842143

682 2:20

REPORT ON THE EXPLORATION OF THE WAYSIDE PROPERTY GOLD BRIDGE AREA LILLOOET MINING DIVISION, B.C.

for

CARPENTER LAKE RESOURCES Box 466 Lillooet, B.C.

Ъу

J.P. ELWELL, P.Eng. 1030 - 510 West Hastings Street Vancouver, B.C.

January 21st, 1980

TABLE OF CONTENTS

Page

ŧ,

٠.

(

4

f

SUMMARY	1
INTRODUCTION	3
LOCATION AND ACCESS	3
PROPERTY	4
EARLY HISTORY	5
RECENT EXPLORATION HISTORY	5
GENERAL AND ECONOMIC GEOLOGY	6
DISCUSSION OF EXPLORATION	7
EVALUATION OF THE EXPLORATION RESULTS	10
RECOMMENDATIONS	11
ESTIMATE OF COSTS	12
CERTIFICATE	14

APPENDIX

Logs and assays of diamond drill holes

MAPS

Location map of Wayside Property	in pocket
l" to 100. plan of D.D. holes	in pocket
Regional Geological Map follows page	7
Sections through holes 75-Al, 75-A5, and 79-S6 " "	9

REPORT ON THE EXPLORATION OF THE WAYSIDE MINE PROPERTY GOLD BRIDGE AREA, LILLOOET MINING DIVISION, B.C.

SUMMARY

6-

The Wayside Mine property consisting of 27 reverted Crown Granted claims and two located claims is situated on Carpenter Lake near Gold Bridge, B.C. in the Lillooet Mining Division.

The mine dates from the early 1960's and had two periods of production, 1915 to 1937 and 1949 to 1952, and the property was acquired by the present company in 1971.

Exploration work from that time to the present has consisted of mapping and sampling of the old workings and surface vein exposures, bulldozer trenching, some soil sampling and magnetic surveys, and diamond drilling. The 1975 drilling program delineated a small but high grade shoot of gold bearing quartz in the Commodore vein, and one hole probed the "New Discovery" zone which consisted of an outcropping of heavy pyrite associated with a belt of greenstone about 1000 feet to the south of the intrusive stock which was the host for the Wayside gold-quartz veins. This hole intersected massive pyrite with low gold values. The 1979 drilling program continued the exploration of the Commodore vein along strike towards Carpenter Lake, but without conclusive results, and several short holes were drilled in the vicinity of the 'O' adit which intersected some sections of gold bearing vein quartz.

The most important hole drilled in this period was 79-56 which was a further investigation of the "New Discovery" zone. This hole cut a wide section of disseminated to massive sulphides consisting of pyrite, pyrrohotite, chalcopyrite, and sphalerite, and a weighted average of a 50 foot section of the best mineralization assayed Cu 0.89%, Zn 1.51%, Ag 0.18 oz/ton. A second hole, parallel to this and at the same declination is now in progress, and being drilled 158 feet to the south. Although insufficient drilling has been done to delineate this zone, it is believed that it could represent a major copperzinc sulphide deposit, and should be given the first priority for exploration, and future drilling should be concentrated on this area with the exception of one hole to probe the extension of the Wayside Main Vein to the southeast beyond the end of the 9th level.

A first phase budget of \$245,000 is recommended to cover the initial drill program of 6500 feet together with some surface trenching, with an additional \$400,000 being allowed for follow-up drilling.

 $A_{\rm c}$

「「「「「「「「「「「」」」」」

- 2 -

INTRODUCTION

a state of the second of

This report on the Wayside Mine property covers a description and appraisal of the results of the exploration work carried out on the property since 1974 to date. The early history of the property up to the time of its acquisition by the present company is fully covered in a report by the writer dated April 21st, 1971, and will be dealt with very briefly in this report as will the detailed geology, etc. The more recent work, consisting mainly of diamond drilling and some trenching has been covered in a number of progress reports submitted by the writer from time to time, and the essence of these will be covered in this present report.

The report was prepared for Carpenter Lake Resources Ltd. Box 466, Lillooet, B.C.

LOCATION AND ACCESS

The property, which consists of 27 reverted Crown Granted claims and some recently located claims lies mainly on the west side of Carpenter Lake with some of the claims being underneath the lake.

Access is by way of the Lillooet Bralorne highway for a distance of approximately 100 km. from Lillooet, the highway passing through the claims with old adits both above and below the highway. From the highway, the company has constructed several bulldozer roads up the hillside to the west to reach the upper adits, and also below the highway to the #5 adit on the edge of the lake. Goldbridge is the nearest settlement about 6 km. to the south. The B.C. Hydro power line crosses the property, paralleling the highway.

A location map accompanies this report.

- 3 -

PROPERTY

The property consists of 27 reverted Crown Granted claims and two located claims in the Lillooet Mining Division. Details are as follows:-

Reverted Crown Grants

Claim	Lot No.	Acres	Mineral Lease No.
Wayside	3036	51.65	M-57
Argon	3037	49.86	
Radium	3038	39.00	
Helium	3039	51.63	
Oueen City Fr.	3040	8.27	
Rodeo	5471	48.ol	
Commodore Fr.	5503	20.00	
Lodge	5504	51.65	
Alpha	5505	51.63	M-48
Beta	5506	50.20	
Gamma	5507	37.70	
Cabinet	5509	44.41	
Counsel	5510	48.79	
Newport	5511	49.36	
Wayside B. Fr.	5512	2.57	
Camp Denison	5513	36.45	
Port Fr.	5514	4.05	
Sun	5515	49.57	
City No.1	5912	42.71	
Spring A	5913	51.39	
Spring Fr.	5914	41.74	
Spring B	5915	51.62	
Spring C	5916	29.82	
Lodge B	5917	37.64	
Rodeo Fr.	5918	41.32	
Wayside No.2	6955	51.60	
Lodge No.2 Fr.	6956	49.42	/
· •		1098.06	

Located Claims

Name	Record No.
Wayside Ext. #2 (18 units)	1089
Wayside Fr.	1086

The position of these claims according to the government claim map and staking plan is shown on the Location Map.

- 4 -

EARLY HISTORY

This is fully covered in the report of April 1971 but in summary, the property, previously to being acquired by the present company had two periods of activity, the first being from about 1900 to 1937 when a major part of the underground workings were completed, and government records show a total production from 1915 to 1937 of 43,094 tons with a recovery of 5341 oz. Au and 842 oz. Ag. The second period of activity was from 1949 to 1952 when the shaft was sunk to the 9th level and some drifting, cross-cutting and raising was done on the 9th level. Also 5808 feet of diamond drilling was reported. 900 tons of development ore were milled, but the results of this are not known.

RECENT EXPLORATION HISTORY

The Crown Granted claims covering the Wayside Property which had reverted, were acquired by Dawson Range Mines Ltd. N.P.L. (the predecessor company to Carpenter Lake Resources Ltd.) in 1971, the No.5 adit was repaired to the shaft and the mine was de-watered to the 8th level. The 6th, 7th and 8th levels were found to be in fairly good condition, and some good gold values were obtained from pillars and stope remnants, but mining had been more extensive than indicated on the old plans and there was virtually no mineable ore remaining above the 8th level to the extent of the development.

The cost of maintaining the levels dewatered became excessive with the equipment in use and the mine was allowed to flood to the 5th level as it was decided for the time being to concentrate work on the workings above the adit level in the main mine, and to explore some of the other vein showing to the south of the main shear.

3

- 5 -

During 1972, 1973 and 1974 some bulldozer stripping, x-ray drilling, soil sampling, and magnetic surveying was carried out, and in September and November of 1974, Chas. A.R. Lammle, P.Eng. conducted a program of geological mapping and check sampling, and prepared a geological report and maps dated 27th November, 1974. This report designated eight targets for exploration both on the surface and from the underground workings, the surface targets including the 3T vein, Commodore vein, and the "New Discovery" zone which will be discussed in later sections of this report.

Diamond drilling was carried out on the Commodore vein in 1975, and during 1976, 1977 and 1978 a certain amount of stripping and trenching was completed for assessment purposes with the drilling program being resumed in 1979. During that year 8 holes for a total of 2688 feet were completed and one hole (No.79-S6) was stopped in mineralization at a depth of 801 feet. This program of drilling is being continued in 1980.

GENERAL AND ECONOMIC GEOLOGY

G

٠

The geology of the Wayside Mine area is covered in the report of 1971 which is based on mapping by C.E. Cairnes, C.W.Drysdale, and others, but briefly, the claim area is underlain by the Ferguson series of sediments and volcanics and remnants of the Hurley River and Pioneer formations which have been intruded by two stocks of the Bralorne Intrusive consisting of augite diorite and soda granite.

Up to the present, the main area of economic interest has been the quartz veins striking northwesterly and dipping at 50° – 60° to the northeast which follow shear zones in the augite diorite-soda granite intrusive, and carry erratic, but sometimes very rich values in gold associated with arsenopyrite and also

- 6 -

all occur in the eastern most stock, but the western stock which is separated from the eastern stock by a band of Ferguson and Pioneer volcanics has also been extensively explored.

Recent drilling has disclosed a previously unknown body of mineralization lying wholly within the volcanics, and consisting of a wide zone of massive to disseminated sulphides, mainly pyrite with chalcopyrite and sphalerite. Only one hole has partially penetrated the zone to date so its size and potential is still unknown, but it is unique for the area, and could be of great economic importance. This zone known as the "New Discovery" will be discussed in more detail in a later section.

A regional Geological Map accompanies this report.

DISCUSSION OF EXPLORATION

This section of the report is a summary of the results of the 1975 and 1979 drilling, part of which has already been reported in various progress reports which are on file, but complete logs and sections of the significant drill holes are included with this report.

Holes 75-Al and 75-A5

These holes were drilled to explore the Commodore vein and indicated the vein to have a dip of about 65° and a true width of five feet. Hole 75-Al assayed 0.955 oz/ton Au over 7 feet, and Hole 75-A5 averaged 9.818 oz/ton Au over 6 feet. (See 1" to 100' plan and 1" to 20' section included with this report).

ž

Hole 75-A2

This hole was drilled on the "New Discovery" zone on a bearing of 225° and a dip of -55° to a depth of 185 feet. Where it was stopped in massive sulphides. Two sections of heavy

mineralization were submitted for assay and averaged 0.02 oz/ton Au. The location of this hole is shown on the 1" to 100' plan and a complete log of this hole is attached to this report.

Holes 79-Sl and 79-S2

A PARTICIPACITY OF T

These holes were drilled from the same site as 75-Al on the bearings and dips shown on the l" to 100' scale plan, the purpose being to check the high gold values encountered in holes 75-Al and 75-A5.

Complete logs and assays of these holes accompany this report, but in summary, hole 79-Sl cut 7 feet assaying 0.695 oz/ton Au and 0.54 oz/ton Ag, and hole 79-S2 cut 4.5 feet assaying 0.066 oz/ton Au.

Holes 79-S3, 79-S4, 79-S5

These holes were drilled from the bench above Carpenter Lake (see 1" to 100' plan), with the objective of cutting both the Commodore vein and 3T veins at depth and along strike to the southeast. Hole 79-S3 was abandoned in overburden, but holes 79-S4 and S5 were completed to depths of 764 feet and 716 feet respectively, both on a bearing of 240° and an inclination of -60° .

The complete logs and assay results of these holes are included in the Appendix to this report, but in summary, the entire length of both holes was in augite diorite and soda granite cut by numerous greenstone and aplite dikes and a number of quartz veins and stringers, some of which showed mariposite alteration, and occasional minor sulphides. A number of sections were split and sampled, but returned only low values in gold and silver, the best section in 79-S5 being 4 feet from 216 feet to 220 feet which assayed 0.012 oz/ton Au and 0.06 oz/ton Ag.

only 1.5 recovered from interval.

日本書 日本にないた

ittin

- 8 -

Holes 79-S7, 79-S8 and 79-S9

These were three short holes drilled to explore the vein exposed in the old 'O' level of the Wayside Mine. The locations, bearings; and dips of these holes are shown on the 1" to 100' scale plan, and their depths were 54 feet, 71 feet, and 88 feet respectively. The complete logs and assays of these holes are included in the Appendix to this report, but in general they were disappointingly low except for a 3 foot section from 55' to 58' in hole 79-S9 which assayed 0.52 oz/ton Au, and 0.14 oz/ton Ag, and 2 feet from 82'-85' which assayed 0.15 oz/ton Au and 0.09 oz/ton Ag.

- 9 -

Hole 79-56

1.10

2 Zones

1 HOLE.

This is the second hole to probe the "New Discovery" sulphide zone (see hole 75-A2). The hole was started from the roadside and drilled on a bearing of 240° at a dip of -60° to be nearly parallel to hole 75-A2 but to cut the ground at a greater depth. (See 1" to 100' plan).

The detailed log of this hole to 791 feet together with assay results of the mineralized sections appear in the Appendix to this report, but in brief, the country rock for the entire hole consists of volcanics classified the Pioneer Greenstone Formation. Disseminated to massive pyrite with very minor chalcopyrite was encountered from 450 feet to 501 feet. A rhyolite dike was intersected from 505 feet to 553 feet followed by greenstone with increasing amounts of disseminated pyrite and minor chalcopyrite. Heavy to massive sulphides with noticeable amounts of chalcopyrite and sphalerite were cut from 618 feet to 668 feet followed by minor disseminations but the last foot of core to 801 feet where the hole was stopped (not seen by the writer) is reported to show an increase in sulphides.

		- di *			
					· ×
0					
e la					
					3 8 ,
<i>İ</i> İ				-	
				. I	1
		÷. 15			
					2
0'					
				а.	
			20-11	A. 00/902/	+ 00
-		197 - 4 Ag	0. 30 oc/for	Mu 0.0770-7	, .
ş r .		5"- 8'-Cu	.24% Zn. 59%	6 Ag. 0.04 02/101	Au 0.012
a Mu		54			· · · ·
LEGEND	areenstone	618			10 malten
	rhyolite	50 AV	e. Cu. 893 %	Zn 1.51 % Ag. 0.	1501/101
19 2. 19 4 Same	diss. sulp in greenston	ic his			
and the design of	heavy sulphides.				ş
• ••• ••• •• • • • •	the contraction of the state of			• • · · · · · · · · · · · · · · · · · ·	·
· · ·	5 * 191	X	1 80'Hole sta	opped in sulph	hides h

CARPENTER LAKE RESOURCES LID Section Through D.D.H. 79-56 Scale 1"= 100' sulphide mineralization were split and assayed for gold and silver, and all the core from 551 feet to 791 feet was split and assayed for copper, zinc, gold and silver. All this latter core showed minor copper and zinc mineralization with very low gold and silver values, but significant values which could be economic for a large body were encountered in the 50 feet from 618 feet to 668 feet. These and other assays are reproduced with the drill hole log in the Appendix of this report.

At the time of writing, hole 80-51 is being drilled parallel to 79-56 on the same declination 158 feet to the south. The writer has not seen any of the core, but the company reports that the rhyolite dike was intersected, and the section 485 feet to 518 feet showed sulphide mineralization as pyrite, chalcopyrite, and sphalerite.

The position of the rhyolite dike in the two holes tends to confirm the apparent strike of this sulphide zone.

EVALUATION OF THE EXPLORATION RESULTS

The diamond drilling program carried out during 1975 and 1979 in the intrusive rocks and vein structures of the Wayside property together with the stripping and trenching done in 1977 and 1978 has delineated some small, but high grade gold ore shoots on the Commodore vein, but has failed to locate the continuation of this vein with any certainty along strike to the southeast, although several narrow quartz veins were intersected in hole 79-S5 which might be a "horse tailing" of the Commodore vein. 「「「「「「「」」」をするないのです。

The bulldozer stripping done higher up below the old 'O' adit has disclosed some wide, weakly mineralized shears with low gold values which might be considered ore grade at the present price of almost \$1000/oz (Cap.). However, the gold market has been so volatile lately that it is the writer's opinion that it would be unwise to select a price in this range to determine potential ore and therefore, evaluation of the gold potential of this part of the property should be deferred until there is some indication of price stability.

The only additional drilling for this area is the drill hole recommended by Lammle to probe the extension of the vein on the 9th level under the lake. This hole should be drilled during the winter when the water is low and the ground frozen.

The exploration target for the immediate future appears to be the "New Discovery" zone which has been partially intersected by three drill holes. There is still insufficient data to determine the nature of this zone of massive sulphides, as the deposit is unique to the area, all previous exploration having been done on gold bearing veins, but the preliminary drilling indicates that the apparent strike is almost north-south, which, if projected across the lake would connect with the old B.R.X. ground where there are reports of sulphide mineralization in drifts on the lower levels. Whether there is any relation between these two occurrences will depend on considerable more exploration work, but the indications are from the results to date that a very substantial body of copper-zinc sulphide mineralization could exist which justifies a comprehensive exploration program, the outline of which is given below.

RECOMMENDATIONS

1. Drilling should be continued on the "New Discovery" zone. The positioning of the holes will depend on the results achieved from each, but in the initial phase, at least 4 more -60° holes should be drilled along strike, each bearing at 240°, and

- 11 -

three holes drilled at -45° on the same bearing directly above the -60° holes to establish the dip of the mineral zone. Each hole will probably average about 800 feet in length.

- 12 -

2. From the roadside above the original sulphide outcrop, some backhoe trenches should be cut upslope on a southwesterly direction to uncover the copper zinc zone if it outcrops to the surface.

3. Some trial lines of I.P. survey should be run normal to the apparent strike of the sulphide zone, the lines being run over or near the drill hole intersections. If the response is good, this geophysical method should be employed to trace the trend of the zone ahead of the drilling and trenching.

4. One hole should be drilled from the lake bottom at 250° and -60° dip to probe for the extension of the Wayside shear on the 9th level. If successful, further drilling would be in order.

5. Further recommendations will be made after an evaluation of the above.

ESTIMATE OF COSTS

Phase I

Diamond drilling - allow 6500 ft.
 @ \$25.00/ft.

\$162,500.00

2. Backhoe trenching, drilling

6.	Travel and administration		\$ 8,000.00
7.	Contingencies, approximately 12% of above total		22,500.00
		Total	\$245,000.00

Phase II

If the results of Phase 1 work prove successful, then the property will require an expanded exploration program involving further diamond drilling, drifting, etc. for which an additional budget of \$400,000 should be provided.

P.Eng. J.P

January 21st, 1980

- 13 -

CERTIFICATE

- 14 -

James Paul Elwell, of 4744 Caulfield Drive, West Vancouver,
 B.C. do hereby certify that:

- I am a Consulting Mining Engineer residing at 4744 Caulfield Drive, West Vancouver, B.C., and with an office at 1030-510 West Hastings Street, Vancouver, B.C. V6B 1L8
- 2. I am a graduate in Mining Engineering from the University of Alberta in 1940, and am a Registered Professional Engineer in the Province of British Columbia.
- 3. I have no personal interest, directly or indirectly in the properties or in Carpenter Lake Resources, nor do I expect to receive directly or indirectly any interest in such property or securities.
- 4. The findings in this report are from data obtained from the reports and maps referred to and numerous examinations of the property from 1975 to 1980.

DATED at VANCOUVER, B.C. this 21st day of January, 1980.

J.P. ELWELL, P.Eng.

ß

S. LAND

APPENDIX

Logs and Assays of Diamond Drill Holes 1975 to 1979

Bearing 200°

(De F

ź

Δ,

Dip - 70°

Footage		<u>je</u>	Description
From		<u>To</u>	
0 22 40 42 61 69 80 81.5 84 86 89 End	- -	22 26 40 42 61 69 80 81.5 84 86 89 95 10 1e	casing soda granite, inclusions augite diorite augite diorite soda granite greenstone, inclusions soda granite, minor veins albite soda granite greenstone with inclusions soda granite minor qtz. soda granite albite "horse", minor sulph. vein qtz., minor soda granite, albite soda granite, albite, mariposite augite diorite
		-	Assay

Sample No.	From	<u>To</u>	<u>Au oz/ton</u>	Ag oz/ton
69516	81.5	84	0.046	0.01
69517	84	86	0.090	- 0.03
69518	86	88	0.003	0.01
	Ave. 4.5'		0.066	

Bearing 240°

ιĘ

Pin

Dip - 60°

<u>Fc</u>	ota	ige	Description
F		T .	
From		10	
0	-	59	overburden
59	_	61	soda gran, minor greenstone dike
61	-	90	mainly augite diorite, minor gtz stringers
			minor dikes
90	-	112	augite digrite
112	-	114	albite dike
114	-	115	soda granite
115	_	144	augite digrite minor atz stringers shearing
			60° to core at 120' and 142'
144	-	149	soda oranite
149	_	150	areenstone dike
150	_	162	soda granite
162	_	165	areanstone dike
165	-	170	soda granite
170	-	184	arconstono diko incl soda aranito at 173
		104	chearing at 181
184	_	103	soda granite becoming silicious
107	-	215	- fine grained rhyolite dike
(215	_	210	- otz braccia marinacita altar minor culphides
210	_	223	- gilicious broccia soda gran augito digrito
×223	_	228	\sim sinclous directia, sola gran. augite divine
228	_	222	= augite utorrie, shearing and art. at 220 = 220
223	_	250	- grey rigorite areding to sode granite
250	_	254	- augite divitte grading to soua granite
254	_	282	vorv coarse an augite diorite minor etz
204		LUL	ctringers
282	_	285	areenstone dike
285	_	292	augite diorite
292	_	207	code granite
297	-	302	albita dika minor atz vains
302	_	367	audite dive, millor quz. Venis
JUL		507	choaring and brecciation
367	_	380	augite dignite shearing avially to core some
507	_	500	brocciation
380	-	380 5	otz veinlet
380 5	-	Δ26	soda granite random otz stringers
426	_	420	augito diorite coarse an massive
420	_	445	augite changing to groonstone
ΔΔ7	_	497	soda granite minor augite diorite
ΔΔ7		<u>127</u> 000	augite diorite
440	_	497	augule utorite soda granite minor augite diorite
497	_	502	arov folcito diko
502	_	555	soda granite, fine or silicious zone at
JUE	_		5000 grantes, the grap strends zone at
			- 555 , minut by.

Page 2

A

1

「「「「「「「」」」をいいていたいです。

M

Foota	age_	Description
From	<u>To</u>	
590 - 600 - 602 - 608 - 632 - 636 - 636 - 683 - 683 - 687 - 691 - 700 - End of f	600 602 608 632 636 650 683 687 691 700 764	 augite diorite and soda granite augite diorite some rusty alteration 18" core recovered - silicious zone minor qtz. augite diorite and soda granite mixed fault zone poor core rec. soda granite grading into augite diorite massive augite diorite, minor faulting albite dike augite diorite, shearing at 689' soda granite massive augite diorite, minor qtz. stringers

<u>Assays</u>

Sample No.	From	To	Feet	oz. Au/ton	oz. Ag/ton
37823	363	365	2	0.003	0.01
37824	215	219	4	0.003	0.10
37825	391	374	3	0.003	0.04
37826	531	533	2	0.003	0.04
37827	549	552	3	0.003	0.01
37828	564	566	2	0.003	0.07
37829	574	575	1	0.003	0.01

Footage

and the Case

Bear	ring	240°	,	Dip - 60°
<u>F</u>	oota	ge		Description
From		<u>To</u>		
0	-	55		Overburden
55	-	82		augite diorite, banded, minor soda gran., minor albite stringers at random angles
82	_	91		coarse to fine or, augite diorite
91		96		augite diorite, numerous albite dikes, 2' dike
96	-	106		augite dior, and soda gran., shearing at 98'-99'
106	-	127		soda granite
127	-	133		greenstone dike
133	-	138		broken core - mainly soda granite
138	-	162		soda granite
162	-	188		augite diorite cut by numerous minor dikes of
				albite, otz, carbonate
188	-	195		soda granite with incl. augite diorite
195	-	206		coarse to fine or. augite diorite
206	-	216		massive soda gran.
216	-	240		soda gran., mariposite alteration 216' - 220' and 222' - 224'
240	-	265		coarse to fine gr. augite diorite, minor veinlets of gtz., albite
295	-	324		augite diorite, core broken up 300' - 314'
324	-	414		massive augite diorite, minor shearing at 332', minor dikes
414	-	415	_	areenstone dike
415	-	476	-	fine or, augite diorite
9 476	-	477	-	white otz, vein
477	-	500	-	augite diorite
500	-	528	-	augite diorite, bands and stringers of albite at random directions to core
52 8	-	560		medium to coarse gr. augite diorite, minor albite
560		575		soda granite minor otz veins
575	-	600		augite diorite, some fract, and alt.
600	-	610		mainly massive soda gran, with some augite diorite
610	-	640		augite diorite
640	-	668		augite diorite and soda granite major shearing
668	-	675		coarse to fine gr. augite diorite, 8" qtz. vein
£ 675 S	-	607		di D/J' code granita manipocita elteration 6771 6701
697	- - 	716	•	augite diorite
ENG O	t no	le		

in chi

お

Children and

Page 2

<u>Assays</u>

ţ

Sample No.	From	<u>To</u>	Feet	oz Au/ton	oz Ag/ton
37831 37832 37833 37834 37848 37848 37849	476 677 216 222 228 438	477 678 220 224 230 447	1 1 4 2 9	0.005 0.005 <u>0.012</u> 0.005 0.020 0.002	0.05 Tr. 0.06 0.20 0.02 0.06

Bearing 240°

Footage

;

. .

ł

÷

Description

	From		To		
	0		32		casing
	32		60		Andesite, minor epidote alt. minor diss. sulph.
	60		83		andesite, porph. and non-porph., minor dikes.
					otz, carb. stringer at 80'
	83	-	106		greenstone, minor diss, sulph.
	106	_	139		areenstone porph, diss sulph, otz stringer
					at 114^{\prime} and 130^{\prime}
	139	-	154		albito? diko phonocrysts of mafic minoral
	157	_	211	_	arbite: urke, prenocrysts or marite mineral
	134	_	211	-	greenstone, monor qtz. stringers aiss. suipn.
	211		225		shearing at 190° - 192°
	211	-	230		sheared, serpentinized greenstone epidote alt.
	236	-	245		fine gr. dike
	245	-	281		epidotized greenstone, minor diss. sulph, py.
	281		290.5		albite - frac. with mafic min. in fractures
					also mauposite and minor sulph. Qtz. veinlets
					at 290.5'
	290.5		346	-	greenstonewith diss. pv.
	346	-	391	-	same, shearing at 351' - 352', 362' - 363',
					minor diss. pv.
	391		420	-	greenstone with epidote alt shearing at 411'W
					minor of also at 118'
	420	-	451		arconstone - shattored zone $\frac{128!}{128!} = \frac{121!}{128!}$ of z
	120		101		$\frac{1}{2}$
	451	_	158		string, at 450 w. minor py,
	458	_	430	-	greenstone, minor diss. py.
•	400	-	472		greenstone with diss. to massive py., minor cpy.,
	170		400		mariposite
	• 472	-	400		greenstone
	480	-	49/		greenstone, epidote alt.
	497	-	501		massive, fine gr. pyrrho., py, minor cpy., in
					greenstone
	501	~	505		greenstone
	505	-	533		light grey rhyolite dike
	533	-	545		volcanics .
	545	-	553		volcanics – minor diss. py.
	553	-	561	· 🗭 🖌	increase in py. to massive, coarse grained, cubic
•	561	-	563		sparse to massive pv silicious vol.
	563	-	568		greenstone dike - sparse diss, pv.
-	568	-	573		diss to heavy by in sil vol shearing
	573	-	578		diss to mass by - shearing at 60° to core -
					hlohs cnv at $577-578$ - $snb?$ cuprite?
•	578	_	588		mainly disc py ; in sil yol 2' dike at 596
	599		500	-	Aldie at EQ01 channed wal with dice to hanve
	100	-	000	-	2 UIKE aL DOO ~ SHEATED VUI. WICH UISS. LO NEAVY
•	600		607		py. minor cpy.
		-	007	-	sneared SII. VOI., diss. to neavy py., minor cpy.
	007	-	032		greenstone dike bu/ - blb, sheared and altered
					vol., minor cpy. diss. py.

17

É

Page 2

Footage			Description
From		To	
635	-	642	 increase in py. and cpy. to massive bands in sil. vol.
642	-	648	 massive sulphides - pv., cpv., sph.
648	-	656	diss. to massive cpv. pv., sph. in silicious vol.
656		663	diss. to mass. pv., also veinlets in sil. vol.
663	-	675	- diss. to mass. py., cpy.
675	-	683	 sparse diss. py. amygdaloidal vol.
683	-	733	- fine gr. diss. py., minor cpy. in silicious vol.
733	-	766	very sparse diss. py.
766	-	776	 increase in diss. py., minor cpy.
776	-	786	 fine gr. py., cpy. as diss. and small blebs, silicious vol.
786	-	791	minor diss. py. cpy. sph.

Assays

Sample No.	From	<u>To</u>	Feet	<u>Cu %</u>	<u>Zn %</u>	Ag oz/ton	Au oz/ton
70211 71406 71414 71415 71416 71416 71417 71418 71419 71420 70221	497 553 618 628 635 642 648 656 663 786	501 561 628 635 642 648 656 663 668 791	4 8 10 1.2 7 1.7 6 6.3 8 12.4 7 2.0 5 <u>3.5</u> 5 <u>43</u>	0.24 0.12 6 0.18 72 2.56 6 1.06 45 1.56 3 0.29 0.26	0.59 0.69 0.14 1.48 3.58 2.50 0.48 2.53 0.03	$ \begin{array}{c} 0.38\\ 0.04\\ 0.10\\ 0.04\\ 0.20\\ 0.25\\ 0.48\\ 0.12\\ 0.10\\ 0.02 \end{array} $	0.019 0.012 0.003 0.003 0.003 0.005 0.010 0.005 0.003 0.003
			215	Y-1.			

50' The weighted average of the section 618' to 668' is Cu 0.895%, Zn 1.51% Ag 0.19 oz/ton, Au 0.004 oz/ton/ 635 - 656 1.75 Cu 2.47 Zn 0.32 Ag 6.51

10:36

2.6 15

10

17

Bearing 240°

5

C

Dip - 55°

Ģ,

.

Footage	Description			
From To				
0 - 2	altered vein material qtz. carb.			
2 - 50	augite diorite			
50 - 52	vein material - mariposite, qtz., albite, shearing and oxidation on fractures			
52 - 54	qtz. vein			
54 - 56	augite diorite			
End of hole				

<u>Assays</u>

Sample No.	From	To	Feet _	oz Au/ton	oz Ag/ton
37835	0	2	2	0.002	Tr. (.01)
37836	52	54	2	0.002	Tr. (.03)
3783 7	50	52	2	0.005	0.05(.01)

Bearing 240°

Description From To 0 9 casing 9 12 gabbro, miner qtz. stringers _ 12 13 minor vein - shearing -13 15 gabbro -15 17 Qtz. vein, shearing -17 38 gabbro, minor faulting at 28', vert mov. -38 39 qtz. stringers in gabbro -39 47 med. to fine gr. gabbro, qtz. stringers _ 47 48 Basalt dike -48 54 coarse gr. gabbro _ 54 56.5 _ fine gr. gabbro, qtz. stringers 56.5 -61.5 vein qtz. with gabbro, minor sulph. 61.5 -66 mixture of qtz. vein and mafic rock 66 67.5 gabbro _ 67.5 -69.5 qtz. vein 69.5 -71 gabbro End of hole

Samples Sample No. oz Au/ton oz Ag/ton From То Feet 2 .01 37838 15 17 .002 37839 56.5 61.5 5 .002 .01 37840 61.5 .003 .02 66 4.5 67.5 .11 37841 .005 69.5 2

Dip - 80°

, 1 英学

٨,

р М

SWILL PRESS

į

4-

Bearing 270°

Footage

41

17

Q}___

Dip - 80°

Description

From To 0 13 casing 13 20 gabbro, minor gtz. stringers 20 22.5 vein - qtz. and sheared wallrock, oxide 22.5 55 gabbro 55 56.5 qtz. vein, mariposite alt. 56.5 60 altered and bleached wallrock ~ 60 -68 gabbro 68 -74 vein - qtz. with minor sulp., incl. of gabbro wall rock, some mariposite .74 -79 vein - white qtz. minor sulph. free gold 79 -82 qabbro 82 85 vein - minor sulph. blue and white qtz. 85 -88 qabbro End of hole

SAMPLES Sample No. oz Ag/ton oz Au/ton From То Feet 37842 20 22.5 2.5 0.01 0.01 37843 55 58 3 .002 .01 2 6 37844 58 -0.52 60 0.14 37845 68 74 0.03 0.03 37846 79 5 0.035 0.13 74 37847 82 3 85 0.15 0.09