PROPERTY

CATARACT (Elton Lake Mo Target)

DiP	TEST										
Footage R 740 '	Angle eading Corrected -71° -71°	Hole No. 8201 Sheet No. 1 of 14 Lot. Section Drilling began Sept.12/82P Date Begun (setting up began Sept. Bearing Collar: 279°, -70° Date Finished Sept.19 1982 8/82) Elev. Collar. 1850 m						Total Depth 1040 (317 m) Logged By R.Bruaset, Terry L Claim CATARACT #4 Core Size BQ			
Conversion Factor	1 foot = 0.305		(1)	(2)	(3)	(4)	(5)	(6)	(7)		
DEPTH		DESCRIPTION	Veins	Core Recovery	WIDTH OF SAMPLE	%/Mo % Cu	M.S.	M.S. C.A.	Pyrite Seam,C.A		
	EXPLANATIONS		N.D.	10	8-20		7	20,30°	20,30°		
	Column (1): Nu	mber of quartz veins in samples		10	20-30		3	5,20°	5,20°		
	intervals.N.	D. = not determined.		7.5	30-40		0	_	25,30°		
	Column (2),(3),	(4) self explanatory.		10	40-50		1	25°	25,30°		
	Column (5) Numb	er of mineralized structures in		9	50-60		2	20°	25,30°		
	sample inter	val (M.S.). To qualify under this		10	60-70		3	10,30°	15,30,5		
	heading, a s	tructure must contain primarycopper	!	10	70-80		4	5,20°	20,25°		
	minerals, an	d/or molybdenit e .	 	10	80-90		4	10,25°	30°		
10.000			i	10	90-100		1	20°	25°		
	St	ructures containing pyrite alone do	<u> </u>	10	100-110		1	20°	N.D.		
	not qualify.	M.S. usually contain pyrite to-		10	110-120		4	5,10°	15,20°		
	gether with	one or more of chalcopyrite and		10	120-130		4 1	0,15,20°	15,30°		
	molybdenite.	The width of the mineralized		10	130-140		3	30°	20°		
	structure is	irrelevant for M.S. (may range from		8.5	140-150		2	10,30°	35,45°		
	hairline fra	ctures to quartz vein a few cm wide).	<u> </u>	10	150-160		0	_	15,45°		
	Column (6): Co	re angle(s) of mineralized struc-		10	160-170		2	30°	25,30°		
	tures. The	order on which the angles are listed		10	170-180		0	-	25,30°		
	do not sugge	st any dominant core angle.		10	180-190		0	_	30,35°		
	Column (7): Co	re angle of pyrite seams. To		10	190-200		0		30,35°		
	qualify, a p	yritic structure must be more or		10	200-210		3	25,30°	25,30°		
	less solid p	yrite.		10	210-220		2	20,25°	20,25°		

DIAMOND D'ILL RECORD

PROPERTY CATARACT (Elton Lake Mo Target)

DIP TEST									
Angle									
Reading	Corrected								
 									
	An								

Hole No. 8201 Sheet No. 3 of 14	Lot	Total Depth
Section	Dep.	Logged By
Date Begun	Bearing	Claim
Date Finished	Elev. Collor	Core Size

DEPTH	DESCRIPTION	SAMPLE No.	WIDTH OF SAMPLE		
8 - 116' (Cont'd)	have several strikes although strikes may not vary				
	much. A tendency towards "sheeting" is apparent.				
	23' Several quartz-pyrite-molybdenite veinlets cut				
	pyrite seams.				
	59.5-116' Contact zone. Breccias and dykes of medium				
	grained granitic rock.				
	Alteration:				
	Chloritization of mafics and argillic alteration of				
	plagioclase. Quartz veins.				
	Mineralization:				
	Molybdenite and chalcopyrite typically with pyrite				
	occur in vuggy quartz veins that cut pyrite seams.				
	Sheeting of sulphide bearing fractures apparent.				
	73', 102' Minor native copper in fractures.				
	92', 103' Minor secondary enrichment. Chalcocite				
	coats or replaces chalcopyrite preferentially to				
	pyrite.				
	94' Trace malachite on fracture.				
116 - 127'	Fine to medium grained quartz monzonite. The alteration				
	is mainly in the term of chlorite after biotite.				
	Molybdenite with or without chalcopyrite occurs in				

PROPERTY

CATARACT (Elton Lake Mo Target)

HOLE	NI.	DDH	820

	DIP TEST				
	Angle		0001 4 of 14		
Footag e	Reading	Corrected	Hole No8201 Sheet No. 4 of 14	Lot	Total Depth
			Section	Dep	Logged By
			Date Begun	·	Claim
			Date Finished		Core Size
	<u> </u>				

DEPTH	DESCRIPTION	SAMPLE No.	WIDTH OF SAMPLE				
1'' - 127'(Cont'd)	fractures with pyrite. Minor disseminated						
	molybdenite and chalcopyrite.						
	118' Quartz vein containing minor molybdenite cuts						
	pyrite seam.						
	125' Chalcocite after chalcopyrite in vuggy quartz						
	vein.						
127 - 150'	Medium grained biotite-rich quartz monzonite. This						
	section less pyritic than the sections above						
	and below and also is less mineralized with						
	molybdenite. The lower contact at 20° is somewhat						
	obscured by alteration.						
	140' Heavy chalcopyrite in fracture at 15°.						
150 - 207'	Aplitic intrusive. Highly sericitized and pyritized						
	at 8-10% pyrite. Traces of molybdenite. The			,			
	pyrite occurs mainly as seams but disseminations						
	between seam also present. No pink K-spar noted						
	along fractures of unstained specimens. The dominant						
	alteration appears to be a pervasive sericitization.						
	Moderate argillic alteration noted.						
207 - 815'	Medium grained quartz monzonite containing biotite.						
	Weak porphyritic texture shown by 2-3 mm quartz						
	phenocrysts		L		<u> </u>	1	l

phenocrysts.

DIAMOND PILL RECORD

PROPERTY

CATARACT (Elton Lake Mo Target)

	DIP TEST	
	An	gle
Footage	Reading	Corrected
	ļ	
	 	
	†	

Hole No. 8201	Sheet No. 5 of]	4 Lot	Total Depth
Section	•••••••••••••••••••••••••••••••••••••••	Dep	Logged By
Date Begun	•••••	Bearing	Claim
Date Finished		Elev. Collar	Core Size

DEPTH	DESCRIPTION	SAMPLE No.	WIDTH OF SAMPLE		
207-815' (Cont'd)	Alteration:				
	Argillic alteration is generally weakly developed,				
	with plagioclase generally hard to the knife, more				
	intense argillic alteration is typical near veins and				
	other sulphide bearing structures especially where the	se			
	are concentrated.				
	Potassic alteration in the term of pink K-spar is not				
	noted. However, etching and staining of slabbed				
	core reveals abundant K-spar as vein selvages or				
	envelopes relative to sulphide bearing structures.				
	K-spar megaphenocrysts are absent but secondary				
	biotite is locally present.				
	Chloritization. Biotite is commonly altered to chlor	te.			
	Chloritic fractures are becoming more numerous with				
	depth. Such chloritic fractures often contain pyrite				
	Sericitization. Sericite found on fractures, in				
	vuggy quartz veins and as alteration envelopes severa				
	cm wide relative to sulphide bearing veins and				
	fractures including pyritic seams.				
	Silicification. Expressed by quartz veins and quartz				
	lined fractures. Veins are frequently vuggy.				

DIAMOND D'ILL RECORD

PROPERTY

CATARACT (Elton Lake Mo Target)

HOLE No. DDH 8201

DIP TEST							
	Angle		Angle		0000		
Footage	Reading	Corrected	Hole No. 8201 Sheet No. 6 of 14	Lot	Total Depth		
			Section	Dep	Logged By		
			Date Begun	Bearing	Claim		
			Date Finished	Elev. Collar	Core Size		

DEPTH	DESCRIPTION	SAMPLE No.	WIDTH OF SAMPLE			
207-815' (Cont'd)	Locally, it is apparent that quartz phenocrysts have					
	grown in place perhaps by the addition of silica such					
	as during sericitization of K-spar to form silica and					
	sericite in alteration envelopes. Mineralization:					
	Chalcopyrite is commonly found in vuggy quartz veins					
	associated with pyrite and/or molybdenite. Pyritic				 <u> </u>	
	seams are becoming fewer and thinner with depth so					ļ
	that by about 400' few seams are present. At deeper				 	
	levels, pyrite occurs more commonly as open space					
	filling in quartz veins. The pyrite content from 207					
	to 454' is estimated at 4-5%. Molybdenite occurs mai	nly				
	as fine fracture fillings within quartz veins and as			***************************************		
	vug fillings with other sulphides such as pyrite and					
	chalcopyrite commonly and sphalerite rarely. Cross					
	cutting relationships show that pyritic seams					
	(with or without molybdenite) are cut by molybdenite					
	bearing quartz veins indicating two periods of					
	molybdenum mineralization. Long unbroken pieces of					
	core indicate sulphide bearing structures have					
	several strikes although the core angles are					
	generally similar.	J	1		 	

DIAMOND P"'LL RECORD

PROPERTY

CATARACT (Elton Lake Mo Target)

	DIP TEST				
	Angle		le 9201 7 C 7 A		
Footage	Reading	Corrected	Hole No. 8201 Sheet No. 7 of 14	Lot	Total Depth
			Section	Dep	Logged By
			Date Begun	Bearing	Cloim
			Date Finished	Elev. Collar	Core Size

DEPTH	DESCRIPTION	SAMPLE No.	WIDTH OF SAMPLE			
207-815' (Cont'd)	207-210', 217-232' Inclusions of fine grained mafic					
	lithology, possibly volcanics.					
	252' Heavy molybdenite in quartz vein at 15° cuts					
	pyritic seams.				<u> </u>	
	277.5' A quartz vein 1 cm wide containing traces of					
	molybdenite and chalcopyrite and heavy pyrite cuts				<u> </u>	
	several pyrite seams.					
	283' Quartz vein containing pyrite cuts a pyrite					
	seam. No chalcopyrite or molybdenite noted in					
	either.					<u> </u>
	407-454' Biotite less intensely chloritized than					
	higher in the section. Argillic alteration					
	continues weak. Also fewer quartz veins than					
	normal. Pyrite content about 2%. Few pyritic					
	seams.					
	444' Pyrite seam cut by vuggy quartz vein also					
	containing pyrite.					
	460' A 0.5 cm wide quartz "eye" has developed across					
	a pyritic seam. It is apparent that the quartz					
	"eye" developed after the pyrite seam. This may b	e				
	a weak expression of a form of silicification note	d				

PROPERTY CATARACT (Elton Lake Mo Target)

Ī		DIP TEST									
		 	ngle	0001 . 0 . 6	1.4				_		
-	F∞tage	Reading	Corrected	Hole No. 8201 Sheet No. 8 Qf					•		
				Section	-				• ,		
F				Date Begun		ring					
				out this is							(7)
	DEPTH			DESCRIPTION	(T) N.D.	(2) Core Recovery	(3) WIDTH OF SAMPLE	(4) % Mo % Cu	(5) M.S.	(6) M.S. C.A.	Pyrite Seam C
<u> </u>	'-815' (Cont	'd)	in some	stockwork molybdenum deposits where		9.5	220-230		0	-	20,30,
			"irregul	ar quartz eye porphyry" is found.		10	230-240		4	10,20,25°	15,30,
		4	169.5, 471.	5' Minor chalcocite after		10	240-250		1_1_	25°	25,30,4
			chalcopy	rite. Selective replacement of		10	250-260		3	10,20°	20,35°
			chalcopy	rite over pyrite is indicated.		10	260-270		6	20.30°	20.25
		4	171-489' A	bundant quartz veins in this		10	270-280		2	20,25°	25,30°
			interval	exhibit crosscutting relation-		10	280-290		1	25°	20,25,
			ship s mu	ch in the manner of a typical		10	290-300		11		20,25°
			stockwor	k. Quartz veins are occasionally		9.5	300-310		5	10,15° 30,35°	20,25.
. —			offset a	long fractures in which other		10	310-320		6	15,25,40°	40°
			quartz v	eins occur.		10	320-330		6	15,20,30°	
_		4	80' Typic	al moly slip of the type noted in		10	330-340		8	15:30°	25,30°
			most mol	ybdenum deposits. This moly slip		10	340-350		6	25,35°	25,30,4
			is the f	irst of its kind seen in this hole		10	350-360		6	0,20,35	25,35°
			suggesti	ng post mineral deformation of		10	360-370		3	20.30°	20.30.
			these ro	cks may be minimal.		10	370-380		6	5,20,25°	25°
		4	80-481.5'	Heavy molybdenite laced in quartz-		10	380-390		4	20°	30°
			pyrite v	ein.		10	390-400		4	5,15,20°	30°
		4	83' Minor	emerald green sericite.		10	400-410		6	0,30,55	None
		4	94-500' A	few mm of gouge on a single frac-		9.5	410-420		3	10,40°	None
			ture in	a section of blocky core believed		10	420-430		2	10,30°	None
						L	<u> </u>	<u> </u>	<u>L</u>	<u> </u>	

PROPERTY

CATARACT (Elton Lake Mo Target)

HOLE No. DDH 820]

		DIP TEST									
			Angle	Hole No. 8201 Sheet No. 9 Of	14 .			_			
	Footage	Reading	Corrected						•		
				Section	•	p aring					
				Date Finished							
					(1)	(2)	(3)	(4)	(5)	(6)	(7)
	DEPTH			DESCRIPTION	N.D	Core	WIDTH	% Mo % Cu	M.S.	M.S.	Pyrite Seam C
207-	815' (Cont	'd)	by dri	llers to have been a major fault.		10	430-440		2	20,35°	None
			They ha	ad considerable trouble getting the		10	440-450		2	20,25°	20°
			rods tl	nrough this section. Core angle of		10	450-460		6	20,30°	None
			the so	le gougey fracture is 10°. This is		10	460-470		4	15,35,4	30°
				rst fault in this hole.		10	470-480		5	20,30°	None
			510, 529'	Chalcocite after chalcopyrite		10	480-490		10 15	20,40,7	°30°
				t selective replacement of chalco-		7.5	490-500		4	20,30°	None
				over pyrite.		10	500-510		3	10,20,3	°30°
			533' Pyri	te in vuggy quartz vein also has		10	510-520		4	20,25°	30°
			associa	ated brown sphalerite.		9.0	520-530		5	20,35,4	None
			548-550' H	Heavy molybdenite associated with		10	530-540		3	20,35°	25,30
			intense	e quartz veining and pyrite seam		10	540-550		4	35,40°	30,35
			develo	oment.		10	550-560		6 10	45,50,5	°35°
			578' Weak	ly mineralized quartz vein cuts		10	560-570		5	30,35,40	°None
			pyritio	fracture.		10	570-580		6	30,40°	None
			585' 15 cm	n wide mafic inclusion.		10	580-590		1	30°	45°
			590' Heavy	/ molybdenite associated with		10	590-600		7 30	35,40,4	°None
			pyrite	in vuggy quartz vein.		10	600-610		4	35,40°	11
			605' Barre	en quartz vein at 80° cuts two		10	610-620		2	35,40°	11
				quartz veins (see 615')	14	10	620-630		1	30°	11
				en quartz vein is cut by	13	10	630-640		2	30°	11
		— · — · · · · · · · · · · · · · · · · ·	pyritio	fracture.		<u> </u>		<u></u>			

PROPERTY CATARACT (Elton Lake Mo Target)

E			ngle	2001	1 /1								
-	Footage	Reading	Corrected	Hole No. 8201 Sheet No. 10 of					ol Depth				
F				Section	. Dep	o							
				Date Finished		v. Collar							
					(1)	(2)	(3)	(4)	(5)	(6)	(7)		
	DEPTH			DESCRIPTION		Core Recovery	WIDTH OF SAMPLE	% Mo % Cu	M.S.	MS	Pyrite Seam C.		
207	'-815' (Cont	:'d) 6	26' Traces	of supergene enrichment with	17	9	640-650		2	30,40°	None		
				te replacing chalcopyrite occurring	34	10	650-660		5	30,35°	11		
			in light	pink (K-spar?) veinlet. Note,	27	10	660-670		6	35,40°	11		
			pink K-s	par is rare so far in this hole,	20	10	670-680		9	30,40,45	е п		
			although	etching and staining indicates	14	10	680-690		6	30°	11		
			K-spar s	elvages are common.	24_	10	690-700		3	30°	11		
		6	30-634° St	rongly magnetic mafic inclusion.	25	10	700-710		6	30,40°	1)		
		6	34-642' Th	ree mafic dykes variously 1-3 cm	17	10	710-720		3	30,40°	11		
			in width	n. Magnetic.	17	10	720-730		2	25,40°	11		
		6	76' Pyrite	-sphalerite-molybdenite veinlet.	32	10	730-740		6_	35,40°	ti.		
		7	'04' Quartz	-pyrite veinlet cuts sericite	14	10	740-750		6	35,40°	14		
			alterati	on. Elsewhere in this hole, it	21	10	750-760		3	15,30,40	o II		
			is noted	that sericite alteration forms	13	10	760-770		0	None	30°		
			envelope	es relative to quartz veins.	21	10	770-780		1	45°	None		
		7	'05-706' Ex	ample of intense argillic altera-	14	10	780-790		1	40°	None		
			tion. P	Plagioclase is clayey white and	11	10	790-800		2	30°	_30°		
			soft to	the finger nail.	5	10	800-810		4 15	20.30.45	° 40°		
		7	13,761,770)-771, 775-776' Strongly magnetic,	9	10	810-820		1	30°	None		
			mafic in	iclusions	11	10	820-830		6	30.45.60	° 40° _		
		7	'91' Second	lary biotite; biotite in vuggy	11	10	830-840		2	40,60	None		
			quartz v	vein with associated pyrite.	9	10	840-850		0	None	None		

DIAMOND D"ILL RECORD

PROPERTY CATARACT (Elton Lake Mo Target)

HOLE No. DDH 820]

		DIP 1	TEST									
	Footage	Re	Ar eading	ngle Corrected	Hole No. 8201 Sheet No. 11	of 14	•		Tota	I Denth		
					Section		D			•		
					Date Begun	Bed	oring		Cloid	m	••••••	
					Date Finished	Ele	v. Collar		Core	Size		*******
		L				(1)	(2)	(3)	(4)	(5)	(6)	(7)
	DEPTH				DESCRIPTION	N.D.	Core Recovery	WIDTH OF SAMPLE	% Mo % Cu	M.S.	M.S. C.A.	Pyrite Seam C
<u> 207-81</u>	5' (Cont	'd)	7	797.5' Pyr	ite-sphalerite chalcopyrite fractu	ure 12	10	850-860		1	45°	-
				at 30° (well developed sericite alteration	n <u>17</u>	10	860-870		0	nil	30°
				envelop	e	14	10	870-880		1	30°	
815 -	1040'		HYBR	D. Mediu	m grained intrusive as 207-815' bu	ut 8	10	880-890		0	nil	20°
			t	ecoming i	ncreasingly enriched in biotite	9	10	890-900		3	30.35°	_
			r	rich inclu	sions. This mafic material has be	een 8	10	900-910		3	25,30°	
			ā	ssimilate	d extensively in the magma giving	7	10	910-920		4	15,25°	20°
			r	ise to ro	ck which is probably at least as	7	10	920-930		2	15,50°	
			t	asic as q	uartz diorite,generally. The	4	10	930-940		. 3	20, 25, 50	°30°
			a	ssimilate	d material contains abundant quart	tz 4	10	940-950		6	30,40°	_
			i	n the form	m of "eyes" and other round quart:	z 9	10	950-960		8 10	30,45,50	° _
			a	ggregates	. The hybrid is generally strong	ly 8	9	960-970		1	25°	_
			n	nagnetic.		1	10	970-980		3	30,40°	-
			3	315-1040' /	Alteration	3	10	980-990		3	30,40,45	°40°
			5	ericitiza	tion: selvages up to 1 cm wide	9	10	990-1000		2	20°	-
				along py	yritic fractures and seams, also	3	10	1000-1010		2	35,40°	30°
				occasion	nally emerald green sericite.	_ 	10	1010-1020			40°	None
			.,,	Sericite	e bands are locally 4-5 cm wide.	5	10	1020-1030		3	10,35,50	°30°
						2	9.5	1030-1040		0	nil	None
			S	ilicificat	tion: Quartz veins.							
			C	hloritiza	tion: Disseminated biotite has							

PROPERTY CATARACT (Elton Lake Mo Target)

	DIP TEST			
	An			
Footage	Reading Corrected		Reading Corrected	

DEPTH	DESCRIPTION	SAMPLE No.	WIDTH OF SAMPLE			
815-1040' (Cont'd)	altered to chlorite. Chlorite envelopes					
	occasionally develop peripheral to sericite					
	envelopes.					
	Potassic: Fractures occasionally contain 2-3 mm of					
	felty biotite, e.g. 833, 875.5'. No K-spar					
	enrichment in the form of pink K-spar is noted.				-	
	Epidote: Traces of epidote noted on fractures					
	together with pyrite.					
	815-1040' Mineralization. Decreasing amounts of					
	molybdenite and pyrite. Molybdenite is scarce					
	but chalcopyrite is increasing slightly. Another					
	change noted is that the pyritic structures which					
	were earlier in the form of seams and highly					
	pyritic quartz veins now give way to hairline					
	fractures with their inherent lower pyrite					
	content.					
	915' Biotite envelope relative to quartz vein.					
	918, 920, 931.5' Secondary biotite in fractures.					
	927-1021' The Hybrid is very mafic.					
				·		

DIAMOND D"LL RECORD

PROPERTY

CATARACT (Elton Lake Mo Target)

DDH 8201

	DIP TEST				
	Ang	gle	0001	•	
Footag e	Reading	Corrected	Hole No. 8201 Sheet No. 13 of 14	Lat	Total Depth
			Section	Dep	Logged By
			Date Begun	Bearing	Claim
			Date Finished	Elev. Collar	Core Size
	LL				

DEPTH	DESCRIPTION	SAMPLE No.	WIDTH OF SAMPLE			
815-1040' (Cont'd)	931.5' Probable S cuzzy pluton clast in the assimi-					
	lated mafic rock.					
	936' A two cm wide zone of "aplitic" material					
	(diffused contacts) cut a mafic inclusion. This					
	may be an aplitic dykelet now altered.					
	952-960' Relatively heavy chalcopyrite in fractures					
	together with pyrite and occasionally sphalerite			_		
	(953'). The sulphide mineralization occurs in					
	hairline fractures and as disseminations in					
	sericitic envelopes.	,				
	956' Heavy chalcopyrite in strong sericitic envelope.					
	984' Wide sericite envelope developed adjacent to					
	2 mm pyrite seam. Very fine grained chalcopyrite					
	disseminated in the sericite envelope which is					
	several cm wide.					
	1011' Heavy molybdenite in quartz vein.					
	1018' Irregular seam of magnetite.					
	1021-1040' The Hybrid is less mafic than above.					
	Abundant sections of granitic rock. About 75% of					
	the biotite in this section is fresh.					

DIAMOND TILL RECORD

PROPERTY.

CATARACT (Elton Lake Mo Target)

	DIN 1F21	_								
Footage	Angle Reading Corrected	Hole No. 8201 Sheet No. 14. 0f. 14	Lat		Total	ol Depth				
rociege		Section Steel No. 174.01	Dep			ged By				
		Date Begun	Bearing		_	Claim				
		Date Finished	Elev. Collar.			e Size				
DEPTH		DESCRIPTION	SAMPLE No.	WIDTH OF SAMPLE						
15- <u>1040'</u> (Cont	(d) 1022, 1025	' Sericitic borders to pyritic fractures	;							
	well de	veloped. Sericitic borders are up to								
	4 cm wi									
)40 '	END OF HOLE	Core recovery 98.8%.								
	All core la	mped with ultraviolet light.								
		y a few specs of scheelite.								
Terrent Principles (America) Williams diagram principles (to all all all all all all all all all al	and the second s	, sometimes and the second sec								
							<u> </u>			
								†		
								 		
					·			 		
								 		
							ļ			
								 		
						 		 		
								ļ		
							 			
·								<u></u>		

PROPERTY

CATARACT (Elton Lake Mo Showing)

Footage F	Angle Reading Corrected -52	Hole No. DDH 8202 Sheet No. 1 of 8 Section Date Begun Sept.20, 1982 Date Finished Sept.24, 1982	Dep Bea	ring Collar Collar 18	· 99°, -5	Logg 50° Clai	ged ByR.I mCATAI e SizeBQ	516' (15) Lee, J. Bruase RACT #4	t
Conversion Fact	or foot = 0.305 m	Only water circulation used	(1)	 	(3)	(4)	(5)	(6)	(7)
DEPTH		DESCRIPTION		Core Recovery	OF SAMPLE	%/Mo %_Cu_	M.S.	M.S. C.A:	Pyrite Seam, C
	EXPLANATIONS		20	13.5	6-20		6	15,25°	15,25,4
·	Column (1): Number of	quartz veins in sample	19	10	20-30		7	40,20,1	°20°
	interval		18	10	30-40		5 10	20,35,19	°15°
	Column (2),(3),(4):	Self explanatory.	29	10	40-50		5	10,20,19	° 30,20°
	Column (5): Number of	mineralized structures in	20	10	50-60		4	20,25°	30,15°
	sample interval (M	I.S.). To qualify under this	26	10	60-70		4	20,15°	30°
	heading a structur	e must contain either copper	33	10	70-80		6 10	20,15,25	° 20,30,
	minerals and/or mo	lybdenite.	22	10	80-90		1	45°	20,20°
			28	10	90-100		4 10	25,45,20	° 10°
			24	10	100-110		3	25,15,40	° 25°
			25	10	110-120		6	10,30,4	° -
			24	10	120-130		3	5,10,20	° 10,20°
		The width of the mineralized	30	10	130-140		7	30,0,20°	
	structure is irrel	evant; may range from hairline	13	10	140-150		2	30,20°	25°
	fracture to a veir	up to 2 cm wide.	13	10	150-160	1	3	40,20°	25°
	Column (6): Core and	le of mineralized structures.	17	10	160-170		2	25,20°	15°
	The order in which	the angles are listed does	16	10	170-180		5 30	20,5,10°	20°
	not suggest any do	ominant core angle.	17	10	180-190		6 50	,20,25,1	° -
		ples of pyrite seam. To qualify	12	10	190-200		2	30°	-
		re must be more or less solid	18	10	200-210		4	25,20,1	° 30°
	pyrite. A vuggy o	quartz vein containing heavy	16	10	210-220		2	15,20°	25°
	pyrite does not qu	ualify.				<u> </u>	L	1	

DIAMOND D'ILL RECORD

PROPERTY

CATARACT (Elton Lake Mo Showing)

		DIP 1531									
-	Footage	Readin	Angle G Correcte	d Hole No. 8202 Sheet No. 2 of	8 _{La}	t		Toto	ol Depth		
F				Section		p			ged By	**************	
				Date Begun	Be	aring		Clai	m		
F				Date Finished		v. Collar			e Size		
<u> </u>					(1)	(2)	(3)	(4)	(5)	(6)	(7)
	DEPTH			DESCRIPTION	· · · · · · · · · · · · · · · · · · ·	Recovery	OF SAMPLE	%/Mo % Cu	M.S.	M.S. C.A.	Pyrite Seam,C.
_0 -	6'	OVI	ERBURDEN,	broken rock. No core recovered.	17	10	430-440]	15°	25,15°
6 -	516'	TE	RTIARY CAT	ARACT VOLCANICS	12	10	440-450		4	30,20°	20,20°
			Lapilli i	tuff and lesser tuff. Medium to dark	9	10	450-460		1	10°	20°
			coloured	. Abundant lithic fragments in the 2 mm	7	10	460-470		3	20,75°	
			to 2 cm s	size range. Various light and dark	12	10	470-480		6 30	40,25,7	ф° -
	· · · · · · · · · · · · · · · · · · ·		volcanic	and intrusive fragments.	17	10	480-490		1_1		_
			6'-143' 1	ragments are generally somewhat	17	10	490-500		5 20	,60,70,2	5° -
			indist	inct as if the fragments and matrix	14	10	500-510		1	70°	<u> </u>
			are pa	artially recrystallized, possibly	7	6	510-516		1	60°	
			somewh	nat hornfelsed.							
			Altera	ition:							
_			Silic	ification in the form of quartz along							
	····		hairl	ine fractures to quartz veinlets 1 cm							
			wide.	Vuggy quartz veinlets are common.							
			Half o	of the mafics has been chloritized and				i			
			often	fragments that appear recrystallized have	e						
·			center	rs of mafics largely altered to chlorite	•						
			Bleach	ned envelopes up to a few cm wide occur							
			relat	ive to pyritic structures. Within the					Ţ		
			bleach	ned envelopes the plagioclase is softene	d						
			by mod	derate argillic alteration. The bleache	d						
									L	L	L

DIAMOND D'LL RECORD

PROPERTY CATA

CATARACT (Elton Lake Mo Showing)

	DIP TEST					
	Angle					
Footage	Reading	Corrected				
	<u> </u>					
	-	· · · · · · · · · · · · · · · · · · ·				
	1					

Hole No. 8202 Sheet No. 3 of 8	Lat	Total Depth
Section	Dep	Logged By
Date Begun	Bearing	Claim
Date Finished	Elev Collar	Core Size

DEPTH	DESCRIPTION	SAMPLE .:o.	WIDTH OF SAMPLE		
6 - 516' (Cont'd)	envelopes also contain disseminated pyrite. A			 	
	little sericite was occasionally seen within the				
	quartz veining and bleached envelopes.				
	Mineralization:				
	Sparse fine grained molybdenite and chalcopyrite			 ,	
	occur with quartz and pyrite in structures from hairline fractures to veinlets and seams up to				
	1 cm wide. The molybdenite tends to occur with				
	quartz rich structures while the chalcopyrite tends				
	to occur with pyrite rich ones. Minor disseminated				
	chalcopyrite and molybdenite also occur. Pyrite				
	is the dominant sulphide at 3-5% mainly in hairline				
	fractures, veinlets and seams up to 1 cm wide and				
	their alteration envelopes. Typically veinlets				
	with quartz-pyrite-molybdenite cut veinlets of				
	pyrite-quartz.				
	7' pyrite seam cuts second pyrite seam with opposite				
	dip.				
	20' quartz-pyrite-molybdenite veinlet cuts pyrite seam	•			
	29',73' quartz-pyrite-molybdenite veinlet cuts pyrite-	i			
	quartz veinlet.,				

PROPERTY

CATARACT (Elton Lake Mo Showing)

	DIP TEST	i			
Angle		gle	0202 A of 0		
Footage	Reading	Corrected	Hole No Sheet No 4 of 8	Lot	Total Depth
			Section	Dep	Logged By
			Date Begun	Bearing	Claim
			Date Finished	Elev. Collar	Core Size
	L				

DEPTH	DESCRIPTION	SAMPLE No.	WIDTH OF SAMPLE		
6 - 516' (Cont'd)	34.5' 1 cm of gouge (green mud) with pyrite at a core				
	angle of 20°.				
	35' 3 mm of gouge at 30°.				
	36', 104' quartz-pyrite-molybdenite veinlet cuts a				
	hairline pyrite fracture.				
	44' chalcocite replacing chalcopyrite preferentially				
	to pyrite.				
	38', 47' minor native copper on fracture.				
	51', 76' chalcopyrite with pyrite-chalcocite-quartz				
	in 2 mm veinlets at 20° and 25°.				
	69-81' abundant bleaching in this section, envelopes				
	relative to pyritic veinlets, some envelopes				
	overlapping.				
	100' Chalcopyrite with pyrite-quartz in a 1-2 mm vein-				
	let at 20°.				
	108' 0.5 cm veinlet at 40° lined with vuggy quartz				
	with a trace of molybdenite, filled with a white				
	mineral hardness 4-5.				
	134' thin gouge on a chloritic slickenside fracture				
	surface at 30°. A pyrite seam which cuts the				
	fracture surface is not offset.				

DIAMOND DPILL RECORD

PROPERTY

CATARACT (Elton Lake Mo Showing)

	DIP TEST				
	An	gl e	0000 # 5 0		
Footage	Reading	Corrected	Hole No. 8202 Sheet No. 5 of 8	Lat	Total Depth
			Section	Dep	Logged By
			Date Begun	Bearing	Claim
			Date Finished	Elev. Collar.	Core Size
	1	·			

DEPTH	DESCRIPTION	SAMPLE No.	WIDTH OF SAMPLE			
6' - 516' (Cont'd)	137' quartz-pyrite-molybdenite veinlet cuts a pyrite-					
	quartz-chalcopyrite veinlet and its alteration					
	envelope.			·		
	138' quartz-molybdenite veinlet cuts pyrite-chlorite			- W		
	veinlet.					
	142.5' slickenside surface along side a pyrite seam				 	
	at 20°.					
	143-516' Fragments are relatively unaltered and					
	distinct.					
	Alteration:					
	The intensity of silicification is becoming less					
	with depth. The character of the chloritization					
	has changed with depth. Now less than one-third					
	of the mafics is chloritized. There is also an					
	increase in the amount of chlorite associated with					
	pyritic veining both in the veinlets and seams					
	themselves and as a chloritic envelope on the					
	periphery of the bleached envelopes. The bleached					
	envelopes are similar previously. Sericite					
	alteration also similar.			· · · · · · · · · · · · · · · · · · ·	ļ	

PROPERTY

CATARACT (Elton Lake Mo Showing)

	DIP TEST					
	An	gle	0202	C - F 0		
Footage	Reading	Corrected	Hole No. 0202	Sheet No. D 01 8	Lot	Total Depth
			Section		Dep	Logged By
			Date Begun	***************************************	Bearing	Claim
			Date Finished	****	Elev. Collar.	Core Size
		L				

DEPTH	DESCRIPTION	SAMPLE No.	WIDTH OF SAMPLE		
	Mineralization:				
	Molybdenite and chalcopyrite occur in amounts less than previously. Pyrite content is decreasing to				
	2-3%. There is now more disseminated pyrite in				
	the matrix and less occurring as veins.				
,	145.5' chalcocite replacing chalcopyrite in prefer-				
	ence to pyrite in a quartz-pyrite-chalcopyrite-				
	chalcocite veinlet.				
	162', 170.5' chalcopyrite and pyrite in 2 mm wide				
	quartz veinlets at 25° and 30°.				
	182' hairline fracture at 25° contains pyrite,				
	chalcocite, chalcopyrite.				
	195' slickenside on fracture at 30°.				
	205' chalcopyrite in two 2-4 mm pyrite-quartz veinlets				
	at 25°.				
	218' pyrite-chlorite-magnetite hairline fractures.				
	224' magnetite-chlorite hairline fracture at 0°.				
	242' example of a pyrite-chlorite veinlet.				
	243' magnetite hairline fracture at 45°				
	263-271.5' black, fine to medium grained, mafic dyke,				
	lower contact at 35°. Cut by some veining as rest of rock.				

DIAMOND PTILL RECORD

PROPERTY

CATARACT (Elton Lake Mo Showing)

HOLE No. DDH 8202

	DIP TEST				
	Ang	gle	0000	6 0	
Footage	Reading	Corrected	Hole No. 8202 Sheet No. 7 0	1 8 Lat	Total Depth
			Section	Dep	Logged By
			Date Begun	Bearing	Claim
			Date Finished	Elev. Collar	Core Size

DEPTH	DESCRIPTION	SAMPLE No.	WIDTH OF SAMPLE			
6 - 516' (Cont'd)	269' quartz-magnetite veinlet at 0°.					
	286' 6" wide dykelet? A medium to coarse grained					
	intrusive with 5% disseminated pyrite and 15-20%					
	mafics. Appears to have a fine grained chill					
	border. Lower contact at 55°, upper contact at 80	· .				
	336-340' white, fine grained, rhyolitic rock, low					
	mafics.					
	393-416' fine grained volcanic, medium colour with a					
	few fragments.					
	356' magnetite hairline fracture at 0°.					
	377' magnetite with quartz.					
	407' chalcopyrite in 2 mm quartz vein @ 30°.					
	419-426' medium to dark grey quartz porphyry sill?					
	Quartz phenocrysts 2-3 mm in size are abundant,					
	lesser mafic phenocrysts. Cut by same veining					
	as rest of hole. Contains a few lithic fragments.					
	Both upper and lower contacts are sharp at 40°.					
	456' molybdenite with quartz at 10°.					
	477' chalcopyrite and pyrite in 2 mm quartz vein at 2	5°.				
	499' A pyrite-quartz-chalcopyrite 3 mm veinlet at 25	ь				
	has a bleached envelope with a chloritic envelope					
	on the periphery with disseminated chalcopyrite.	L	<u> </u>	L	 	

on the periphery with disseminated chalcopyrite.

DIAMOND D"ILL RECORD

PROPERTY

CATARACT (Elton Lake Mo Showing)

	DIP TEST								
		Angle	8202						
Footage	Readin	g Corrected	Hole No. 8202 Sheet No. 8 0f 8	Lat			al Depth		
			Section	Dep	·····	Log	ged By		
			Date Begun	Bearing		Cla	im		
			Date Finished	Elev. Collar		Cor	e Size	*** ***********	
	<u> </u>								
DEPTH			DESCRIPTION	SAMPLE N	WIDTH OF SAMPLE	-			
- 516' (Con	t'd)	495' molybde	enite in a quartz hairline fracture at	60°.					
		515' possibl	le layering at 60°.						
516'	END	OF HOLE	Core Recovery 99.9%						
							 		
		NIV LANDING					 		
		UV LAMPING:	Occasional minor specks of scheelite	•			 	ļ	
								ļ	
					- 				
							 		
							<u></u>	ļ	
									†
								<u> </u>	
		·							
A Part of the State of the Stat									
							ļ		ļ
	l l			1	1	i	1	I	I

PROPERTY

CATARACT (Elton Lake Mo Showing)

	DIP TEST								
Footage	Angle Reading Corrected	Hole No. 8203 Sheet No. 1 of 1						7' (215. ee, R.U.	
		Section Date Begun Sept.26, 1982 Date Finished Oct. 2, 1982	Вес	on Bring Collar V. Collor	211°, -5	0° Clai	m Cat	aract #4	
	<u> </u>	Only water circulation used	(1)	(2)	(3)	(4)	(5)	(6)	(7)
DEPTH		DESCRIPTION		Core Recovery	WIDTH OF SAMPLE	% Mo % Cu	M.S.	M.S. C.A.	Pyrit Seam C
	EXPLANATIONS:		13	5.5	12-20		2	20,40°	
	Column (1): Nu	mber of quartz veins in sample	22	10	20-30		9 15	45,10,3	5° 5,1
	interval.		25	10	30-40		7 25	30,15,5	5,3
	Column (2),(3)	,(4): Self explanatory.	36	10	40-50		8	40,30,5	10,5,
	Column (5): N	umber of mineralized structures in	34	10	50-60		8 20	40,50,10	· <u>-</u>
	sample inte	rval (M.S.). To qualify under this	44	10	60-70		12 20	30,40,59	· -
	heading a s	tructure must contain one or more	_28_	10	70-80		6	40,10,09	15°
	of chalcopy	rite and molybdenite. The width of	29	10	80-90		2	25°	0°
	the mineral	ized structures is irrelevant for	25	10	90-100		7 5	30,35,65	° 0
····	this classi	fication. M.S. may range from	28	10	100-110		5	20,30,40	° 30°
	hairline fr	acture to a vein 2 cm wide or more.	34	10	110-120		6	15,30,20	° 15,1
	Column (6): C	ore angle or mineralized structures.	34	10	120-130		8 45	30,20,10	° -
	The order i	n which the angles are listed does	38	10	130-140		8	25,30,40	° 30,1
	not suggest	any dominant core angle.	24	10	140-150		9	25,15°	18:3
	Column (7): C	ore angles of pyritic seam. To	_21_	_10	150-160	<0.001/	3	25,35°	5°
	qualify a p	yritic structure must be more or	31	10	160-170		9 0	15,30,40	° 0°
	less solid	pyrite.	25	10	170-180	0.01/	10 5	15.20.40	° 0°
			33	10	180-190	0.01/	10 0	10,25,40	° 0°
12'	OVERBURDEN, b	roken rock. No core recovered.	18	10	190-200	0.02/	9 0	10,20,35	° <u>-</u>
707'	TERTIARY CONTAC	CT VOLCANICS	18	10	180-190 190-200 200-210	0.026	7_0	20.30.40	° -
	Lapilli tuff to	o tuff.	22	10	210-220	0.01/ 0.07	4	30,35°	0,0

PROPERTY CATARACT (Elton Lake Mo Showing)

Γ		DIP TEST									
			Angle	8203 2 of	11			_			
E	Footage	Readin	g Corrected	Hole No. 8203 Sheet No. 2 of					•		
-				Section	•	ring			• ,		
E				Date Finished		. Collar					
					(1	(2)	(3)	(4)	(5)	(6)	(7)
	DEPTH			DESCRIPTION		Core Recovery	WIDTH	% Mo % Cu	M.S.	M.S.	Pyrite Seams (
12	- 707' (Con	t'd)	Pinkish gre	y to black. Abundant light and dark	25	10	,220-330		2	30,40°	10,0°
			lithic frag	ments. Fragments are volcanic and	38	10	230-240		7 30	35,15,20	o _
			lesser intr	rusive.	23	10	240-250		8 20	40,25,35	c _
			Alteration:		26	10	250-260		6 20	50,25,30	° _ 0°
			Silicificat	ion. Quartz veinlets up to 2 cm	14	10	260-270		3	0,40°	0,0°
			wide and ha	irline fractures. Bleaching,	7	10	270-280		2	35.0°	10.0.0
			mainly as e	envelopes relative to pyritic veins.	13	10	280-290		3	35,45°	0°
			Chloritic a	Iteration. Less than one-third	22	10	290-300		4 15	40,35,10	o <u>-</u>
			of the mafi	cs are chloritized. Some chlorite	30	10	300-310		6	20,25,15	0.5
			occurs with	in the veining and alteration	31	10	310-320		6	15,10,20	!
			envelopes.	The more felsic parts have	20	10	320-330		4 35	30,10,20	1
			greater tha	n two-thirds of their mafics	21	10	330-340	, .	Į.	0.15.40°	!
_			chloritized	I. A little sericite was occa-	13	10	340-350			40.15°	10°
			sionally se	en within the quartz veining and	13	10	350-360		2	15,30°	_
			bleached en	velopes mainly in the lower one-	17	10	360-370		3	15,20,60	० ५०
			half of the	hole.	30	10	370-380		4 20.	25,35,40	
			Mineralizat	ion:	17	10	380-390		4	30,0,40°	
			Pyrite is t	the dominate sulfide at 2-4% mainly	10	10	390-400		5 15.	30,0,40°	0,10,5
				veins. Minor disseminated	16	9.5	400-410		6 40.	20,35,0°	•
				and chalcopyrite noted.	10	10	410-420		1	40°	5°
				y chalcocite.	19	10	420-430		2	35,20°	10,0°
						<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>

DIAMOND D'LL RECORD

PROPERTY CATARACT (Elton Lake Mo Showing)

DIP TEST

Foota		Angle Reading Corrected	Hole No 8203 Sheet No 3 of	: 11.			- .				
70010	ge i	Reading Corrected	Section Sheet No.					•			
			Date Begun		p						
			Date Finished	•							
				(1)	(2)	(3)	(4)	(5)	(6)	(7)	
DEI	PTH		DESCRIPTION		Core Recovery	WIDTH OF SAMPLE	% Mo % Cu	M.S.	M.S. C.A.	Pyrite Seams (
2 - 707'	(Cont'	12-51', 81	-124', 168-175', 254-272'	21	10	430 - 440		2	20,10°	20°	
		intense	bleaching.	15	10	440 - 450		4	45,20°	_	
		38' molybd	enite with quartz and pyrite	9	10	450 - 460		4	20,30,1	5°-	
		in a l	cm veinlet at 15 ⁰ .	13	10	460 - 470		6 15	30,0,45	-	
			tz-molybdenite-pyrite veinlet	19	10	470 - 480		5 10	20,0,5°	_	
		at 30°	cuts pyrite-quartz veinlet	16	10	480 - 490		5 45	30,15,5	10,0,10	
		at 5°.		12	10	490 - 500		5 35	30,10,2	°	
		48' molybd	enite with quartz-pyrite	14	10	500 - 510		0	_	0°	
		veinlet	s at 40° and two quartz-	17	10	510 - 520		1	10°	0°	
		pyrite	veinlets with same attitude	13	9	520 - 530		3 30	45,20°	10,5°	
		cut a p	yrite seam at 0 ⁰ .	16	10	530 - 540		3	20 °	20,5°	
		51-77' fin	e to medium grained black	22	10	540 - 550		5 10	45,25°1	5,5,0,5	
		mafic v	olcanic or possibly a dyke.	15	10	550 - 560		4	40,0,20	° 5 °	
				15	10	560 - 570		3	15,10°	5,10°	
				13	10	5 7 0 – 58 0		2	35,30°	0°	
		50', 109',	72', 71.5', 122', 160'	20	10	580 - 590		3 15	45,40°	0,20,10	
		bronze	colored biotite ± quartz	17	10	590 - 600		3 15	25,10°	5,10,10	
		± pyri	te ± chlorite veinlets and	30	10	500 - 610		4 20	,45,40°	5,15°	
		fracture	es.	20	10	610 - 620		2	20 °	10 °	
		54',55.5'	molybdenite with quartz-	13	10	620 - 630		2	10,45°	10,10°	
		pyrite-	minor native Cu in veinlets	24	10	630 - 640		5	30,20,0	°10,10°	
		½ cm-1½	cm at 35° and 45°.			<u> </u>		<u> </u>		-	

PROPERTY CATARACT (Elton Lake Mo Showing)

DIP TEST

_			ngle	8203	1 of 1	1						
-	Footage	Reading	Corrected	Hole No. 8203 She						•		
F				Section.)					
-				Date Begun			aring					
t				Date Finished		(1)	v. Collar (2)	(3)	Coi	(5)	(6)	(7)
	DEPTH			DESCRIPTION			Core	WIDTH OF SAMPI	8 MO	T	M.S. C.A.	Pyrite SeamsC
J٦	- 707'	54',	54.5',55	.5' minor native Cu.		8		640 - 6	50	0	-	10,15°
**	(Cont'd)	71'	quartz-m	olybdenite-pyrite vein	let cuts	8	10	650 - 6	50	3	15,20°	-
			q	uartz-molybdenite-pyri	te veinlet	• 24	10	660 - 6	70	0	_	10,20,
		71.5	' quartz	-pyrite-molybdenite ve	inlet cuts	21	10	670 - 6	30	4 10	35,20,4	° 10,2
			pyrite s	eam and a quartz-bioti	te-pyrite-	21	10	680 - 6	90	5 35	20,30,4	° 10,1
· · · · · · · · · · · · · · · · · · ·			chlorite	veinlet.		18	10	690 – 7	00	2	35,10°	10°
		74',	136',151	.5',175' magnetite ± q	uartz	10	7	700 - 7	07	2	20,50°	10°
			pyrite ±	chalcopyrite ± chlori	te vein-							
	-		lets and	fractures.								
		1	_	artz-pyrite-molybdenit	e veinlets						ļ	
			at 25° c	ut a pyrite seam at 0°.								
		82-9	l' core	follows a 2cm wide pyr	ite seam.							
_		91.5	',111',1	34.5',164',169' quartz	-pyrite-							
			molybden	ite veinlets cut pyrite	e seams.							
		123'	,134.5',	138',144',166' molybde	nite with							
		1		yrite in veinlets 2mm-	2cm wide							
			at 10°,	25° , 35° and 45° .								
		151.	5-168' m	oderate amount of blea	ching.							
*********		153-	223' abu	ndant pinkish clasts a	ppear re-							
			crystall	ized possibly hornfels	ed, mafic							
			clots in	center of siliceous m	aterial.							-
							1	1		ــــــــــــــــــــــــــــــــــــــ	1	

PROPERTY CATARACT (Elton Lake Mo Showing)

	DIP TEST	
	An	gle
Footage	Reading	Corrected
	ļ	
	 	
	 	

Hole No. 8203 Sheet No. 5 of 11	Lot	Total Depth
Section	Dep	Logged By
Date Begun	Bearing	Claim
Date Finished	Eley, Collar	Core Size

DEPTH	DESCRIPTION	SAMPLE No.	WIDTH OF SAMPLE				
12 - 707'(Cont'd) 159' layering at 50°.						
	169-174' chalcopyrite in pyrite-quartz						
	veinlet 1-2 mm wide at 00. Contains						
	minor red mineral (cuprite?).			· · · · · · · · · · · · · · · · · · ·			
	181.5',190',199',238',252.5',305'						
	molybdenite with quartz-pyrite in					<u> </u>	
	veinlets 1-3 mm wide at 35°, 30°,20°.						
	194',201',347' biotite-chlorite ± pyrite						
	<pre>± quartz ± magnetite hairline frac-</pre>					1	
	tures.						
	203' chalcopyrite with pyrite in hair-						
	line fracture.						
	213',219' molybdenite with quartz-pyrite						
	veinlets at 25° and 40° cut pyrite						
	seam at 0°.						
	223-233', 247-255' fine to medium					ļ	
	grained dark volcanic crystal tuff						
	or dyke.						
	254-258' core follows a 1 cm pyrite-						
	quartz-minor molybdenite seam.						
	261-262' fine grained, Leucocratic						

PROPERTY

CATARACT (Elton Lake Mo Showing)

HOLE No. DDH 8203

	DIP TEST				
	An	gle	0000	,	
Footage	Reading	Corrected	Hole No. 8203 Sheet No. 6 of 1	Lat	Total Depth
			Section	Dep	Logged By
			Date Begun	Bearing	Claim
			Date Finished	Elev Collor	Core Size

DEPTH	DESCRIPTION	SAMPLE No.	WIDTH OF SAMPLE			
1° - 707'(Cont'd) pinkish sill or dyke. 5% mafics.					
	Both contacts sharp at 45°.					
	266.5-276.5' fine to medium grained					
	leucocratic dyke cuts					
	layering. 5-10% biotite, 1-2%					
	pyrite. The dyke is cut by mineral-					
	ized quartz vein. Lower contact 50°					
	upper 350, both sharp.					
	289' layering 45 ⁰ .					
	280',284',305-306',318-320',336',348'					
	350' magnetite ± chlorite ± quartz					
	<pre>± pyrite ± chalcopyrite in fractures</pre>					
	and veinlets.					
	310' quartz-pyrite-molybdenite veinlet					
	cuts pyrite seam.					
	325' molybdenite with quartz-pyrite			·		
	veinlet 3 mm wide at 20 ⁰ .					
	342-344' leucocratic dyke same as 258-					
	365' but no sharp contacts.				ļ	
	347.5' molybdenite with quartz-pyrite					
	in 3 mm veinlet at 15° cuts pyrite					

seam at 10 °.

PROPERTY CATARACT (Elton Lake Mo Showing)

	DIP TEST				
	Ang	le	2200		
Footage	Reading	Corrected	Hale No. 8203 Sheet N	No. 7 of 11 Lot	
			Section	Dep	
			Date Begun	Bearing	
			Date Finished	Elev. Collar	

	DEPTH	DESCRIPTION	SAMPLE No.	WIDTH OF SAMPLE		
12	707'(Cont')	355' layering 55 ⁰ .				
		358-365' fine to medium grained				
		leucocratic dyke cross cuts				
		layering. 10% biotite largely chlor-				
		itized. Abundant quartz eyes 2-5 mm				
		in size. Cut by same veining as rest				
		of hole. Lower contact 40°, upper 45°.				
		The quartz veining and alteration				
		envelopes contain more than usual				
		sericite.				
		370.5',371.5',386-389' green fluorite				
		pyrite veinlets at 10° and 0° .				
		371',375' quartz-pyrite-molybdenite				
		veinlets cut pyrite-quartz veinlets.				
		382' layering 45 ⁰ .				
		409-410',433' chalcocite selectively				
		replacing chalcopyrite over pyrite				
		in fracture and veinlet at 0° and				
		10°.				
		411' molybdenite with quartz in hair-				
		line fracture at 40°.				

PROPERTY CATARACT (Elton Lake Mo Showing)

	DIP TEST	
	An	gle
Footage	Reading	Corrected
	Ļ 	
	<u> </u>	

Hole No. 8203 Sheet No. 8 of 11	Lat	Total Depth
Section	Dep	Logged By
Date Begun	Bearing	Claim
Date Finished	Eley Collor	Core Size

DEPTH	DESCRIPTION	SAMPLE No.	WIDTH OF SAMPLE		
12 - 707' (Cont'd) 412' layering 40 [°] .				
	2" leucocratic sill, parallels				
	layering. Same as dyke at 358-365'.				
	Sharp contacts.				
	427',430-435',494-497',505',512',516'				
	Fluorite-pyrite ± quartz ± sericite				
	veinlets.				
	435',534',575',588',626',632',639',655',				
	657' biotite ± quartz ± chlorite				
	<pre>± pyrite ± magnetite veinlets.</pre>			 i 	
	446',462',502' magnetite ± pyrite				
	<pre>± chlorite ± quartz fractures and</pre>				
	veinlets.				
	456' 3" leucocratic dyke with some				
	brecciation of the volcanics.				
	Crosscuts layering. Similar to in-				
	trusive at 358-365'. Contacts at				
	35-45°.				
	456' disseminated very fine molyb-				
	denite in alteration envelope.				
	468' l" leucocratic dyke with a few				

DIAMOND D'LL RECORD

PROPERTY CATARACT (Elton Lake Mo Showing)

	DIP TEST			
	An	gle	0000 0 -5 11	
Footage	Reading	Corrected	Hole No. 8203 Sheet No. 9 Of 11 Lat.	Total Depth
			Section Dep.	Logged By
			Date BegunBearing	Claim
			Date Finished Elev. Collar.	Core Size

DEPTH	DESCRIPTION	SAMPLE No.	WIDTH OF SAMPLE			
12 - 707'(Cont')	volcanic fragments. Crosscuts					
	layering. 45° to core angle.					
	468-469.5' fine to medium grained,					
	black mafic sill parallels layering.					
	Lower contact 50°, upper 60°, both					
	sharp. Slightly finer grained upper					
	chill contact.					
	470' molybdenite with quartz-pyrite in					
	3 mm veinlet at 45 ⁰ .					
	490-496' half a dozen small, 1"-1'					
	pinkish fine grained					
	sills or rhyolitic intervals in the					
	dark lapilli tuff. Conform to			-		
	layering. Chilled borders are uneven.					
	498.5-502' fine to medium grained black					
	mafic sill. No contacts seen.					
	Contains a large fragment of pinkish					
	lapilli tuff.					
	540',541' molybdenite with quartz-					
	pyrite veinlet at 10°.					
	568-569' chalcopyrite and chalcocite					

PROPERTY

CATARACT (Elton Lake Mo Showing)

HOLE No.

DDH 8203

DIP TEST	
An	gle
Reading	Corrected
 	
·	
	An

Hole No. 8203 Sheet No. 10 Of 1	1. kat	Total Depth
Section	Dep	Logged By
Date Begun	Bearing	Claim
Date Finished	Hey Coller	Core Size

DEPTH	DESCRIPTION	SAMPLE No.	WIDTH OF SAMPLE			
12 - 707' (Cont'	* *					
	at 10°. Chalcocite selectively re-					
	places the chalcopyrite.					
	566',571-579',661',698' fluorite with					
	pyritic veining.					
- Andrewson and the Andrewson and Andrew	571' molybdenite with quartz in 1 mm					
	veinlet at 35°.					
	609',629' molybdenite in hairline					
	fracture.					
	615' 6" modium grey quartz porphyry dyke					
	crosscuts layering. Abundant quartz					
	phenocrysts 3-5 mm, some biotite					
	phenocrysts largely altered to chlorite.					T
	A few foreign volcanic fragments.					
Control Contro	Contacts at 55-60° have a 2-3 mm					
	biotite-chlorite chill margin.					
	625-646' dark feldspar porphyry dyke?					
	Lower contact is irregular at 90°.					
	Abundant feldspar laths 2-4 mm in			······································		
	size.					
	630',631',654.5',695',706' molybdenite					

DIAMOND D"LL RECORD

PROPERTY

CATARACT (Elton Lake Mo Showing)

	DIP TEST								
	Angle		Hole No. 8203 Sheet No. 11 Of	= 1.1		_			
Footage Reading		Corrected					•		
			Section			-	Logged By		
			Date Begun	=			Claim		
	 		Date Finished	Elev. Collar	****	Core			
			,						
DEPTH			DESCRIPTION	SAMPLE No.	WIDTH OF SAMPLE				
- 707' (Cor	nt'd)	with qu	artz <u> </u>			····			
		at 20 ⁰ ,	30° , 15° and 35° .						
	6	87' quart	z-molybdenite veinlet cuts						ļ
		pyrite	seam.						<u> </u>
***************************************	6	85-690' <u>1</u> .	ight colored, very fine grained						
		rhyolit	ic section.						
	6	81' molybo	denite on fracture.						
7(07 ' Е	ND OF HOL	E						
· · · · · · · · · · · · · · · · · · ·									
	<u>U</u>	V LAMPING	: No scheelite seen.						
		•							