SUPPLEMENTAL REPORT
DIAMOND DRILLING AND SOIL GEOCHEMISTRY
PYTHON AND GYPSY CLAIMS

93 F/7 E&W

SUPPLEMENTAL REPORT

DIAMOND DRILLING AND SOIL GEOCHEMISTRY OF PYTHON AND GYPSY CLAIMS

Omineca M.D. 93 F /7 E&W Latitude: 53 $^{\circ}$ 25 $^{\circ}$; Longitude 124 $^{\circ}$ 40 $^{\circ}$

Report for:

CHEVRON STANDARD LIMITED 901 Marine Building, 355 Burrard Street Vancouver, 8.C. V6C 2G8

Project M-508

By
K.E.Northcote, Ph.D., P.Eng.
K.E.Northcote and Associates Ltd.
Agassiz, B.C.

January 18,1982

TABLE OF CONTENTS

INTRODUCTION]
Terms of Reference"]
CLAIMS"	1
GENERAL GEOLOGY"	1
	,
GENERAL MECONICIONALI DIVIDA I I DIVIDA I DIVIDI DI DIVIDI I DIVIDI I DIVIDI DI D	٠
PYTHON CLAIM"	2
Diamond Drilling"	2
Supplemental Soil Geochemistry"	2
Results"	2
Conclusions"	2
Recommendations"	-
GYPSY CLAIM"	-
Diamond Drilling"	3
Soil Geochemistry Surveys"	7
Results"	3
Conclusions"	4
Recommendation"	-
FIGURES	
Figure 2Claim Location Map	
Figure 9Stratigraphic Section DDH 81PY-I	
Figure 10Stratigraphic Section DDH 81GYP-I	
APPENDICES	
Appendix DCore Descriptions 81PY-I;81GYP-I	
Appendix ECore Rock Geochemistry Data	

Appendix F... Supplemental Soil Geochemistry Data

SUPPLEMENTAL REPORT FOR DIAMOND DRILLING AND SOIL GEOCHEMISTRY OF PYTHON AND GYPSY CLAIMS OF THE NECHAKO RANGE AREA

INTRODUCTION

Terms of Reference

This report is supplemental to GEOLOGICAL AND GEOCHEMICAL REPORT ON GYPSY, PYTHON, NAUTICAL AND B.B. CLAIMS OF THE NECHAKO RANGE AREA by K.E.Northcote, September 30,1981. Geologic discussion and maps and figures accompanying this report are in accordance with those of the earlier report. The reader is referred to the report dated September 30,1981 for discussion of location and access, general geology and geochemistry.

K.E.Northcote and Associates Ltd. were contracted to supervise a two hole diamond drilling program totalling 915 feet on the Python I and Gypsy II claims and additional geochemical soil sampling on the Gypsy grid. Connors Drilling were contracted to do the diamond drilling. Soil samples were collected from the west side of the Gypsy grid and sent to Chemex Labs. Ltd., North Vancouver for standard geochemical analysis. This work was done during the period October 12 to November 8,1981.

CLAIMS

In addition to the claims listed in the September 30,1981 report there is now the Python III claim which was staked in October.
See Figure 2

Python III 20 units Record No 4358 Recorded Oct. 23 1981

GENERAL GEOLOGY

The geological work reported September 30,1981 suggested a possible comagnatic relationship between some plutons and volcanics with coeval deposition of volcano-sediments in the Nechako Range area. If these relationships exist in the area, there is excellent possibility for discovery of stratiform massive sulphide deposits and for development of porphyry related deposits within and around plutons. Further, the discovery of rhyolitic volcanic units on the Gypsy claims further enhances the possibility of finding massive sulphide deposits in the general area. These are positive and very significant results arising from the 1981 Nechako program.

GENERAL RECOMMENDATIONS

It is recommended that a small regional program be initiated in the Nechako range area designed to delineate areas of rhyolitic volcanics, volcano-sediments and plutons. Age determinations should be made of selected plutons to supplement Geological Survey of Canada data and to test the comagmatic hypothesis.

In order to reduce the search area it is suggested that where outcrop density permits the regional survey be centred around existing airborne geophysical anomalies. The areas deemed most favourable for mineralization should then be staked and geochemical, detailed geological and ground geophysical programs conducted and followed-up by diamond drilling where required.

PYTHON CLAIM

Diamond Drilling

D.D.H. 81 PY-I 0+30N 8+15E at -60° , Az 120° T.D. 425 feet was drilled to test a geophysical anomaly. Eighteen selected 2 foot intervals of core were split and sent to Chemex Labs. Ltd. for Cu, Pb, Zn, Ag and Au geochemical analysis.

Supplemental Soil Geochemistry

No additional soil samples were taken on the Python claim grid.

Results

The stratigraphic section penetrated by DDH 81 PY-1 is described in Python core description, Appendix D., and is summarized on Figure 9.

The stratigraphic section consists of interbedded shale, siltstone, sandstone and breccias cut by major fault zones at 287 to 336 feet and 393 to 407 feet. The core showed disseminated pyrite and pyrrhotite with pyrite in fractures throughout the length of the drill hole.

Conclusions

No mineralization of economic significance was encountered in the Python drill hole. Rock geochemistry for Cu, Pb,

Zn,Ag and Au from 18, two foot, sections of core show no significant metal concentrations. The results of these analyses, tabulated in Appendix E, show highest Cu value is 64 ppm; highest Pb value is 23ppm; highest Zn value is 440 ppm; highest Ag value is 1.1 ppm; and highest Au value is 20 ppb.

Recommendations

It is recommended that rock specimens collected during geological mapping of the Python grid be analyzed for Cu, Pb, Zn, Ag and Au. Rock geochemical values on and off soil geochemical anomalies could then be evaluated by direct comparison to rock geochemistry of the drill hole. This would provide a measure of the significance of the soil geochemistry anomalies. This should be done before any consideration is given to diamond drilling soil geochemistry anomalies.

The cost of this rock geochemistry would be \$9.25 per sample plus two days to prepare samples and compile analytical data on geological and geochemical maps for presentation. Total cost is estimated to be \$1,650.00.

GYPSY CLAIM

Diamond Drilling

DDH 81 GYP-I 2+00E, 2+653 \odot -60 Az 035, T.D. 490 feet. This diamond drill hole was drilled to test a geophysical anomaly.

Twenty seven, 2 foot sections of core were split and sent to Chemex Labs Limited, North Vancouver for geochemical analyses for Cu.Pb, Zn, Ag and Au.

Soil Geochemistry Surveys

Twenty four supplemental soil geochemistry samples were collected at the west side of the Gypsy grid. These samples were sent for Cu, Pb, Zn and Ag analyses at Chemex Labs Ltd. North Vancouver. These samples were intended to delineate a possible westward extension of anomalous (Cu) Pb Zn and Ag values in the vicinity of L3+00W near BLO + OO. See Figure 6.

Results

DDH 81 GYP -I penetrated a section of poorly consolidated

sedimentary breccias, siltstone, sandstone, shale and carbon-aceous shale to coaly shale. A strong fault occurs in the interval 162 to 206 feet with numerous additional shorter intervals of faulted and crushed rocks. See Figure 10.

Rock geochemistry for Cu, Pb, Zn, Ag and Au from twenty seven 2 foot sections of core show no significant metal concentrations. The results of these analyses, tabulated in Appendix E. show highest Cu value is 71 ppm; highest Pb value is 13 ppm; highest Zn value is 220 ppm; highest Ag value is 0.4 ppm; and highest Au value is 20 ppb.

Supplementary soil geochemistry results for the west side of Gypsy grid produce values ranging from 7 to 18 ppm Cu; 2 to 98 ppm Pb; 20 to 380 ppm Zn; and 0.1 to 0.5 ppm Ag. A high organic sample gave Cu values of 48 ppm but was discounted because its nonorganic duplicate gave a value of only 10 ppm Cu. Threshold values are estimated to be as follows:

Cu High 35 to 45 ppm Anomalous 45 ppm Pb High 11 to 20 ppm Anomalous 20 ppm Zn High 130 to 170 ppm Anomalous 170 ppm Ag High 0.5 to 0.7 ppm Anomalous 0.7 ppm

The supplementary soil samples extended and delimited the Pb, Zn, Ag soil anomaly on the west side of the Gypsy grid. See Figure 6.

Conclusions

The geophysical anomaly tested by DDH 81 GYP-I is probably the result of carbonaceous to coaly shale which was penetrated by the drill hole. No mineralization of significance was found in the drill core.

The rhylitic rocks cropping out at the base of the ridge to the northeast and on the north and northwest sides of the Gypsy grid remain untested. The poorly consolidated clastic sedimentary succession in DDH 81 GYP-1 is not exposed on the north and west sides of the Gypsy grid and on the ridge to the northeast.

The anomalous Pb, Zn, Ag soil geochemistry samples are delimited to an area of approximately 100×75 metres between coordinates 3+50 W to 2+50 W and 0+25 N to 0+75 S. The area is underlain at very shallow depth by outcropping layered rhyolitic tuffs and breccias containing numerous quartz and carbonate veinlets with weak rusty staining.

Recommendation.

It is recommended that rock specimens collected during geological mapping earlier in the year be analyzed for Cu, Pb, Zn, Ag and Au. This would provide analyses both on and off the geochemical soil anomaly and would further evaluate soil geochemistry of the grid area. The unit cost of these analyses would be approximately \$9.25. Total cost of analyses of 50 samples, preparation and presentation of data would be approximately \$1,200.00.

K.E. NORTHCOTE

BRITISH

OLUMBUR

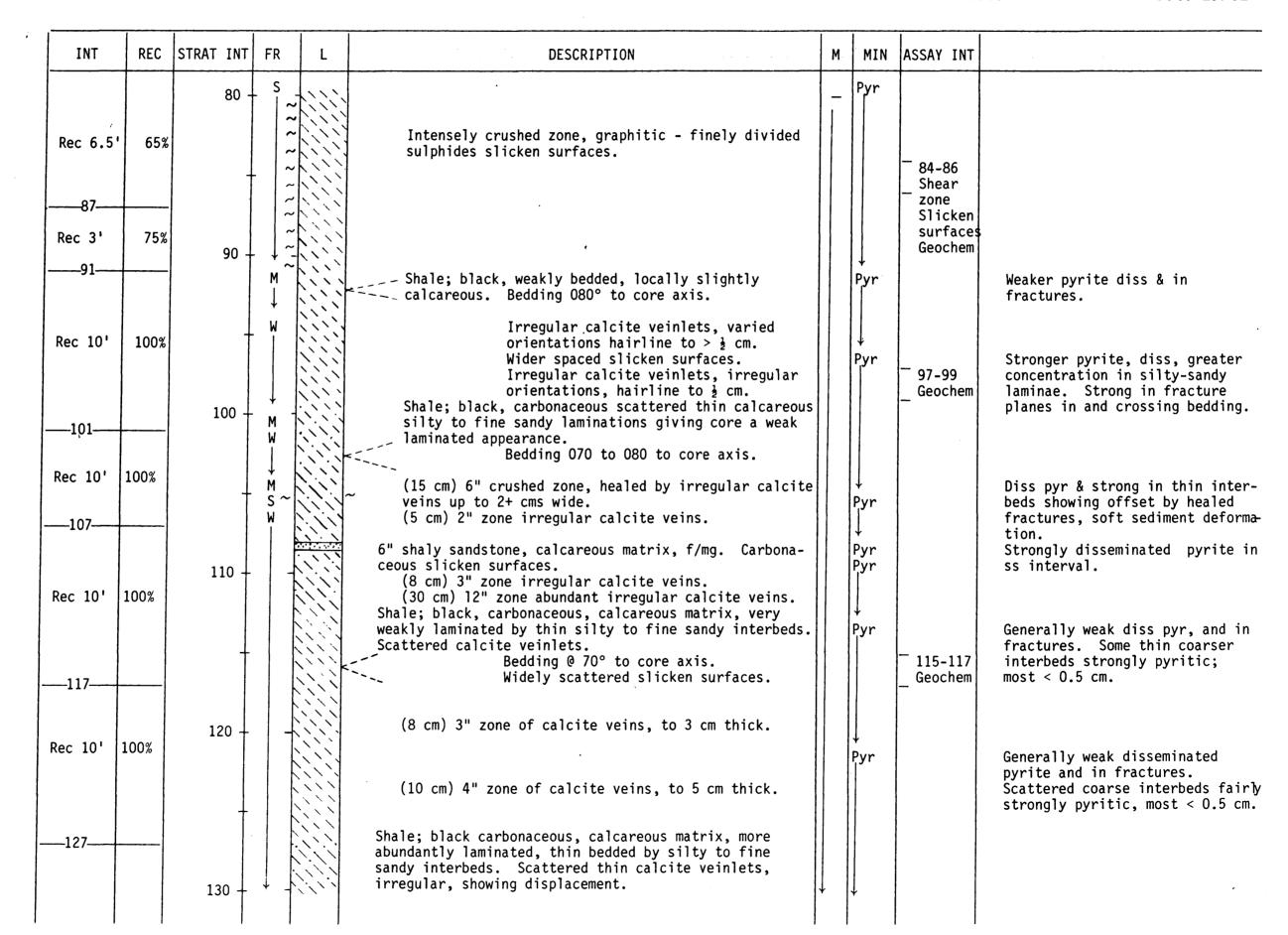
VGINEE

STATEMENT OF QUALIFICATIONS

I, K.E.Northcote, of K.E.Northcote and Associates Ltd., do hereby state that;

- (1) I have been performing as a professional geologist for a period of approximately 25 years for various petroleum exploration companies, mining exploration and consulting companies, and federal and provincial agencies.
- (2) I obtained a Ph.D. in geology from U.B.C. in 1968 and qualified for registration with the B.C. Association of Professional Engineers in 1967.
- (3) The geological mapping reported herein is a result of my personal fieldwork on and around the area of the Gypsy, Python, Nautical and B.B. claims.
- (4) I have not nor expect to have any monetary interest in Gypsy, Python, Nautical and 8.8. claims.

K.E. Northcate KPE NORTH COTE.


OLUMBIA

APPENDIX D

Core descriptions 81 PY-I

81 GYP-I

LEGEND FRACTURES N W M S M = Magnetite Pyr (Pyo) Siltstone, sandstone ining 50-52. Fe stn kis 1" displacement.
, siltstone, sandstone. , siltstone, sandstone , siltstone, sandstone in silty to sandy, calcareous
, siltstone, sandstone Pyr Diss pyr tends to concentrate in silty to sandy, calcareous
eining 50-52. Fe stn $\frac{1}{1}$ (Pyo) in silty to sandy, calcareous
Ty/sandy interbeds Fe stn in fracts rong gash veining Tron staining in fractures.
nin sandy, calcareous (Pyo) 58-60 Pyr - diss and as pyrite-rich CuPbZn interbeds. AgAu Geochem
massive, feldspathic. Pyr Diss pyr & in fractures forming thin veinlets. (Pyo) 66-68
on veinlets - irregular or calcite filled gash or ca
reous, crushed, healed ets; hairline to ½ cm. Pyr Byr Graphitic - fine divided sulphide slicken surfaces. Diss pyr & in fractures. Graphitic - fine divided sulphide slicken surfaces. Diss pyr & in fractures, richer disseminations in thin sandy
laminations.

INT	REC	STRAT INT	FF	R L	DESCRIPTION	М	MIN	ASSAY INT	
Rec 10',	100%	130 -	_ W		(5 cm) 2" zone of irregular calcite veinlets, showing offset by fractures.		Pyr		
137			- .		Calcite veins to 1 cm thick.				
Rec 10'	100%	140 -	-		Carbonate veins - irregular. 4" zone of irregular carbonate veins brecciated. Shale; black, carbonaceous, calcareous.		Pyr	138-140 Geochem	Finely disseminated pyrite, scattered coarse disseminated pyrite. Stronger disseminated concentrations in thin slightly
147		_	, M		Fairly wide spaced thin siltstone to fine sandstone interbeds to laminations. Bedding 50° to core axis Wide spaced irregular carbonate veinlets, varied orientations.		.		coarse interbeds.
Rec 10'	100%	150	₩ 		Carbonate veins, irregular to 0.5 cm wide showing offset by healed fractures Bedding ~ 050 to core axis. Thin shaly sandstone interbed, calcareous.	•			
157		+			· ·				
Rec 10'	100%	160	* M W		Carbonate veins & veinlets, very irregular hairline to 0.5 cm.				
167		1			Shaly sandstone, calcareous, white "grains" mainly carbonate. Cut by thin shale interbeds. Bedding 50° to core axis. Cut by a vew irregular calcareous veinlets.		Pyr 	163-165 Geochem	Disseminated pyrite & in fractures.
	100%	170			 Shale; black, carbonaceous, calcareous. Calcareous sandstone interbed 14 cms thick. Bedding 040 to core axis. Shale; black, carbonaceous, calcareous, scatt clusters thin interbeds to laminations siltstone/fine sandstone. Pyritic interbeds. 		(S) Pyr	172-174	Disseminated pyrite & in fractures stronger concentrations in thin coarser interbeds & pyrite interbeds. Thin pyrite laminations & strong
177		+			Shale; black carbonaceous, calcareous, widely scattered clusters of thin interbedded to laminated siltstone to fine sandstone. Irregular carbonate veins displaced on hairline		Pyr	_ Geochem	disseminated pyrite in coarser interbeds, some well defined some diffuse. Weakly disseminated pyrite & in fractures and veinlets.
Rec 4' 1	100%	180	↓		fractures. Thin sandy, calcareous interbeds. Bedding appears to have been discupted by structure.	1	 		

INT	REC	STRAT INT	FR	L	DESCRIPTION	M	MIN	ASSAY INT	
Rec 4'	100%	180 -	W				Pyr		
181	-	100	S ~		~ ~ Crushed zone - Calcite veins, crushed calcite.				
Rec 3'	86%		~		~				
—184.5—	· .	-	~		~ ~ Crushed zone - healed by calcite.				
			~		~				
			M ~		/ Shale; black, carbonaceous, calcareous thin interbeds		↓ Pyr		Irregular soft deformation
Rec 10'	100%		W		/ with siltstone & f. ss. ·		1		pyritic interbed.
Kec 10	100%	190 🚽	. -		Disrupted bedding - 20° from and parallel to core axis. Irregular calcite veining in zone 3 to 4 cm		Pyr		Thin diffuse strongly pyritic beds - now at small angle to
			<u> </u>		wide & another 1 cm wide forming a low angle arch		11 .		axis of core.
			5		following bedding along core axis. Abd calcite veins & veinlets, disrupted. Disrupted				Disseminated pyrite & in fracts
194.5			+	1	bedding. Thin bedded shale, siltstone interval.				Very strongly pyritic but
1		į	W		Healed breccia. Bedding O65° to core axis. >Shale; black, carbonaceous, calcareous widely scattered		-		diffuse beds, commonly but not consistently with slightly
		ļ	M		zones of thin siltstone & very fine grained sandstone				coarser interbeds. Also in
10.51	100%	000	T .		interbeds. Bedding 060 to core axis. Thin bedded shale siltstone interval interbedded with				interstices between disrupted fragments with calcite.
Rec 10.5	100%	200 -	M		calcareous shale.			200-202	Tragments with said se.
٠			W		Shale; black, carbonaceous, calcareous, widely scat- tered zones of thin siltstone and very fine grained			Geochem	
			<u> </u>		sandstone interbeds.				
_205		+	S		Disrupted bedding - Abd. disrupted calcite veinlets healed by calcite - healed breccia.				
		1			heared by curerue heared breezia.				
					Abundantly carbonaceous, calcareous.				
	1000	210	† †		Disrupted calcite veins & veinlets - breccia				
Rec 12'	100%		M		infilling?				Finely disseminated pyrite throughout, concentrations in
			1	(1)	Shale; black, carbonaceous, calcareous locally strongly				silty interbeds & laminations,
1		İ	S ▲·		disrupted, brecciated, healed and veined by calcite.				in fractures.
}		†	S A		Locally thin interbeds of siltstone & very fine				
_217			M [grained sandstone & these commonly contain abundant disseminated pyrite.				
	Ì				disseminated pyrite.				
		220 🚽	1 1						
ec 10' 1	.00%								
			1 1					Geochem	
		1			Shaly sandstone.			_ GCOCHEIII	
207					Bedding O45° to core axis. Shaly sandstone.				
_227			Š 🔺	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Disrupted, brecciated, veined & healed by irregular				
ec 10' 1	00%		★ ▲ [calcite crushed interval.				
		230 +	1	` \ \		*	*		

INT	REC	STRAT INT	FR	L	DESCRIPTION	М	MIN	ASSAY INT	
4. 12. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		230–	M			_	Pyr		
Rec 10'	100%	<u>.</u>			Bedding 080° to core axis. Silty interbeds, laminated appearance. Bedding 060° to core axis.		Pyr		Finely disseminated pyrite throughout, concentrations in silty interbeds and laminations
<u>237</u>		240–	* S W + S		Abundant irregular calcite veining; breccia infilling Sandstone/siltstone interbed. Bedding @ 75° to core axis.	•			and fractures. Widely scattered pyrite-rich interbeds.
Rec 10'	100%	_		KAK K	Shale; black, carbonaceous, bedding locally preserved ~ 060° to core axis. Abd slicken surfaces. Strong irregular carbonate veining with small tension cross veining forming an intricate vein network. Carbonate				
247		250-		NA AND	veins constitute ~ 15% of the rock. Shale; black, carbonaceous, calcareous, bedding weakly preserved ~ 060 to core axis. Abundant slicken surfaces. Strong irregular carbonate veining with small tension cross veining forming a network between larger		Pyr		Finely disseminated pyrite throughout concentrations in silty interbeds and laminations and fractures.
Rec 10'	100%	250-	M → S M → S	A STATE OF THE STA	veins. There is some variation in vein intensity but locally constitutes up to 15% of the rock.			250-252 Geochem	Widely scattered pyrite-rich interbeds.
-257 ec 4'(+) -261 Rec 3'	100%	260-	> ₩ M W + M	A A A A A A A A A A A A A A A A A A A	/ Shale; black, carbonaceous, calcareous, wide scattered / thin zones of siltstone and very fine sandstone thin interbeds and laminae. Shale ranges from moderately to very weakly calcareous. Bedding ~ 30° to core axis. Scattered zones showing network of irregular calcite		Pyr		Scattered thin richly dissemi- nated pyritic laminae of thin interbeds. Weak pyrite dissemi nated throughout, in fractures and in calcite veinlets.
266	100%	_	₩ ₩ ↓		Numerous slicken surfaces throughout section. Bedding ~ 40° to core axis.				Ground up sulphides on slicken surfaces throughout this part of section.
-269 Rec 2.9'	99%	270	W S M S	82.4			,		
Rec 3'	100%		M S ↓ ▲	H B	Rodding ~ AE° to come axis			- 275-277	
Rec 3'	100%				Bedding $\stackrel{\sim}{\sim}$ 45° to core axis.			Geochem	Note: Fragments of abundantly pyritized siltstone to very fin
Rec 8'	100%	280-	↓]			↓			grained sandstone in shale.

	INT	REC	STRAT INT	FR	L	DESCRIPTION	М		MIN	ASSAY INT	
	Rec 8 !. -286	100%	280-	W M W		Shale; black, carbonaceous, moderate to weak varied calcareous content. Scattered short intervals of silty to fine sandy thin interbeds & laminations. Disrupted calcite veins healing locally brecciated shale zones.			Pyr (Pyo)		Weak disseminated fine pyrite, stronger concentrations in silt-stone & fine sandstone thin interbeds and in fractures.
·	Rec 9'	100%	290_	\$ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	 Breccia - white irregular fragments with rather TS indistinct outline in a matrix of shaly, carbonaceous, sl calcareous matrix. Feldspathic frags have almost intrusive appearance. Gouge. 		(+ Pyr (Pyo) Pyr (Pyo)		Abd diss pyr, some coarse grained aggregates of grains. Diss pyrite throughout fault.
	295		Shear Zone	~ ~ ~ ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	 Calcite Gouge. Breccia, white silicous (feldspathic) fragments in a shaly matrix. Fragments have indistinct outline. 			Pyr (Pyo)		Diss pyrite.
R	ec 10'	100%	300 <u> </u>	~ ~ ~	~	Gouge. Abundant calcite veining. Breccia; white, silicous (feldspathic) fragments with shaly interstitial material. V high fragment to matrix ratio. Abundant slip surfaces.			Pyr (Pyo)	- 300-302 _ Geochem	Moderately abundant disseminated pyrite, smeared on slip surfaces.
	305		+ Brecciated			Shale; black, carbonaceous, calcareous, completely disrupted bedding irregular calcite veining locally cross veining. Locally contains patches of feld-			Pyr (Pyo)		Diss pyr & on slip surfaces.
Re	ec 10'	100%	310	~ ~ ~ ~		spathic (?) fragments. Breccia; white silicous fragments in irregular masses of			yr		Disseminated pyrite smeared on
	315 ec 10'	100%	320-	\$		shaly matrix, some fragments show distinct enhedral outline of plagioclase phenocrysts, volcanic fragments rhyo-dacite composition. Primary & secondary breccia? Contains shaly material between breccia fragments. Generally high fragment to matrix ratio, some zones slightly lower. (*See last page for additional descript) Local calcite veining. Broken surfaces suggest a falsely granitic texture because of low shaly content giving appearance of mafics.		P	Pyo) Pyr Pyo)	- 320-322 Geochem	slip surfaces. Disseminated pyrite and smeared along slip surfaces.
	925 ec 7'	100%	330-	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		Shale; black, carbonaceous, calcareous varied moderate to weak bedding completely disrupted, late carbonate veins crossing disrupted irregular network of earlier calcite veinlets, high calcite veinlet concentration.	+				Disseminated pyrite.

INT	REC	STRAT INT	FR	L	DESCRIPTION	М	MIN	ASSAY INT	
Rec 7'	100%	330-	s .		. \sim Scattered irregular brecciated white carbonate	_	Pyr (Pyo)		
332	 		~		masses - feels harder than pure carbonate, effervesce but may have some silica inmixing.	6			
Rec 4'	100%		~		∼ Gouge. ∼ Slicken surfaces.				
336			↓ ~		~		Pyr		Weak finely disseminated pyrite
Rec 7'	100%	340-	₩ ₩ ₩		Shale; black, carbonaceous, varied moderate to very weak calcareous scattered thin siltstone to very fine grained sandstone interbeds and laminations. Bedding @ ~ 50° to core axis. Abundant calcite veing @ 338'. Scattered irregular carbonate veins showing appreciable		(Pyo)		throughout. Stronger dissemination in silty to fine sandy interbeds of laminations - scattered pyritic laminations parallel to bedding.
040					displacement along hairline fractures producing a ladder- like effect locally.	•			·
_343		-			Structureless shale/argillite section interrupted by thin pyrite-rich bands in slightly coarser interbeds - scattered irregular broken-up carbonate veins. Carbonate veins cluster.			343-345 Geochem	
Rec 10'	100%			1,8	carbonate verns cruster.				·
		350							
353		350-			Shale/argillite, black, carbonaceous, varied moderate to very weakly calcareous, nearly structureless except for widely scattered pyrite-rich slightly coarser silty interbeds generally < 1/2 to 1 cm thick.				Pyrite is weakly disseminated & in fracts & associated with carbonate veins. Pyrite-rich silty interbeds <\frac{1}{2}
		4	1		Bedding angle varied 45° to 70° to core axis.				to 1 cm thick are widely scattered throughout the core.
Rec 10'	100%	360-		4.40	Short zone of irregular and disrupted calcite veins and veinlets.			356-358 Geochem	saccered om oughout one core.
					•				
-363				AA					
Rec 4'	100%	4		6,10					
-367									
	100%	370-	→ M		6" shale, coarse sandy, carb breccia interval-abd diss pyr. Shale/argillite, black, carbonaceous, varied moderate to very weakly calcareous, nearly structureless except for				Pyrite-rich silty interbeds irregular <½ cm to >1 cm.
377					widely scattered pyrite-rich slightly coarser intervals generally < to >1 cm thick. Abundant irregular calcite veins & veinlets. Bedding @ 55° to core axis.				
3//			1						
		380-	1				1		
	1	300-	7	`			1		

K. E. Northcote

INT	REC	STRAT INT	FR	L	DESCRIPTION	М	MIN	ASSAY INT	
Rec 10'	100%	380 -	M → S → M S		 Crushed shale & carbonate mixture. Crushed zone. 6" shale, coarse sandy, carb breccia interval - abd diss pyrite. Shale/argillite, black carbonaceous, varied moderate to 	T	Pyr (Pyo	— 385-387 Geochem	Pyrite is weakly disseminated in fractures & associated with
Rec 5.5	55%	390 -	E S M		very weakly calcareous, nearly structureless except for a few widely scattered pyrite-rich irregular silty interbeds. Poorly defined bedding @ 50° to core axis. Many more irregular disrupted carbonate vein intervals than interval above. Becoming crushed at bottom of interval. Gouge - shaly material, carbonaceous, calcareous. Crushed carbonate fragments.		Pyr		carbonate veins. Pyrite-rich silty interbeds. Smeared on slicken surfaces. Disseminated and crushed pyrite in gouge.
397	23%	400 -	A U L TZ O N		~ ~ ~ ~ ~ ~ ~				
407; Rec 5'	46%	410 -	S		Shale; black, carbonaceous, varied from moderate to slight calcareous. Bedding where visible @ ~ 45° to core axis. Scattered calcite veinlets, irregular, hairline to >½ cm.		Pyr		Pyrite, disseminated & on slicken surfaces.
-418 Rec 1.5' -420 Rec 1' -422 Rec 2' Rec 2' Rec 424	75% 50% 100% 100%	420 -	~		Shale, black, carbonaceous, varied moderate to very weak calcareous. Bedding @ 40° to core axis. Few thin carbonate hairline veinlets. Numerous slicken surfaces. T.D. 425'		Pyr (Pyo)	— 422-424 _ Geochem	Disseminated pyrite crystals smeared on slip surfaces.
		430 -							

INT	REC	STRAT INT	FR	L	DESCRIPTION	М	MIN	ASSAY INT	
		430 -	-						·
					Downhole inclination survey.				
			-		250'			·	
					67° 425'				
					\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
		440 -	_						
		450							
		450 -							•
					·				
					*Additional description from Page 6.				
		215			Breccia; white siliccous fragments with generally				
		315			Breccia; white siliccous fragments with generally indistinct outlines, sheared, in shaly matrix; generally very high fragment to matrix ratio locally lower ratio. Some light coloured fragments show				
					lower ratio. Some light coloured fragments show plagioclase phenocrysts. Fragment composition rhyodacite?				
					Fragment composition rhyodacite?				
					·				

81 GYP-1

INT	REC	STRAT INT	FR	L	DESCRIPTION	М	MIN	ASSAY INT	
		20 -	-	0 0 0 0 0 0	Overburden Bedrock @ 25'				
32 ec 1.5' ec 34-1' ec 5' 41 ec 6'	75% 100% 83%	30 - 40 -	W -		Casing shoe @ 32' Breccia, low to moderate breccia fragment to matrix ratio dark grey to black, non-calcareous but has sedimentary appearance, multimict but mainly cream-green, creamy and reddish volc fragments in a fine grained grey shaly matrix; of same material as breccia fragments. Breccia fragments up to 8 cm but most are < 1 cm. Mainly volc frags, poss shale. Becoming sandy texture in matrix between breccia fragments. Lower breccia fragment to matrix ratio. Becoming much more sandy texture with abd scattered black shaly fragments and lesser cream volc frags.	Tr		_35'-37' _Geochem	Irregular braided zeolite veinlets & healing local crushed zones scattered throughout interval 32 to 40 ft. Some reddish orange zeolite. Decrease in amount of zeolite veining. Reddish orange zeolite associated with lighter zeolites. Minute gash veinlets & small irregular masses.
	100%	50 -	- -		lar fragments, volc, most < 1 cm but up to 6 or 8 cms/				Zeolite & carbonate vein. T.S
57	100%	60	→ S → W —		Friable crushed section containing zeolite vein material. Breccia; dark grey/black, low/moderate fragment to matrix ratio, matrix has a sandy texture, pale green grey &				Veins @ 25° to core axis 0.75 cm with non-calcareous, white zeolites? Moderately hard, T.S. @ 58'. Minute orangy red veinlets also zeolite?
ec 10'	100%	70	. +	Δ Δ Δ Δ Δ Δ	light grey fragments, textures varied; matrix composed of smaller fragments of same material comprising breccia clasts. Breccia; dary grey/black, low fragment to matrix ratio, multimict volcanic fragments chiefly light grey or with greenish tint, fg/aphanitic range in size up to 6 or 8 cm 81 GYPSY-1 2+00E 2+65S & -60 Brg grid N.				

INT F	REC	STRAT INT	FR	L	DESCRIPTION	M		MIN	ASSAY INT	
72	00%	70 -	- W -		most less than 1 cm. Scattered black breccia frags of shale. Trs chert frags. Scattered breccia fragments orangy-red - zeolite altr				- 72-74 Geochem	
77			\$ \$		Sandy texture, friable section.					
Rec 7' 10	00%	80 -	W	Δ Δ Δ Δ	Breccia, less sandy textured matrix, higher breccia fragment to matrix ratio.	Ni Ni	1			
	0%		S W	Δ Δ Δ	Sandy texture matrix (83'-84') friable. Thin shaly interbed.					Broken core indicates thin shaly interbed.
Rec 86 87 0.5 5 Rec 4' 10	0%	90 -		- <u>/</u> / / / / / / / / / / / / / / / / / /	Sandy texture matrix (86'-87')					
91		90 +		Δ Δ Δ Δ Δ	Breccia; dark grey/black, low fragment to matrix ratio, multimict volcanic fragments, chiefly light grey or with greenish tint, varied texturing, range in size up to 8 cm but most less than 1 cm. Matrix of same					
Rec 5.5' 9	1%	-		Δ . L .Δ .Δ .Δ	material, finer-fragmented to sandy, locally sandy texture, friable. Matrix sandier friable; matrix tends to wash away. Breccia clasts less angular to				95-97 Geochem	
	0%	100	↓ S 	- Δ Δ Δ Δ Δ	conglomerate. Sandy interbed. Sandy interbed. Shale interbed.		F	yr		Tr pyr in chert pebble.
102	0%		* ~ M	~ ~ 4 4 4 4 7	Veining in shear zone. Breccia; dark grey/black, light grey, cream with green tint volcanic breccia clasts, varied textures, matrix locally very sandy texture and friable.					T.S. 103'
		110	\$		Shale; black structureless, crushed, brecciated, inter-					
_111		 - - -			mixed with siltstone/silty shale, scattered slightly coarse grained clasts of volcanic (?) origin.			-		Note - Fragment of core found at rig. Breccia with black shale interbed. Bedding @ 15°
Rec 9' 10	0%	†	A		Crushed zone.		P	yr 		to core axis. Tr pyr disseminated in shale.
120		120 +	$\downarrow{\blacktriangle}$			\downarrow		↓		T.S. Character sample.

Page 3 of 10

INT	REC	STRAT INT	FR	L	DESCRIPTION	М	MIN	ASSAY INT	
120		120-	S .		Cone of bedding possibilities. Bedding @ 15° to core axis.	T	Pyr		
ec 7.5'	94%	_	M		Breccia; dark grey to black ground mass low fragment to matrix ratio, polymictic; mainly light cream grey volcanic fragments of varied texture, numerous fg salt &			124-126 Geochem	
130		130-		\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	pepper sandstone fragments. Most fragments < 1 cm.				
ec 6.5'	93%	-	-		Large breccia clasts, fg ss & porphyritic dacite TS with fine phenocrysts in an aphanitic ground mass.			_	T.S. Character sample.
dec 9.5'	95%	140-	-	Δ Δ.Δ. Δ.Δ. Δ.Δ. Δ.Δ.	Fragments to 18 cms				1
147		_			Shaly interbed intricately veined by carbo- nate and zeolite veinlets. Bedding (?) @ 20° core axis.			144-146 Geochem	
ec 8'	100%	150-			Cone of bedding possibilities.				
155 ec 2' 157 ec 1'	100%		M S →		Shale black; bedding ~ 30° to core axis. Siltstone; I tan grey, fine silty texture, feldspathic, dense (tuff(?)).			- 157-159 Pyr - Geochem	Trace of disseminated pyrite.
160 ec 4.5'	64%	160-	S → S ~		Bedding @ <10° to core axis. Shale, black, carbonaceous, abundant slicken surfaces. Slicken surfaces @ 25° to core axis.	_	Pyr		Trace of disseminated pyrite. CONDUCTOR!
167	3 π / δ	-	~ ~ ~ ~	~ ~	Carbonaceous fault zone. Shale gouge.				
ec 2' 170	66%	170-	~	~~	Gouge, crushed shale with some grit.	1			

INT	REC	STRAT INT	FR	L	DESCRIPTION	М	MIN	ASSAY INT	
Rec 0.5'	50%	170	s	ł	-~ ~	T		171-173	
Rec 4'	100%		~	~ ~ ~~ ~~	~ ~ ~			Geochem	
—175——	100%	180-	~~~~	~ ~ ~	Shale; black, carbonaceous, soft.		Pyr		Weak disseminated pyrite.
184			~ ~ ~ ~	7	Mudstone fragments; brownish grey, silty texture.				
Rec 2'187	100%	190-	~ ~ ~ ~	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	~ ~ ~ ~			187-189 _ Geochem	
Rec 4'	100%	130	~ ~ ~	\	Shale; black, abundant slicken surfaces.		Pyr		Veined by carbonate, discontinuous veins. Trace of disseminated pyrite.
197 Rec 3'	100%		~~~~	~	Gouge; shaly material, minor grit. Shale; dark grey/black. Shale; dark grey/black. Shale/mudstone dark grey black.				
200	86%	200	S ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		Share, mads cone dark grey brack.				
207		-	~ ~	~ ~ ~ ~ ~	Shale/mudstone dark grey/black.			205-207 Geochem	Bottom of fault zone $\stackrel{\sim}{\sim}$ 206 ft.
Rec 10'	100%	210-	▲ ★ ★ ★ ★ ★	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Shale/mudstone, dark grey/black, poorly consolidated brecciated.				
217			M -		Sandstone; medium grey, salt & pepper, medium grained, scattered coarse grained, fairly massive but shows some evidence of bedding @ 15 to 20° to core axis. Cone of bedding possibilities.			217-219 Geochem	_
		220	* -		Locally very friable. Non calcareous. Scattered thin zeolite veinlets @ 45° to core axis.	↓			

INT	REC	STRAT INT	FR	L	DESCRIPTION	М	MIN	ASSAY INT	
Rec 5'	100%	220 –	M		Coarse sandstone interval 221'-221.5'.	T		·	
222		-			Friable. Cone of bedding possibilities.			222-224	
Rec 6'	100%	-	S		Coarse sandstone/pebble conglomerate interval 223'-226.5'. Scattered orange flecks. Sandstone, fine grained, muddy, poorly consolidated.			Geochem	
228		-	↓ ~ M		Sandstone, fine grained, salt & pepper, muddy,				
Rec 5.5'	92%	230 –			friable. Sandstone, medium/dark grey, salt & pepper, fine grained, muddy, poorly consolidated. Scattered friable intervals. Non calcareous.				T.S. Character sample.
234		-			Widely scattered zeolite veinlets, minor calcite.			234-236	
Rec 9'	90%				Cone of bedding possibilities. Sandstone, medium grey, salt & pepper, becoming			Geochem	
		240 –	-		coarser grained. Scattered orange flecks. Bedding @ ~ 20° to core axis. S Sandstone, salt & pepper, medium to coarse grained, poorly consolidated. Non calcareous.				T.S. Character sample. '
244		-	↓		\ Friable interval.				
Rec 2.5'	83%		S ↓ ▲	~ <u>~</u>	Shale; black, carbonaceous, sheared.				
Rec 2' -249	100%	250 –	M .	~~	Grading to pebble conglomerate. Shale; black, carbonaceous (?), sheared, brecciated.				
Rec 5'	83%	250 -	\$	~~~	Siltstone breccia, mottled light cream grey &				
_255		.	A	Δ, Δ , Δ	medium grey, tortoise shell appearance accentuated by secondary brecciation. Locally cherty appearance but soft.				
Rec 4.5'	56%		1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Irregularly veined by zeolites.				Zeolite veining.
ec 4.5	30%	260 -	~ . A .	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ouge Black shale gouge 259-259.5'.				, ,
_263			•		Laminated to very thin bedded siliccous siltstone/shale. Cream and dark grey.				T.S. Character sample.
Rec 3'	60%	+	A	2.2	Bedding @ 45° to core axis. Black shale gouge 264-265'.				
_268				~ ~~~	Shale; black, carbonaceous, sheared/gouge. Shale; black carbonaceous, sheared, crushed. Locally healed by white zeolite & carbonate				
		270 -	↓ ▲	~~	gash veins.	+	1		
		2,0 7							

INT	REC	STRAT INT	FR	L	DESCRIPTION	М	MIN	ASSAY INT	
Rec 9'	100%	270 —	S → M	-2-	Grading to shaly siltstone. TS Siltstone medium grey, fairly well indurated.			270-272 Geochem	T.S. Character sample.
277 <u>6'</u> 8e 2 78 <u>6'</u> 8ec 7'	100%	280 —	\$ S	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Veined by white zeolite-carbonate veins. Contains shale breccia fragments to 4 cm. Shale; black, carbonaceous, sheared, crushed. Sandstone; very fine grained/siltstone, light to medium grey with slight salt and pepper appearance, non-calcareous, fairly well indurated, massive.				White zeolite-carbonate veins T.S. Character sample.
-285 ec 1.5' -287 ec 3'	75%	_	-		Cone of bedding possibilities. Sandstone, very fine grained/siltstone, l/m grn grey, green tint, sandier friable sections.				
-290 ec 2' -292	100%	290 —			Bedding @ 45° to core axis. Veined by white carbonate & zeolite veins spaced at 10 to 15 to 30 cms.				t
ec 8'	100%	_			Cone of bedding possibilities. Bedding @ 40° to core axis.				
-300		300 —	S M S		TS: Vein, carbonate and zeolite (?), 4 cms wide Sandstone, very fine grained grading to siltstone, light to medium green grey, massive, local sandier TS friable sections. Veined by carbonate & zeolite (?), fairly				T.S. Vein character sample. T.S. Character sample.
ec 10'	100%	_	M -		regular throughout sections.		-	305-307 Geochem	
310-1-	100%	310 –	\$		Local slightly coarser grained, weak salt & pepper appearance.				
ec 5.5'	92%	_	-		_				
-317 ec 1.5' -319	75%	320 -							

INT	REC	STRAT INT	FR	L	DESCRIPTION	М	MIN	ASSAY	INT	
Rec 5.5	92%	320 –	- M			 				
-325	100%	+	↓ S • M		Veined by carbonate & zeolite (?) 2 cm wide. Becoming siltier.					
ec 5'	100%	330 -			Siltstone/mudstone, medium grey green, fairly well indurated. Some intermingling with black shale.					
-332 ec 2.5'	83%		\$		Veined by carbonate and zeolite, sparse.					T.S. Character sample.
_335	100%	340 –	M	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Siltstone/mudstone, medium grey green, massive with local early brecciation. Scattered very fine sandy intervals. Scattered veining by carbonate & zeolite (?) Fault breccia fragments siltstone/mudstone with gouge zones lighter colour.					1
-344 ec 5'	100%	-	A	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
_349		350 –	A	~~	Intermixed & interbedded coarse grained sandstone and black shale very poorly consolidated.	-		Pyr		Trace disseminated pyrite and in fractures.
ec 9'	90%		W		Coarse grained sandstone, poorly consolidated.			Pyr 354-: Geocl		Trace of disseminated pyrite.
-359 ec 0.5'	16%	360 -	S A		Shale black, crushed. Veined by carbonate and zeolite.					Abundantly broken cone.
-362 ec 2' -365	66%		A		Gouge Siltstone, crushed.					
ec 1.5'	50%				Intermixed and interbedded black shale & siltstone/very fine grained sandstone. Contorted bedding. Sandstone, light/medium grey, slightly salt and pepper.					
ec 1.5'	50%	370 –	↓ :		Janus cone, right/meatum grey, strightly said and pepper.					↓

CHEVRON STANDARD LIMITED M-508

INT	REC	STRAT INT	FR	L	DESCRIPTION	М	MIN	ASSAY INT	
Rec 1.5	50%	370 –	s -			-			
-373 Rec 2.5' -376	83%	-	↓ M ▲		Intermixed and interbedded fine grained sandstone and black shale poorly consolidated. Intermixed black shale and siltstone. Carbonate and zeolite (?) veining. Sandstone salt & pepper medium		Pyr	376-378	Abundantly broken cone.
ec 6'	100%	380 —	\$	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	grained, poorly consolidated. Mainly siltstone/mudstone fragments in a sandy matrix.		Fyr	Geochem	Trace of disseminated pyrite.
-382			↓ ▲ · M · .		Carbonate & zeolite (?) veining. Siltstone/very fine ss mottled light & medium to dark grey, irregularly bedded, locally marked bedding lami-				Abundantly broken cone.
ec 7'	100%	-	-		nations some intermixing with black shale & light mud- stone. Some carbonaceous zones. Cone of bedding possibilities. Bedding @ 40° to core axis.				
-389		390 —			Cone of bedding possibilities. Some intermixing with black shale. Bedding @ 30° to core axis.		Coal	- 389-391 _ Geochem	Abundantly broken cone. Carbonaceous shale/coal.
ec 8'	100%				Mottled appearance, disrupted bedding.				Abundantly broken cone.
-397					Cone of bedding possibilities. Becoming sandier containing fragments of black shale. Sandstone; medium grey, weak salt & pepper, fine to medium grained, fairly well consolidated some irregular			397-399 Geochem	
ec 10'	100%	400 —	S A		interbedding with black shale. Carbonaceous fragments. Bedding @ ≈ 25° to core axis. Irregular shale fragments in a sandy				
		-	→ - 3		`\ matrix. Carbonaceous. Becoming shaly at bottom of interval. Becoming shaly. Shale/siltstone dark grey/black locally regularly and				
407		410 —			irregularly laminated, interbedded with lighter coloured siltstone/fine sandstone. Scattered crushed zones, slicken surfaces. Scattered patches calcareous,			407-409 Geochem	
ec 10'	100%				shale & sandy sections. Bedding @ 40° to core axis. Widespread carbonate & zeolite(?) veinlets. Bedding @ 20° to core axis.				,
417			A		A Shale; black carbonaceous, massive.			417-419	
		420 —	↓ _			1		Geochem	

INT	REC	STRAT INT	FR	L	DESCRIPTION	M	MIN	ASSAY INT	
Rec 6'	100%	420 —	W			<u> </u>			
423									
Rec 6'	100%		S.	← ←	Shale; black carbonaceous/coal, crushed, slicken surfaces.		Carb.		Highly carbonaceous.
429		430 —	A	← ← 	▲				
Rec 5'	100%	430 -	_ _	€ €	_ ▲			- ₄₃₂₋₄₃₄	
4 34				€ €	•			Geochem	
				++					
Rec 7.5'	75%	440 —							
		440		4 +	- ▲				•
4 44					▲ Shale; dark brown-grey/black, small carbonaceous				
Rec 4.5'	90%		•		partings.				
449		450 —			▲				
	ļ 	450 -	M,		Intermixed shale and sandstone, disrupted bedding.				
Rec 9'	100%	_	W		Sandstone, medium grained, salt & pepper, fairly well indurated. Scattered irregular carbonaceous fragments. Weakly calcareous matrix.				
458					Coarse grained interval 4.5 cms.			- ₄₅₈₋₄₆₀	
	100%	460 —	-		Coarse grained interval 30 cms.			_ Geochem	,
Rec 9'	100%	_	S.	~ ~ =====	Shale; black, carbonaceous, crushed, sheared. Intermixed sandstone and shale.				
4 67			Ĭ.		Cone of bedding possibilities.				
		470 —	A	C C	Shale; black carbonaceous/coal. Intermixed siltstone and clay, sand, carbonaceous material crushed zone. Unconsolidated.	 	Coal Pyr		Traces disseminated pyrite.

INT	REC	STRAT INT	FR	L	DESCRIPTION	М	MIN	ASSAY INT	
ec 7' - 474	100%	470 —	S - W + - M		Bedding @ ~ 25° to cone axis. Pebble conglomerate grading to coarse sandstone, poorly consolidated, slightly calcareous matrix. Calcareous veinlets. Sandstone medium grained, salt & pepper, calcareous				
ec 10'	100%	480 —	-		matrix, fairly well consolidated.			- 477-479 - Geochem	
484 ec 6'	100%	_	S	~~ ~~ ~~	Brecciated shale, dark grey/black, crushed zone abundant slicken surfaces, narrow internal gouge zone, one with a bleb of pyrite crystals. Soft.		Pyr	- 484-486 _ Geochem	Abundant pyrite crystals in gouge in shear plane.
490		490 —		-~- ~-	Total depth 490'.				•
					Inclination Survey 66° at 250' 67° at 490'				
									,

APPENDIX E
Core Rock Geochemistry Data

CHEMEX LABS LTD.

212 BROOKSBANK AVE NORTH VANCOUVER, B.C., CANADA V7J 2C1

TELEPHONE: (604)984-0221

. ANALYTICAL CHEMISTS

• GEOCHEMISTS

• REGISTERED ASSAYERS

TELEX:

043-52597

CERTIFICATE OF ANALYSIS

TC : CHEVRON STANDARD LIMITED

MINERALS STAFF

#901 - 355 BURRARD ST.

VANCCUVER. B.C.

V6C 2G8

CERT. # : A8114987-001-A

INVOICE # : 18114987

DATE : 18-NCV-81 P.C. # : 56809

M-508 81-PYTHCN-1

CC: K.E. NORTHCOTE & ASSOC.

 Sample	Prep	Cu	Pb	Zn	Ag Au	FA+AA	
description	code	ppm	ppm	ppm	ррп	ppb	
 81PY-1-58-60	205	49	23	165	0.1	15	
81PY-1-66-68	205	52	2	75	0.1	5	
81PY-1-84-86	205	40	10	155	C-1	15	
81PY-1-97-99	205	28	5	115	0.1	1 C	
81PY-1-115-117	205	45	10	310	0-1	15	'
 81PY-1-138-14C	205	64	6	175	C-1	10	
81PY-1-163-165	205	40	15	91	0-1	10	
81FY-1-172-174	205	57	7	44 C	0.1	1 C	
81PY-1-2CC-2C2	205	43	8	320	0.1	15	
81PY-1-222-224	205	59	5	44 C	0.1	1 C	
 81PY-1-25C-252	205	51	8	363	- 1.1 -	10	
81PY-1-275-277	205	43	10	275	0.1	1 C	
81PY-1-3CG-3C2	205	26	5	92	0.1	15	
81PY-1-32C-322	205	51	10	10C	C.1	5	
81PY-1-343-345	205	47	6	215	0.1	15	
 81PY-1-356-358	205	63	7	23 C	0.1	1 C	
31PY-1-385-387	205	50	5	125	0.1	20	
81PY-1-422-424	205	42	8	205	0.1	15	

Certified by Hartsuhler

CHEMEX LABS LTD.

212 BROOKSBANK AVE NORTH VANCOUVER BC CANADA V7J 2C1

TELEPHONE: (604)984-0221

TELEX.

043-52597

. ANALYTICAL CHEMISTS

. GEOCHEMISTS

. REGISTERED ASSAYERS

CERTIFICATE OF ANALYSIS

TO : CHEVRON STANDARD LIMITED

MINERALS STAFF

#901 - 355 BURRARD ST.

VANCOUVER, B.C.

V6C 2G8

CERT. # : A8115504-001-A

INVOICE # : 18115504

DATE : 23-DEC-81 **:** S 6809 P.O. #

M-508

	C:K.E. NORTH							**************************************
	Sample	Prep	Cu	Pb	Zn	_	I FA+AA	
	escription	code	ppm	ppm	PPM 75	ppm	Dob	
	GYP-1 35-37	205	61	10	75 05	0-1	<5	
_	GYP-1 72-74	205	67	13	85	0-1	< 5	
	GYP-1 95-97	205	69	4	96 122	0-1	10	
	GYP-1 112-114		60	4	123	0-1	15	
	GYP-1 124-126 GYP-1 144-146		44	3	101 85	0.1	10	
	GYP-1 157-159		66 60	4	105	0.1 0.1	10 10	
	GYP-1 171-173		40		71			
	GYP-1 171-173 GYP-1 187-189		63	5 4	190	0.1 0.1	10 10	
	GYP-1 205-207		5 4	3	82		15	
	GYP-1 217-219		22	<u>3</u>	37	0.1 0.1	10	
	GYP-1 222-224		28	2	55	0.1	5	
	GYP-1 234-236		26 35					
				1	54	0.1	10	
	GYP-1 242-244 GYP-1 270-272		21	13	120	0.1	15	
			68	11	80	0.1	5	
81	GYP-1 305-307		21	4	55	0.1	10	
	GYP-1 335-337		21	3	51	0.1	10	
	GYP-1 354-356		24	1	80	0-1	10	
	GYP-1 376-378		25	2	80	0-1	10	
	GYP-1 389-391		23	7	58	0.1	5	
	GYP-1 397-399		38 50	3	108	0.1	10	
	GYP-1 407-409 GYP-1 417-419		71		140	0-1	15	
	GYP-1 417-419 GYP-1 432-434			6	220 . 93	0.4	20	
	GYP-1 458-460		46 30	2 2	75	0.1 0.1	10 10	
	GYP-1 477-479		33	2	92	0.1	15	The state of the s
	GYP-1 484-486		50	• 5	110	0.1	15	
	SLP-1 80-82	205	78	1	57	0.1	10	
	SLP-1 121-123		85	ī	53	0.1	5	
	SLP-1 151-153		108 .	ī	50	0.1	5	
	SLP-1 167-169		98	ī	55	0.1	5	
	SLP-1 192-194		26	ī	40	0.1	10	
	SLP-1 207-209		68	ī	54	0.1	5	
	SLP-1 215-217		56	1	45	0.1	10	
	SLP-1 228-230		23	3.	175	1.6	5	
	SLP-1 284-286		26	6	326 ·	3.0.	10	
	SLP-1 295-297		28	4	275	0.3	10	-
	SLP-1 313-315		23	¥ E	95	0.1	10	
	SLP-1 313-313 SLP-1 330-337		2 <i>3</i> 28	5 6	292	0.2	20 ·	***
	SLP-1 353-355		35	5	323	2 م		
01	200-1 222-222	U.J					1	
	•					N. A		
CTA.				Certifi	ed by	Jan VI	manne	
	MEMBER CANAC AN TESTING			001 0111				•

ANAL AN LESTING ASSOCIATION

APPENDIX F

Supplemental Soil Geochemistry Data

CHEMEX LABS LTD.

212 BROOKSBANK AVE NORTH VANCOUVER BC + CANADA V7J 2C1

TELEPHONE: (604)984-0221

REGISTERED ASSAYERS

TELEX:

043-52597

. ANALYTICAL CHEMISTS

CERTIFICATE OF ANALYSIS

. GEOCHEMISTS

TO : CHEVRON STANDARD LIMITED

MINERALS STAFF

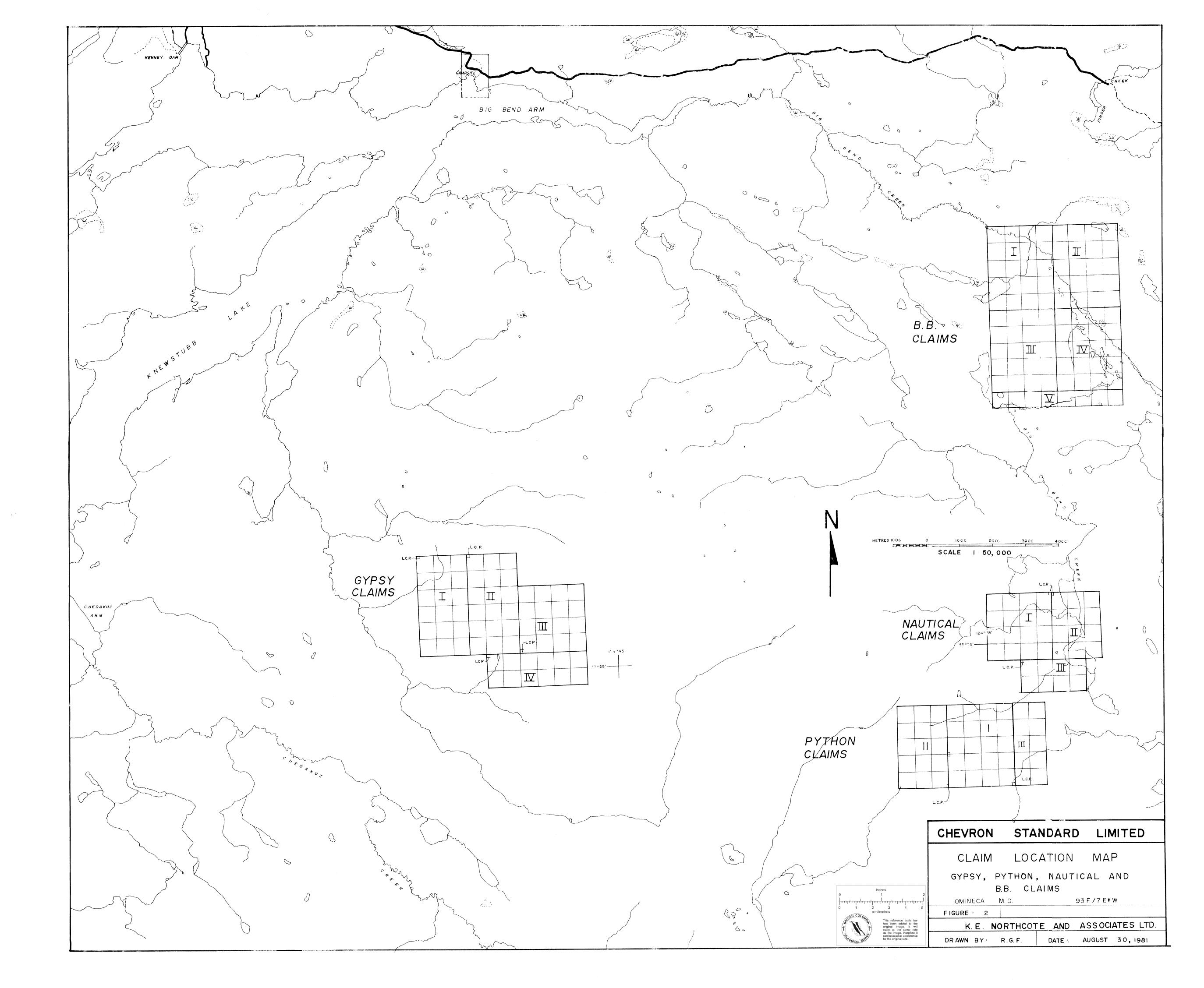
#901 - 355 SURRARD ST.

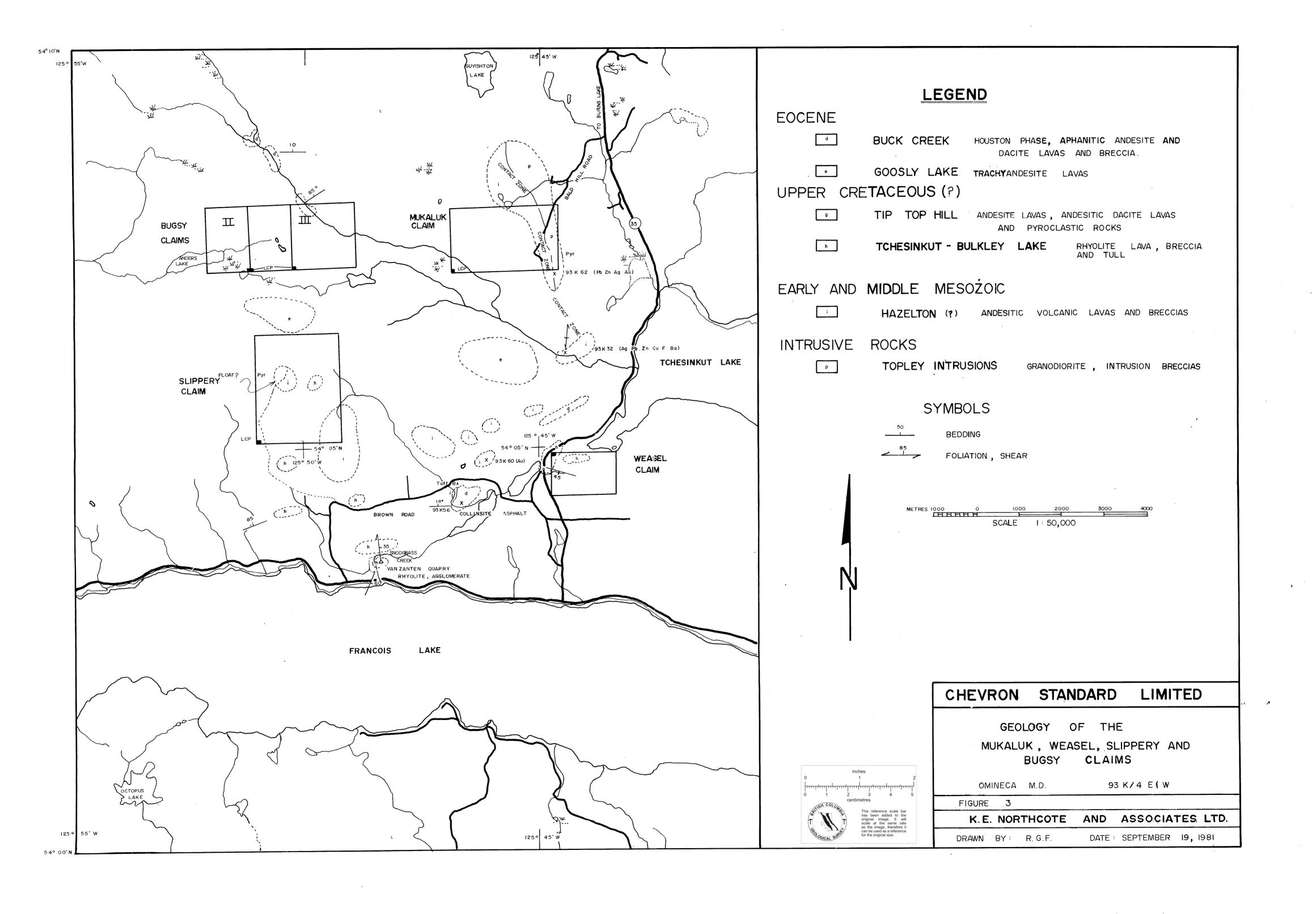
VANCOUVER, 5.C.

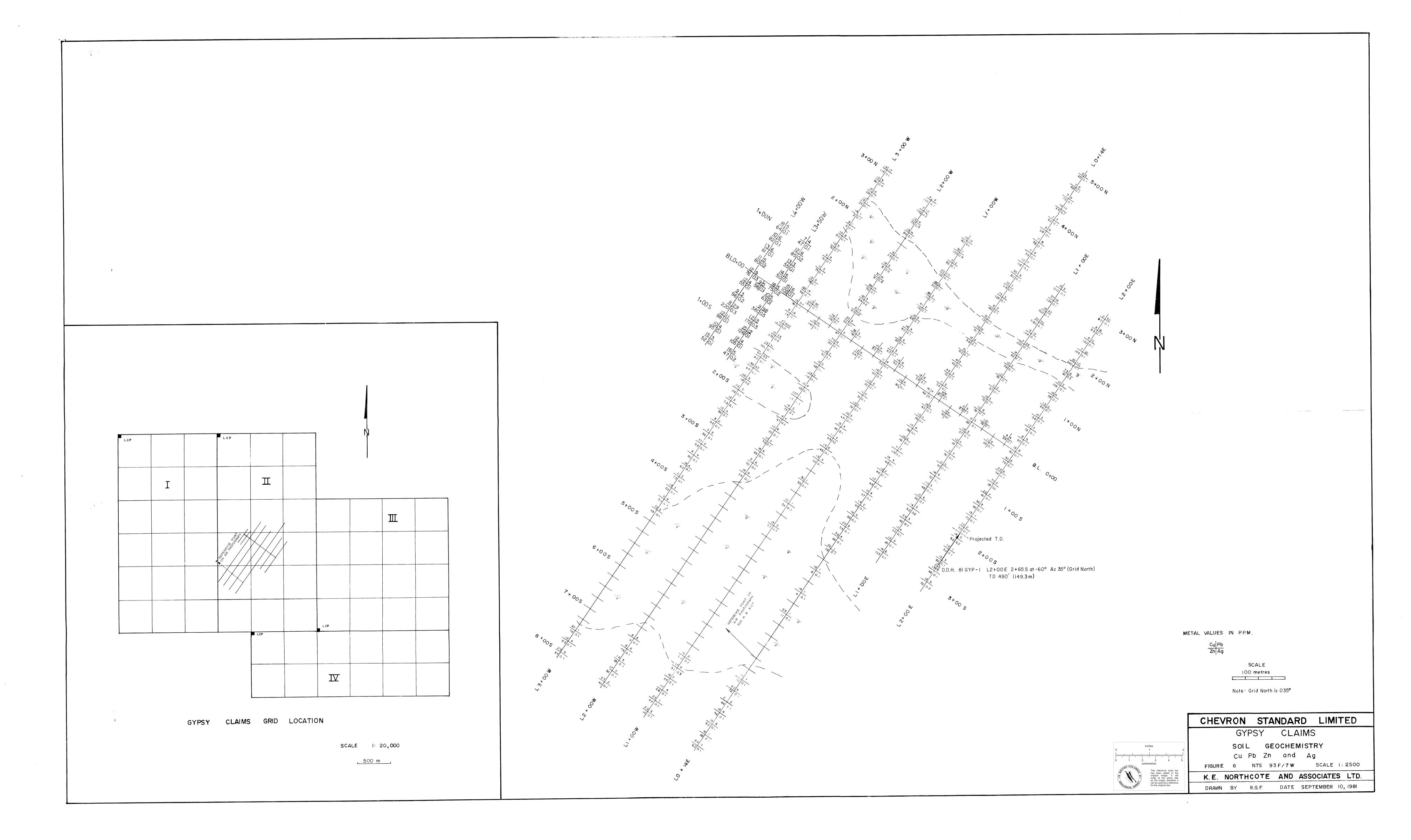
V6C 238

CERT. # : A8115375-001-A

INVOICE # : 18115375


DATE : 01-DEC-81

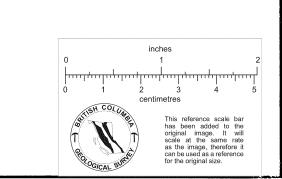

P.D. # : NONE M508 GYPSY CLAIM


	CC:K.E. NORTHO	S TE	ASSOC. LTD.	"D" \$10	SNIFIES DU	PL. SMPL.	
	Sample	Prep	Cu	PD	Zn	Ag	
	pescription	code	pom	rpm_	pm	ppm	
5	EL-0 3+25%	201	15	6	102	0.1	
3	EL-0 3+50W	201	18	5	75	0.2	
G	3L-0 3+75W	201	9	5	58	0.1	
.6	BL-0 4+00W	201	12	9	76	0.3	
G	3+50W 0+25S	201	10	5	63	0.1	
5	3+50W 0+50S	201	9	98 4	360*	0.5 *	
G	3+50% 0+75S	201	12	13	172	0.3	
G	3+50W 1+00S	201	15	12	126	0.1	
S	3+50W 1+25S	201	12	4	105	0.1	
G	3+50W 1+50S	201	16	5	47	0.2	
3	3+50W 0+25N	201	14	. 5	50	0.1	
_ 3	3+50W 0+50N	201	13	3	5.5	0.1	
0	3+50W 0+75N	201	12	6	8.5	0.2	
3	3+50W 1+00N	201	7	4	47	0.1	
G	4+00% 0+255	201	12	4	5.5	0.1	
G	4+00W 0+50S	201	9	3	96	0.2	
3	4+00W 0+75S	201	8	29	220	0.3	
G	4+00W 1+00S	201	12	11	9.8	0.1	
S	4+00W 1+25S	201	10	4	95	0.1	
G	4+00W 1+255"D"	201	48 + H.O.	2	20	0.3	
3	4+00W 1+50S	201	15	3	52	0.1	
G	4+00W 0+25N	201	11	5	0.8	0.2	
6	4+00N 0+50N	201	13	6	61	0.1	
3	4+00N 0+75N	201	10	5	8 2	0.1	
G	4+00W 1+00N	201	18	5	64	0.1	



Certified by HantBuchler

METAL VALUES IN P.P.M.


Cu | Pb Zn | Ag (Mo)

SCALE 100 metres

SCALE 1: 20, 000

500 m

PYTHON CLAIMS GRID LOCATION

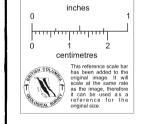
CHEVRON STANDARD LIMITED

PYTHON CLAIMS
SOIL GEOCHEMISTRY

Cu Pb Zn Ag and Mo
FIGURE 7 NTS 93 F/7E SCALE 1: 2500

K.E. NORTHCOTE AND ASSOCIATES LTD.

DRAWN BY R.G.F. DATE SEPTEMBER 11, 1981


CHEVRON STANDARD LIMITED 81 PY-1

0+30N 8+15 E at -60° AZ 120° T.D. 425' 81 PY -1 Inclination at 250'=-67° Casing Shoe at 42' 425' = -72° GEOCHEMICAL SAMPLES 58 to 60 **6**6 84 86 97 115 117 138 140 163 165 172 174 200 202 222 224 250 252 275 277 **3**00 **3**02 **32**0 322 343 345 356 358 385 387 422 424 LEGEND 0.00 Overburden Shale Interbedded Shale & Siltstone Sandstone 127.7 Carbonate Veins ▲ Secondary Breccia 81 PY-1 Fault Zone K& Northwite Cone of bedding possibilities Nov 14, 81 Figure 9

CHEVRON STANDARD LIMITED 81 GYP-1

81 GYP-1 2+00 E 2+65 S at -60° AZ 035° (Grid North) T.D. 490' Inclination at 250'=-66° 490'=-67° Casing Shoe at 32' GEOCHEMICAL SAMPLES to 37 Fault Zone 7 LEGEND Overburden Carbonaceous Shale / Coal Shale Siltstone Sandy Siltstone / Silty Sandstone 10. 490 ft Breccia ▲ Secondary Breccia 81 GYP-1 Fault Zone K& Northcote Cone of bedding possibilities Nov 14, 81

Figure 10

