Poplar Copper - Molybdenum Deposit, West-Central B.C.: unpublished M.A.Sc. thesis, University of British Columbia.
- Mesard, P.M., Godwin, C.I. and Carter, N.C. (1979) Geology of the Poplar Porphyry Copper - Molybdenum Deposit: Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork, 1978; Paper 1979 - 1, pp. 138 - 143.
- Tipper, H.W. (1963) Nechako River Map Area, B.C.: Geol. Surv. Can.; Memoir 324, Figure 1, Glacial Features.
- Tipper, H.W. (1976) Smithers, B.C. 93L: Geol Surv. Can.; Open File Map 351.
- Tipper, H.W. and Richards, T.A. (1976) Jurassic Stratigraphy and History of North Central British Columbia: Geol. Surv. Can.; Bulletin 270, 73 p.
- Titley, S.R. and Hicks, C.L. (1966) Geology of the Porphyry Copper Deposits, Southwestern North America: Univ. of Arizona Press, 287 p.

#### OTHER REFERENCES

- CIM (1976) Porphyry Deposits of the Canadian Cordillera: Can. Inst. Min. and Met., Special Volume 15, A. Sutherland Brown, Editor, 510 p.
- GEM (1973) Poplar: Geology, Exploration and Mining in B.C. -1972: B.C. Dept. Mines and Petroleum Resources, p. 373.
- MAP 671A Houston, B.C. Map Area, Geological Map.
- MAP 7750G (1969) Geol. Surv. Can., Geophysical Paper 7750, Whitesail Lake, B.C., Sheet 93E, Scale 1" = 4 miles.
- MAP 7760G (1969) Geol. Surv. Can., Geophysical Paper 7760, Smithers, B.C., Sheet 93L, Scale 1" = 4 miles.

# CERTIFICATION

I, Arthur Darryl Drummond of the City of Vancouver, Province of British Columbia, hereby certify as follows:

- I am a geological engineer residing at 3249 West 35th Ave., Vancouver, B.C., V6N 2M9 and employed by D.D.H. Geomanagement Ltd., with an office at 422 - 470 Granville Street, Vancouver B.C., V6C 1V5.
- 2. I am a registered Professional Engineer of the Province of British Columbia, certificate number 5778. I graduated from the University of British Columbia in 1959 with a B.A.Sc. in geological engineering, and in 1961 with a M.A.Sc. in geological engineering. I graduated from the University of California at Berkeley in 1966 with a Ph.D. in geology.
- 3. I have practised my profession continuously for 29 years primarily with the Placer Development Group of Companies at Craigmont, Endako and Gibraltar mines, and in mineral exploration in Canada, United States of America, Chile, Argentina, Mexico and the Philippines.
- 4. I am the author of this report which is based on reviewing all available reports on the Poplar porphyry copper - molybdenum deposit of New Canamin Resources Ltd. I have personally visited the property on July 3, 1991.
- 5. I have no interest, direct or indirect, in the property discussed in this report or in the securities of New Canamin Resources Ltd., nor do I expect to receive any.
- 6. This report may be utilized for development of the property, provided that no portion may be used out of context in such a manner as to convey a meaning which differs from that set out in the whole.
- 7. Consent is hereby given to New Canamin Resources Ltd. to reproduce this report or any part of it for the purposes of development of the property, or related to the raising of funds.

Dated at Vancouver, B.C. this 1st day of August, 1991.

A. D. DRUMMOND

A.D. Drummond, Ph.D., P.Eng. YGINE

D.D.H. GEOMANAGEMENT LTD.

Geological Engineer

(42)



# **Mineral Resource Consultants**

Suite 525 890 West Pender Street Vancouver, B.C. Canada V6C 1J9 Telephone (604) 684-6463 Fax (604) 684-5392

Mr Darryl Hanson Equity Silver Mines Ltd Houston, BC.

10th October 1991

Dear Darryl,

Please find enclosed a copy of the report by Dr. Darryl Drummond on the Poplar project and, interleaved, some of the Utah memoranda describing their evaluation of reserves and Darryl's subsequent letter describing the higher grade near surface rock that he has identified.

We have not yet taken the next logical step to see what best grade we could enclose within a 20 million tonne reserve at somewhat higher stripping ratios. From Table 1, the last of the pages of Utah information, it would seem reasonable to anticipate that within some of those reserves one might find sufficient tonnage of higher grade.

We are noting some interest from other groups and are actively seeking further financing so that we may keep the momentum rolling on the project. The direction we have been leaning towards is to take down a reasonably substantial private placement with a possible right of first refusal for the group making the placement to enter into a further agreement to earn an interest in the project.

Yours sincerely,

Ben Ainsworth.

## D.D.H. GEOMANAGEMENT LTD. 422 - 470 GRANVILLE ST., VANCOUVER, BRITISH COLUMBIA V6C 1V5 604-681-4413 FAX 604-688-6479

#### 8 August 1991

Mr. Alan Savage, New Canamin Resources Ltd., 304, 255 West 1st Street, North Vancouver, B.C. V7M 3G8

Dear Mr. Savage,

## RE: POPLAR CU-MO-AG-AU PORPHYRY DEPOSIT, NEAR HOUSTON, B.C. NEAR SURFACE GRADE VARIABILITY

The following outlines that there is significantly higher grade available in the upper three benches of the BLOCK A portion of this deposit. This letter is in response to questions pertaining to near surface open pitable grade as compared to that grade defined in the overall global mineral inventory. To illustrate the grade variability in the upper benches, three 15 meters thick benches were.selected, i.e., Bench 900 - 885 m elevation; Bench 885 - 870 m elevation and Bench 870 - 855 m elevation. Figure 1 outlines the drill hole locations within the Poplar survey grid. Figure 2 illustrates the contoured copper values for the 900 - 885 m bench; Figure 3 illustrates the contoured copper values for the 885 - 870 m bench and Figure 4 illustrates the contoured copper values for the 870 - 855 m bench. These illustrations allow an appreciation of the potential grades that could be mined during the early stage of open pitting this deposit.

GRADE VARIABILITY IN UPPER THREE 15 M BENCHES (900 - 855 M ELEVATION)

BLOCK A (West of 11900E)

| BENCH ELEVATION | > 0       | .4% Cu      | > 0.3%    | Cu          |
|-----------------|-----------|-------------|-----------|-------------|
| (meters)        | tonnes    | 8 Cu<br>%በ₀ | tonnes    | 8 Cu<br>%Mo |
| 900 - 885       | 530,000   | 0.46 0.012  | 1,366,000 | 0.40 0.013  |
| 885 - 870       | 520,000   | 0.48 0.011  | 1,823,000 | 0.41 0.011  |
| 870 - 855       | 1,128,000 | 0.48 0.018  | 2,778,000 | 0.43 0.017  |

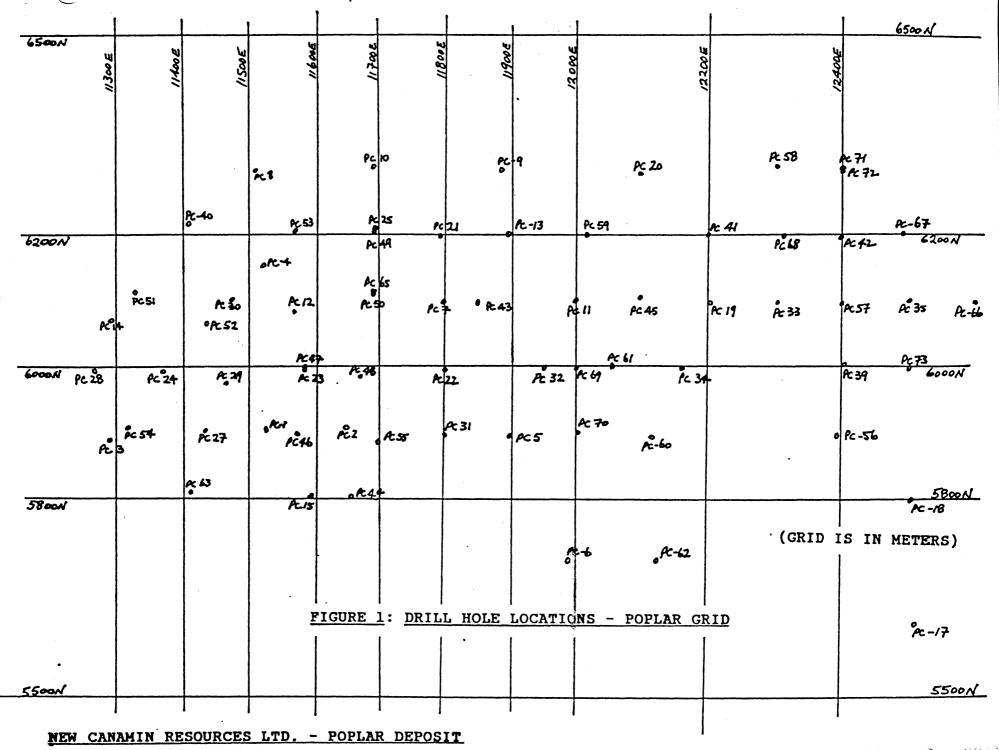
BLOCK B (East of 11900E)

| BENCH ELEVATION | > 0.4% Cu |             | > 0.3% Cu |             |
|-----------------|-----------|-------------|-----------|-------------|
| (meters)        | tonnes    | 8 Cu<br>%M- | tonnes    | 8 Cu<br>%M₀ |
| 900 - 885       | 151,000   | 0.72 0.002  | 375,000   | 0.52 0.002  |
| 885 - 870       | -         | -           | 12,000    | 0.30 0.001  |
| 870 - 855       | -         | -           | 114,000   | 0.39 0.001  |

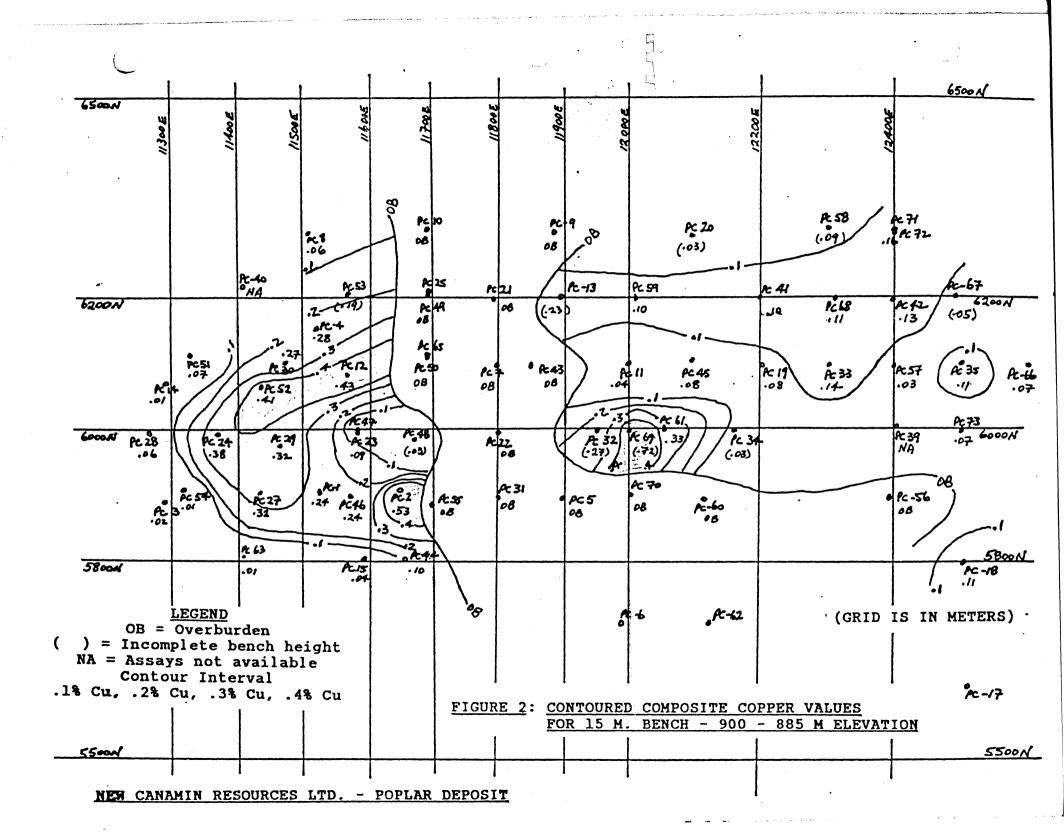
SUMMARY UPPER THREE BENCHES

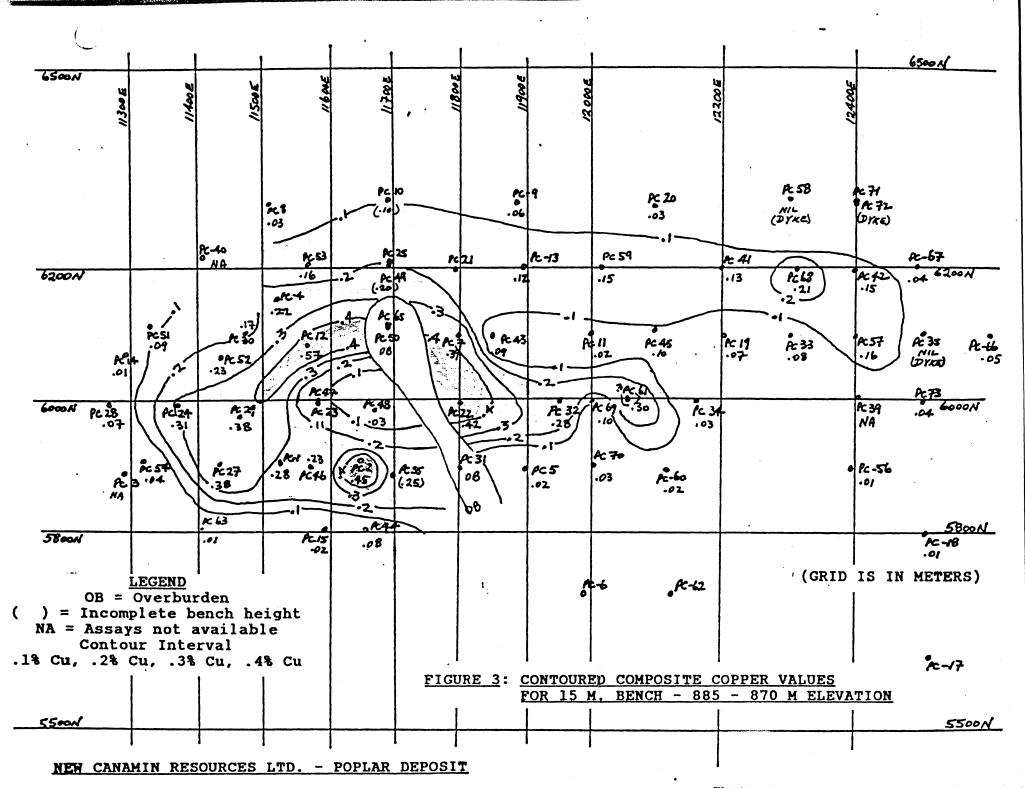
At > 0.4% Cu: 2,329,000 tonnes at 0.49% Cu.

At > 0.3% Cu: 6,468,000 tonnes at 0.42% Cu.

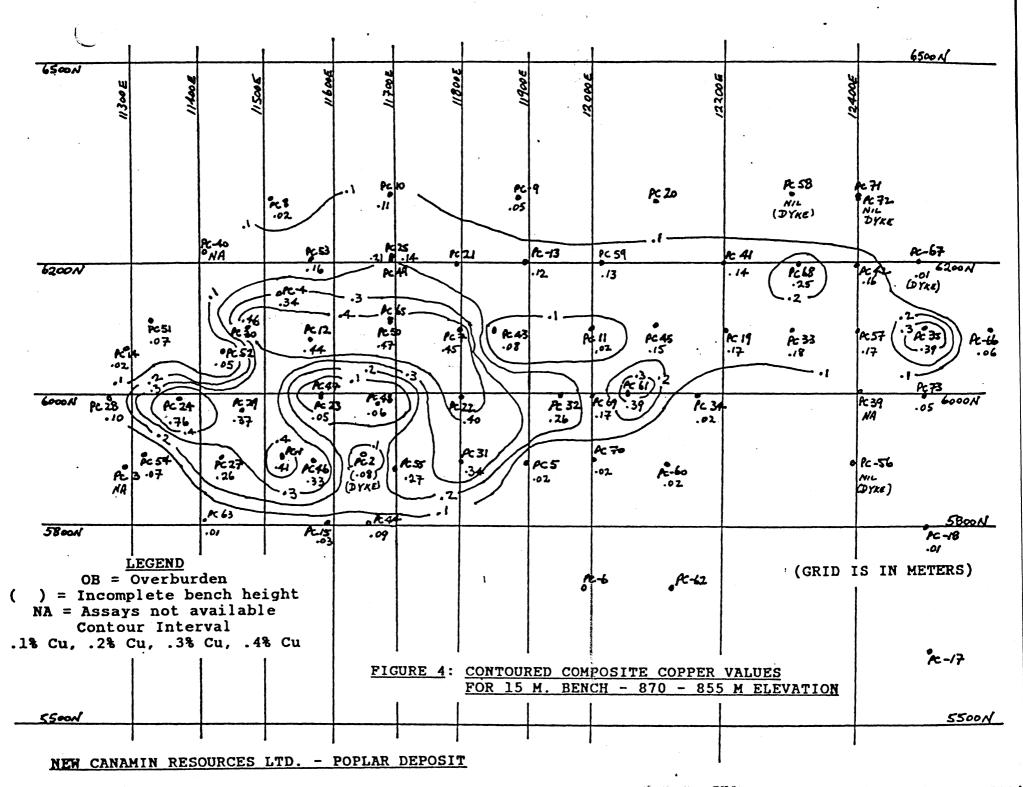

The above illustrates that significantly higher grade than the global mineral inventory average is present near surface and would be available during the initial stage of pit development.

Respectfully submitted,


nemetral A.D. Drummond, Ph.D., P.Eng.


Geological Engineer

Attached: 4 Figures 8 August 1991




R-B.H. REAMANACEMENT INT. 1888: R: 19911





D.D.H. STOMANAGEMENT LTD. (Aug. 8: 1991)

