REPORT ON

STIRRUP CREEK PROJECT

LAT $51^{\circ} 07$	LONG $122^{\circ} 15$
ATS	$92-0-1$

BY T.E. LISLE, P.ENG. FOR CHEVRON STANDARD LIMITED. DECEMBER 23, 1974
Page
SUMMARY 1
CONCLUSIONS 2
INTRODUCTION 3
HISTORY 3
LOCATION, ACCESS, TOPOGRAPHY 4
CLAIMS 4
GEOLOGY - GENERAL 5

- LITHOLOGIC DESCRIPTIONS 6
- STRUCTURE 8
- ALTERATION 8
- ECONOMIC GEOLOGY 10
GEOCHEMISTRY 13
MAPS

APPENDIX - 1 - ASSAY PLANS
APPENDIX - 2 - THIN SECTION REPORT

The Stirrup Creek property, optioned from Dr. H. V. Warren and his associates, is in south central British Columbia in the Clinton Mining Division. It is situated about 60 miles by road west of Clinton and is comprised of 19 located and 6 Crown-granted claims.

The property is underlain by Lower Cretaceous sandstone, argillite and conglomerate of the Jackass Mountain group. The strata dip between 10° and 35° from southwest to north and are intruded by sills and dikes of feldspar porphyry.

High angle east-west faults are the dominant structural feature of the area and are the locus of much of the alteration on the property. Northeasterly faults and fractures are common on the northeastern side of the property and northwesterly faults are evident to the northwest.

Carbonate alteration is widespread on the property and is conspicuous as large rusty weathering zones around faults and fractured areas. Silicification is restricted to narrow zones. It occurs around faults, in localized fracture and breccia zones, and with stibnite and related sulphides along the ridge crest. For the most part, there is no indication of significant gold content in the quartz. Intrusive rocks near the southwest corner of the W3 claim are strongly bleached and adjacent argillites show weakly anomalous gold values.

Sulphide content, mainly related to intrusive rocks, is commonly well below 1.0%. It is comprised of pyrite and lesser pyrrhotite and chalcopyrite. Local concentrations, greater than 2%, occur on the W9 claim. Gold content is occasionally higher in well pyritized rocks but it is not significant.

Better gold values are found in (a) Fault gouge related to eastwest faults; (b) With late $N 5^{\circ} \mathrm{W}$ quartz fractures locally associated with wehrlite; (c) To a minor extent in the quartz-stibnite veins; and (d) As minor disseminations in argillaceous rocks near the southwest corner of the W3 claim. The potential for these zones is low.

The geochemical survey to a large extent correlated well with earlier work. It was particulary valuable in the areas of glacial till on the lower slopes, where it showed that anomalous conditions in the till were related more to glacial transport rather than underlying bedrock.

CONCLUSION :

In the claim area, no gold has been found on the southern slope of Stirrup Creek, and very little placer gold has been recovered from the Ward Creek drainage north of the ridge. Because of these facts, and the indicated south to southeasterly direction of ice movement it is inferred that most of the Placer gold from Stirrup Creek originated between the creek and the ridge crest.

The recent survey covered in some detail approximately one mile of the upper part of Stirrup Creek. This work revealed some weak gold bearing structures but no significant zones of mineralization were found. As most of the gold was recovered from the upper four miles of the creek, there is a possibility that a continuation or repetition of these structures beyond the claims may have contributed significant amounts of gold to Stirrup Creek. In view of this, prospecting of the northerly creek slope to the northwest and particularly to the southeast beyond the claims might be profitable.

INTRODUCTION:
Previous work on the Stirrup Creek gold property had failed to locate the source of placer gold recovered from Stirrup Creek. Because of this and because the property contained many of the characteristics usually ascribed to the "Carlin type" low grade disseminated gold deposits of the American southwest, it was decided that further work was warranted.

The property was optioned from Dr. H.V. Warren and his associates in the spring of 1974. Between August 4 and October 11, 1974, a program consisting of mapping and sampling was undertaken and between October 2 and 11 some bulldozer trenching and road improvement was carried out.

The geological work was carried out by the author with the assistance of R. Thomas. The bulldozer work was contracted to Artomas Contracting Limited of Lillooet, B.C.

This report summarizes the results of the above program.

HISTORY:
The property was worked for placer gold to about 1940. Dr. Warren reports that to about that time the creek had produced between one quarter and one half million dollars worth of gold. At 20 dollars an ounce, this represents between 12,000 and 20,000 ounces.

More recently, Rio Tinto took the property in 1970 and conducted geochemical programs prior to drilling 9 percussion holes. Rio Tinto relinquished their option in 1972. Placer Development took the property in 1973 and conducted further geochemical surveys and bulldozer trenching. They obtained little encouragement and dropped their option on completion of the work.

The property is situated in the Clinton Mining Division in south central British Columbia some 60 miles by road from the village of Clinton. The claims are centered on latitude $51^{\circ} 07^{\prime}$ and longitude $122^{\circ} 15^{\prime}$ and are located in the N.T.S. 92-0-1. Access is by good gravel road from Clinton to the Big Bar Ferry on the Fraser River, then by good four-wheel drive road west to the claims.

The area has been glaciated and a prominent rounded ridge running northwest divides Ward Creek drainage on the north from Stirrup Creek or Watson Bar Creek drainage on the south. Both creeks drain to the Fraser River a short distance to the east.

Topography is developed between elevations of 5,400 feet in lower Stirrup Creek to about 6,650 feet on the upper ridge. The lower slopes, particularly the south facing slopes, are covered with till varying to about 10 feet in thickness, and the surface is locally covered with ash deposits up to 20 inches thick. The upper parts of the ridge have open grassy slopes but lower elevations, particularly north facing hillsides are forested with pine and lesser amounts of spruce, fir and balsam.

CLAIMS:
The property is comprised of six crown granted claims and 19 claims held by right of location. Six of the located claims were staked by the Company in September, 1974, and are subject to the terms of the option agreement. Three years work has been applied for assessment against the six claims and pertinent details on all claims are listed below:

Sun Fraction	C.G. Lot 8199)	
Astonisher	C.G. Lot 7979)	
Moniter	C.G. Lot 7980)	Taxes due July 2 each
Chevalier	C.G. Lot 7981)	year - next due date July 2, 1975
Ajax	C.G. Lot 7982)	
Monty	C.G. Lot 7983)	

Claim Name	Record No.	Group		Expiry Date
W1 to W12 Incl.	$23370-23381$ Incl.	Watson Bar	November 4, 1990	
Last Chance	10538	$"$	$"$	November 5, 1990
*W13 to W18 Incl.	$32128-32133$ Incl.	$"$	$"$	September 25, 1978
* No certificates of work received to date.				

GEOLOGY:

GENERAL STATEMENT
Regionally, the property is situated in the Lower Cretaceous Jackass Group of sedimentary rocks lying adjacent to the interior margins of the Coast Plutonic Complex. In the claim area, the group is bounded by northwesterly faults; The Ward Creek to the northeast and the Yalakom on the southwest, and is mapped as three separate lithologic units.

Division A, the lowest member, is comprised of marine and non-marine greywacke, shale and conglomerate some 3,000 to 4,000 feet thick. Division B is essentially a coarse conglomerate unit comprised of cobbles and boulders of medium and coarse-grained granite rocks, with minor sedimentary and volcanic debris, interbedded with greywacke. The conglomerates are overlain by greywacke, argillite and pebble conglomerate of Division C. Divisions B and C are nonmarine and respectively attain thicknesses of about 2,000 and 5,000 feet.

In Upper Stirrup Creek, the claim area is underlain by rocks of Divisions B and C. Strata of Division C are intruded by sills and dikes thought to be of Tertiary age.

LITHOLOGIC DESCRIPTION:

In the central claims, argillite forms a thick band some 600 to 800 feet thick striking northeast and dipping between 10° and 30° northwest. The rocks are typically blue grey or brown grey and silty. The section is more massive on the upper slopes, thins rapidly and becomes interbedded with greywacke and arkosic sandstone on the lower northern slope of Stirrup Creek, and is found as float or thin interbeds on the lower southern slope. The main belt is overlain and underlain by greywacke and cut by numerous dikes and sills of intrusive rocks. In the western section of the claims, argillite, based mainly on float evidence, appears more regularly bedded with sandstone. It appears thickly interbedded with sandstone in lower Stirrup Creek but occurs only as a minor constituent of the Jackass group on the ridge southwest of Stirrup Creek.

Sandstone accounts for well over half of the underlying bedrock and is most abundant to the northwest and southeast of the main argillite belt. It is typically a grey green medium grained greywacke composed of feldspar, quartz and rock fragments. Beds about three feet thick have been observed in the eastern map area. In the interbedded area north of the creek, finer grained arkoses are more evident and in the vicinity of intrusives the beds are locally well pyritized. A 12 inch pebble conglomerate interbed is evident in the eastern claims in somewhat coarser sandstones, and pebble sandstones are found north of the road in the northwestern claim area.

The intrusive rocks occur only as sills and dikes within the claim area. They are medium grained feldspar rich porphyries of granodiorite composition. In unaltered rocks they may contain 10 to 25% feldspar and up to 10% hornblende phenocrysts in a grey fine grained groundmass. Occasionally very fine grained biotite is present. In the more altered intrusives, particularly along
the ridge, the rocks contain up to 10% prominent quartz eyes $2-5 \mathrm{~mm}$ in diameter.

The sills range in thickness to about 175 feet but are commonly less than 50 feet. They pinch and swell, apparently split, may terminate along strike and commonly show a marked preference for the Argillites or their contacts. Within the claim area the distribution may have been influenced by the thinly interbedded nature of the sandstone and argillite north of the creek. The dikes are not as abundant as the sills. They are more common along the ridge and like the sills are irregular in form. Those rocks containing quartz eyes may in part be related more to dikes rather than sills.

The intrusives are locally well mineralized with pyrite and in some cases pyrrhotite and chalcopyrite. Concentrations in excess of 2% are evident in exposures on the W9 claim to the northwest. Mineralization is usually disseminated but locally occurs on fractures both in intrusive and sedimentary rocks. In the hydraulic cuts on lots 7979 and 7983 , sandstone beds along the trace of a discontinued sill are well mineralized but carry insignificant gold values. A mineral , tentatively identified as arsenopyrite is evident in fine grained intrusive rocks near the northeast corner of lot 7981.

The conglomerate in the northern claims is comprised of cobbles and boulders of quartz rich granitic rocks averaging slightly better than 6 inches but commonly reaching 2 feet in diameter. The conglomerate is interbedded with sandstone. Beds vary to over 10 feet thick, strike about $\mathrm{N} 15^{\circ} \mathrm{W}$ and dip between 25° and 30° southwest.

STRUCTURE :

Recent mapping by the Geological Survey in the Taseko Lake map area indicates a strong east-west fracture component between the Ward Creek and Yalakom Faults. The east-west structures are relatively short with limited displacement although block faulting is recognized.

At Stirrup Creek, a number of faults are aligned within 15 degrees of east-west and dip steeply to the south. They vary from single breaks to shear and fault zones in excess of 25 feet. One such zone marks the contact between Division B Conglomerate on the north, from Division C strata on the south. In this instance the fault is believed normal with the northern block having moved up relative to the southern block. The relative stratigraphic position of the two units has not been determined.

Other faults on the property are aligned about $N 20^{\circ} \mathrm{W}$ and (N45 to 50E). A strong system of fractures along the ridge crest is related to the northeasterly set. Rock alteration is directly related to fracturing and faulting and is most intense near the locus of intersecting structures.

In the claim area the strata commonly dip between 10° and 35° but are variable in strike from NW to east, reflecting fault movement. Near the sills, altitudes often show little or no variation from the norm, however, near dikes and in areas of faulting the rocks are distorted, locally brecciated and commonly altered.

ALTERATION :

Within the claim area, alteration is more evident to the north of Stirrup Creek and is characterized by carbonatization in the south, and both
carbonatization and clay alteration along the ridge. Silicification, mainly in the form of quartz veinlets, is widespread but comparatively weak.

Carbonate alteration on the lower slopes is conspicuous as large rusty weathering zones which occur most commonly in highly fractured rocks around east-west faults. The carbonate replaces mainly the matrix of the invaded rocks, and in comparable zones of Big Bar Canyon immediately to the east, has the composition of magnesiodolomite. (Trettin 1961, P98). Clusters of white carbonate fractures also occur along the lower slopes and in highly fractured argillaceous rock along the ridge. In the latter area, such zones may be highly altered and show a rusty mottled grey discoloration.

Along the ridge, the rocks are commonly weathered to a pale rusty brown colour which is most prevalent to the northwest around the $W 3$ and W10 claims. The rocks are moderately well carbonatized, occasionally weakly silicified, and around some intrusive bodies show clay and sericitic alteration. In this latter case, the rocks, particularly intrusives, are irregularly bleached, more strongly along and north of the ridge, but perceptibly weaker to the southwest of the ridge. Broad clusters of ferruginous fractures exposed along the trenches on the ridge appear directly related, as does much of the alteration, to a strong system of northeasterly fractures in that area. These fractures are locally contrasted to late east-west limonite fractures paralleling the large east-west faults. Pyrite is weakly disseminated in the intrusives and occurs sporadically as fracture fillings in the surrounding rocks.

Strongly silicified zones, 25 feet and 15 feet wide occur respectively on the $W 13 \mathrm{claim}$ and in lower Stirrup Creek. Such material is brecciated,
locally pyritized and veined by carbonate, and commonly occurs at or near faults. Other comparable zones located are less than four feet wide. Quartz occurs with stibnite and related sulphides in narrow widely separated fractures along the ridge. It occurs also as minor fracture fillings within and related to the carbonate alteration, and in northeasterly fractures around the mercury zone on the Last Chance Claim. A weak set of quartz fractures, apparently late and trending approximately $N 5^{\circ} \mathrm{W}$ is evident in the hydraulic cuts north of the Creek. Some gold occurs with this material and previous work suggests an association with wehrlite.

The argillaceous rocks adjacent to the altered intrusive (S.W. Corner W3 claim) have been brecciated, carbonatized and locally silicified. Silicification is most intense near local faults however field evidence suggests a more pervasive weaker silicification over the general section. Perhaps significantly, this area yielded anomalous but low gold values.

Away from the main centres of alteration, epidote is common and weak to moderately well developed in intrusive rocks. A barite occurrence south of the creek, thought to be related to an east-west fault, has been shattered and veined by quartz. Barite was reported in the ridge area by previous workers but was not encountered during the current study. Bedrock samples indicated significantly higher arsenic content along the ridge and more particularly around fractured and altered intrusive rocks. On the lower slopes, anomalous arsenic occurs with the late $N 5^{\circ} \mathrm{W}$ quartz fractures and sporadically near intrusives.

ECONOMIC GEOLOGY :
Stibnite deposits on the ridge and to the northwest and southeast of the property have been investigated in the past with little success. For the
most part the occurrences are small discontinuous veins a few inches wide dipping at low to moderate angles between west and north. They are comprised of quartz, stibnite, minor amounts of realgar, orpiment and locally carry minor gold values.

On the south slope of Stirrup Creek, mercury zones have been out lined by geochemical surveys and investigated in the past by H.V. Warren and his associates. Cinnabar occurs as minor disseminations in altered intrusive rocks. The occurrences are thought to be relatively small however they have not been fully investigated.

Previous and recent sampling at the property disclosed the following:
(1) On the lower south facing slope in the trench 5 area a sample of fault gouge yielded 5.7 ppm gold.
(2) In the same general area, two samples of a rusty weathering, $\mathrm{N} 10^{\circ} \mathrm{W}$ quartz fracture yielded 3.05 and 6.75 ppm gold. Some visible gold associated with wehrlite has been reported from a nearby quartz vein of the same altitude.
(3) Intrusive float with weak quartz fractures from the Trimble Adit area yielded 0.05 oz . gold. Previous values of 0.3 to 1.18 oz . gold are reported from the nearby winze. Also, a previous sample of a 3 inch quartz vein in the winze yielded 1.25 oz . gold. As four recent samples of dump material and overlying rocks yielded only trace amounts of gold, presumably the higher values are also of quartz.
(4) Previous samples of gouge from a large east-west fault exposed on the northeast part of the Ajax claim yielded values to 0.08 oz. gold.

One of five stibnite veins (trench 1-S.W. corner of $W 3$ claim) yielded 5 ppm gold when sampled. Argillaceous rocks immediately to the north and adjacent to the altered intrusive dike yielded anomalous but low gold values up to 0.52 ppm .

In the last instance the stibnite vein occurs in a northwesterly shear zone from which a previous sample of siliceous material yielded in excess of 0.60 oz . gold/ton. During the 1974 program, the best value obtained was 0.07 oz . gold over 18 feet of the trench floor. This sample was collected over the central part of the zone however, wall samples of the same material yielded substantially lower values. (See Trench 1 Assay Plan). This particular zone has been tested by two, 200 foot percussion holes. Hole three yielded values comparable to those found in trench 1 while Hole 4, a short distance south, yielded trace amounts.

Other zones along the ridge were trenched and sampled without significant results. All of the above occurrences are comparatively small restricted zones with limited potential. To date no significant target areas have been located.

The source of the Placer gold is still in some doubt. Some of the gold obviously has been eroded from the upper slopes and transported by glaciers towards Stirrup Creek. Dr. H.V. Warren reports that the Placer gold was recovered over the length of Stirrup Creek, a distance "somewhat less than four miles". The current survey was carried out only in the claim area and covered approximately one mile of the creek. The gold bearing structures located, presumably extend and/or repeat to the northwest and southeast. Collectively, over a length of four miles, they might account for more of the placer gold in Stirrup Creek than the
amounts currently indicated from the claims.

GEOCHEMISTRY :

Evidence of large blocks of conglomerate on the property which are directly traceable to the conglomerate formation to the north, gives a reliable indication of the direction of glacial transport. This coupled with the fact that most of the placer gold recovered at the property came from the south facing slope prompted earlier workers to undertake extensive geochemical surveys between the creek and ridge crest in an effort to trace its source. The results of those surveys, particularly in areas of thick glacial till, were considered inconclusive, and it was decided to obtain some additional soil samples from greater depths, and where possible to relate them to bedrock geology and assay values.

To this end a number of check samples were collected from cross lines to the 1973 work and plotted as closely as possible to known stations. The samples were collected from depths averaging 16 to 18 inches. In the hydraulic cuts on the lower slopes, two samples were collected in areas where the till was greater than two feet. The top sample was taken about 12 inches below the surface and the bottom sample taken six inches above bedrock. In the cuts showing relatively thin cover only one sample was cut about six inches above bedrock. A total of 158 samples were collected and analyzed for gold, tellurium, mercury, antimony and arsenic.

In areas where bedrock was exposed, principally on roads, trenches and the upper ridges, rock chip samples were collected and analyzed for gold and arsenic. A total of 129 samples were analyzed. In addition to the above, H.V. Warren collected 34 rock and soil samples and 10 biogeochemical samples from the
main cuts in the Trimble Winze area. These samples were analyzed for $\mathrm{Au}, \mathrm{Ag}, \mathrm{As}$, Te and Hg . All sample results, except those by H.V. Warren are plotted on the enclosed maps.

SAMPLE RESULTS :
Gold - Contoured at 0.10 ppm the assays indicate a number of small irregular zones along the crest of the ridge. The anomalies are crudely aligned northeast. For the most part the underlying bedrock has been intermittantly exposed and rock assays are low. In the hydraulic cuts mainly on Lots 7979 and 7983 soil sample results can be correlated with rock chip assays as follows:

24 soil samples taken 12 inches below surface ave. 0.043 ppm
24 soil samples taken 6 inches above bedrock ave. 0.123 ppm
44 rock chips from underlying bedrock ave. 0.032 ppm
Numerous other rock chip samples taken from the property, with few exceptions, yielded a low range of values, commonly much less than 0.10 ppm Au. Exceptions are in the hydraulic cuts on Lot 7979 and 7983 , where quartz vein material and fault gouge yielded substantially higher values; and in the main trench area near the southwest corner of the W 3 claim. Here values ranged to 0.52 ppm with one extreme value of 15.5 ppm which could not be duplicated.

Results of cross line samples in general correlate with 1973 results by Placer Development Ltd.

Tellurium - Samples results do not differ markedly from those obtained during 1973. Samples from the earlier survey were analyzed to hundredths while the 1974 results are in tenths with a lower detection limit of 0.2 ppm. A few samples in the hydraulic cuts on Lots 7979 and 7983 yielded values to 0.5 ppm but the majority assayed 0.2 ppm or less.

Arsenic - Contoured @ 200 ppm , soil values show a series of relatively small anomalies along the ridge crest. They trend northeast or locally east-west and can be correlated generally with antimony and gold anomalies.

Samples collected from the hydraulic cuts on Lots 7979 and 7983 give interesting results, particularly in view of the contained arsenic in underlying bedrock. An average of 24,1973 samples collected from the general vicinity of the cuts is approximately 37 ppm . An average of 24 samples collected during 1974, 12 inches below the surface is about 97 ppm. Twenty-four samples collected within 6 inches of bedrock averaged 317 ppm , and 39 bedrock samples from the same cuts averaged about 105 ppm.

Bedrock samples collected over the property indicate substantially higher values along the ridge crest and more particularly around the highly bleached rocks in the main trench area on the $W 3$ claim. Cross line soil samples in general correlate with 1973 results although in some cases 1974 results are higher.

Antimony - A number of narrow stibnite veins are evident along the ridge crest and are reflected by anomalous conditions in the soils. The anomalies are small, have a crude northeastern alignment and do not differ markedly from those indicated previously.

Samples taken from the hydraulic cuts with the exception of one extreme result south of the winze averaged 6 ppm in the zone 12 inches below the surface, and 8 ppm taken 6 inches above bedrock. Samples from the cross lines were generally higher than 1973 results.

Mercury - Samples collected during 1973 indicated anomalous conditions (a) South of the creek near the Last Chance claim, (b) South of the creek
on the Ajax claim and (c) scattered highs along the ridge. Five samples of mineralized quartz from the stibnite veins along the ridge yielded values between 10,000 and $126,000 \mathrm{ppb} \mathrm{Hg}$. Twenty-two soil samples from the hydraulic cuts on Lots 7979 and 7983 averaged 56 ppb taken 12 inches below surface and 292 ppb taken from 6 inches above bedrock. Bedrock was not sampled and no mercury minerals have been identified north of the creek. Samples collected from the cross lines in general were lower than the 1973 results. Line 10 E samples yielded higher values and line 30 E and baseline results correlated well with the earlier work.

Vancouver, B.C.
December 23, 1974.

REFERENCES

1. G.S.C. Memoir 262 - Ashcroft Map Area - Dutfell \& McTaggert - 1952
2. Geology of the Fraser River Valley Between Lillooet and Big Bar Creek - H.P. Trettin - 1961, B.C.D.M. Bulletin 443. G.S.C. Paper 67-54 - Upper Jurassic and Cretaceous Rocks of TasekoLakes Map Area and Their Bearing on the Geological History ofSouthwestern B.C. - 1968 J.A. Jaletsky \& H.W. Tipper
3. An Attempt to Discover a "Carlin-Cortez" Type of Gold Deposit in British Columbia. A paper by H.V. Warren and T.H. Hajek printed in Western Miner, October 1973
4. Miscellaneous File Reports including previous exploration reports on property, principally a report and drill logs by Rio-Tinto 1971, and Placer Developments 1973 report

APPENDIX 1 - TRENCH ASSAY PLANS

APPENDIX 2 - THIN SECTION REPORT

STIRRUP CREEK - C422

Thin Section Report

 Sample LocationsS.C. 1. Hydraulic cut 2300-420 feet south of Stirrup Creek
S.C. 2. Main placer trench - Claim W3-50 feet west of cut.
S.C. 3. Astonisher mineral claim - road to upper ridge. 3215 feet southeast of cut to placer trench
S.C. 4 Same as S.C. 2. - 165 feet west of cut
S.C. 5 Inverarity cut - northwest corner of Lot 7979.
S.C.6. Same as S.C. 2., S.C. 4. - 225 feet east of cut
S.C. 7. Hydraulic cut 3000 - Monty Crown Grant. Approximately 265 feet south of ditch.
S.C. 8. Specimen R-12. Silicified zone in stibnite trench ridge crest.
S.C. 9. Specimen 46. Road switchback northeast corner of W7 mineral claim
D. L. COOKE AND ASSOCIATES LTD. mineral exploration consultants

PETROGRAPHIC REPORT

ON NLNE THIN SECTIONS

PROJECT C-422

for
B. D. PEERSON, P.ENG.

CONSULTING GEOLOGIST
743 LINLSAY ROAD
RICHIONL, E.C.

by

D. L. Cooke, Ph.D., P.Eng.

December 19, 1974.

D. L. COOKE AND ASSOCIATES LTD.

 MINERAL EXPLORATION CONSULTANTS16331 EELL ROAD SURREY. B.C., OUS, 576 -0140 RES. 576.8170

INTRODUCIION

The nine specimens of Project C-Láa vere examinea in thin sections on the instruction of Mr. E. L. Pearson, Consulting Geologist. This petrographic exemination was done to determine the rock types, origin of end elteration vithin the various specimens.

The textures, primary minerals, and the secondary alteration products were identified opticully. The percentages of minerals vere visuslly estimated, and each section described and ciassified separately.

CONCLUSIONS

The specimens represent ε wide range of rock types and textural
features. The intrusive rocks are porphyritic granodiorites (SC-1 and SC-9), end grenite porphyry (SC-र́). Another two sections represent fine grained cherts (SC-4 and SC-5). The remaining four are trachyte flow (SC-3), tuffaceous greywackes (SC-6 and SC-7), and tuffaceous breccie (SC-8), all derived from parent material of similar composition.

Alteration is variable end generally inconspicuous. The granodiorites are uneltered, while the grenite porphyry exhibits moderate clay and sericite alterction. The rocks of volcanic derivation appear to be only weakly altered, possibly by deuteric eqents. Cartorate, chlorite, leucoxene, end minor sericite and pyrite are the typicel seconcary
minerals. The breccia has teen intensely silicified.

No copper sulphides were observed in any of the sections. Neither was hydrothermal alteration significant in more than three sections (SC-2, SC-7 and SC-8).

Respectfully submitted,

D.L. CODKE AND ASSOCIATES LTD. MINERAL EXPLORATION CONSULTANTS

16331 Bell Road, Surrey, B.C. Canada

PETROGRAPHIC REPORT

NUMBER: SC - 1 LOCALITY: Project C-4́á DATE: December 16, 1974

NAME AND CLASSIFICATION: PORPHYRITIC GRENODIORITE

MEGASCOPIC DESCRIPTION: The specimen appears medium grained, grey, and sliahtly lineated because of the orientation of the mafic minerais. MICROSCOPIC DESCRIPTION:

TEXTURE: The plagioclase and hornblende occur as euhedrel phenocrysts in ε medium grained, equigrenular, groundmass consisting of orthoclase and cuartz. Hagnetite is accessory. The mecium grained nature of the groundmass somewhat masks the porphyritic texture. CONCLUSION:
This intrusive mess has a composition which stradiles the eranodiorite-ouartz monzonite boundery. It is clessified as e eranodiorite on the basis of colour index and composition. No apprecisble alteration is in evidence. The specimen renresents a stock-like intrusive body.

MICROSCOPIC DESCRIPTION:

Minerals	\%	Remarks
1. Plagioclâse (?)	55	Phenocrysts, $1-4 \mathrm{~mm}$. in size, have in the main part been plucked from the section during polishing. Remnent patches are inferred to be $\mathrm{An}_{10} \pm$ because of negative relicf and positive sign. Partiaily eitered to cley minerels.
2. Quartz	20	Euhedrel phenocrysts range in size from $2-4 \mathrm{~mm}$. Some quartz also occurs in the groundmess together viith untrinned, low R.I. alkali feldspar mosaic.
3. Sericite	13	Minute sericite grains occur throughout the groundme.ss.
4. Clay Mineral (s)	10	This appears to be seconaary after both phenocryst and Erouncimess feldspar.
5. Leucoxene	2	Leucoxene seems to be derived from the weathering ${ }^{\circ f}$ grains of iron oxide.
6. Apatite	Tr .	\& few minute apatite crystals are eviciently accessory.

TEXTURE: Alkell plegioclese end quertz phenocrysts are uniformly dispersed within a fine grained, ecuigranuler groundmess of untwinned elreli feldsper (placioclase ?) and currtz. - Ericite and clay mirerals are secondary eftor these felaspars.

CONCLUSION:
The composition is that of socia crenite rather then of a decite. Alteretion is moderate, consisting entirely of sericite ana cliy minerels. The crvironment of emplacement is hypabyssal, end possibly dike-like in form.

PETROGRAPHIC REPORT

NUPMEA: $\mathrm{SC}-3$	LOCALITY:	Project C-42́a	DATE: December 16, 1974
NAME AND CLASSIFICATION:	TRECHYTE		
MEGASCOPIC DESCRIPTION:	The genere	eppearence i	rey feldspar porphyry.

MICRDSCOPIC DESCRIPTION:

Minerals	\%	Remarks
1. Plegioclase	25	An 7 ± 3. Euhedral sodic plegioclase phenocrysts are $1-3 \mathrm{~mm}$. in length. Partial elteration is to chlorite ena sericite. Feldspur needies in the groundmass mey elso be sodic plagiocláse.
2. Alkeli Feláspar	25	Anhedral, but eçuicrenular and untwinred alkeli feldspers (potesh?) ere less than $1 \mathrm{~mm} . ~ e c r o s s$.
Anorthoclese	15	Euhedral tablets of enorthcclase appear as simple trins.
4. Chlorite	15	Chiorite has replaced parts of the mejor constituents. It is conspicuous betrieen alkeli feldspar greins in the grouncmess where it probabiy replaces glassy material.
5. Carbonete	7	Irreguler patches of carborate are associated with the chlorite derived from hombiende crystels.
6. Sericite	6	Minor emounts of fine white mica are seconcary efter the feldspers.
7. Quartz	4	A few sukrounded primary, as well as some "feathery" seconary quertz, have been observed.
8. Leucoxene	1	Grenuler leucoxene is seconciery.
9. Apatite	1	Neeciles of epatite are on eccessory mineral.
10. Pyrite	1	Granular pyrite occurs in accessory emounts.

TEXTURE: The plegicclese and onorthoclese phenocrysts give the specimen its porphyritic apperence. Smeiler elkcli erains end hornblende pseudororphs eccount for the bulk of the - roundmess. Interetitiel chlorite (efter Elass) and feldsper microlites give fing flow CONCLUSION:
The specimen is interpretec as en extrusive trechyte, which has undercone noderete chloritization. The presence aiso of cerboncte, scricite and pyrite mey be viewed us the result of deuteric or propyllitic elteration.

Telephones: D.L. COOKE AND ASSOCIATES LTD. Bur. 5700140
?s: 576-8170

MINERAL EXPLORATION CONSULTANTS

16331 Bell Ro:.a. Surrey, B.C. Canada

PETROGRAPHIC REPORT

NUMBER: SC-4 LOCALITY: Project C-4ãa DATE: December 16, 197-
NAME AND CLASSIFICATION: CHERT
MEGASCOPIC DESCRIPTION: Limonite cracks transect this fine grained, light erey, rnolitic or cherty unit.

MICROSCOPIC DESCRIPTION:

Minerals	\%	Remarks
1. Guartz	60	Ancular clasts of cuartz renge in size from $1 / 10-1 / 4 \mathrm{~mm}$. The different sizes occur in different leyers.
2. Chlorite	20	Fine seconcory chlorite appears to be recrystallized argilleceous metrix materizl.
\therefore Certonete	15	Irregular ankeritic carbonate is scatterea throughout.
4. Leucoxene	5	Limonite-impregnated leucoxene is olso uriformly districated

TEXTURE: The texture is definitely clastic. It consists of larincted fine ($1 / 10 \mathrm{~mm}$.) to corrse ($\frac{1}{4} \mathrm{~mm}$.) cuartz fracionts cemented by very fine grained chloritic matrix. Granuler nkerite and leucoxene are common constituents.
CONCLUSION:
Althoug this section is clastic in origin, it is classified es a chert rather then e cherty sandstone, recause of its very ine grained texture. The finer ikyers contuin reletively fev quartz frements and are more truly argillaceous and cherty.

PETROGRAPHIC REPORT

NUMBER: $S C-5$ LOCALITY: Project C-4E天 DATE: December 17, 1974

NAME AND CLASSIFICATION: CHEFT
MEGASCOPIC DESCRIPTION: This is a medium Erey, "cherty" sediment vith the beciding offset by minute frectures.

MICROSCOPIC DESCRIPTION:

Minerals	$\%$	Remarks
1. Guartz	45	Angular fragments of quartz rerge in size from $1 / 20$ to $1 / 4 \mathrm{~mm}$.
2. Clay (?)	25	Fine clay minercls cocur in the metrix together with chlorite.
3. Chlorite	15	Abundent fine greined chlorite seems to te derived from recrystellization of fine argillaceous metrix.
- Cerbonate	5	Iron cerbonate, ccurrirg es erains snd vein fillings, peathers to semi-opacue yellow-brom masses.
5. Leucoxene	5	Grenular leucoxene is moderctely atundent.
6. Limonite	5	This occurs mainly in sears.

TEXTURE: Like section $S C-4$, this unit consists of angular quartz clasts rithin eretrix of very fire grined cley minertls and chlorite. Mocierete emounts of corborcte end leucoyene re present. Graded bedione is epparent on a microscopic scile. These beds ere oflet by

- is is cherty clestic sediment, which hos been sutsecuently fractured on a microscopic scale.

Telaphones:
Hus - $576-8440$
Res: 576-8170
D.L. CDOKE AND ASSDCIATES LTD. 16331 Bell Road, MINERAL EXPLORATION CONSULTANTS Surrey, B.C. Canada

PETROGRAPHIC REPDRT

NUMBER: SC - 6
LOCALITY: Project C-L_天
DATE: Decemter 17, 1974
NAME AND CLASSIFICATION: LITHIC TUFFRCEOUS GANEYTACKE
MEGASCOPIC DESCRIPTION: This is e fine greined, medium grey rock contzining bleck es well as grey minerais ($\frac{1}{2} \mathrm{~mm}$.) .

MICROSCOPIC DESCRIPTION:

Minerals	$\%$	Remarks
1. Cerbonete	30	Irregular greins of cerbonete ere scattered throughout. Lesser emounts occur vithin feicisper fregments ard within the matrix.
2. Plagioclase	20	Alikeli plagioclase fragnents (in5-aO) occur in mejor proportions. There is moderate eilteration to sericite, chlorite end cerborsite.
3. Chlorite	20	The matrix is permeated by buncant secondary chlorite, protably derived from argiliaceous naterifl. Fragments of biotite and hombiende are elso altered to criorite.
4. Sericite	15	The feldspars ere pertizlly replaced by fine flekes of sericite.
5. QuErtz	10	Angular clests and clusters of secondary cuartz are relatively common.
6. Leucoxene	4	Granular leucosene occurs in abundence about the eages of rock fraguents.
7. Hematite	1	Hemetite stains are associated with peathered carkonate and leucozene.
8. Magnetite	Tr.	A fep; irreguler gramules of magretite are unevenly distributed.

IEXTURE: Anguler frements of alkeli plagioclese ($\frac{1}{4}-1 \mathrm{~mm}$), cerbonste and quartz are as aturdent es trohytic rock fregments. These bre cemented by abundent chlorite, with
dhe specimen is 0 messive tuffaceous greywacke. No beadirf or sorting is epparent. Certonate, chlorite, fnd sericite seem to te deuteric ir orifin.

Telephones:
Bus. 576
'es: 576-8170
D.L. COOKE AND ASSOCIATES LTD. MINERAL EXPLORATION CONSULTANTS

PETROGRAPHIC REPORT

NUMBER: SC - 7
NAME AND CLASSIFICATION:
MEGASCOPIC DESCRIPTION:

LOCALITY: Project C-422
ARKOSE
The hend specimen is messive, grey, end fine to medium grained.

MICROSCOPIC DESCRIPTION:

Minerals	\%	Remarks
1. Alkeli Feldsper	30	These subangular feldspar fragments are riaciled with fine sericite, chlorite, and patches of cartonate. They appeer to be sodic plagioclase enö potash felaspar.
2. Sericite	20	Sericite permeates the f'eldsper grains.
3. Chlorite	15	The matrix, as well as altered biotite and other mafic mineral(s), consists meinly of chlorite.
4. Carbonate	15	Irregular patches of carbonete occur separately, within feldspar ereins end in the matrix.
5. Guartz	13	Sub-snguisr quartz fregments are uniformiy distributed.
6. Clay	5	Patches of fine clay mirieral s) are common kut not abundent.
7. Pyrite	1	Granules of pyrite are irreguiar ir outlire.
8. Leucoxene	1	Minor mounts of cloudy leucoxene is evident.
9. Apatite	Tr	A few crystels are present.

TEXTIARE: Average grain size is $\frac{1}{4}-\frac{2}{8} \mathrm{~mm}$. The fragments are sub-anguikr alkeli feldsper, cuertz and iltereu ferromagresiens. The fracments are closely packed and uniform in size. The atrix is sparse and consists mririly of chlorite, carbonete and clay.
CONCLIUSION:
wome scrtine hes resultec in the generai uniformity of erein size. Derivation mey te from acid intrusive or volcanic source. Moderate alteration is characterized by the development of sericite, cerbonate and pyrite.
Telephones: D.L. CODKE AND ASSOCIATES LTD.

PETROGRAPHIC REPORT

NUMBER: SC-8 LOCALITY: Project C-4̌22 DATE: December 18, 1974

NAME AND CLASSIFICATION: SILICIFIEL ERECCIA
MEGASCOPIC DESCRIPTION: Euff coloured "fregments" are cemented by a dark aphenitic matrix.

MICROSCOPIC DESCRIPTION:

Minerals	\%	Remarks
1. Cuartz	60	The three habits of quertz are: fine greined matrix meterial feathery breccia cement, and subangular greins.
2. Sericite	20	Fine sericite eppears to be pseudomorphs after feldspar crystels end/or fregments.
3. Iron oxides	8	Eoth yellow and brom limonitic meterial impregnates the rock fregments throughout the section.
4. Leucoxene	7	Cloudy leucoxene is like the iron oxides in hebit end distribution.
5. Chlorite	5	Irregular chlorite patches are common.
6. Malachite (?)	Tr.	The occesional semi-opaçue green grein mey te melechite.

TEXTIRE: Rounded end subangular frageerts are up to ε few centimeters in size. They corsist of sericitized and silicified feldspathic rock impregnated with second ry iror oxices and leucoxene. These are cemented by vein type comb quartz.
CONCLUSION:
he orifine rock type has lost most of its primery texture, because of extensive silicirication and sericitization. Erecciation is post formetionui. The unit may heve been a tuff or similar textured feldspathic rock.

PETROGRAPHIC REPORT

NUMBER: SC - 9 LOCALITY: Project C-Lन̃a DATE: Lecember 18, 1974

NAME AND CLASSIFICATION:

POFPEYFITIC GFANOLICAITE

MEGASCDPIC DESCRIPTION: This has the appearance of a mecium grey feldspathic intrusive.

MICROSCOPIC DESCRIPTION:

Minerals	$\%$	Remarks
1. Plegioclese	35	An 30 ± 5. Eunearel plegiociese phenocrysts ($2-6 \mathrm{~mm}$) exhibit zoning and cherecteristic multiple twinning. These ere unaltered.
2. Alkali Feldsper	15	Small equigrerular aikali plagioclase and/or orthoclese constitute the ereater portion of the groundmass.
?. Guartz	15	The occesionel cuartz phenocryst is present, but most occurs as small equieranular grains in the grouncmass.
4. Hornblende	10	Euhedral hornbiende crystels (l-3 mm.) are partially replaced by secondary minerals.
5. Chlorite	8	Chlorite is secondary ifter hornklerde and biotite.
6. Epicote	7	Sulphide grains are surrounciea ty grenules of epidote. finor epidote also occurs within the feldspar rinenocrysts.
7. Cartonate	5	This mineral cocurs as a secondary replacement of the mefics.
8. Pyrite/Pyrrhotite	3	Irregular patches of suifhide are in evidence anc are considered accessory.
9. Sphene/Leucoxene	2	Smali grains are associcted with the alteration of the mafics.
10. Apatite	Tr.	Ninute needles are a common accessory mineral.

TEXTURE: The plagioclase and horntience phenocrysts occur vithin an equicranular mosaic of elreli feidspar and quertz. The texture is porphyritic. Alteration products are
he porphyritic texture sugcests that the eranodiorite intrusion is of a near surface stocklike body. Alteration is minor. The sulphice therefore is believed to to a primery occessory minerel.

