M490 KING DRILL LOGS 1980

841261

This was the rudiments of the 1980 King drill report to be completed by D. A. QW. A.H. It never was. Norwas work filed

DA.

HISTORY

The first claims were staked in 1977 as a result of regional geological and 3-media geochemical prospecting by personnel of JMT Services Corp. High mercury and arsenic, and occasionally high gold values, had been detected on traverses through the area.

The property was optioned to Newmont Mines Ltd. who financed a low-density sampling and mapping program across claims King 1 to 3 in 1978, but then dropped their option.

In February 1979 Chevron Standard Ltd. entered into a similar agreement with JMT Services Corp., and is the current operator. Since that time additional surface geological and geochemical work have been carried out as well as a 22 hole (1880 m) percussion drilling program on claims King 3 and 4. The intention of this program was to evaluate the ground beneath the E. end of the largest and most coherent of the geochemical anomalies. The results were mainly negative, with the principal exception of one hole, (#6) which yielded 1450 ppb Au in the bottom 3 m of the hole.

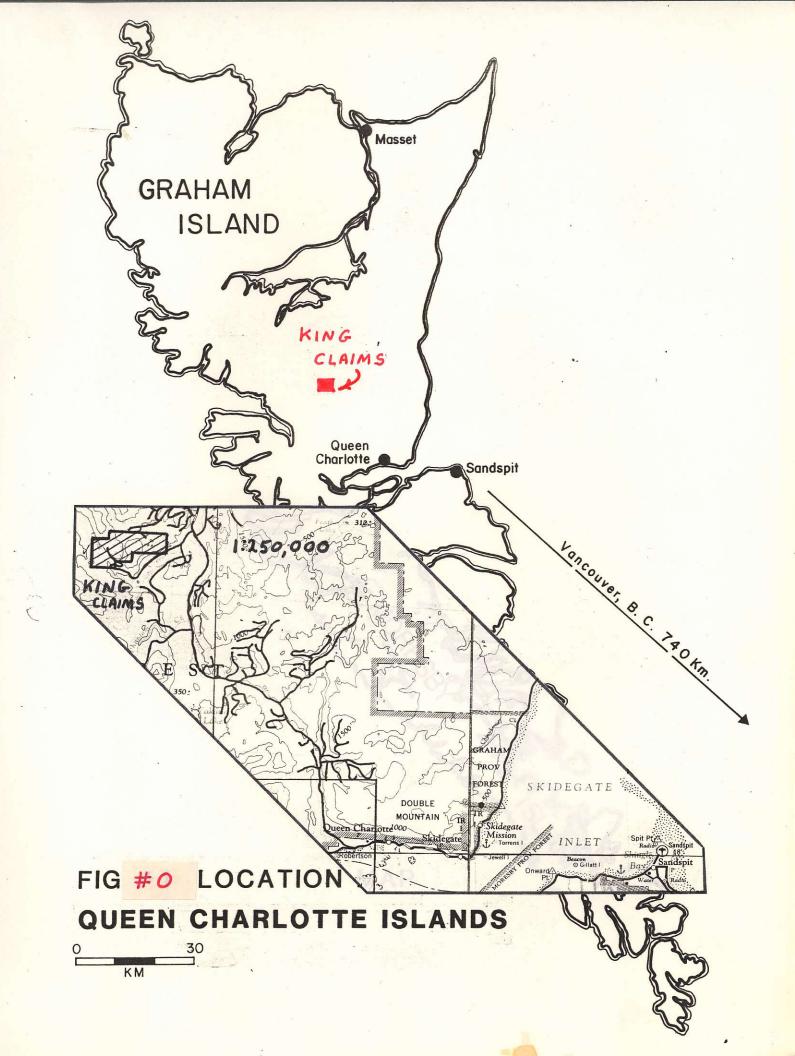
For more detail the reader is referred to the following assessment reports:

J. Christie, G. Richards

Report on Geology, Geochemistry and Economic Potential, King 1-3 Mineral Claims, 10 June 1978

J. Christie

Report on Percussion Drilling Program, King 1-9 and Gold Fever Claims, 15 January 1980

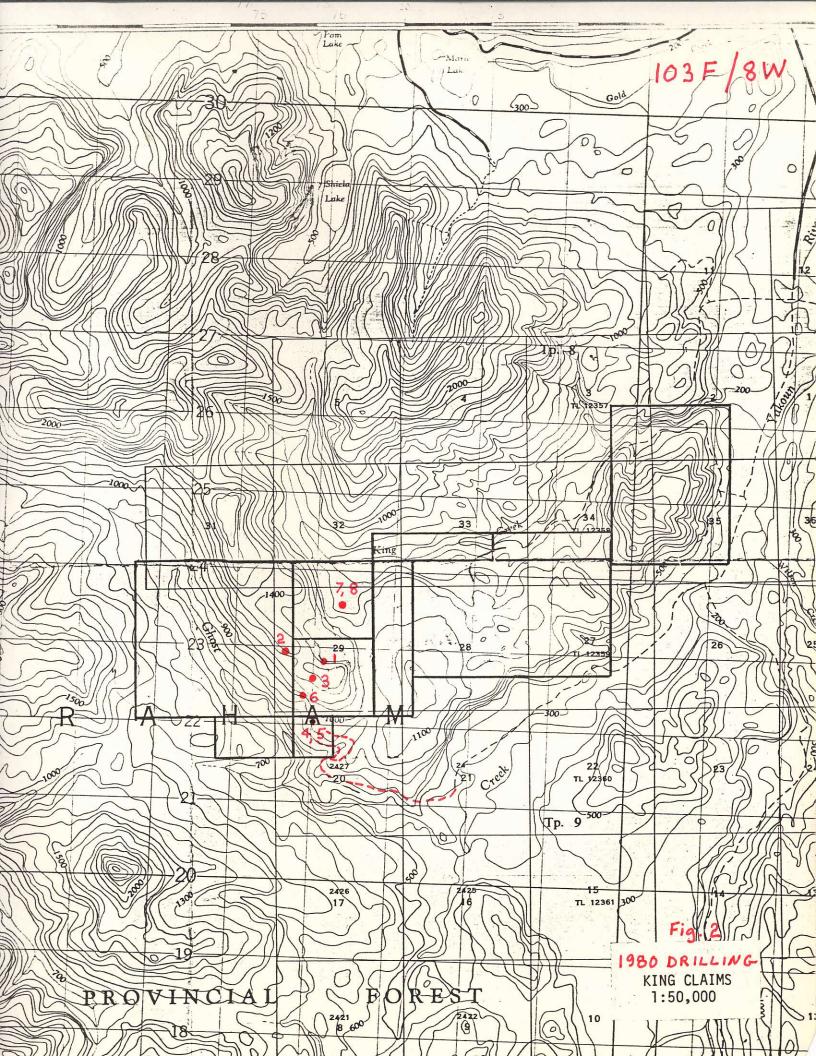
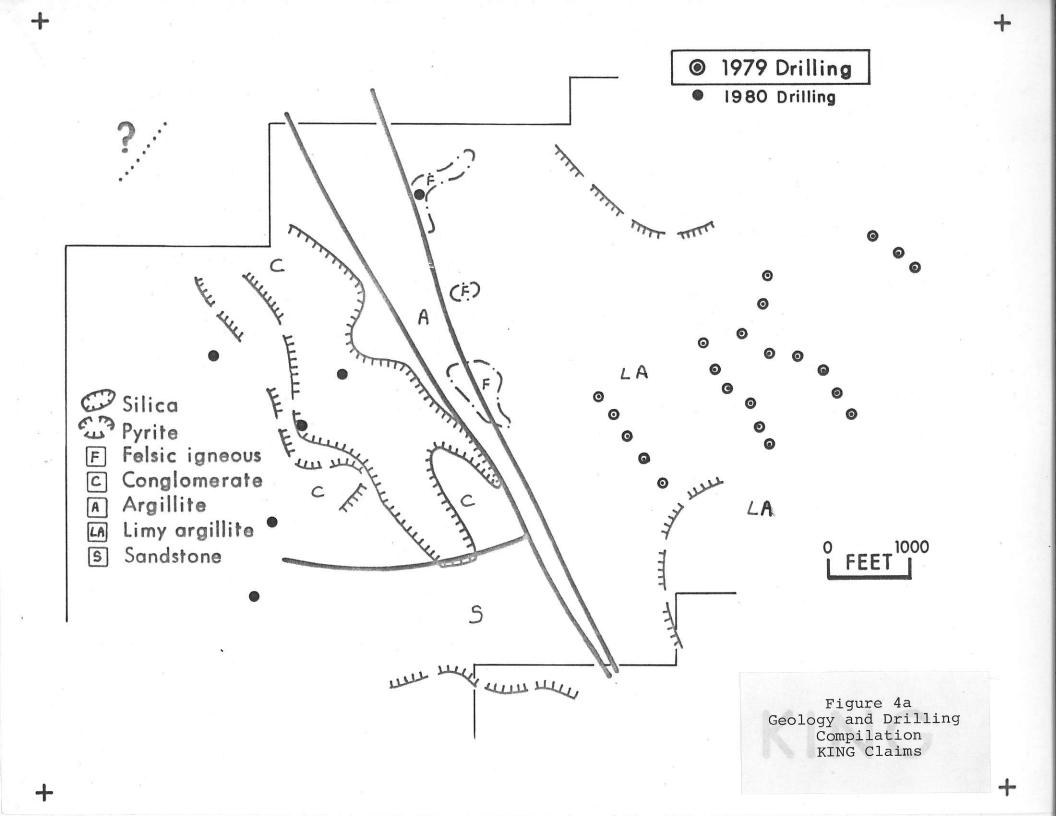

DIAMOND DRILLING

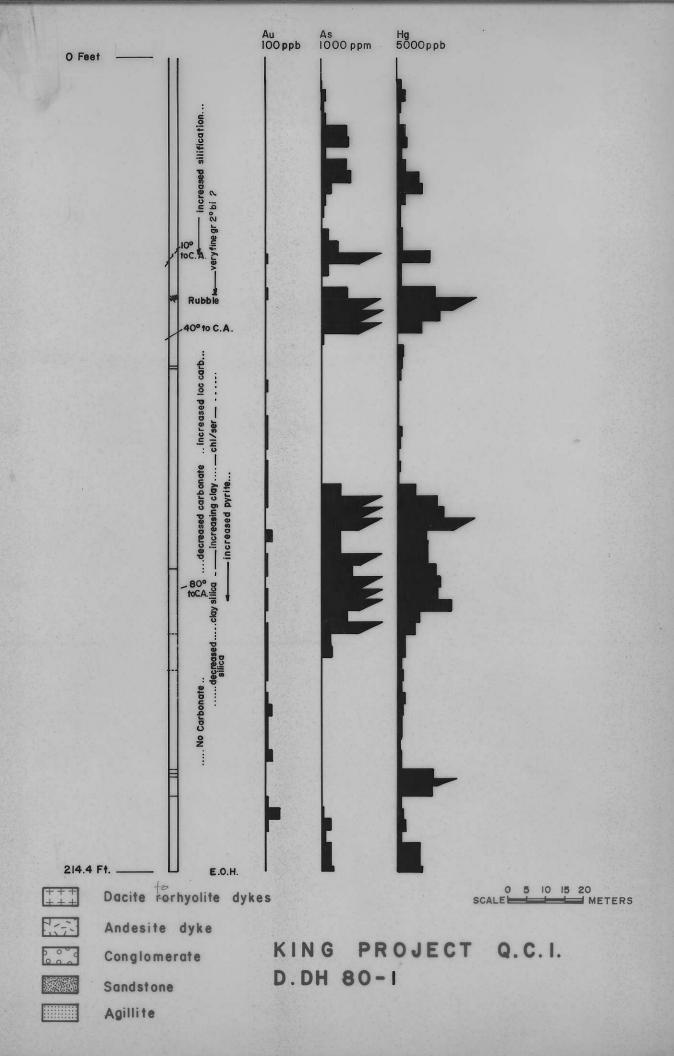
The 1980 drill program was designed to test the W. end of the major anomaly described above as well as other geochemical responses in combination with surface rock alteration and favourable structural features.

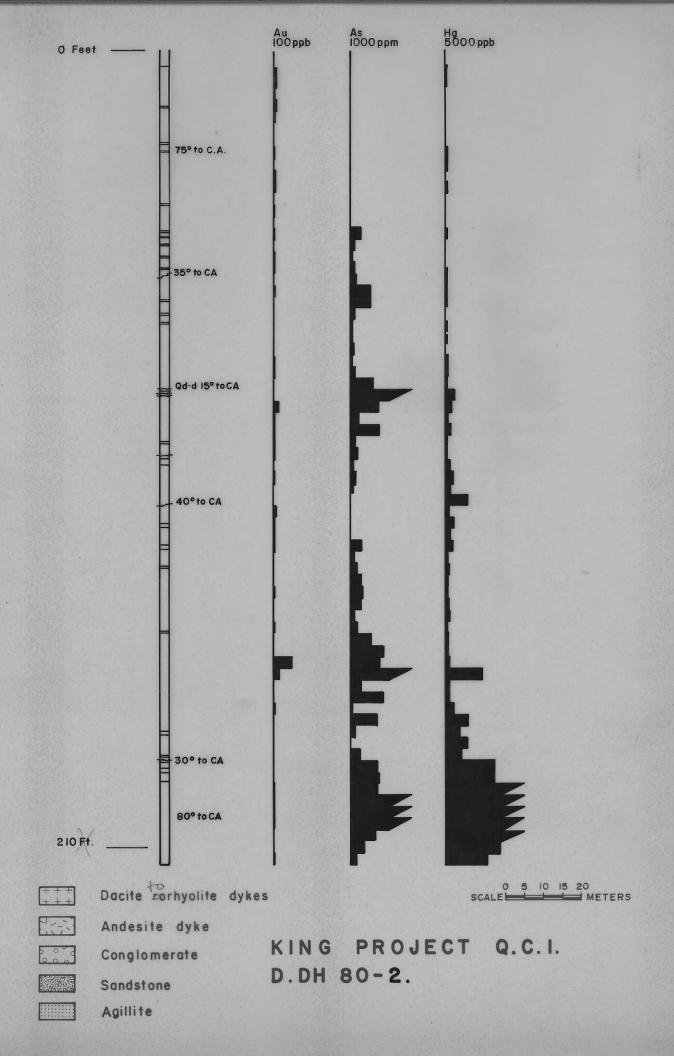
The work was carried out under contract by Globe Drilling Ltd. of Vancouver with a new Hydrawink diamond drill. The lightness of this equipment greatly facilitated the mainly helicopter-supported moves between sites, and in good ground it functioned well to the limit of available drill rods at a depth of 214 m.

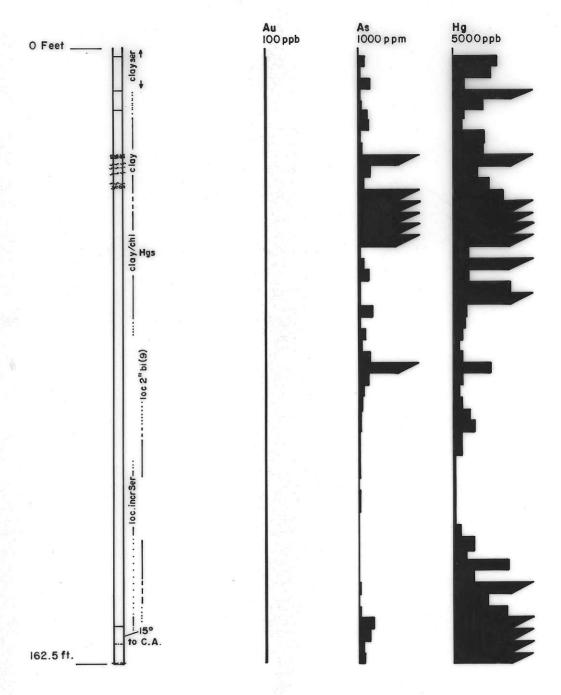
The total of 953 m of BQ core was entirely split and later analysed by Bondar-Clegg and Co. Ltd. in Vancouver for Au, As, and Hg content.

The distribution of the holes is shown on Fig. 2, a general program summary on Fig. 3, and a background data on Figs. 4a and b.


Fig. 3
KING - 1980 DRILL PROGRAM SUMMARY


The 1980 BQ diamond drilling may be summarized as follows:


Hole #	Length (m)	Target	Results (Best intersections)
1	214	Highest rock and soil geochemistry Major NNE structure	[Au 20 ppb over 3 m [Hg >2000 ppb over 30 m [As > 800 ppm over 37 m
	•	Pyritization and silicification	
2	214	Small strong Hg As anomaly Strong EW structure	[Au 50 ppb over 4 m [Hg >5000 ppb over 26 m [As 1000 ppm over 10 m
3	162	Hg anomaly near major NNE structure	[Hg > 5000 ppb over 20 m [As > 1000 ppm over 14 m
4	33	"Upstream" end of major transported Hg-As anomaly close to major NW trending structure	[Hg 750 ppb over 3 m
5	10	As for #4	Nothing anomalous
6	115	Strong Hg anomaly near major NNE structure	Au 40 ppb over 2.5 m Hg/As not anomalous
7	121	Area of strong feldspar porphyry dyking on major NNE and NNW structures	Nothing anomalous
8	84	As for #7	[Au 30 ppb over 3 m [Hg > 1000 ppb over 22 m
	953	·	

Hg in soil >1000 ppb >5000 ppb △ Hg in rock >5000 ppb Δ Δ Δ Au in soil >20ppb As in soil >130 ppm >1000 ppm Figure 4b As in rock >200 ppm Geochemical Compilation >1000 ppm KING Claims

^×^×

Dacite forhyolite dykes

SCALE METERS

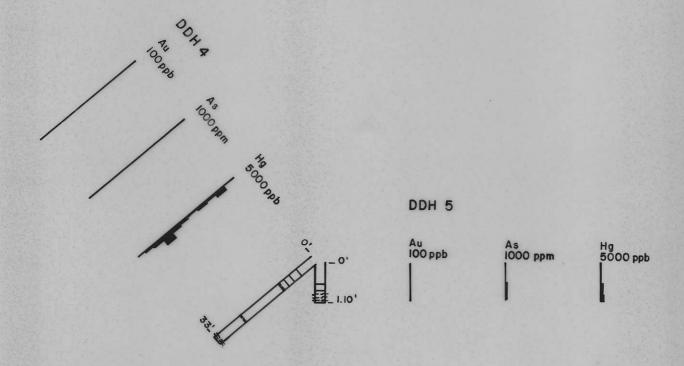
53

Andesite dyke

000

Conglomerate

Sandstone



Agillite

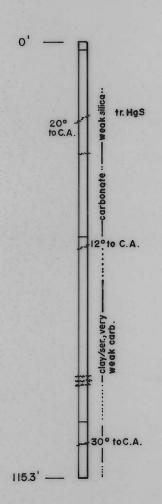
SCALE METERS

KING PROJECT Q.C.I.

D.DH 80-3.

Dacite forhyolite dykes

0 5 10 15 20 SCALE METERS


Andesite dyke

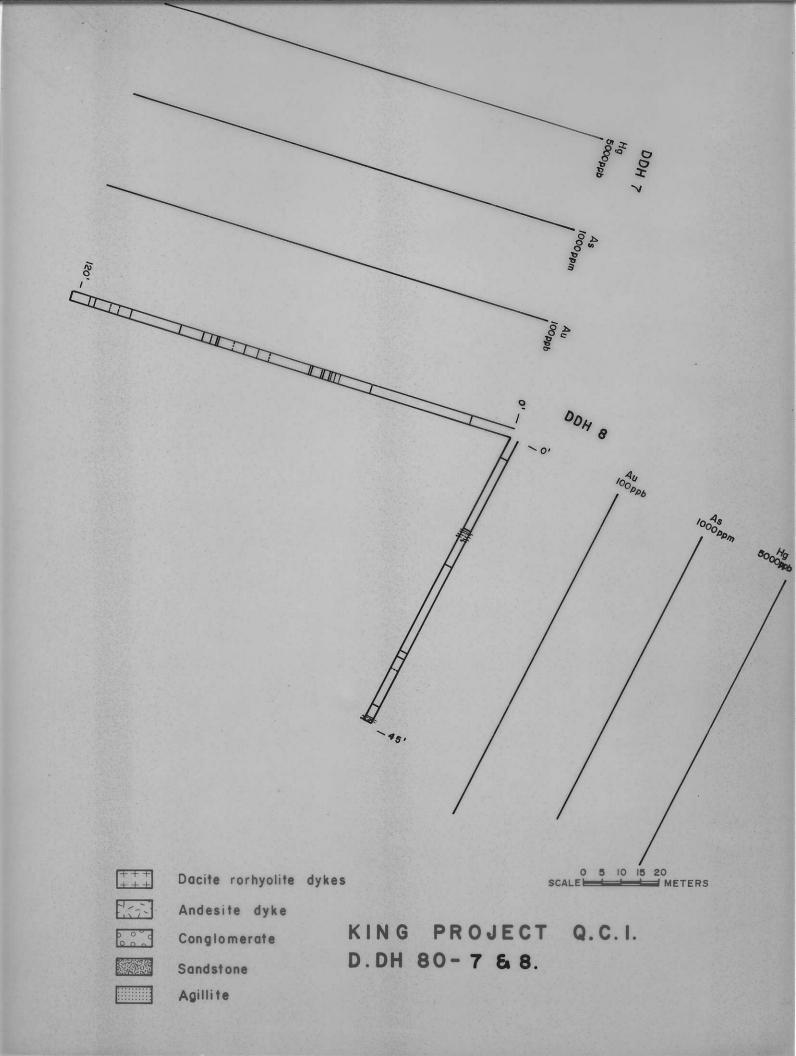

Conglomerate

KING PROJECT Q.C.I. D.DH 80-4 & 5.

Sandstone

Agillite

+++ +++ Dacite Forhyolite dykes 0 5 10 15 20 SCALE METERS


Andesite dyke

Conglomerate

Sandstone

Agillite

KING PROJECT Q.C.I. D.DH 80-6.

KING CLAIMS 1980 DIAMOND DRILLING (20 May to 5 July 1980)

DRILL CONTRACT (Globe Drilling Ltd.)

Invoice	<u>Footage</u>	Footage Cost	Auxiliary Costs	
6 Jun/80 16 Jun/80	1407 527	\$ 25,326.00 9,486.00	\$ 3,565.67	
26 Jun/80 7 Jul/80	542 659	9,756.00 11,862.00	14,615.00 2,959.05	
	3135 (953m)	56,430.00	21,139.72	\$77,569.72

DRILL SUPPORT COSTS (JMT Services Corp)

LABOUR (Field only

W. Howell, geologist, $46\frac{1}{2}$ days S. Courte, assistant, 11 days

G. Light, 44_ days

> 101½ days Total

Average charge man/day \$125.91 Total labour cost 12,779.50

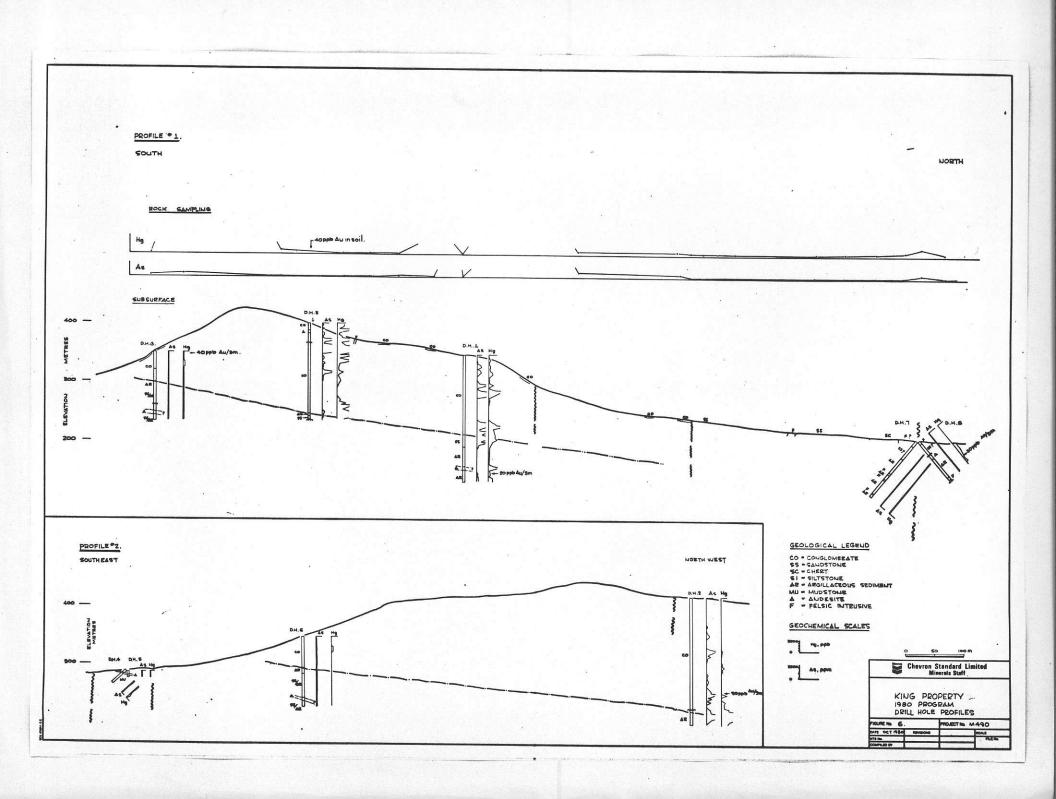
EXPENSES

Camp construction and hardware Food (incl. drillers) Truck rentals Expediting (S. Sawan) Freight Sites clearing (logger) Fuels and oil Airfares, ferries, taxis Telephone, misc. Hotels	\$3,314.62 6,545.00 2,628.00 880.13 139.23 960.00 1,332.74 604.40 100.84 1,105.93	\$17,610.89
	1,103.93	717,010.05
Assays 305 core analyses (Au, As, Hg) (Bondar Clegg)		4,819.83

Helicopters	(Queen	Charlotte	Island	Helicopters)
-------------	--------	-----------	--------	--------------

Int	voice	Hours	Amount		
20 N	May/80	1.5	\$ 529.50		
21 N	May/80	2.0	919.10		
28 N	May/80	2.2	873.40		
30 N	May/80	2.0	706.00		
31 N	May/80	1.1	388.30		
31 N	May/80	0.6	211.80		
	Jun/80	2.8	988.40		
4 3	Jun/80	1.8	635.40		
	Jun/80	1.0	353.00		
3 3	Jun/80	0.7	247.10		
	Jun/80	1.2	423.60		
	Jun/80	0.8	282.40		
	Jun/80	7.1	2,506.30		
	Jun/80	2.0	706.00		
	Jun/80	4.1	1,447.30		
	Jun/80	3.5	1,275.50		
	Jun/80	1.2	423.60		
1 3	Ju1/80	3.3	1,350.10		
			14,266.80 + 5%	\$ <u>14,980.14</u>	
		Total E	xpenses	\$37,410.86	\$37,410.86

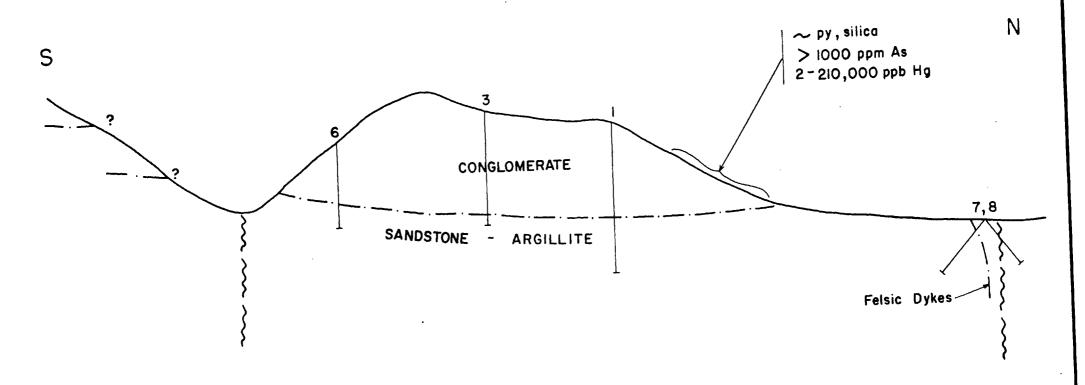
OTHER COSTS


Administrative	(Chevron	Standard		1 000	
Camp tear-down Report	(est.) (est.)		approx.	1,000. 1,000. 700.	
Drafting	(est.)			200.	
				2,900.	2,900.00
I	OTAL PROG	GRAM COST			\$130,660.08

Cost per foot, overall \$ 41.68 Cost per metre, overall \$137.10

Notes:

- 1. Drill sites 1,2,3, and 6 required helicopter moves.
- 2. The campsite was used for holes 1, 2 and 3 when a change in site access and a shortage of water forced a move to hotel accommodation.
- 3. 2310 feet (or 74%) of the drilling was in good to excellent ground, and the remainder in extremely poor ground.
- 4. The average footage per shift, including moves and delays but excluding mobilization was approximately 43 feet.


David arscott

KING - 1980 DRILL PROGRAM SUMMARY

The 1980 BQ diamond drilling may be summarized as follows:

Hole #	Length (m)	Target	Results (Best intersections)
1	214	Highest rock and soil geochemistry Major NNE structure	[Au 20 ppb over 3 m [Hg >2000 ppb over 30 m [As > 800 ppm over 37 m
		Pyritization and silicification	tara con FF con c
2	214	Small strong Hg As anomaly Strong EW structure	[Au 50 ppb over 4 m [Hg >5000 ppb over 26 m [As 1000 ppm over 10 m
3	162	Hg anomaly near major NNE structure	[Hg > 5000 ppb over 20 m [As > 1000 ppm over 14 m
4	33	"Upstream" end of major transported Hg-As anomaly close to major NW trending structure	[Hg 750 ppb over 3 m
5	10	As for #4	Nothing anomalous
6	115	Strong Hg anomaly near major NNE structure	Au 40 ppb over 2.5 m Hg/As not anomalous
7	121	Area of strong feldspar porphyry dyking on major NNE and NNW structures	Nothing anomalous
8	84	As for #7	[Au 30 ppb over 3 m [Hg > 1000 ppb over 22 m
	953		

PROPERTY KING - M490 Queen Charlotte Island, B.C.

xHQLExXX. 1980 DRILLING PROGRAM

	DIP TEST		GENERAL COMME	NTS ON ROCK	TYPES AND	LOGGING	
	An	gle					
Footage	Reading	Corrected	Hole No	Sheet No1	Lat		Total Depth
	-		Section		Dep		Logged By
			Date Begun		Bearing		Claim
			Date Finished		Elev. Collar		Core Size
	1						•

DEPTH	DESCRIPTION	SAMPLE No.	WIDTH OF SAMPLE		
	CONGLOMERATE				
	Grey to green, multilithic. Pebbles are well				
	rounded, average 2 cm in diameter, but				
	occasionally reach 4 cm. They constitute 40				
	to 60% of the rock and it is occasionally				
	almost matrix-supported. Pebble lithologies				
	include granite, argillite, rhyolite, chert,				
	quartz-diorite, limestone, and siltstone,				
	more or less in that order but well-mixed and				
	randomly sorted. The roundness often				
	approaches sphericity. Angular fragments				
	are rare and restricted to pebbles of				
	sedimentary origin. The matrix is a grey				
	sand of possibly similar constitution but				
	the fragments are more angular. No bedding				
	is evident. Changes across stratigraphy,				
	except for sandy interbeds and alteration,				
	are not obvious.				
	SANDSTONE				
	Grey, medium grained, and almost identical				
	with the conglomerate matrix. Bedding is				

GENERAL COMMENTS ON ROCK TYPES AND LOGGING

PROPERTY KING - M490 Queen Charlotte Island, B.C.

DIP TEST

		Angle		2				_			
Footage	Red	ading Corrected		Sheet No2					· ·		
			·								
			_	**************************************		ring					
			Date Finished		. Elev	. Collar		Co	re Size		
DEPTH			DESCRIPTION			SAMPLE No.	WIDTH OF SAMPLE				
		often weak	or absent. Bou	ndaries to cong	lo-						
		merate are	e clear but grada	tional.							
		SILTSTONE									
		Very thin	bedded with grey	and dark grey	beds						
		Local cros	ss-bedding.								
		SILICIFICATI	ON - is rated	as follows:							
····		w - Conglo	merate breaks aro	und pebbles, and	d is						
***		scrato	chable with a kni	fe.							
		m - Conglo	omerate breaks th	rough pebbles a	nd				_		
		is bar	rely scratchable.		- · · · · · · · · · · · · · · · · · · ·						
		s - Very h	nard, straight br	eaking.							
		CHLORITIZAT	ION AND CLAY								
· · · · · · · · · · · · · · · · · · ·		Crudely re	egistered chlorit	e green - w, m	and						
		s and whit	te colouration re	espectively.					_		
		CARBONATIZA'	TION - is rated a	s follows:							
		w - occas	ional seams fizz	with 10% HCl							
		m - pebble	e rims and seams	fizz well.							
		Occas	ional carbonate v	reinlets.							ļ
· · · · · · · · · · · · · · · · · · ·		s - Abund	ant fizzing and/o	or carbonate vei	ning						
			····								ļ
						1	1	1	1	1	1

(Cont'd)

GENERAL COMMENTS ON ROCK TYPES AND LOGGING

PROPERTY KING - M490 Queen Charlotte Island, B.C.

DIP TEST

Footage	Rea	Reading Corrected Hole No			Dep. Bear	ing			Claim											
 DEPTH						DESC	CRIPTION						SAMPLE No.	WIDTH OF SAMPL	F					
 		YRI	TIZA	TION										OI SAWII E	-					
	-				tr, l	%, or	5%,	liss	semin	ated										
			- in																	
			- in																	
		R	- on	pebl	ble r	ims														
		V	- in	veir	ns an	d she	ears													
 				.,									- 411							
 										,					_					
 							<u> </u>	- (_			ļ		
																				
								_												
 														ļ						
 										-										
 				•••																
															_			-		
		~ · · · · · · · · · · · · · · · · · · ·			<u>.</u>													-	\dashv	
 																		<u> </u>	_	
																	<u></u>			
															İ					

PROPERTY KING - M490

DIP TEST								
Angle								
Reading	Corrected							
	An							

Hole No. 1 Sheet No. 1 of 5	Lat	Total Depth214.44 m
Section	Dep	Logged By W.A. Howell
Date Begun May 22, 1980	•	Claim
Date Finished May 27, 1980		Core SizeBQ
23' casing + shoe left in		

DEPTH	DESCRIPTION	SAMPLE No.	WIDTH OF SAMPLE			
0 - 5.80 m	OVERBURDEN					
	Casing set at 7.02 m.					
5.80 - 72.90 m	CONGLOMERATE					
	Variably silicified, on the split core,					
	initially ~50% of breaks occur across clasts					
·	and 50% around clasts. Fine disseminated					
	pyrite is common in the matrix and as a clast	<u> </u>				
	component. Occasional clasts are very pyr					
	rich (10%), this pyrite may be primary or			 		
	perhaps epigenetic, localized by compositions	1				
	variation between clasts and matrix.				1	
	12.51-13.12m- Sandy lens, light grey in color	ur		 		
	feldspar component is clay altered. Occ.			 		
	fine biotite present, can total sulphid					
	$(\frac{1}{4} - \frac{1}{2} %)$.			 <u></u>		
	13.12-52.47m- Silicification increases from					<u> </u>
	from about 13.12 m - knife will not scratch	<u> </u>				·
	core easily and clasts break across rather					
	than around. Pyrite is variable from ½ to					
	3%.					
	13.12-63.75m - Fine grained purple-brown					

PROPERTY	KING	-	M490	
I NOI EN I				

HOLE No.1

	DIP TEST							
Angle								
Footage	Reading	Corrected						
	ļ. <u>.</u>							
	 							
Ł	<u>L</u>							

Hole No. 1 Sheet No. 2 of 5	Lat	Tota
Section	Dep	Logg
Date Begun May 22, 1980	Bearing	Clair
Date Finished May 27, 1980		Core

Total Depth	214.44 m
•	W.A. Howell
Claim	
Core Size	BQ

			WIDTH			
DEPTH	DESCRIPTION	SAMPLE No.	OF SAMPLE			
5.80 - 72.90	biotite is common throughout the matrix,					
(Cont'd)	occ. fine qtz stringers occur @ 24.40 m.			_		
	Sparry calcite stringer occurs @ 42.09 m.					
	FAULT - SHEAR, 10° to C.A. @ 52.47 m.					
	63.75 m - Ground core/rubble - core is softer					
	lens silicified - core splits around 50% of	· · · · · · · · · · · · · · · · · · ·				
	pebbles.				<u> </u>	
72.90 - 73.82 m	ANDESITE FELDSPAR PORPHYRY DYKE					
	Upper contact is 40° to C.A., andesite con-					
	tains about 1 - 2% very fine pyrite. Fracture	es				
	within the andesite are also bitumen filled.					
	(Bitumen fractures were observed in Haida?					
	S.S. on Ghost Creek ~1.6 km upstream from					
	Demon Creek during 1978 reconnaissance.)					
73.82 - 134.82m	CONGLOMERATE					
·	73.52-82.36m - core is grey/green colour.					
	Sandy lens @ 81.14-81.75. Med. silicifica-			Щ		
	tion, pale green colour is attributed to					
	fine grained matrix sericite. Sulphide con-					
	tact is << 1% with little or no carbonate					
	present.					

PROPERTY	KING	-	M490
FROFERIE			

HOLE I	No.	1
--------	-----	---

	DIP TEST						
Angle							
Footage	Reading	Corrected					
	 						
	 						

Hole NoSheet No	- Lat	Total Depth	214.44 m
Section		•	W.A. Howell
Date Begun	Bearing	Claim	
Date Finished	Fley Collor	Core Size	во

DEPTH	DESCRIPTION	SAMPLE No.	WIDTH OF SAMPLE			
73.82 - 134.82m	82.36-97.00m - core is darker green, weakly					
(Cont'd)	carbonatized, chlorite more common, core					
	splits across clasts. Py-marcasite is					
	common.					
	97.00-112.86m - core is lighter green in					,
	colour, carbonatization is increased but is					
	not strong, core splits across clasts, occ.					
	clasts have a dark reaction rim on them.					
	112.86-134.82m - core became pale grey colour	,	ļ	ļ 		
	carbonate is about non existent except with			 		
	clay on fractures. Pyrite disseminated					
	through matrix, increases locally to 1-2%				ļ	
	and occasionally to 5%. Clay alt. increase	s				
	to 134.82 m.					
	134.82m - As clay alt. increases, the inci-					
	dence of v.f.g. py. on fractures, dissemin-					
	ated through the sandy matrix and as dark					
	reaction rims on the pebble clasts					
	increases.					
<u>134.82 - 150.99</u> r	n SANDSTONE/GREYWACKE					
	Bedding $\sim 80^\circ$ to C.A. (10° dips). Locally					1

PROPERTY	KING	- M490			HOLE No	1
----------	------	--------	--	--	---------	---

	DIN 1521			
	An	gle		014.44
Footage	Reading	Corrected	Hole No. 1 Sheet No. 4 Of 5 Lat.	Total Depth 214.44 m
		-	Section	Logged ByW.A. Howell
			Date Begun Bearing Bearing	Cloim
			Date Finished Elev. Collar	BO

DEPTH	DESCRIPTION	SAMPLE No.	WIDTH OF SAMPLE			
	SS is brecciated with a dark sandy matrix.					
(Cont'd)	Fractures in the SS are bleached. Darker					
	wispy beds are silicified. General alt.					
	is clay/silica.					
50.99 - 161.06	SANDSTONE/ARGILLITE - interbedded.			-		
	Core becomes darker coloured with initially					
	small dark argillaceous bands increasing in					
	frequency with depth. Core is less silicifie	đ				
	than previously observed. Little or no					
	carbonate present. Extremely v.f.g. sulphide					
	is present but in quantities generally <<1%.					
	Several beds of pyrite are present towards th	е				
	lower part of this section. The pyrite is					
	commonly massive over very thin beds and is					
	occ. fracture controlled.					
61.06 - 187.75	ARGILLITE - with minor sandy interbeds.					
	Grey-black in colour. Little or no carbonate	•				
	Rock is soft and friable, occasional-scarce-					
-	calcite stringer. Trace amounts of v.f.g.					
	pyrite are common in sandy layers.					
	(cont'd)					

PROPERTY

HOLE No.

	DIP TEST						
	Angle						
Footage	Reading Correct						
	 						
	†						

Hole No1 Sheet No. 5 Of 5	Lat,	Total Depth 214.44 m
Section	Dep	Logged By W.A. Howell
Date Begun	Bearing	Claim
Date Finished	Fley Collar	Core Size BO

DEPTH	DESCRIPTION	SAMPLE No.	WIDTH OF SAMPLE				
187.75-188.36 m	ANDESITE DYKE - weakly amygdaloidal.						
	Amygdaloidal calcite filled and occ. py.						
	rimmed						·
188.36-189.27 m	BLACK ARGILLITE						
	Friable, well broken bedding dips ~ 10-15°.						
189.27-194.61 m	ANDESITE DYKE						,
	Pale grey green colour. Weakly amygdaloidal						
194.61-214.44 m	ARGILLTE						
	Black, occ. pyrite bed. Annealed fracture						
	and fragments are occasionally coated or						
	rimmed with pyrite. Occasional blebs or					:	
	small lenses (.5-1 cm \times 2-3 mm) of pyrite.						
214.44 m	END OF HOLE						
	23.7 m casing plus shoe left.						
		<u> </u>	<u> </u>	L	ļ <u> </u>	<u> </u>	l

PROPERTY	KING	-	M490	

HOLE No.2

	DIP TEST						
 	Angle						
Footage	Reading	Corrected					

Hole No. 2 Sheet No. 1 of 6	Lot
Section	Dep
Date Begun	•
Date FinishedJune 3, 1980.	Elev. Collor approx. 344 m.

Total Depth	214.44 m
Logged By	D. ARSCOTT
Claim	
C C!	BO

DEPTH m.	DESCRIPTION	Silica	Carbonate	Pyrite	Chlorite	Clay	
0 - 4 m	OVERBURDEN						
4 - 15.04 m	CONGLOMERATE						
	Occasional 4 - 11 m	m	w - m	wPR	m - s		
	Epidote rich pebbles 11 - 15.04 m	W	m	w P	w - m	_	
15.04 - 15.31	SANDSTONE	W		_	_	-	
15.31 - 24.71	CONGLOMERATE		w - m	w P	m	-	
24.71 - 24.98	SANDSTONE (Fine sand size)	_	_	_	· -	<u></u>	
24.98 - 26.66	CONGLOMERATE	-	w - m	w P	m		
26.66 - 26.87	SANDSTONE - as before, but thin bedded with	-		-	_	_	
	argillaceous seams. Bedding 75° to C.A.						
	(core axis)						
26.87 - 40.57	CONGLOMERATE _ Minor hematite on fractures at	_	w - m	w P	m	_	
	39.2 m and 2-3 cm argillite beds(?)						
	(39.1 m and 39.3 m) with bedding 45° and 70°						
	to C.A.						
40.57 - 40.66	SANDSTONE	W	w	_	w	-	
40.66 - 47.92	CONGLOMERATE	_	w - m	-	m - s		
47.92 - 48.16	SANDSTONE	_	_	_	_	_	
48.16 - 49.45	CONGLOMERATE	_	w - m	_	m	_	
49.45 - 49.57	SANDSTONE	_	_	_	_	-	
49.57 - 51.46	CONGLOMERATE	-	w - m	-	m	- ,	

PROPERTY KING - M490

	DIP TEST						
	Angle						
Footage	Reading	Corrected					
	ļ						
	 						
							
	 						

Hole No 2 Sheet No. 2 Of 6		Total Depth 214,44 Logged By D. ARSCOTT
Section	Dep	Logged By
Date Begun	Bearing	Cloim
Date Finished June 3, 1980	Elev. Collar	Core Size BQ

DEPTH	DESCRIPTION	Silica	Carbonate	Pyrite	Chlorite	Clay	
51.46 - 51.55m	SANDSTONE. Very weak bedding at 40 - 45° to						
	C. A.	-	m	_	m	_	
51.55 - 54.39m	CONGLOMERATE	_	w - m		m	_	
54.39 - 54.63m	SANDSTONE with 5% - 2 mm fragments	m	-		-	-	
54.63 - 57.41m	CONGLOMERATE		m			_	
57.41 - 58.87m	SANDSTONE (to SILTSTONE). Faint bedding at	_	m		m	_	
	45° to C. A.						
58.87 - 59.18m	CONGLOMERATE	w	m - s	_	m	-	
59.18m	MINOR FAULT? Carbon and pyrite on fracture						
	35° to C. A. Little or no core loss			_			
59.18 - 65.89m	CONGLOMERATE. 59.18 - 60.7	_	w		w	_	-
	60.7 - 65.9	w	m - s		m	_	
65.89 - 66.19m	SANDSTONE. With rare pebbles.	m	W	-			
66.19 - 69.24 _m	CONGLOMERATE. Rare carbonate seams, 1 mm width						
	40° to C. A. 68.63 - 69.4	_	m	w	w	-	
69.24 - 69.94m	SANDSTONE	w	_	_	_	· _	
69.94 - 71.71m	CONGLOMERATE	m - s	m	wPR	w	_	
71.71 - 72.14m	SANDSTONE. Clay or sericitized towards top.	_	_	<u>-</u>	_	w - m	
	Large pebbles towards bottom.						
72.14 - 89.44m	CONGLOMERATE. 72.14 - 75.7	w	W	-	-	_	
	75.7 - 76.08 76.08 - 77.8	m W	m W	wP -	₩ -	<u>-</u>	
	77.8 - 79.0	_	w - m	_	m - s	_	

PROPERTY	KING	 M490
NOLENT		

	DIP TEST							
	An	gle						
Footage	Reading	Corrected						
	ļ							
	 							
,	 							

Hole No. 2 Sheet No. 3 Of 6	Lat	Total Depth 214.44
Section		Logged By D. ARSCOTT
Date Begun	·	Claim
Tuna 2 1000		Core Size BO

DEPTH	DESCRIPTION	Silica	Carbonate	Pyrite	Chlorite	Clay	
72.14 - 89.44m	79.0 - 81.63	m	m	_	m	_	
(Cont'd)	81.63 - 82.66		m - s	_	m - s	_	
	82.66 - 84.28	w	W	-	w	_	
	84.28 - 89.44	_	m - s	-	-	W	
	½ cm carbonate vein at 84.86 m.						
89.44 - 89.74m	DYKE. Quartz diorite, barely porphyritic,	_	w	-	w	ß	
	strongly kaolinized. Upper contact is						
	brecciated and sheared at 15° to C.A.						
89.74 - 90.90m	?. Highly broken. Graphite on low angle	_	S	_	w	s	
	shears. Partly conglomerate7 m . of core						
	missing.						
90.90 - 103.07m	CONGLOMERATE. Increasingly matrix-rich towards	_	m - s	_	_	m	
	bottom.						
103.07 - 103.71	SANDSTONE. With a few pebbles (8%)	_		-	_	m - s	
103.71 - 107.52	CONGLOMERATE. Broken, 30% pebbles. Minor	_	m - s	_	_	s	
	gouge at 106.9 m.						
107.52 - 109.05	SANDSTONE	w	W	w - s	_	m	
109.05 - 124.85	CONGLOMERATE. Small bituminous shear @ 119.6 m	. m	w - m	mP	m	'n	
•	@ 40° to C.A.						
124.85 - 125.70	SANDSTONE. Rare pebbles to 1 cm diameter.	_		-	W	W	
125.70 - 130.40	CONGLOMERATE. 5 mm carbonate vein at 10° to	-w	m	mP	s		
	C A 2+ 128 0		•				

PROPERTY KING - M490

	DIP TEST							
	gle							
Footage	Reading	Corrected						
	1							

Hole No2 Sheet No. 4 Of 6	Lat	Total Depth214.44
Section		Logged By D. ARSCOTT
Date Begun	Bearing	Claim
Date Finished June 3, 1980	Elev. Collor	Core Size BQ

DEPTH	DESCRIPTION	Silica	Carbonate	Pyrite	Chlorite	Clay	
130.40 - 131.19	DYKE, ANDESITE. Greenish grey, mildly porphy-	_	-	-	m	_	
	ritic.						
131.19 - 136.20	CONGLOMERATE. Low angle carbonate veining at	-	s	wP	w	m - s	
	128.6 m						
136.20 - 136.50	DYKE. Crowded feldspar porphyry. White		w		W	m - s	ļ
	phenocrysts in dark grey matrix.						·
136.50 - 153.13	CONGLOMERATE. 136.4 m - 138.9 m		ş	_	w	m - s	
	138.9 m - 147.9 m	-	S	-	_	s	
	Broken gougy 139.9 - 140.1 m, little or no						
	core loss.						
	1 cm carbonate vein @30° to C.A. @141.9 m.						
	1 cm carbonate vein @25° to C.A. @144.0 m.						
	5 mm carbonate vein @50° to C.A. @144.1 m.						
	1 cm carbonate vein, splayed, @145.8 m.						
	147.9 - 157 m.	w	m - s	mPR	m	-	
	2 mm carbonate vein @45° to C.A. @149.3 m.						ļ
	2-2 mm carbonate vein @45° to C.A. @150.3 m.						
	151 - 153.1 m.	_	S	_w	-	m - s	
153.13 - 153.4	SANDSTONE.	W	-w	_	_	-w	L
153.4 - 179.42	CONGLOMERATE. 153.4 - 155.1	_	s		w - m	w	
	155.1 - 172.2	_	m - s	m-s V	-	s	
				<u> </u>	<u> </u>	<u></u>	<u></u>

PROPERTY KING - M490

HOLE No.2

DIP TEST						
Angle						
Reading	Corrected					
·						
	An					

Hole No. 2 Sheet No. 5 Of 6	Lat	Total Depth 214.44
Section		Logged By D. ARSCOTT
Date Begun	Bearing	Claim
Date Finished June 3, 1980	Elev. Collar	Core Size BO

DEPTH	DESCRIPTION	Silica	Carbonate	Pyrite	Chlorite	Clay	
153.4 - 179.42	shear at 164.1 at 10° to C.A. has 4 mm carbo-						
(Cont'd)	nate and 1 cm pyrite. Strike on shear @ 40°						
	to C.A.						
	3 mm carbonate vein @ 20° to C.A. @167.9						
	172.2 - 172.9	s	s	wP	W	_	
	172.9 - 179.4	W	w - s	-	w	s	
	Broken, pyritic-graphitic zone 175.1 - 175.5 m	•					
179.42 - 181.34	SANDY CONGLOMERATE. 15 to 30% pebbles	w	w - m	wP	W	W	
	1 - 3 cm in diamter, and otherwise typical.						
	4 mm carbonate vein @10° to C.A. @180.6 m.						
	2 mm carbonate vein @2° to C.A. @182.6 m.					· ·	
	unusually large (6 cm granite) pebble @ 183.9m	•					
	5 mm carbonate vein @45° to C.A. @183.4 and						
	184.8 m.						
181.34 - 185.6 185.6 - 185.77	CONGLOMERATE SANDSTONE	w	S -		-w -	m m	
	CONGLOMERATE	_	W	-	_	Ø	
	4 cm dyke? pale green, @186.7 @ 60° to C.A.						
186.9 m	CONTACT. @ 30° to C.A., with 1 cm carbonate					,	
	vein and graphite. Strike @50° to C.A.						
186.9 - 187.14	DYKE. Rhyolite, white to grey with faintly	s?	w	_	_	m	
	porphyritic texture.						

PROPERTY KING - M490

HOLE	NI-	2
HULL	INO.	

DIP TEST						
	An	gle				
Footage	Reading	Corrected				
	 					
	 					

Hole No. 2 Sheet No. 6 Of 6	Lat	Total Depth 214.44
Section	Dep	Logged By D. ARSCOTT
Date Begun	Bearing	Claim
Date Finished June 3, 1980	Elev. Collar	Core Size BQ

DEPTH	DESCRIPTION	Silica	Carbonate	Pyrite	Chlorite	Clay	
187.14 - 189.18	CONGLOMERATE TO SANDY CONGLOMERATE.	-	s	mP	_	W	
	(15 to 40% pebbles)						
	5 cm section at 188.7 m has very coarse matrix						
	(4 mm fragments). Grey clay filled 1 cm shear						
	@85° to C.A. at 189.2 m.						
189.18 - 190.34	SANDSTONE. With probable subhorizontal bedding.	W	_	-		m - s	
	slightly broken.						
190.34 - 192.78	CONGLOMERATE. Somewhat sandy, 35 - 40% pebbles.		s	_		s]
	Very small crowded (5 cm) feldspar porphyry						
	dyke @192.4 m. Contact is 40° to C.S.						
192.78m	CONTACT. Unexceptional. Little or no faulting.						
	No evidence of unconformity.						
192.78 - 199.34	SILTSTONE. Bedding 80 to 90° to C.A.	_	-	wM	_	W	
	Coarse silt section 194.5 to 194.7 m.						
199.34 - 199.64	SANDSTONE. Grey to white, thin bedded, with	-	-	-	_	m	
	thin grey silt beds. Bedding at 85° to C.A.						
199.64 - 214.44	SILTSTONE. Occasional low angle graphitic	_	_	-wM	_	w - m	
	(and in one case pyritic) shears. Pale grey					,	
	mostly from 209.4 m onwards. Bedding 80°						
	to C.A.						
214.44 m	END OF HOLE.						

PROPERTY HOLE No.80-3 DIP TEST Angle Total Depth 162.58 m Footage Reading Corrected Logged By. W.A. Howell Dote Begun Bearing Vertical Cloim Date Finished June 8, 1980 Elev. Collar. Core SizeBO WIDTH DEPTH SAMPLE No. DESCRIPTION OF SAMPLE 157.09-162.58 SANDSTONE Grey colour with thin lamination of darker grey argillite or mudstone. Contacts are gradational and interbedded mudstone clasts in sandy matrix. Bedding is fairly constant 10° - 15° dips. 162.37-162.58 - broken rubble. 162.58 m END OF HOLE

PROPERTY KING - M490

HOLE No. 80-3

DIP TEST						
Angle						
Reading	Corrected					
 						
<u> </u>						
	An					

· Hole No. 3 Sheet No. 6 of 7	Lot	Total Depth 162.58 m
Section		Logged By W.A. Howell
	Beoring Vertical	Claim
Date FinishedJune 8, 1980	Eley, Collar	Core Size

DEPTH	DESCRIPTION	SAMPLE No.	WIDTH OF SAMPLE			
	grey colour - increased sericite/clay,					
	decreased chl., free silica remains about					
	the same. Reaction rim clasts are very			· · · · · · · · · · · · · · · · · · ·		
	distinctive and may be as much as 1 cm					
	wide on occasional clasts. Pyrite appears					
	to be the only sulphide present and locally					,
	is up to 3% of the rock.					
152.52 - 157.09	MUDSTONE					
	Dark grey to black bedding is variable (due					
	to soft sed. deformation?) but dips of 15°			•		
	appear commonly. Elongate rounded clasts up					
	to 3 cm long are almost entirely very fine					
	grained py. Pyrite is common in the mudstone					
	matrix towards the bottom of the section,					
	clasts of lighter sandy material appear and					
	sulphide content of the rounded clasts					
	diminish, similar non sulphide bearing clasts					
	appear in lower sections (which lead to the					
	conclusion that the sulphide is 2° and					
	controlled by the conglomerate mudstone					
	contact).					

PROPERTY KING - M490

	DIP TEST		
	Angle		
Footage	Reading	Corrected	
,	-		
	 		
,			

· Hole No. 3 Sheet No. 5 of 7	Lat	Total Depth 162.58 m
Section	Dep	Logged By W.A. Howell
Date Begun	Bearing Vertical	Claim
Date Finished June 8, 1980	Elev. Collar	Core Size

DEPTH	DESCRIPTION	SAMPLE No.	WIDTH OF SAMPLE			
	colour is attributed to vfg matrix chlorite					
	f.g. magnetite is also disseminated through					
	the rock. Occ. small biotite plates and					T
	small books look fresh but are perhaps 2°,					
	sulphides are pyrite with minor marcasite					
	and are generally less than 1%. Occasional			·		T
	clasts exhibit reaction rims, the orange					
	platy mineral is locally common and locally			·- · · · · · · · · · · · · · · · · · ·		1
	looks jasperoid, occ. qtz stringers are					1
	present (113.47m). A local section					T
· · · · · · · · · · · · · · · · · · ·	~112.25 - 115.30 m is lighter colour due					†
	to increased matrix ?sericite? and silica,					1
	minor epidote is also common in this section	η.				T
	Sandy section 128.72 - 129.33 m has sericit	i.c				T
	alteration. Below 122 m sulphide rims					
•	on clasts become more common and more obviou	ıs.				
	Below 12 m sulphide content is generally					
	increasing, sulphide concentration in clast					
	reaction rims increases and the rims					T
	become thicker and more intense.					
	149.77-152.52m - conglomerate becomes lighter					

PROPERTY KING - M490

DIP TEST				
Angle				
Reading	Corrected			
ļ				
 				
 				
				
	An			

· Hole No. 3 Sheet No. 4 of 7	Lot	Total Depth 162,58 m
Section		Logged By W.A. Howell
Date Begun	Bearing Vertical	Claim
Date Finished June 8, 1980	Eley. Collar	Core Size

DEPTH	DESCRIPTION	SAMPLE No.	WIDTH OF SAMPLE			
	54.91-96.09m - pale grey green, less clay -					
	more chlorite, sericite still common. A					
	flat bladed orange crystalline mineral is					
	not uncommon on occasional fractures.					
	Silica is throughout matrix but is likely					
	l° reaction rims of dark material with					,
	extremely very fine grained sulphide are					
	common. Occasional black fractures are obs	•				
	to be bitumen, e.g. 76.56m. I fracture	· · · · · · · · · · · · · · · · · · ·				
	at 56.74 m is epidotized and has fine					
	grained CINNIBAR on the fracture. The				 -	
	unidentified orange mineral is a common					
	minor constituent through to 81.75 m.					
	Matrix is locally darker grey colour 91.20					
	91.66 m and has increased vfg sulphide and					
	vfg ?2° biotite?					
	96.09-149.77m - dark grey/green matrix is			•		
	congl. rock becomes harder, quartz is commo	n				
· · · · · · · · · · · · · · · · · · ·	as "eyes" (relict matrix grains?) and					
	matrix flooding. Matrix feldspar grains					
	are glossy and 'fresh' looking. Green					

PROPERTY KING - M490

DIP TEST					
Angle			Angle		
Reading	.Corrected				
ļ	-				
	 				
	Ar				

Hole No. 3 Of 7	Lat	Total Depth 162.58 m
Section		Logged By W.A. Howell
Date Begun	Bearing Vertical	Claim
Date Finished June 8, 1980	Elev. Collar	Core Size

DEPTH	DESCRIPTION	SAMPLE No.	WIDTH OF SAMPLE			
	commonly "dirty" looking, fractures are					
	common. Matrix has a pale green appearance					
	attributed to vfg sericite (not identified)					
	and very fine silica. Fractures occasional	У				
	have silica films or are filled by silica					T
	vfg pyrite is not uncommon as a clast					T
	constituent but is rarely obs. in the sandy					T
	matrix. Locally the rock matrix becomes					1
	black and clasts are commonly bleached (the					1
	black matrix is reminiscent of the black					1
	matrix in the silicified congl. at					†
	Consolidated Cinola). The black colour is					\dagger
	believed to be very fine sulphide but is				 -	+
······································	only suggested under 20x except where					†
	the black colour is very well developed -					7
	e.g. 47.89 m and 50.64 - 50.94m. Dark					1
	"reaction" rims are common around clasts		·			T
	and darker section is likely mylonite in					1
	part. Clay alt. of clasts and matrix					7
	component is particularly evident in the			-		+
	section 50.94 - 53.38 m.					1

PROPERTY KING - M490

HOLE No.80-3

	DIP TEST				
Angle					
Footage	Reading	Corrected			
	 				
	 				

Hole No. 3 Sheet No. 2 of 7	Lat	Total Depth 162.58 m
Section		Logged ByW.AHOWell
Date Begun	Bearing Vertical	Claim
Date Finished June 8, 1980	Elev. Collar	Core Size

DEPTH	DÉSCRIPTION	SAMPLE No.	WIDTH OF SAMPLE		
	11.65m with occ. bitumen vugs. Reaction				
	rims on pebbles are more common. They ofter	ı			
	include pyrite and occasionally qtz/py.				
	Matrix sandstone contains up to 1% pyrite,				
	alteration is estimated to be sericite/chl.				·
	but neither mineral is obvious and is as-				·
	sumed from prevasive colouration.				
	Fracturing with minor slicks are sub				
	parallel to C.A. as ~ 0° to C.A.		·		
	25.43-28,67m - grey colour - increased clay				
	core becomes more broken, lower contact of				
	section is arbitrary.				
	28.06-28.67m - ground core and rubble.				
	28.67-28.98m - sandy core, little recovery				
	and rubble to 29.89 m very broken to 35.69m	•			
	35.69-36.91m - extremely broken, poor rec'y -				
***************************************	rubble.				
	36.91-39.35m - broken clay alt.				
	39.35-39.65m - rubble - powder.				
	39.65-54.91m - clay altered, becomes increas-				
· · · · · · · · · · · · · · · · · · ·	ingly more competent rock, matrix is				

PROPERTY KING - M490

	DIP TEST					
-	An	gle				
Footage	Reading	Corrected				
	ļ					
	 					

Hole No. 3 Sheet No. 1 of 7	Lot,	Total Depth 162.58 m
Section	Dep	Logged ByW.AHowell.
Date Begun	Bearing Vertical	Claim
Date Finished June 8, 1980	Flex Collar	Core Size BQ

DEPTH	DESCRIPTION	SAMPLE No.	WIDTH OF SAMPLE			
0 - 2.44 m	OVERBURDEN					
2.44 - 11.65 m	CONGLOMERATE					
	Similar to previously described rock - see					
	general description, alteration is vfg clay-					
	sericite + silica, reaction rims are weak					
	around pebbles. Matrix is buff-tan fine					
	multilithic sandstone, rusty weathering on					
	fractures is restricted to less than 8.5m death.					
	s					
						
	present, colour is grey-green.				1	
11.65 - 16.78 m	AMYGDALOIDAL ANDESITE DYKE					
	Grey green colour, fine matrix of dyke is alt	•				
	to sericite/qtz, amygdules rarely have pyriti	c				
	rims. There appears to be an extremely very					
	fine grained sulphide component to the ground	_				
	mass of the dyke. It is observed occasionall	У				
	as bladed crystals (?ASpy?)					
16.78 - 152.52	CONGLOMERATE					
	16.78-25.43 m - grey green, similar to 2.44-					

PROPERTY KING - M490

HOLE No. 80-4

DIP TEST					
An	gle				
Reading	Corrected				
-					
 					
 					
	An				

Hole No. 4 Sheet No. 1 of 2	Lat	Total Depth	33.07 m
Section	Dep		W.A. Howe
Date Begun	-51°/218°	Claim	
	Efev. Collar ~ 1075'	Core Size	BQ

			WIDTH	1	 <u></u>	Τ
DEPTH	DESCRIPTION	SAMPLE No.	OF SAMPLE		<u></u>	
0 - 5.49 m	OVERBURDEN					
5.49 - 7.93 m	SILTSTONE					
	Rubble - 0 rec'y.					
7.93 - 8.54 m	ANDESITE DYKE					
	Amygdaloidal - calcite amygdules ~.5% py.					
	disseminated. Dyke is a vfg felted goundmass	,				
	it looks very similar to Haida SS except for					
	the amygdules.					
8.54 - 33.07 m	SILTSTONE					
	Grey, vfg, very friable, rec'y is very poor,					
	drilling was extremely difficult. Core is				 	
	fine rubble for the most part. Very shiny					
	(?graphitic?) slickensides are evident					
	throughout the section.					
	21.96-22.27m - competent light green fine					
	sandstone. Occasional cylindrical					
	vermicular marcasite up to 1 mm dia. and					
	1.5 cm in length is obs. in the siltstone.					
-	Very fine grained pyrite is locally					
	common.					
	24.71-25.01m - Andesite - with carbonate					

stringers and diss. fracture pyrite.

	PI	ROPERTY	KING	; <u>- M490</u>			HOLE N	lo80	-4		
	Footage	Ang Reading	ple Corrected	Hole No4Sheet Section Date Begun Date Finished	Dep	oring		Logged ByW.A. Howell			
	DEPTH			DESCRIPTION		SAMPLE No.	WIDTH OF SAMPLE				
		1	grained, olebs an	7m - Siltstone as befor very soft, occ. cube o	of py., pyrit	 					
33	.07 m	Hole	termina	lphides are about 1%. ted @ 33.07 m due to ba ing in of the rods. Al							
			casing p								
				,							
						·					
						1					

PROPERTY KING - M490 HOLE No. 80-5

DIP TEST					
	An	gle			
Footage	Reading	Corrected			
	 				
	 				

Hole No. 5 Sheet No. 1 of 1	Lat	Total Depth 10.37 m
Section		Logged By W.A. Howell
Date Begun	Bearing	Claim
Date Finished	Fley Collar	Core Size BO

DEPTH	DESCRIPTION	SAMPLE No.	WIDTH OF SAMPLE				
0 - 5.49 m	OVERBURDEN						
5.49 - 7.02 m	ANDESITE DYKE						
	Dark green, amygdaloidal						
7.02 - 10.37 m	SILTSTONE						
· - · · · · · · · · · · · · · · ·	Grey, extremely friable, rec'y is a sand rubb	le.					
	Those pieces of core which are intact, dessica	te					
	in air to a fine rubble in about 3 days. Ver	У					
	fine pyrite is disseminated through the						
	siltstone.						
	@ 9.7 m & 10.7 m a 2 and 4 cm section						
	is brecciated and very locally silicified.						
10.37 m	Hole terminated at 10.37 m due to severe caving						
	of hole, inability to set casing and rods,						
	"sanding" in, the use of mud on both #4 and 5						
	would have been benefical however none was						
	available.						
	,						
		L	<u> </u>	L	<u> </u>	<u></u>	

PROPERTY	KING	-	M490	

HOLE	No.	80-6
IIVEE	INU.	

	DIP TEST					
	An	gle				
Footage	Reading	Corrected				
	ļ					
	 					
	 					

6 Hole No	Sheet No. 1 of 3	Lot	Total Depth 115.3 m
		Dep	
Date Begun		Bearing	Claim
Date Finished		Elev. Collar	Core Size

DEPTH	DESCRIPTION	SAMPLE No.	WIDTH OF SAMPLE				
) - 2.44	OVERBURDEN						
2.44 - 51.55 m	CONGLOMERATE			<u> </u>			
	Chl.common, lower conglomerate has carbonate						
	matrix. Core breaks around clasts and almost						
	crumbles locally to ~17.67 m where it become	s			 	ļ	
	harder with more matrix silica. Breaks occur				ļ		
	across clasts, vfg. py 1-2% T.S. 20.74 m		-				
	sheared and broken, 20° to C.A. core remains				-	 	ļ
	mod. hard with an occasional break around				<u> </u>		
	clasts. Sheared and broken @ 29.28-30.20 m				<u> </u>		
	rusty rubble has much f.g. qtz. Rock is						-
	hard to 35.08 m where again breaks occur				<u> </u>		
	around clasts. Rock continues similar to						
	51.55 m. Carbonate is present throughout the	2					
	section but is noticeably weaker around the						
	harder sections which appear to roughly						
	coincide with shearing and rubble. A qtz.						
	shear/stringer @ 20.68 m has minute amounts						
	of Cinnabar along one boundary (25° to C.A.)						
61.55 - 100.66r	n ARGILLITE/SANDSTONE						
	Interbedded, fine grained siltstone sulphides						

PROPERTY.	KING - M490	
PRUPPRIT		

	DIP TEST				
	Angle				
Footage	Reading	Corrected			
	+				

Hole No. 6 Sheet No. 2 Of 3	Lat	Total Depth 115.3 m
Section	Dep	Logged ByW.AHowell
Date Begun	Bearing	Claim
Date Finished	Elev. Collar	Core Size

DEPTH	DESCRIPTION	SAMPLE No.	WIDTH OF SAMPLE		
51.55-100.66m	3-10% locally, bedding shows soft sediment				
(Cont'd)	slumping but in general ~30° dips,locally,				
	near contact, the rock has rounded pyrite				
	clasts. Other mudstone clasts have minute				
	lenses and blebs of pyrite.				
	57.96 m - bedding is dipping 50°,occasional				
	irregular pyrite lenses conform				
	to bedding.				
	61.92 m - bedding has 10-15° dips and becom	es			
	lighter in colour with increased				
	fine S.S. and interbedded mudston	е			
	layers.				
	Throughout this section pyrite				
	is common in disseminations and				
	lenses, particularly in proximity				
	with conglomerate - sediment cont	act.			
	Strong shearing @ 54.30 m, 12° to C.A. is				
	friable mudstone.				
	Core remains interbedded grey, fine to medium	1			
	grained S.S. and dark grey to black argillite				
	Bedding is 75-80° to C.A. with crossbedding				
	apparent. Fine black flecks in the S.S. are	•	*************************************		

PROPERTY KING - M490

	DIP TEST			
	Angle			
Footage	Reading	Corrected		
	 			
	T			

Hole No. 6 Sheet No. 3 Of 3	Lat	Total Depth 115.3 m
Section	Dep	Logged By W.A. Howell
Date Begun	Bearing	Claim
Date Finished	Elev. Collar	Core Size

DEPTH	DESCRIPTION	SAMPLE No.	OF SAMPLE				
51.55-100.66m	either one of bitumen or fine grained argilli	te,			,		
(cont'd)	both are present, Occasional beds have						
	argillite clasts in the S.S. Py. is variably						
	disseminated and runs between .5 and 1.5%.						
	The rock is competent, scratches with a knife						
	and is very weakly effervescent with HCl.						
	An occasional fracture is calcite healed and						
	commonly exhibits minor offsets. These						
	fractures are usually @ 25 to 35° to C.A.						
	89.37-90.90 m - brecciated argillaceous section	1,					
	pyrite and bitumen coat fragments.						
100.66-106.15m	GREY ANDESITE DYKE/SILL						
	Weathers to buff/tan colour with streaked out						
	amygdules. Dyke is chl/serc. altered with						
	minute to trace amounts of py. The upper						
	dyke contact is conformable to bedding, lower						
	contact is broken and sheared 30° to C.A.						
106.15-115.30m	GREY SANDSTONE & BLACK ARGILLITE						
	Interbedded - similar to previously described						
115.30 m	END OF HOLE						
	1	L	L	<u> </u>	<u> </u>	J	L

PROPERTY KING - M490

DIP TEST					
	Angle				
Footage	Reading	Corrected			
	 				
	<u> </u>				

Hole No. 7 Sheet No. 5 of 5	Lat	Total Depth	121.4 m
Section			W.A. Howell
Date Begun		Claim	
Date Finished	Elev. Collar	Core Size	BQ

DEPTH	DESCRIPTION	SAMPLE No.	WIDTH OF SAMPLE	,		
108.74 - 111.03m	BRECCIATED HORNFELS					
	No sulphide except as rims on occasional					
	calcite stringers.					
111.03 - 115.33m	BLACK ARGILLITE					
	Weakly, locally hornfelsed along occasional					
	fracture. vfg diss. sulphides throughout.					
	T.S. ~2%.					
1 <u>15.33 - 116.58</u> m	QUARTZ DYKE					
	Grey/brown colour, occasional tan blebs with					
	qtz/calcite along fractures. Sulphide conter	t i				
	variable as disseminations and occasional					
	fracture coating. T.S. less than 1%.					
1 <u>16.58 - 121.4</u> m	BLACK ARGILLITE					
	Friable, no hornfelsed effects. Very sheared	1				
	in appearance similar to section 111.03 -					
	115.33 m. T.S. ~2% - vfg diss. sulphide.					
121.4 m	END OF HOLE					
			L		 L	

PROPI	ERTY KING	- M490		HOLE 1	No. 80−7	
DIP	TEST					
Footage R	Angle eading Corrected	Hole No7 Sheet No4 Of 5	Lat			121.4 m W.A. Howell
		Date Begun	Bearing	•	Claim	
		Date Finished	Elev. Collar		Core Size	BO
DEPTH		DESCRIPTION	SAMPLE No.	WIDTH OF SAMPLE		
81.29 - 81.50 m	AMYGDALOIDAL	DACITE (TYPE II)				
	Chilled man	gins, occasionally about 3 cm wid	de.			
81.50 - 83.58 m	ARGILLITE					
	Black soft					
<u>83.58 - 85.50 m</u>	DACITE DYKE					
	Brecciated	, fragment of Type II in a pale				
	but simila:	r rock.				
85.50 - 91.81 m	<u>)</u>					
	Both matri	x and clasts are amygdaloidal.				
	@ a	lighter portion (?matrix type)	has			
	locally ab	undant py. as blebs and dissemina	ations			
	[this seco	nd section (87.8 - 91.8)				
	appears to	be a late stage intrusive along	the			
	earlier br	ecciated section and likely				
	creating t	he brecciated portion].				
91.81 - 105.45m	ARGILLITE					
	Green/blac	k, friable, mod. broken, vfg dis	s.			
	sulphide i	s common. T.S. ~1%, broken core				
	has the ap	pearance of every surface being				
	slickensid	ed or sheared.				
105.45-108.74 m	HORNFELSED A	RGILLITE				

Hornfelsing is variable locally, probably follows bedding.

PROPERTY KING - M490

DIP TEST							
Angle							
Reading	Corrected						
 							
	An						

Hole No. 7 Sheet No. 3 Of 5	Lat	Total Depth.	121.4 m
Section			W.A. Howell
Date Begun	Bearing	Claim	
Date Finished	Elev. Collar	Core Size	BQ

					 ,	
DEPTH	DESCRIPTION	SAMPLE No.	WIDTH OF SAMPLE			
55.52 - 55.79 m	DACITE DYKE					
	Similar to previous plus small qtz "eyes".					
	Also pyrite is a little more common - ~1.5%.					
	The dyke has well developed calcite margins				 	
<u> </u>	in the argillite.					· .
55.79 - 67.26 m	ARGILLITE					
	Generally less broken but still very friable					
	occasional sandy lens - beds are ~30° to C.A.					
	T.S. ~1% increasingly sheared and broken 44	19-67.2				
67.26 - 70.1 m	HORNFELSED ARGILLITE					
	Very hard, has been broken and "healed",					
	pyrite is 2-5% commonly on fractures.					
70.1 - 74.03 m	DACITE DYKE (TYPE II)					
	Very fine grained hard, dark grey moderately					
	effervescent. Amydaloidal. T.S. less than					
	1% but py/cpy are both present.					
74.03- 77.17	HORNFELSED ARGILLITE					,
	Hard competent, pyrite is less abundant					
	(2.3%) than previous hornfelsed section.					
77.17 - 81.29	ARGILLITE					
	Black soft poor bedding? ~30° to C.A.					

PROPERTY KING - M490

	DIP TEST			
	Angle			
Footage	Reading	Corrected		
	<u> </u>	 		
 	1	<u> 1</u>		

Hole No. 7 Sheet No. 2 Of 5	Lat	Total Depth	121.4 m
Section			W.A.Howell
Date Begun	Bearing	Claim	
Date Finished	Elev. Collar	Core Size	BQ

DEPTH	DESCRIPTION	SAMPLE No.	WIDTH OF SAMPLE			·
47.95-49.42 m	Competent fine fractures containing					
(cont'd)	dark brown (bitumen?), colouration may also					
	have pyrite.					
49.42 - 50.12 m	SANDY ARGILLITE					
	Very broken.					
50.12 - 50.94 m	DACITE DYKE				,	
	Pale tan colour clots of calcite may be					
	amygdules but have vague rims, carbonate is					
	common to plentiful. Pyrite is present as					
	clots and dissemination. Total sulphides are					
	1 - 3% contacts with the argillite are					
	irregular about 30° to C.A. Pyrite is			:		
	locally more abundant near chilled portions					
	of the dyke.					
50.94 - 52.47 m	ARGILLITE					
	Very crumbly - sheared and broken, extremely					
	fine grained pyrite is disseminated and local	ly				
	concentrated on fractures. T.S. is up to 1%.					
52.47 - 52.86	DACITE DYKE					
	Similar to 50.12 - 50.94 m.					
52.86 - 55.52	ARGILLITE					
	Rubble particularly 0 s.			!	<u> </u>	 l

PROPERTY KING - M490

	DIP TEST						
	Angle						
Footage	Reading	Corrected					
	ļ						
	ļ						
		<u> </u>					

Hole No. 7 Sheet No. 1 of 5	Lat	Total Depth	121,4 m
Section			W.A. Howell
Date Begun	Bearing	Claim	
Date Finished	Elev. Collar	Core Size	BQ

			WIDTH		<u></u>		
DEPTH	DESCRIPTION	SAMPLE No.	OF SAMPLE				
0 - 11.59 m	OVERBURDEN						
11.59 - 39.11 m	GREY SANDSTONE						
	Dark grey to black sheared. No consistent						
	attitude to shear and slick planes. Despite						
	reticulate shear planes core is intact, but						
	very friable. Carbonate is common along						
	fractures and to a lesser degree in the						
	matrix. Chl/clay are very common within the						
	S.S. Core becomes less sheared and more						
	friable @~ 23.5 m. Apparent dips are 30°.						
	A very distinctive bright green mineral ?chl?						
	comprises 15 to 20% of the sand grains, litt	le					
	or no sulphide.						
39.11 - 47.95 m	BLACK ARGILLITE						
	Weak carbonate content, soft, friable, beddin	g					
	is 40° to C.A. Fine stringer of tan coloured						
	mineral (not carbonate), very minor efferves-						
	cence of core with HCl. Parting planes of						
	split core are almost slickensided surfaces.						
47.95 - 49.42m	SANDSTONE						
	Pale green soft clay/sericite, 1% py or less,						

F	PROPERTY	KIN	G - M490		HOLE N	√o. 80−8
	DIP TEST					
	An	gle		0 1 0 5 2		83 58 m
Footage	Reading	Corrected	Hole No	8 Sheet No. 1 of 2	Lat	Total Depth83.58 m
		· · · · · · · · · · · · · · · · · · ·	Section		Dep	Logged By W.A. Howell
			Date Begun.		Bearing	ClaimBQ
			Date Finishe	d	Elev. Collar	Core Size

DEPTH	DESCRIPTION	SAMPLE No.	WIDTH OF SAMPLE			
0 - 6.15 m	OVERBURDEN					
	(of casing and shoe left in hole -					
	casing unscrewed when removing casing -					
	core prevented screwing on again)					
6.15 - 27.45 m	SANDSTONE				· · · · · · · · · · · · · · · · · · ·	
	Dark green, chloritic. Similar to unit					
	described in Hole 7 (11.59-39.11 m and					
	47.95-49.42 m).					
27.45 - 30.66 m	SHEARED AND BROKEN BLACK ARGILLITE					
	Clast of grey SS @ in the sheared					·
	argillite.					
30.66 - 37.98 m	ANDESITE DYKE					
	Grey green colour, occasional calcite dyke,					
	upper contact is pyritized in amygdule like					
	blebs rimmed with calcite					
37.98 - 63.60 m	SHEARED AND BROKEN BLACK ARGILLITE					
	Rubble core - very shiny slickensided faces.					-
63.60 - 66.44 m	APLITIC DYKE					
	Whitish grey, occ. calcite amydule and bitume	n				
	filled vug. No sulphide.					
66.44 - 68.78 m	BLACK ARGILLITE					
		L	4	L		

Rubble with interbedded sandy zones.

PROPERTY	KING	-	M490	
PROPERIT				

	DIP TEST						
	Angle						
Footage	Reading	Corrected					
							
		-					

Hole No. 8 Sheet No. 2 Of 2	Lat	Total Depth 83.58 m
Section		Logged By W.A. Howell
Date Begun	·	Claim
Date Finished		

EARED BLACK ARGILLITE Locally very strongly pyritized. "Clasts" of						
Locally very strongly pyritized. "Clasts" of						
strongly pyritic material are common. Very shiny slickensided faces are abundant.						
LITIC DYKE						
Sheared and broken.						
ND						
Very bad cave. Hole was left @ 83.58 m at						
shift end. Sand had filled rods and core						
parrel up to at start up 1 hr. later.						
Driller couldn't advance hole. Hole						
abandoned @ 83.58 m. Sand @ 83.58 m has						
a pyritic content.					1	
O OF HOLE						
	hiny slickensided faces are abundant. ITIC DYKE heared and broken. D Yery bad cave. Hole was left @ 83.58 m at thift end. Sand had filled rods and core earrel up to at start up 1 hr. later. Oriller couldn't advance hole. Hole thandoned @ 83.58 m. Sand @ 83.58 m has a pyritic content.	hiny slickensided faces are abundant. ITIC DYKE heared and broken. D Yery bad cave. Hole was left @ 83.58 m at thift end. Sand had filled rods and core that are lup to at start up 1 hr. later. Oriller couldn't advance hole. Hole thandoned @ 83.58 m. Sand @ 83.58 m has a pyritic content.	hiny slickensided faces are abundant. ITIC DYKE heared and broken. D ery bad cave. Hole was left @ 83.58 m at hift end. Sand had filled rods and core earrel up to at start up 1 hr. later. Priller couldn't advance hole. Hole abandoned @ 83.58 m. Sand @ 83.58 m has a pyritic content.	hiny slickensided faces are abundant. ITIC DYKE heared and broken. D Yery bad cave. Hole was left @ 83.58 m at hift end. Sand had filled rods and core parrel up to at start up 1 hr. later. Oriller couldn't advance hole. Hole handoned @ 83.58 m. Sand @ 83.58 m has a pyritic content.	hiny slickensided faces are abundant. ITIC DYKE heared and broken. D ery bad cave. Hole was left @ 83.58 m at hift end. Sand had filled rods and core earrel up to at start up 1 hr. later. criller couldn't advance hole. Hole abandoned @ 83.58 m. Sand @ 83.58 m has a pyritic content.	hiny slickensided faces are abundant. ITIC DYKE heared and broken. D ery bad cave. Hole was left @ 83.58 m at hift end. Sand had filled rods and core earrel up to at start up 1 hr. later. priller couldn't advance hole. Hole abandoned @ 83.58 m. Sand @ 83.58 m has a pyritic content.