830847

REPORT ON

1993 EXPLORATION PROGRAMMES AND POTENTIAL HEARNE HILL PROPERTY

OMINECA MINING DIVISION BABINE LAKE AREA, B.C.

Latitude: 55°11'N

Longitude: 126°16'W

N.T.S.: 93-M-1W

for

BOOKER GOLD EXPLORATIONS LIMITED Suite 1070 - 609 West Hastings St. Vancouver, B.C. V6B 4W4

by

LIST OF FLOURES

Vancouver, B.C. 20 November 1993 Chris J. Sampson, P.Eng. Consulting Geologist

BAMPBON ENGINEERING INC. 2695 West 11th Avenue Vancouver, BC V6K 2L6

INDEX

	Page
SUMMARY AND CONCLUSIONS RECOMMENDATIONS AND COST ESTIMATES	1 5
 INTRODUCTION PROPERTY, LOCATION, ACCESS, CLIMATE EXPLORATION HISTORY REGIONAL GEOLOGY PROPERTY GEOLOGY 5.1 Geological Setting 5.2 Mineralization 	6 6 8 11 12
 6. 1993 EXPLORATION PROGRAMMES 6.1 Trenching 6.2 Percussion Drilling 6.3 Magnetometer Survey 	16
 7. REFERENCES 8. CERTIFICATE APPENDIX A = 1991 Drill Assays 	21 22

APPENDIX A - 1991 Drill Assays APPENDIX B - 1993 Assays and Analyses

ι.

LIST OF FIGURES

		Follows Page
1.	LOCATION MAP	7
2.	CLAIM MAP	7
3.	TOPOGRAPHY MAP	7
4.	GEOLOGY OF THE NORTHERN BABINE LAKE AREA	12
5.	DIAMOND DRILL PLAN	12
6.	GEOLOGICAL COMPILATION MAP	In Pocket
7.	GEOPHYSICAL AND GEOCHEMICAL	
	COMPILATION MAP	In Pocket
8.	GEOLOGY MAP	In Pocket
9.	GEOLOGICAL MAP OF TRENCHING	In Pocket
10.	MAGNETOMETER RESULTS	In Pocket

SUMMARY AND CONCLUSIONS

- The Hearne Hill claims of Booker Gold Explorations Limited are situated in the Babine Lake district of British Columbia, 65 kms. northeast of Smithers.
- 2. The property is underlain by volcanic rocks belonging to the middle Jurassic Hazelton group, which consist principally of water lain grey lapilli crystal tuffs and grey andesites, with some associated sedimentary rocks (principally gritty greywackes, siltstones and buff felsic tuffs).
- 3. The volcanic sequence has been intruded by porphyritic intrusions of approximately 50 million years age which belong to the Tertiary-Eocene Babine igneous suite.
- 4. Associated with the Babine intrusives on the Hearne Hill property are two types of copper, molybdenum, gold, silver deposits, as follows:
 - a. a stock work porphyry-copper of the general Babine type;
 - b. a breccia pipe situated within the porphyry deposit which contains high-grade copper-gold mineralization.
- 5. In the stock work copper/molybdenum porphyry deposit, chalcopyrite, pyrite and molybdenite occur in fracture fillings, disseminations and stockwork quartz veinlets in biotite feldspar porphyry (BFP) and in the surrounding Hazelton volcanic country rock. The host rocks contain biotite and quartz, sericite alteration. Drilling of this deposit by Texas Gulf Sulphur and Canadian Superior Oil in 1968 indicated a geological reserve of 60 million tonnes grading 0.16% copper, 0.1 g/tonne gold, which includes a higher grade core of 16 million tonnes grading 0.32% copper, 0.1 g/tonne gold (at 0.2% copper cutoff).
- 6. The breccia pipe, situated within the porphyry-copper stockwork, consists of angular clasts up to several tens of centimetres in size of biotitefeldspar-porphyry and Hazelton volcanics. Open space in the breccia prior to mineralization was estimated (Ogryzlo 1991) at 5 to 20% of rock volume.

.../2

Chalcopyrite and pyrite and lesser chalcocite had been deposited in the space between the angular clasts. The largest observed cavity filled with chalcopyrite is in the order of 60 centimetres wide and graded 16% copper. Copper grades appear to be highest adjacent to the hanging wall, which may have acted as a trap for the mineralization. Grades drop towards the footwall where the porosity is plugged with dolomite and rock flour.

- 7. Drilling of the breccia pipe by Noranda (1989, 1990) intersected 22.9 m. assaying 2.75% copper in hole 89-1 but Noranda concluded that the breccia body is cut out at 70 to 80 metres depth by an intrusion of white massive guartz biotite-feldspar-porphyry, and allowed their option to expire.
- 8. Subsequent drilling of the breccia pipe by David Chapman (1991) indicated that the area of mineralized breccia may extend to greater depth than that indicated by the Noranda drilling. Of the 7 holes drilled by Chapman only one (91-2) has been assayed (by Kennecott Canada 12 Oct. 91 See Appendix A). This showed good grade copper mineralization to the bottom of the hole (103.32 m., 339 ft.) and included a 50 m. section which assayed 2.30% Cu (Ogryzlo 1993). In addition several 10 ft. sections contained appreciable amounts of gold in the 0.01 to 0.05 oz/ton range, with one section (160-170 ft.) assaying 0.46 oz/ton gold.
- 9. The writer's February 1993 report concluded that although the Copper Molybdenum stockwork porphyry deposit is too low in copper and gold grades to be mineable economically, the breccia pipe carries economic grades in both metals. It has been well delineated in lateral extent by drilling but may extend to greater depth than indicated by Noranda's drill programmes in 1989 and 1990.
- 10. In porphyry systems, breccia pipes rarely occur in isolation. Ogryzlo (1993) pointed out similarities between the breccia body and those occurring at the Cananea deposit Mexico, where several breccia bodies occur along an arcuate structure. The potential for occurrence of other

breccia bodies at Hearne hill is thus considered very high. The geophysical and geochemical surveys on the property were at wide spacing (800 ft. line spacing with some infill at 400 ft.) but despite this wide spaced coverage they showed several untested geochemical and IP (Chargeability) targets which could represent breccia bodies.

11. In order to explore for other breccia pipes, in summer/fall 1993 Booker Gold carried out the following exploration programmes:

a) Trenching

A John Deere 892 backhoe excavated 14 trenches in the vicinity of the mineralized breccia and to the north and east. Mineralization exposed by the trenching programme consists of fracture filling and disseminated copper mineralization in altered Feldspar Porphyry (Babine Igneous Suite) and altered Hazelton andesite volcanic country rocks. Although no mineralized breccia similar to that occurring in the main breccia body was discovered in bedrock, several boulders containing chalcopyrite, pyrite, chalcocite in a breccia strongly resembling that in the main breccia pipe were discovered in overburden consisting of rock slide material in trenches TR93-4 and TR93-5 up slope, i.e. approx. 100 to 200 ft. elevation above the main breccia body.

Samples from the mineralized boulders assayed as high as 20.603% copper, 0.146 oz/ton gold and 1.75 oz/ton silver. Because the boulders are situated above the main breccia zone in rock slide debris which overlies glacial till, they are not considered to be derived from the known breccia body but are probably from an as yet undiscovered mineralized breccia situated to the northeast of the trenched area.

b) Percussion drilling:

Programmes of percussion drilling were done in May/June, 27 July - 7 August and late October. Twenty-one holes totalling 3010 ft. explored the mineralized breccia and surrounding area. Samples of cuttings were

-3-

BAMPBON ENGINEERING INC. 2696 West 11th Avenue Vancouver, BC V6K 2L6 taken for each 10 ft. run and assayed for copper and gold. Hole PH20 drilled on the main breccia body intersected 230 ft. which assayed 2.118% copper, 0.014 oz/ton gold.

c) Magnetometer survey:

In 27 September - 5 October and 1-3 November a magnetometer survey was run over the main breccia body and the area north and east. The contoured magnetometer map showes a pronounced mag low associated with the breccia pipe. It also indicates a mag low 600-700 ft. east of the breccia pipe of similar dimensions and intensity which may represent another breccia pipe.

12. In the 20 February 1993 report Phase 1 and 2 exploration programmes recommended geological mapping, 2000 ft. percussion drilling and geochemical soil sampling (1000 samples).

Booker Gold did the geological mapping and over 3000 ft. of percussion drilling. Based on field observations and results, it was decided by Booker Gold personnel and the writer that trenching programmes and a magnetometer survey would be more successful than further geochemical soil sampling. The programmes done in 1993 by Booker Gold although somewhat altered from the original proposed Phase 1 and 2 considerably exceed the original expenditures proposed and the writer thus considers that Phases 1 and 2 have been successfully completed.

BAMPBON ENGINEERING INC. 2696 West 11th Avenue Vancouver, BC V6K 216

RECOMMENDATIONS AND COST ESTIMATES

- 1. Extensions of the magnetometer survey to the north and east is recommended because:
 - a) the mag low located by the 1993 survey needs defining and closing off. Since it is due east of the known breccia, an east-west structure may be present.
 - b) the known breccia body is elongated 010 to 020, i.e. it may be on a fracture zone which strikes in that direction.
 - c) the area northeast of the main breccia is up slope and is covered by rock slide debris.
 - d) the geochemical and geophysical compilation map (Figure 7) shows strong copper values in soils and high chargeability 1.P. open to the northeast of the main breccia.
- 2. Trenching of targets located by the magnetometer survey followed by diamond drilling is recommended. Cost estimates are as follows:

	<u> </u>
Magnetometer Survey: Rechain north south lines and cut new lines where required. Flag additional east west lines: 20 days at \$500/day (includes report preparation)	10,000
Interpretation, selection of targets, supervision, etc.	5,000
Trenching: 10 days at \$1000/day backhoe rental	10,000
Mapping, sampling, analyses, travel, etc. 1000 m. (3000 ft.) NQ diamond drilling at \$20/ft.	10,000 60,000
Report preparation, supervision, etc.	5,000
	\$100,000

1. INTRODUCTION

"Report on Geology, Exploration Results and Potential of the Hearne Hill Property" (Sampson 20 Feb. 1993) concluded that previous exploration programmes on Booker Gold's Hearne Hill property had located a porphyrymolybdenum deposit which is of sub-economic grade, but which contains a breccia body carrying economic copper and gold grades. Programmes of exploration were proposed in order to explore the property for other breccia bodies.

During the summer and fall of 1993, Booker Gold personnel carried out programmes of geological mapping, trenching, percussion drilling and magnetometer geophysics in order to explore the known breccia zone and try to locate other mineralized breccias. The writer accompanied Hugh Grenfal, president of Booker Gold, on two visits to the property, and examined the trenching, results of percussion drilling, and mapped the geology of the area surrounding the known breccia zone. This report is thus based on field examinations, supervision of work programmes carried out in 1993, and examination of assay results produced by the trenching, percussion drilling programmes and results of the magnetometer geophysical survey.

2. PROPERTY, LOCATION, ACCESS, CLIMATE

The Hearne Hill Property (also known in old reports as Kofit) is situated as follows:

Latitude	Longitude	Average Elevation	NTS
55°11'N	126°16'W	3600 ft. (1100 m.)	93-M-1W

BAMPBON ENGINEERING INC. 2696 West 11th Avenue Vancouver BC V6K 216

Name of Claim	Units	Record Number	Expiry Date
Hearne 1 Hearne 2	15 15	12662 (242812) 12663 (242813)	7 Oct. 1999 7 Oct. 1999
PB1 PB2 PB3	1 1 1	321701 321701 321703	20 Oct. 1994 20 Oct. 1994 20 Oct. 1994 20 Oct. 1994
BC1 2 3 4 5 6 7 8	1 1 1 1 1 1 1 1	317528 317529 317530 317531 317532 317533 317534 317535	16 May 1994 16 May 1994
HG1 2 3 4 5 6	1 1 1 1 1	319913 319914 319915 319916 319917 319918	11 Aug. 1994 11 Aug. 1994 11 Aug. 1994 11 Aug. 1994 11 Aug. 1994 11 Aug. 1994 11 Aug. 1994

The property consists of two metric unit claims, and 17 two post claims:

The property is situated on the western slopes of Hearne Hill, approximately 65 kms. northeast of Smithers in central British Columbia.

It is accessible by road from the former producing Bell Mine site. The Northwood pulp and timber logging road on the eastern side of Babine Lake provides year-round access to within 4 kilometres of the property. A fourwheel drive exploration road intersects the Northwood road at kilometre 40, 21 kilometres north of the Bell Mine site. This intersection is approximately one kilometre east of the Morrison bridge. Access is then gained by 4-wheel drive vehicle for an additional distance of 4 kilometres north to the 3600 ft. elevation on the Hearne Hill property.

-7-

The Bell Mine property is accessible from Smithers, B.C. by 150 kilometres of paved road (via Houston) to the village of Granisle. Access is then a further 14 kilometres by gravel road to the Noranda Minerals ferry slip on the western shore of Babine Lake. Year-round access to the Bell Mine site is by a further 3.5 kilometres ferry crossing of Babine Lake.

An alternate access route is from Smithers to Topley Landing, then by Northwood barge across Babine Lake and via the Nose Bay, Hagan, Jinx and Nak roads to the Hearne Hill road.

The property varies in elevation from a low of 734 m. (2405 ft.) on Morrison Creek on the west side to a high point of 1350 m. (4430 ft.) on Hearne Hill on the east side of the property. Hearne Hill forms part of ridge trending northwest/southeast caused by the block faulting in the area. The western slope of the ridge which forms much of the Hearne Hill property is quite steep and drained by several small creeks which drain westward into Morrison Lake.

3. EXPLORATION HISTORY

The Babine Lake area has been actively explored since the 1920s. In the 1950s and 1960s, British Columbia experienced an exploration boom for porphyry-copper The Babine Lake area was intensely explored by programmes of deposits. prospecting, geophysics and geochemistry, which resulted in the discovery of many porphyry-copper deposits, two of which - Granisle and Bell - were subsequently placed in production. The Granisle Mine, which was discovered Granby (later Zapata-Granby, and eventually by sold to Noranda as part of Bell Copper Division) started production in 1955 at 5000 TPD, subsequently increased to 14,000 TPD. The mine closed in The Bell Mine of Noranda Minerals was commissioned in 1972 at 10,000 1982. TPD, which was subsequently increased to 17,000 TPD by 1980. It was closed in 1992 and is currently kept on a care and maintenance basis.

Reserves at start up at Granisle were 94 m. tons 0.43% Cu, 0.004 oz/ton Au at Bell 128 m. 0.48% Cu, 0.010 oz/t Au (Sinclair, Carter, Dawson - A preliminary analysis of gold and silver grades of porphyry type deposits in Western Canada. Assoc. of Exploration Geochemists 1982). The presence of copper mineralization at the Hearne Hill property has been known for many years. In 1967, Trojan Consolidated Mines and Buttle Lake Mining did magnetometer and soil sampling surveys over the property (Dirom 1967). This was followed up by bulldozer trenching which discovered the breccia boulders (identified as "discovery showings" on maps of the property - Trench T93-3).

The property was optioned by Texas Gulf Sulphur Company who did programmes of IP, magnetometer and diamond drilling (12 holes totalling approx. 6,000 ft. (1942 m.) in 1968. The drill programme indicated presence of a Babine style porphyry-copper deposit on the Hearne Hill property, similar to the Bell, Morrison, and Granisle deposits. Texas Gulf calculated the overall grade of the porphyry deposit at 0.2% cppper, but drilling apparently failed to intersect the mineralized breccia, although according to Ogryzlo (1990) the lower portion of HH1-1967 apparently intersected the dolomite cemented footwall portion of the breccia pipe. Texas Gulf Sulphur considered that the copper grade was not sufficiently high to support exploitation of the deposit.

In 1968 the property was optioned by Canadian Superior Exploration, who did geological mapping, induced polarization, magnetometer and geochemical sampling surveys, followed by some preliminary diemond drilling (Kahlert and Fawley 1968). Canadian Superior followed this with a programme of percussion drilling in 1969 (Kahlert 1969).

The property then lay dormant for many years until it was acquired by Dave Chapman in 1989. He carried out a limited programme of trenching on the old showings with a skidder mounted backhoe and rekindled interest in the property.

In July 1989 Noranda Minerals and Bell Mine (a Noranda Mines subsidiary) optioned the property. They re-established the original Texas Gulf line grid and carried out a programme of geochemical soil sampling to relocate the original anomaly, which is essentially in place over the mineralization. This was followed by a programme of diamond drilling consisting of 6 holes totalling 1537 ft. (468 m.) fall 1989 in order to establish whether the mineralization in the breccia pipe exposed at surface had any vertical continuity and secondly to establish the attitude of the mineralization.

BAMPBON ENGINEERING INC. 2696 West 11th Avenue Vancouver, BC V6K 2L6 As reported by Ogryzlo (January 1991) 4 holes intersected the mineralization. Hole H89-1 was lost in mineralization at 270 ft. (82 m.) when the rods stuck in a mud seam. The last core run was recovered including the mud seam which assayed 3.32% copper. Significant intersections from the 1989 drilling programme are summarized as follows:

SUMMARY OF RESULTS - 1989 PROGRAMME

HOLE NUMBER	FROM feet(meters)	TO feet(meters)	WIDTH feet(meters)	⁸ Cu
H89-1	190.0(57.9) 227.5(69.3)	227.5(69.3) 270.0(82.3)	37.5(11.4) 42.5(12.9)	1.34 3.61
H89-2	45.0(13.7) 65.0(19.8) 85.0(25.9)	65.0(19.8) 85.0(25.9) 130.0(39.6)	20.0(6.1) 20.0(6.1) 45.0(13.7)	1.84 2.68 1.10
H89-3	60.0(18.3)	77.5(23.6)	17.5(5.1)	2.11
H89-4	97.5(29.7)	160.0(48.8)	62.5(19.1)	0.78

The drilling established that the overall trend of the breccia deposit is N10E. The hanging wall of the breccia pipe dips approximately 70°E, the footwall dips at approximately 80°E.

In 1990 Noranda drilled a further 5 NQ size holes, totalling 2,807 ft. (856 m.) in order to test the vertical extent of the mineralized breccia.

As reported by Ogryzlo (January 1991) hole H90-3 was the only hole to intersect the full width of the breccia. Mineralization was intersected over a width of 80 ft. (24.4 m.) with an average grade of 0.67% Cu, 0.05% Mo and 0.005 oz/ton Au. Holes H90-1 and H90-5 also intersected sections of the mineralized breccia. Much of the target area, however, was largely occupied by post-mineral intrusions of biotite-feldspar-porphyry including a massive unit of bleached white BFP, similar to the post-mineral QFP body that has replaced approximately 1/3 of the Bell ore body. Holes H90-2 and H90-4 also intersected post-mineral intrusions. Significant intersections from the 1990 drill programme are summarized as follows:

BAMPBON ENGINEERING INC. 2696 West 11th Avenue Vancouver, B.C. V6K 216

SUMMARY OF RESULTS - 1990 PROGRAM

HOLE	NUMBER	FROM feet(meters)	TO feet(meters)	WIDTH feet(meters)	[♀] Cu
H90-1	(includes)	340.0(103.6) 372.5(113.5)	400.0(121.9) 395.0(120.4)	60.0(18.3) 17.5(5.3)	0.39 0.59
H98-2		380.0(115.8)	691.0(210.6)	311.0(94.7)	0.18
H90-3	(includes)	80.0(24.4) 305.0(93.0)	390.0(118.9) 385.0(117.3)	310.0(94.5) 80.0(24.4)	0.31 0.67
H90-4		110.0(33.5)	465.0(141.7)	355.0(108.2)	0.22
H90-5	(includes)	Weakly mineraliz minor breccia	ed over	557.0(169.8) 5.0(1.5)	0.11 0.56

Noranda concluded that the breccia plpe is of limited size, both in a horizontal and vertical direction and the mineralization has been partially replaced by unmineralized BPF intrusives. Their option expired 1 January 1991.

David Chapman in 1991 drilled 7 diamond holes totalling approximately 550 metres in the breccia zone, of which hole 91-2 intersected 50.0 metres assaying 2.3% Cu. This included one 10 foot section which assayed 0.401 oz/ton gold.

4. **REGIONAL GEOLOGY**

The Hearne Hill area is situated on the northern edge of the Skeena Arch in a region which is underlain by volcanic and epiclastic rocks ranging in age from lower Jurassic (Telkwa) formation to lower Cretaceous (Skeena) group. This sequence of rocks has been cut by a generally northwest trending series of faults that have created a long linear sequence of horsts and grabens, and the rocks have been intruded by a variety of intermediate to felsic stocks, plugs and dikes of Eocene age (Richards 1990). The geological setting has been described by Tipper and Richards (1976).

-11-

BAMPBON ENGINEERING INC. 2696 West 11th Avenue Vancouver, BC V6K 2L6 The Tertiary, Eocene - 50 m.a., Biotite-Feldspar-Porphyry plugs and stocks of the Babine igneous suite were emplaced along major faults in a continental magmatic arc. Two ore bodies (Bell and Granisle) and numerous sub-economic deposits (Morrison and Hearne among others) occur as porphyry-copper deposits which are temporally and spatially associated with the Babine igneous suite intrusions (Carson and Jambour 1973). The Babine igneous suite is a high potassium, calcalkaline suite which show some trace elements normally associated with alkaline porphyry coppers rather than calcalkaline.

5. PROPERTY GEOLOGY, MINERALIZATION AND ALTERATION

The following description of geological setting, mineralization and alteration is based on Ogryzlo 1991 as follows:

5.1 Geological Setting:

Hearne Hill is underlain by volcanic rocks of the lower to middle Jurassic Hazelton Group (Richards, 1973). The volcanic rocks on the property have been tentatively associated with the submarine Kotsine facies of the Sinemurian Telkwa formation (Tipper and Richards, 1976). The volcanic rocks are characterized by waterlain grey lapilli-crystal tuffs and grey andesite. Associated sedimentary rocks are gritty greywackes, green siltstones and buff felsic tuff.

These rocks have been intruded by prophyritic intrusions of the 50 my Eocene Babine igneous suite. Mapping by Booker Gold shows that the Eocene biotite-feldspar prophyry (BFP) intrusives are in the form of a series of northeasterly trending dykes. The intrusives are compositionally equivalent to a diorite or a quartz diorite. The BFP that is exposed on the 300N baseline near 300E is a dark, hard, biotitized BFP similar to rocks observed in the Morrison Lake deposit. There is no well defined intrusive center of the BFP similar to the centers noted at the Bell Mine (Carson et al 1976) and at the Morrison deposit (Carson and Jambour, 1976). Porphyry copper related mineralization consists of chalcocite, and minor bornite filling fractures, minor disseminations of chalcopyrite, and traces of molybdenite. The style of suggests a relatively deep setting for the environment of mineralization emplacement.

BAMPBON ENGINEERING INC. 2695 West 11th Avenue Vancouver, B.C. V6K 2L6

FIGURE 4 — Geology of the Northern Babine Lake Area and Location of the Hearne Hill, Morrison, Granisle and Bell Copper Porphyry Deposits, K—Ar age determinations are after Carter (1974) and the Geological Survey of Canada. (From: CIM Special Volume No.15)

A distinctive phase of the BFP intrusions appears to be either very late or post mineral in age. The rock is a massive white BFP with intense sericite-pyrite alteration. Plagioclase is soft, white, and completely altered to sericite. Biotite is bleached pale brown to white and is sericitized as well. the massive unbroken structures suggest that the rock was emplaced after the structural events that are evident in most of the other units observed. The rock is similar in appearance to the QBFP (QFP) post mineral phase that occupies the southeastern portion of the Bell orebody, but lacks the quartz phenocrysts.

Ogryzlo concluded that the intrusions on Hearne Hill are multiphase, with more than one intermineral or post mineral intrusion of BFP.

5.2 Mineralization

Two styles of mineralization are present: These are:

1. Porphyry Copper Mineralization

Chalcopyrite, bornite and molybdenite occur as fracture fillings and disseminations in the biotite feldspar porphyry and the adjacent volcanics. This mineralization is due to a large but weakly developed porphyry copper system of the Cu-Mo type.

During the 1990 program, it became evident that many of the biotite feldspar porphyry units observed in the drill core were intermineral or post mineral in age. The erratic nature of the copper distribution is caused by these late stage intrusions. The volcanic rocks in contact with late stage BFP are invariably higher in grade. The volcanics (Hazelton, i.e. Jurassic) were deposited long before any mineralizing event, and have been subjected to all stages of mineralization. When the distribution of copper in the volcanics alone is examined, it appears that grades are increasing to the south and west of the breccia pipe.

Ogryzlo concluded that mineralization trends in the volcanics deserve far more study. Grades are within the range of grades occurring in volcanics adjacent to the Bell and Granisle deposits, namely from 0.15% to 0.40% Cu. Although the distribution of mineralization is greatly complicated by the post-mineral intrusions, there is still potential for the development of a porphyry copper deposit. Pursuit of grade trends in the volcanics could indicate a center of mineralization.

2. Breccia Mineralization

Chalcopyrite occurs filling open spaces between rock fragments in a clast supported breccia. Open space in the breccia prior to mineralization comprised 5% to 20% of the volume of the rock. Interclast porosity remains at 2% to 8% of the volume of the rock. Pyrite also occurs as breccia cement, but is subordinate to chalcopyrite. Pyrite disappears as breccia cement at depth, with chalcopyrite along with lesser chalcocite being the only sulphide species present.

The largest observed cavity filled with chalcopyrite is in the order of two feet (50 centimeters) and grades 16% Cu. Copper grades are highest adjacent to the hangingwall, which may have acted as a trap for the mineralization. Grades drop dramatically towards the footwall, where the porosity is plugged with dolomite and rock flour.

There appears to have been little movement or milling of the clasts. The breccia fragments appear to have simply accumulated as a subterranean talus that caved from the roof in a large cavern or steeply dipping pipe. The mode of formation of the pipe is uncertain. It is possible that the void resulted from solution of the rock by circulating corrosive fluids related to the porphyry copper mineralization seen elsewhere on Hearne Hill.

Supergene processes have redistributed the copper grades. The oxidized breccias in the surface trenches reveal limonite cement replacing sulphide open space filling. Malachite and azurite may also be seen as breccia cement. Chalcocite may be seen as rims of chalcopyrite in most breccia cavities, and rarely may be seen almost completely replacing masses of pyrite. Total sulphide content in the breccia is 10% to 15%, of which up to 1% may be comprised of chalcocite.

Ogryzlo concluded that "the mineralization has been derived by solution and redistribution of the porphyry copper mineralization found in the carbonate cemented clasts that collected against the footwall. Although these clasts are lithologically identical to the wallrocks, copper grades in the footwall breccia are in the order of 0.01% Cu to 0.3% Cu as compared to 0.10% Cu to 0.20% in the adjacent rocks from which they were apparently derived. The carbonate open space filling appears to post date the sulphide open space filling.

The breccia clasts may be lithologically identical to the enclosing wallrocks, making the breccia virtually monolithologic. Heterolithic breccia were observed in holes H90-3 and H90-1. Sericitized and bleached biotite feldspar porphyry clasts with grey andesite and tuffaceous felsic clasts form the bulk of the pipe. The only control on the location of the pipe appears to be the contact between the biotite feldspar porphyry and the The greater proportions of volcanic clasts occur closer to the volcanics. clasts reveal pre-breccia mineralization consisting contact. Many of sulphide and quartz sulphide veinlets. (It should be noted that the volcanics have been mapped as "hybrid diorite" in earlier assessment reports.)

Ogryzlo (1993) subsequently estimated the breccia body to contain a drill indicated resource (i.e. geologic reserve) of 143,000 tonnes grading 0.74% copper and 0.9 g/tonne gold.

BAMPBON ENGINEERING INC. 2696 West 11th Avenue Vancouver, BC V6K 2L6

6. 1993 EXPLORATION PROGRAMMES

During summer and fall 1993, Booker Gold carried out programmes of percussion drilling, trenching, magnetometer geophysics and geological mapping. These programmes are described as follows:

6.1 Trenching

From 14-22 July and 20-24 September 1993, Booker Gold used a John Deere 892 backhoe operated by Ira Bowd and owned by Ernie and Kevin Dubrak to excavate 14 trenches in the vicinity of the mineralized breccia body. The trenches were mapped and sampled in detail by Mr. J. Cam Steven and the writer. Location, geology and sampling results of the trenching programmes are shown in Figure 9.

The trenching programme extended the area of the known breccia pipe to NE and SW and confirmed the geology of the area to the east and north of the originally located area of showings.

The programme located a shear/breccia zone in trenches 93-4, 93-5, 93-9, 93-6, and 93-8. This strong shear/breccia zone, 30-50 feet wide which strikes approximately N30E, contains only low copper and gold values. Breccia fragments consist principally of altered andesite derived from the country rock. It is a different type of breccia from that seen in the main zone, and is probably of tectonic origin.

All mineralization exposed by the trenching programme in bedrock consists of fracture filling and disseminated copper mineralization in altered Biotite Feldspar Porphyry and andesite country rock. Apart from the breccia body described in the previous paragraph, no breccias resembling the main mineralized breccia were discovered in bedrock.

In trenches 4 and 5, however, boulders of mineralized breccia up to 1.5 m. size were encountered in overburden. This breccia very strongly resembles that occurring in the main breccia zone, namely it consists of fragments of altered biotite feldspar porphyry or andesitic material in a fine grained silicified and altered matrix which contains chalcopyrite, chalcocite and pyrite. Samples from this breccia float assayed as high as 20.603% copper, 0.146 oz/ton gold and 1.75 oz/ton silver. The trenches are situated up slope from the main breccia body, i.e. the breccia boulders are some 100-200 feet higher in elevation than the top of the main breccia zone. The entire area explored by trenches 93-14, 4, 13, 5, 5A, 6, 9 and 10 plus the areas to the north and east are covered by extensive rock slides which apparently have travelled down the mountain side from the east and northeast. It was concluded from the field evidence that the mineralized breccia boulders seen in overburden at TR93-4 & TR93-5 are not derived from the main breccia zone because they are situated well above it. They probably originated from another mineralized breccia body which lies to the north-northeast or east of the known breccia zone.

ASSAY

Trench No.	Length Sampled(ft)	Distance(ft)	Copper%	Gold oz/t	Silver oz/t
T93-2	80-165	85	2.30	0.012	0.19
Т93-3	0- 41 110-180	41 70	0.21 0.911	0.002 0.005	0.01 0.15
Т93-4	280-340	60	0.166	0.004	0.01
	Grab samples from mineralized breccia boulders		20.603 0.812 0.582 0.075	0.146 0.001 0.002 0.001	1.75 0.04 0.06 0.01
Т93-5	150-190	40	0.221	0.004	0.01
T93-7	0- 20	20	0.267	0.003	
Т93-14	60- 70 70- 80 80- 90 90-100	10 10 10 <u>10</u>	1.28 2.706 0.533 0.307	0.11 0.041 0.010 <u>0.004</u>	Not assayed " "
	60-110 ft.	40	1.206	0.016	-

BAMPBON ENGINEERING INC. 2695 West 11th Avenue Vancouver. BC V6K 2L6

6.2 Percussion Drilling

Percussion drilling was done on the property in late May - early June, 27 July - 7 August and in late October. 21 holes, totalling 3010 feet, were drilled. Locations are shown on Figure 8. Cuttings were sampled from each 10 foot run and assayed for copper and in some cases for gold. The following table shows assay results averaged over the length of each hole.

ASSAY

DRILL HOLE **INTERVAL** (ft) LENGTH (ft) COPPER ppm(%) Gold ppb (oz/t) PH1 40-100 60 89 11 PH₂ 30- 90 60 92 8 PH3 10-100 134 19 90 PH4 10 - 160150 186 37 PH5 30-110 1642 91 80 PH6 20 - 150130 337 8 PH7 20-110 90 554 17 PH8 20-150 130 243 7 7 PH9 20 - 5030 130 **PH10** 20-160 140 404 11 PH11 20-100 80 1195 36 10- 40 **PH12** 30 977 20 **PH13** 30-200 170 (0.214)**PH14** 20-200 180 (0.164)PH15 20 - 120100 (0.083)(0.074)PH16 20-150 130 54 PH17 20-210 190 (0.154)**PH18** 20-200 180 (0.115)34 **PH19** 20-210 190 (0.028)**PH20** 20-250 (0.014)230 2.118 **PH21** 0.546 (0.008)10-150 140

3010 ft.

.

The percussion drilling programme generally confirmed the known distribution of copper mineralization with the exception of PH5 which intersected 80 feet of mineralized altered volcanic assaying 1642 ppm copper and 91 ppb gold in an area well to the south of the previously assumed limit of porphyry-copper mineralization. In addition, hole PH20 drilled on the downdip extension of the main breccia zone intersected significant copper and gold mineralization, as follows:

		FIRE	METALLIC AVG.
FOOTAGE	% COPPER	GOLD oz/ton	GOLD oz/ton
20- 30	2.058	.026	.050
30- 40	4.535	.029	.043
40- 50	2.064	.020	.021
50- 60	2.234	.019	.024
60- 70	1.966	.036	.015
70- 80	2.121	.015	.016
80- 90	2.836	.014	.016
90-100	2.005	.016	.023
100-110	2.442	.009	.021
110-120	2.468	.019	.012
120-130	2.495	.017	.017
130-140	1.857	.023	.019
140-150	1.549	. 006	
150-160	1.472	.005	
160-170	1.303	.004	
170-180	1.216	.009	.009
180-190	1.194	.005	
190-200	.951	.006	
200-210	1.193	.004	
210-220	2.206	.008	.008
220-230	2.016	.012	.010
230-240	3.058	.014	.015
240-250	2.503	.011	.012
	END OF HOL	F	

6.3 Magnetometer Survey

During 27 September - 5 October and 1-3 November, a magnetometer survey using a Scintrex MP2 proton procession magnetometer was run between 289N to 297N across the main breccia body and in the area to the north and east (Figure 10). Readings were taken at 10 foot intervals along the 50 foot spaced east-west lines, i.e. a total coverage of 13,200 lineal feet. The contoured magnetometer map (Figure 10) shows a well defined magnetometer low, associated with the main breccia body. It also indicates presence of another similar magnetic low feature situated on the extreme eastern side of the magnetometer grid, 600-700 feet east of the main breccia body. This magnetometer feature will be investigated by the exploration programme, proposed in this report.

BAMPBON ENGINEERING INC. 2696 West 11th Avenue Vancouver B.C. V6K 216

6. **REFERENCES**

Carson, D.J.T. and Jambour, J.L. Mineralogy, Zonal Relationships and Economic Significance of Hydrothermal Alteration at Porphyry Copper Deposits, Babine Lake Area, B.C., C.I.M. Bulletin, February 1974.

Carson, D.J.T., Jambour, J.L., Ogryzlo, P.L., and Richards, T. (1976). Bell Copper: Geology, Geochemistry and Genesis of a Supergene-Enriched Biotitized Porphyry Copper Deposit with a Superimposed Phyllic Zone in Porphyry Deposits of the Canadian Cordillera. Canadian Institute of Mining and Metallurgy Special Volume 15.

Carson, D.J.T. and Jambour, J.L. (1976). Morrison: Geology and Evolution of a Bisected Annular Porphyry Copper Deposit <u>in</u> Porphyry Deposits of the Canadian Cordillera. Canadian Institute of Mining and Metallurgy Special Volume 15.

Dirom, G.A. (1967). Geochemical and Magnetometer Report «K» Group of Mineral Claims Morrison Lake. British Columbia Ministry of Mines Assessment Report 1102.

Kahlert, B.H., and Fawley, A.P., 1968, Report on geological, geophysical and geochemical surveys and preliminary diamond drilling on the Trobuttle Mines Limited property, Morrison Lake. B.C. Min. of Energy, Mines and Petroleum Resources, Assessment Report 1854, 11 pp. plus appendices.

Kahlert, B.H., 1969, Morrison Lake area drilling results: Map prepared for Canadian Superior Exploration Ltd.

Kirkham, R.V. (1971). Intermineral intrusions and their bearing on the origin of porphyry copper and molybdenum deposits. Economic Geology Volume 66, pp. 1244-1249.

Newell, J.M., 1968, 1967 exploration report, Hearne Hill properties, Omineca Mining Division, B.C.: Report for Texas Gulf Sulphur Co.

Ogryzlo, P.L., 1991, 1990 diamond drilling program of the Hearne Hill breccia pipe: Report for Noranda Minerals Inc., 13 pp. plus appendices.

Ogryzlo, P.L., 1990, Geochemical and diamond drilling assessment of the Hearne Hill breccia pipe: Report for Noranda Minerals Inc., 17 pp. plus appendices.

Ogryzlo, P.(L., 15 January 1993. Letter to Chapman and Bland and Sumary for talk at Cordilleran Round Up (Jan. 1993).

Richards, T.A., 1990, Geology of Hazelton map area (93M): Geological Survey of Canada, OF 2322, map, two sheets.

Sampson, C.J., Report on Geology, Exploration Results and Potential of the Hearne Hill Property, 20 February 1993, for Booker Gold Explorations Ltd.

Smit, H., 1991, Diamond drill core log of hole 91-2: Log for David Chapman, 4 pp.

Tipper, H.W., and Richards, T.A., 1976, Jurassic stratigraphy and history of north-central British Columbia: Geological Survey of Canada, Bull. 270, 73 pp.

7. CERTIFICATE

1, Christopher J. Sampson, of 2696 West 11th Avenue, Vancouver, B.C., V6K 2L6, hereby certify that:

- 1. I am a graduate (1966) of the Royal School of Mines, London University, England with a Bachelor of Science degree (Honours) in Economic Geology.
- 2. I have practised my profession of mining exploration for the past 27 years in Canada, Europe, United States and Central America. For the past 17 years I have been based in British Columbia.
- 3. I am a consulting geologist. I am a registered member in good standing of the Association of Professional Engineers of British Columbia.
- 4. I have not written other reports on the Hearne Hill Property nor on other properties within 10 kms. of the claims.
- 5. The present report is based on study of published, unpublished reports, visits to the property, and supervision of work programmes in 1993.
- 6. I have not received, nor do I expect to receive any interest, direct or indirect, in the properties or securities of Booker Gold Exploration Ltd. or in those of its associated companies.
- 7. Booker Gold Explorations Ltd. and its affiliates are hereby authorized to use this report in, or in conjuction with, any prospectus or statement of material facts.
- 8. I have no interest in any other property or company holding property within 10 kilometres of the Hearne Hill property.

Vancouver, B.C. 20 November 1993 Christopher J. Sampson, P.Eng. Consulting Geologist

BAMPBON ENGINEERING INC. 2695 West 11th Avenue Vancouver, BC V6K 215

APPENDIX A

1991 Drill Assays

· · · · ·

.

BAMPBON ENGINEERING INC. 2696 West 11th Avenue Vancouver, B.C. V6K 2L6

Company:

Project:

Attn:

NINERAL ENVRONMENTS LABORATORIES (DIVISION OF ASSAYERS CORP.)

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS + ASSAYERS + ANALYSTS + GEOCHEMISTS

Assay Certificate

02-397

VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER B.C. CANADA V7M 1T2 TELEPHONE (604) 980-58 14 OR (604) 988-4524 FAX (604) 980-962 1

SMITHERS LAB .:

3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2N0 TELEPHONE (604) 847-3004 FAX (604) 847-3005

1S-0910-RA1

Date: OCT-12-91

copy 1. KENNECOTT CANADA, VANCOUVER, B.C.

2. KENNECOTT CANADA, TELKWA, B.C.

3. KENNECOTT CANADA, C/O MIN-EN LABS.

We hereby certify the following Assay of 30 CORE samples submitted OCT-04-91 by HANS SMIT.

KENNECOTT CANADA INC.

S.BISHOP/J.MARR/H.SMIT

Sample	*AU-FIRE	*AU-FIRE	au	SAMPLE INTERVAL
Number	g/tonne	oz/ton	%	(feet)
HH 201	.41	.012	3.254	15- 20
HH 202	.06	.002	1.238	20- 30
HH 203	. 04	.001	.904	30- 40
HH 204	. 68	. 020	1.668	40- 50
HH 205	.01	.001	. 788	50- 60
HH 206	.64	.019	3.403	60- 70
HH 207	. 65	.019	2.873	70- 80
HH 208	**1.88	. 055	4.080	80- 90
HH 209	**1.71	. 050	3.633	90-100
HH 210	**.74	. 022	2.981	100-110
HH 211	**1.57	.046	3.803	110-120
HH 212	.64	.019	3.010	120-130
HH 213	.66	.019	3.795	130-140
HH 214	.20	. 006	3.221	140-150
HH 215	.51	.015	3.745	150-160
HH 216	**13.75	. 401	1.327	160-170
HH 217	**.68	. 020	1.933	170-180
HH 218	**.38	. 011	. 969	180-190
HH 219	. 13	. 004	. 493	190-200
HH 220	. 18	. 005	.630	200-210
HH 221	**.42	.012	.612	210-220
HH 222	**1.30	. 038	1.709	220-230
HH 223	. 32	. 009	.639	230-240
HH 224	. 26	. 008	. 707	240-250
HH 225	.07	.002	. 462	250-260
HH 226	. 15	. 004	.371	260-270
HHH 227	. 19	. 006	.515	270-280
HH 228	.21	. 006	. 695	280-290
HH 229	. 17	. 005	. 303	290-300
HH 230	. 08	. 002	. 467	300-310

*AU = 1 ASSAY TON.

****SAMPLE MAY CONTAIN METALLIC GOLD.**

Certified by

MIN-EN LABORATORIES

Company:

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

Assay Certificate

VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB .:

3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2N0 TELEPHONE (604) 847-3004 FAX (604) 847-3005

1S-0910-RA2

Date: OCT-12-91

Copy 1. KENNECOTT CANADA, VANCOUVER, B.C.

Project: 02-397 Attn: S.BISHOP/J.MARR/H.SMIT

2. KENNECOTT CANADA, TELKWA, B.C.
 3. KENNECOTT CANADA, C/O MIN-EN LABS.

We hereby certify the following Assay of 5 CORE samples submitted OCT-04-91 by HANS SMIT.

KENNECOTT CANADA INC.

Sample	*AU-FIRE	*AU-FIRE	œ	
Number	g/tonne	oz/ton	%	
HH 231	.01	.001	.710	
HH 232	. 07	. 002	.248	
HH 233	. 03	.001	. 132	
HH 234	.07	. 002	. 305	
HH 235	. 09	. 003	.238	

*AU = 1 ASSAY TON.

Certified by in

MIN-EN LABORATORIES

COMP: KENNECOTT CANADA INC.

•

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

FILE NO: 15-0910-RD1+J2 DATE: 91/10/12

PROJ: 02-397

* CORE * (ACT:F31)

ATTN: S.BISHO	P/J.MAR	R/H.SH	417								(6	604)98	0-581	4 OR	(604)98	8-452	4										* C	ORE *	(A(J1:F31
SAMPLE	AG PPN	AL PFM	AS PPM	B PPN	BA PPM	BE PPM	B1 FPN	CA PPM	CD PPM	CO PPM	CU PPM	FE PPH	K PPM	LI PPH	MG PPM	MN PPH	MO PPM	NA PPM	N] PPM	Р РРМ	PB PPH	SB PPN	SR PPN	T H PPM	T1 PPM	V PPH	ZN PPM	GA S PPM PP	N N H PPI	I CR 1 PPM
HH 201 HH 202 HH 203 HH 204 HH 205	7.7 4.2 4.6 5.0 2.6	10590 7050 6400 8010 7020	112 80 136 150 102	12 <u>9</u> 8 8 9	88 31 20 17 33	.1 .1 .1	1 1 1 1	38750 39720 43720 36570 37760	.1 .1 .1 .1	6 5 6 8 11	25440 10239 7658 13777 7476	42710 29550 31770 34150 39690	2640 2490 1980 1810 2270	2	10420 11480 19920 13370 17920	1462 1483 1199 667 1189	40 23 34 88 88	90 60 90 90 80	3 9 10 7 24	3680 3230 4720 3030 940	55 35 31 30 37	18 7 5 10 4	75 62 91 74 51	1 1 1 1	26 19 19 23 23	27.6 25.2 34.3 24.1 46.9	114 107 114 105 168	1 1 1		46 40 48 62 73
ИН 206 НИ 207 НИ 208 НИ 209 НИ 210	7.5 6.0 8.0 7.1 6.9	6930 4610 4490 3920 5340	146 154 151 135 158	13 12 13 10 12	26 11 14 11 27	.) .1 .1 .1	1 1 1 1	46060 43650 47040 43670 43530	-1 .1 .1 .1	11 21 21 19 16	26876 22229 31488 27754 25039	44040 53490 56660 50250 43350	1540 1220 1050 760 970	1 1 1	22670 23160 24380 22050 21108	681 672 690 551 529	390 368 387 308 379	160 150 150 140 140	8 15 14 15 19	3770 880 1240 1480 1380	36 37 39 37 37	22 19 28 26 21	85 68 72 75 67	1	18 14 12 10 14	20.2 25.4 25.4 24.7 36.6	92 85 88 82 89	1 1 1 1	2 0	53 50 564 576
HH 211 HH 212 HH 213 HH 214 HH 215	7.4 5.9 6.1 7.4 5.2	5830 6210 5970 4980 4400	253 187 163 177 118	13 9 10 9 7	71 13 13 11 45	.1 .1 .1 .1 .1	1 1 1 1 1	43660 49460 45130 45800 43720	.1 .1 .1 .1	24 21 20 31 58	31281 23819 28208 23127 29044	55170 55080 51030 51490 65130	1370 1430 1260 1690 1210	1	23090 28660 23350 23400 22950	646 925 639 1469 881	393 238 283 191 75	140 190 140 130 130	34 19 27 17 20	750 1260 790 790 600	42 40 36 77 38	29 21 25 23 27	77 82 72 59 59	1 1 1 1	20 24 17 14 12	25.9 37.4 29.4 29.0 29.8	94 107 79 97 90	1 1 1 1	2 62 52 65 55 65 55 55 55 55 55 55 55 55 55 55	59 68 68 60 61
НН 216 НН 217 НН 218 НН 219 НН 220	9.5 4.4 2.9 3.6 4.5	5100 5020 5030 4870 5230	150 142 122 127 114	6 6 13 8 7	11 25 15 29 97	.1 .1 .1 .1	1 1 1 1	45760 53810 45720 43580 47060	.1 .1 .1 .1	60 18 115 19 24	11897 16110 8341 4124 5602	55850 50080 52180 42210 40610	1740 1480 1030 690 770		23500 30760 23760 21100 24830	1126 1275 843 526 590	43 91 463 290 264	130 170 120 120 120 140	13 9 13 20 15	1030 1430 1430 1050 1110	41 33 24 24 24 21	12 15 7 4 6	67 79 67 73 81	1 1 1 1	13 12 14 17 17	32.8 39.0 35.4 33.2 38.2	89 103 101 63 68	1 1 1 1	1 3 1 3 1 3	69 54 74 73 80
НН 221 НІ 222 НІ 223 НІ 224 НІ 225	3.4 3.9 3.2 2.9 2.2	4600 4230 4820 5530 5550	163 150 131 103 137	7 12 5 8 7	88 65 81 102 37	.1 .1 .1 .1	1 1 1 1	46570 47100 46860 45850 44820	.1 .1 .1 .1	30 32 19 23 29	5168 14122 5238 5957 4187	49900 63670 40310 37930 51560	750 970 800 910 890	1 1 1	24060 25310 23420 23560 23270	677 887 634 616 552	190 407 154 291 211	140 150 130 130 130	16 12 17 13 14	980 960 830 1090 1100	28 55 23 22 20	7 14 7 6 2	72 66 77 84 87	1 1 1	15 12 16 17 16	37.4 35.2 33.4 31.9 32.3	65 80 62 61 54	1 1 1 1		79 69 77 75 75
HH 226 HH 227 HH 228 HH 229 HH 229 HH 230	2.4 2.3 2.0 1.2 1.7	6250 5560 4010 4450 5250	157 303 163 64 23	4 7 3 2 2	39 23 30 18 43	.1 .1 .1 .1	1 1 1 1	41170 22580 35430 34130 26160	.1 .1 .1 .1	13 20 27 15 11	3377 4461 5897 2593 3990	40290 49100 35880 27900 20710	770 750 890 1150 1400	1	18180 12070 14250 12550 11960	430 356 307 286 166	94 215 95 66 25	90 80 90 110 180	14 16 15 14 22	950 930 780 780 860	17 18 14 12 12	1 2 3 1 1	92 71 58 49 46	1 1 1 3	23 22 15 13 13	31.8 24.1 50.0 41.8 47.8	54 60 46 45 61	1 1 1 1	1 3	72 51 73 63 53
HH 231 IH 232 IH 233 RH 234 IH 235	2.1 1.2 1.1 2.0 1.6	9990 9120 11530 11070 13150	23 111 95 1	18 18 6 4	29 24 32 834 455	.4 .5 .4 .1	1 2 9 11	23640 43420 39510 14730 13850	.1 .1 .1 .1	13 12 13 16 17	6610 2493 1444 2815 2293	26940 30980 35970 34110 44740	2380 1650 1780 5980 8890	1 1 1 3	12190 18790 15830 14880 18290	265 404 279 127 142	568 306 111 94 90	240 120 110 460 600	26 21 19 22 22	950 1060 1080 980 990	29 24 22 13 11	33111	74 66 92 128 605	2 1 1 1 1	33 28 51 294 1923	56.6 72.5 67.8 81.2 100.8	105 90 51 45 50	1 1 1 1	1 5 1 4 1 4 1 6 1 6	97 90 107 131 139
																• •														
								~~~~~																						
											£						····	,												

MIN-EN LABS --- ICP REPORT COMP: KENNECOTT CANADA INC. FILE NO: 15-0910-RJ1 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7H 1T2 FROJ: 02-397 DATE: 91/10/12 * CORE * (ACT:F31) (604)980-5814 OR (604)988-4524 ATTN: S.BISHOP/J.MARR/H.SMIT БA BE 81 CA CO CO CU FE κ ιι MG MN MO NA NI P PB SB SR TH TI V ZN GA SN W CR AU-WET AG AL AS В SAMPLE РРМ РРМ РРМ РРМ PPN PPN РРИ РРМ РРМ РРИ РРИ РРМ РРМ РРМ РРМ РРМ PPM PPM PPM PPM PPM PPM PPN PPN РРМ РРН РРМ РРН РРМ РРМ NUMBER PPB 224 33340 10970 1.8 20710 5 280 17 10180 16 30 19640 501 4 1180 27 1270 33 62 1 2620 110.4 98 29783 .1 .1 1 1 2 7 141 20 15 323 285 22 ...1 20.10240 127 36230 11420 18 20680 433 1 870 26 1370 19 90-1-3217-112.6 81 1.8 20000 .1 18 1 29784 1 3 5 107 4 3230 27 20370 15 18360 8 225 24370 760 543 3 790 3 1650 24 43 .1 1 2756 70.2 131 29785 2.2 5340 .1 1 3 4 93 4Õ 27 20370 486 13 16350 759 1.5 21720 276 19 11440 18 173 38830 11670 1 1310 26 1420 17 45 1 2948 117.4 91 .1 .1 1 20 25 2 5 117 29786 14 477 36500 7450 2 175 22 13120 .1 1 1090 13 1720 13 1 75 1 4069 120.9 88 2.0 13500 .1 3 5 92 29787 - 1 1 1.5 19170 23 229 .1 17 7820 .1 15 91 34230 11490 28 19460 386 1 1090 21 1300 14 1 29 1 2889 110.2 64 2 29788 1 5 119 5 41 23 34240 .1 30 61 52160 500 35 37030 827 1 360 74 2110 3 1 84 1 4044 110.8 66 29789 1,2 30680 .1 3 5 139 1 5 ,

### APPENDIX B

### 1993 ASSAYS AND ANALYSES:

•

.•

.

File Number	Date	Description
93-0965	1 June 1993	Percussion Holes PH1 to PH2
93-1712	3 August 1993	Chip Samples Trenches T93-2 to T93-5
93-1900	16 August 1993	Percussion holes PH13 to PH19
93-1907	17 August 1993	Trench T93-4 Float Samples
93-2646	1 October 1993	Chip Samples Trenches T93-7 and T93-14
93-2937	25 October 1993	Percussion holes PH20 and PH21

.

	DEPTH (FGET)	SAMPLE#	Cu ppm	Au* ppb	Average.
PH 12.	10 = 20 20 = 30 30 = 40 20 - 30 30 - 40	D 65051 D 65052 D 65053 D 65054 D 65055	929 1029 973 1227 1162	20 19 21 26 32	977 Cu 20 Au.
PH 11	40-50 50-60 60-70 70-30 80-90	D 65056 D 65057 D 65058 D 65059 D 65060	1174 1463 1339 1114 1095	31 42 36 51 28	1195 cu. 36 An.
842	90 - 100 20 - 30 30 - 40 40 - 50 50 - 60	D 65061 D 65062 D 65063 D 65064 D 65065	985 87 183 182 290	38 3 9 6 7	6 3 6 ² 8 7 ²
PH 10	60-70 70-80 80-90 90-100	RE D 65065 D 65066 D 65067 D 65068 D 65069	282 337 234 418 656	7 8 7 16 9	404 Cu 11 Mu
	100-110 110-120 120-130 130-140 140-150	D 65070 D 65071 D 65072 D 65073 D 65074	826 445 339 728 604	14 10 7 24 25	
PH9.	150-160 20-30 30-40 10-50 20-30	D 65075 D 65076 D 65077 D 65078 D 65079	323 118 147 125 194	9 8 7 6 5	130 Cu 7 Au.
P4 8	30-40 40-50 50-60 80-70 70-80	D 65080 D 65081 D 65082 D 65083 D 65084	249 255 333 382 266	7 6 7 11 7	243 G 7 An
	20-90 90-100	D 65085 D 65086 STANDARD C/AU-R	441 221 63	14 7 460	

Booker Gold Ltd. FILE # 93-0965 Page 2 AUP AMALYSIS BY

	305 - 20	DEDTH (FEET)	SAMPLE#	Cu ppm	Au* ppb	AVERAGE .
	PH 8	100 - 110 110 - 120 120 - 130 130 - 140 140 - 150	D 65087 D 65088 D 65089 D 65090 D 65091	281 145 124 153 111	11 7 4 5 5	243 cu 7 An.
	i de la della d	20 - 30 30 - 40 40 - 50 50 - 60 60 - 70	D 65092 D 65093 D 65094 D 65095 D 65096	703 397 421 481 709	25 17 9 11 15	554 cm 17 An.
	PH7	70 - 80 80 - 90 70 - 100 100 - 110	D 65097 D 65098 D 65099 D 65100 RE D 65100	869 449 427 243 244	21 11 11 8 10	
	PH 1	40 - 50 50 - 60 60 - 70 70 70 70 70 70	D 65351 D 65352 D 65353 D 65354 D 65355	147 96 123 50 63	9 14 15 9 8	89 cm 11 Am.
		90 - 100 30 - 110 40 - 50 50 - 60 60 - 70	D 65356 D 65357 D 65358 D 65359 D 65360	57 61 77 76 51	10 4 10 11 7	0 07 1
	PH2.	70-80 80-90 90-100 100-110	D 65361 D 65362 D 65363 D 65364 D 65451	26 59 90 84 613	6 7 9 9 37	92 cu 8 An,
	РН 7	120 - 130 130 - 140 140 - 150 20 - 30	D 65452 D 65453 D 65454 D 65455 D 65455	752 544 591 368 537	27 16 15 6	554 cm 17 Am.
•	PH 6.	40 = 50 50 - 60.	D 65457 D 65458 STANDARD C/AU-R	683 581 64	11 16 490	

Æ

Booker Gold Ltd. FILE # 93-0965

Page 3

ACHE ANALYT	ICAL						ACHE AMALYTICAL
		DEFTH (FEET)	SAMPLE#	Cu ppm	Au* ppb	average.	
	PHG	60-70 70-80 80-90 90-100 100-110	D 65459 D 65460 D 65461 D 65462 D 65463	428 279 244 324 214	8 8 5 7 4		
		110 - 120 120-130 130-140 140-150	D 65464 D 65465 D 65466 D 65467 D 65468	148 131 216 222 189	5 6 7 8 21	557 Cu · 8 Au ,	
HOLES	PH 3	20 - 30 30 - 40 40 - 30 50 - 60 60 - 70	D 65469 D 65470 D 65471 D 65472 D 65473	154 137 151 139 155	23 17 22 17 21	134 cm 19 Am.	
Nois		70-80 80-90 90-100 10-20	D 65474 D 65475 D 65476 D 65477 RE D 65477	54 94 130 151 147	12 18 18 13 13		
ERCUS		20 - 30 36 - 40 40 - 50 50 - 60 60 - 70	D 65478 D 65479 D 65480 D 65481 D 65482	94 65 244 718 111	16 16 38 140 17		
d d	PH4	70-90 20-90 40-100 100-110 100-120	D 65483 D 65484 D 65485 D 65486 D 65487	243 162 209 136 109	39 22 35 18 50	186 Cu. 37 Au	
the second	PH 5	120 - 130 130 - 140 140 - 150 150 - 160 30 - 40	D 65488 D 65489 D 65490 D 65491 D 65492	128 118 142 156 785	39 24 35 50 40		
	PH5	40-50 50-60	D 65493 D 65494 STANDARD C/AU-R	851 1167 62	44 58 480		
and the second se							

Sample type: CUTTING. Samples beginning 'RE' are duplicate samples.

	DEPTH (FEET)	SAMPLE#	Cu ppm	Au* ppb	AVERAGE.	
PH 5	60 - 70 70 - 80 80 - 90 90 - 100	D 65495 D 65496 D 65497 RE D 65497 D 65498	2691 2612 1930 2092 1500	110 310 80 72 53	1642 Cu	91 An .
	100-110	D 65499 NO NUMBER STANDARD C/AU-R	1153 79 60	55 7 510		
ample type: CUI	TING. Samples be	eginning 'RE' are d	uplica	te sam	ples.	
				16 16 17 17 17 17		
				9 H H H H		

. -

second data and the same of the second data		and the second	
ACME A	ANALYTICAL	LABORATORIES	LTD.

#### 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE(604)253-3158 FAX(604)253-1716

ASSAY CERTIFICATE

Booker Gold Ltd. PROJECT HEARNE HILL File # 93-1712 Page 1 1070 - 609 W. Hastings St, Vancouver BC

	SAMPLE#	% oz/t oz/t	
	E 209451 E 209452 E 209453 E 209454 E 209455	.083 <.01 .001 .067 <.01 .001 .050 <.01<.001 .039 <.01<.001 .125 <.01 .001	t LENGTH'S FROM ST GIAD OF TRENCH LETT AS SHOULN
	E 209456 E 209457 E 209458 E 209459 E 209460	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	*
TRENCH T93-2 X	E 209461 E 209462 E 209463 E 209464 E 209465	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CENTRE AND
	E 209466 E 209467 E 209468 E 209469 E 209470	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BRECCIA PIPE 85At 2.30% Cm.
	E 209471 E 209472 E 209473 E 209474 E 209475	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.012 oz/tAn 0.19 oz/l-Aq.
	E 209476 E 209477 E 209478 E 209479	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	AIDESITE.
TREACH T 93-3 (DIRCOVERY TREACH)	RE E 209479 E 209480 E 209481 E 209482 E 209483 E 209484	$\begin{array}{c} .300 < .01 & .003 & 10 - 15 \\ .217 < .01 & .002 & 15 - 20 \\ .248 < .01 & .003 & 5 - 25 \\ .112 & .05 & .001 & 25 - 27 \\ .119 < .01 & .001 & 27 - 33 \\ .242 < .01 & .001 & 33 - 37 \end{array}$	
	STANDARD R-1/AG-1/AU-1	.862 .97 .098	Contraction of the
1 GM SAMPLE LEACHE - SAMPLE TYPE: ROO	E BOORTBE D IN 50 ML AQUA - REGIA, ANALYSIS BY ICP. K <u>Samples beginning 'RE' are duplicate</u>	AG** & AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE.	3



Booker Gold Ltd. PROJECT HEARNE HILL FILE # 93-1712 Page 2

**AA** 

1 CH SAMPLE LEACHED SAMPLE TYPE: MOCK	SAMPLE#	Cu Ag** Au** % oz/t oz/t	NOR 1 A.T. SAMPLE.	
	E 209485 E 209486 E 209487 E 209488 E 209488 E 209489	.200 .01 .001 .055 <.01 .002 .031 <.01<.001 .020 .02<.001 .037 <.01<.001	37-41 41-50 50-54 60-70 70-80	FOOTWALL ZONE BX PIPE
(D'SCOVERI)	E 209490 E 209491 RE E 209491 E 209492 E 209493	.006 .01<.001 .015 .01<.001 .015 .01<.001 .172 .03<.001 .007 .02<.001	80-90 90-100 100-110 54-60	
	E 209494 E 209495 STANDARD R-1/AG-1/AU-1	.460 .11<.001 .451 .08<.001 .863 .99 .101	110-120, 120-130	CENTRE EX DIDE.
	Sample type: ROCK. Sam	ples beginning '	RE' are dupl	icate samples.
	E 209471 E 309472	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	076 - 1641 -	0. 0'2 02 1rg

	SAMPLE#	SAMPLE wt. gm	AU-100 NAT oz/t Au	IVE AVG. mg oz/t		
DATE RECEIVED: AL 27 1993 DATE R	E 209469 E 209472 E 209475	750 650 600	.049 .012 .016 <	.44 .066 .06 .015 .01 .016	TOYE, C.LEDNG, J.M	MA; CERTIFIED B.C. ASSATERS
	-100 MESH A - SAMPLE TY	U BY FIRE ASSA PE: ROCK REJ.	AY FROM 1 A.T. SAM	IPLE.		
DATE RECEIVED: AUG 30 1993 DATE R	EPORT MAILED: Se	ept 7/93	SIGNED BY.	C.h	TOYE, C.LEONG, J.WA	NG; CERTIFIED B.C. ASSAYERS
		,		2:01 :011		
TRevicH T93-5						

<u>Booke</u>	r Gold Ltd. PROJECT HEARNE 1070 - 609 W. Hastings St,	HILL Vancouver E	File # 93 ^{BC}	-1713	<u> </u>
	SAMPLE#	Cu %	Ag** Au** oz/t oz/t		-
	E 209496 E 209497 E 209498 E 209499 E 209499 E 209500	.729 2.544 .362 .599 .882	.17 .007 .78 .005 .01 .002 <.01 .005 .10 .003	130 -140 140 -143 143-150 150 - 158:5 158:5 - 162:5	HW ZONE BY PIPE
TRENCH T 93-3	E 209801 E 209802 E 209803 E 209804 E 209805	1.4151.0132.594.266.240	.18 .009 .22 .020 .30 .004 <.01 .003 <.01 .057	162:5-170. 170 - 175 175 - 180 180 - 190 190 - 200	B,F.P
(D'SCOVERY)	E 209806 E 209807 E 209808 F E 209809 F E 209810	.366 .528 .011 .052 .052	<.01 .010 .07 .004 <.01 .001 <.01<.001 <.01 .001	200-210 210-220 90-100. 280-290 290-300	ALTGRAMON SHEAR
T 93-4	E 209811 RE E 209811 E 209812 E 209813 E 209814	.061 .065 .043 .085 .120	<.01 .001 <.01 .001 <.01 .003 <.01 .002 <.01 .001	300-310 310-320 370-330 380-340	BRECCIOTED ZON. GAST GUD OF TRENC
TRENCH T93-5	E 209815 E 209816 E 209817 E 209818 E 209819	.234 .214 .174 .209 .288	<.01 .007 <.01 .004 <.01 .002 <.01 .003 <.01 .005	100 - 110 150 - 160 160 - 170 170 - 180 180 - 190	7 ANDESITE
DATE RECEIVED: AND 30 1993 DATE B	E 209820 E 209821 E 209822 E 209823 E 209823 STANDARD R-1/AG-1/AU-1	.085 .128 .226 .099 .855	<.01 .014 <.01 .001 .01 .002 <.01 .003 .97 .102	290-300 300-310 310-320 320-330	ALTERATION ZONE GAST END OF TREM
1 GM SAMPLE LEAC - SAMPLE TYPE: R	HED IN 50 ML AQUA - REGIA, ANALYSIS BY ICP.	AG** & AU**	BY FIRE ASSAY F	ROM 1 A.T. SAMPLE.	
DATE RECEIVED: JUL 27 1993 DATE R	EPORT MAILED: July 30/93 sid	SNED BY.		.TOYE, C.LEONG, J.WAN	G; CERTIFIED B.C. ASSAYERS

SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	۷	Ca	P	La	Cr	Mg	Ba	Ti	В	AL	Na	K	W
E 200808	ppm 2	80	12	156	ppm 6	160	312	ppm 7863 10	14	68	<pre>ppin</pre>	ppm	ppm	200 ppm	ppm	ppm 2	ppm	ppm 5	32	146	ppm z	ppiii 5	05	ppiii 8	< 01	ppm 5	32	/6 < 01	17	ppm
DATE REC	EIVE	ICP THI ASS - S	5 S LEA AY RE AMPLE JUL	00 GR CH IS COMME TYPE 27 19	AM SA PART NDED : ROC	MPLE FOR R K DATE	IS DIO OR MN OCK AN	GESTED FE SR ND CORE	VITH CA P SAM	3ML LA C PLES	3-1-2 R MG I IF CU	HCL- BA TI PB Z	HNO3- I B W ZN AS	H20 A AND L > 1%,	T 95 IMITE AG > SI	DEG. ( D FOR 30 PI	C FOR NA K PM & A D BY	one and au >	HOUR AL. 1000 H	AND IS	DIL	UTED DYE,	TO 10 C.LEO	ML W	VITH V	ATER.	TIFIE	D B.C.	. Ass	AYERS
												1-1112-1-1120																		

	SAMPLE#	Cu %	Au** ppb	
20-30	D 65901 D 65902 D 65903 D 65904 D 65905	.132 .153 .117 .112 .096	45 40 32 34 26	
PH 18.	D 65906 D 65907 D 65908 D 65909 D 65910	.102 .212 .124 .111 .094	21 51 37 37 16	0.115% cm. 34 ppb.
20-200.	D 65911 D 65912 D 65913 D 65914 D 65915	.129 .112 .102 .107 .095	33 25 30 56 73	
190 - 200 20 - 30	D 65916 D 65917 RE D 65917 D 65918 D 65919	.090 .106 .105 .083 .135	20 25 30 17 51	
	D 65920 D 65921 D 65922 D 65923 D 65924	.161 .173 .155 .125 .125 .117	61 84 77 69 46	20-210 Ft. 190 Ft
PH 17 _	D 65925 D 65926 D 65927 D 65928 D 65929	.136 .135 .123 .120 .115	49 41 38 73 42	0.126% cm. 54 ppb.
170-180	D 65930 D 65931 D 65932 D 65933 D 65933 D 65934	.129 .107 .096 .099 .148	65 30 35 39 56	
TISANA	STANDARD R-1/AU-R	.861	488	
1 GM SAMPLE LEACHED IN 50 ML AG - SAMPLE TYPE: CUTTING Same	NUA - REGIA, ANALYSIS BY ICP. AU*	* ANALYSIS	BY FIRE AS	SAY/ICP FORM 10 GM SAMPLE.

Sample type: C	Prainc. Samp	es beginn	SAMPLE#	Cu Au** % ppb	a samples.	
	PH 17	200-210	D 65935 D 65936 D 65937	.112 53 .100 51 .111 57		
Sample type: C	UTTING.					



Booker Gold Ltd. PROJECT HEARNE HILL FILE # 93-1900

		CANDE D#			ACHE ANALY
	i i î	SAMPLE#	ču %	11	
P4 1 120-	120-130 5 200 -	D 65001 D 65002 D 65003 D 65004 D 65005	.018 .019 .029 .031 .027	120 - 200	80Ft 0.025% cm.
	190-Zen 20 - 30	D 65006 D 65007 D 65008 D 65009 D 65010	.021 .026 .031 .014 .014		
		D 65011 D 65012 D 65013 D 65014 D 65015	.012 .013 .024 .037 .030		
7419.	-	D 65016 D 65017 D 65018 D 65019 D 65020	.047 .040 .032 .034 .032	20 - 210	190 Ft 0.028 % Cu.
		D 65021 D 65022 D 65023 D 65024 D 65025	.037 .041 .042 .031 .031		
	200-210	D 65026	.026		2
PH 16	150-160	D 65851 D 65852 D 65853 D 65854	.055 .104 .107 .082	150 - 200	50ft 0.077% cu.
2017년 201	190-200	D 65855	.038		
PH 13	30-40.	D 65856 RE D 65856 D 65857 D 65858	.264 .265 .286 .256		
5.9	70 - 80	D 65859 D 65860 STANDARD R-1	.290 .237 .860		

**£**£

se rector de la Se		SAMPLE#	Cu %			
	80-90	D 65861 D 65862 D 65863 D 65864 D 65865	.179 .308 .207 .188 .214			•
PH 13.	-	D 65866 D 65867 D 65868 D 65869 D 65870	.182 .143 .119 .151 .172	30 - 200	170ft	0.214 % Cm.
	140-200	D 65871 D 65872 D 65873 D 65874 D 65875	.215 .232 .014 .060 .088			
	mples bedin	D 65876 D 65877 D 65878 D 65879 D 65880	.081 .130 .159 .138 .146	20 0 -	10.1	
PH 14	11.9 -11.0	D 65881 D 65882 D 65883 D 65884 D 65885	.162 .156 .178 .196 .171	20 - 200	18077	U.164 15 La .
Ba (e	190-200	D 65886 D 65887 D 65888 D 65888 D 65889 D 65890	.211 .258 .297 .265 .242	20 = 150 B	(jo 6-	er and a
PH 15	20-30 .	D 65891 D 65892 D 65893 D 65894 RE D 65894	.142 .143 .110 .130 .128	20-120	100 Ft	0.083% Cu
PN 15	70-80	D 65895 D 65896 STANDARD R-1	.132 .069 .848			



----

Booker Gold Ltd. PROJECT HEARNE HILL FILE # 93-1900

ACHE ANALYTICAL		ACHE ANA	ALYTICAL
Samle type: CUTTING. Samples beginni	SAMPLE#		1
PH 15	D 65897 D 65898 D 65899 D 65900 D 65938	.037 .020 .026 .030 .125	_
5°30	D 65939 D 65940 D 65941 D 65942 D 65943	.072 .086 .094 .076 .088	
P1416 -	D 65944 D 65945 RE D 65945 D 65946 D 65947	.084 .054 .054 .054 .063 .045	
140-150,	D 65948 D 65949 D 65950 STANDARD R-1	.050 .081 .054 .840	
<u>Sample type: CUTTING. Samples beginni</u>	<u>.ng 'RE' are du</u>	<u>iplicate samples.</u>	
60-00 1			
Booker Gold Ltd. PR			

V										GEOCH	EMIC	CAL	ANA	lys	IS CE	RTII	<b>ICA</b>	TE											
					Bog	oker	<u>: G</u>	<u>old</u>	Lto	1. PRO 1070	JEC] - 609	<u>C HE</u> W. Has	ARN tings	<u>E H</u> St,	ILL Vancouve	Fil€ r BC V	≥ # 6B 4₩4	93-	190	7	Paç	je	1						Ý
AMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As U	Au	Th	Sr	Cd	Sb Bi	۷	Ca	P	La	Cr	Mg	Ba	Ti	В	Al	Na	K	W /	•س
205001	ppii	1/2	17/	2042	1.4	ppin 30	ppin	022	6 1. 22	/77 <5	ppin	ppin	ppiii	ppiii	14 Z	ppin	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	^ 025		21	λ μ 15		<i>/</i>	ppill	71	 	<i>7</i> 01	ppm	pp
203701		145	134	LUUL				/==	4.25				<u> </u>	7.0						<u> </u>		<u> </u>	.01			.00	.01		
		I T A	CP - HIS LI SSAY I SAMPI	.500 EACH RECON	GRAM IS PA MENDE (PE: R	SAMPL RTIAL D FOR OCK	E IS FOR ROCI	DIGES MN FE K AND U** AN	TED W SR C CORE ALYSI	ITH 3ML 3 A P LA CR SAMPLES I S BY FA/I	-1-2 H MG BA F CU P CP FRC	CL-HNO TIB BZNA M 10 G	3-H20 W AND S > 1 M SAM	AT S LIM %, AG	P5 DEG. C ITED FOR G > 30 PP	FOR O NA K A M & AU	NE HOU ND AL.	IR AND	ISI	ILUTED	TO 1	IO ML	WITH	WATE	ER.				
DATE R	ECEI	VED:	AU	G 10	1993	DA	TE 1	REPOI	RT M	AILED:	Hi	g 1,	1/9:	5.	SIGNED	BY.	- · · ·	<u>~~~</u>	]0	.TOYE,	C.LE	ONG,	J.WA	NG; C	CERTIF	IED B	.C. A	SSAYE	RS
												v	1						•										

ACME ANAL	LYTICAL LABORATORIES LTD.	852 E. HASTINGS ST.	VANCOUVER B.C. V6A 1R6	PHONE(604)253-3158	FAX(604)253-1716
AA		ASSAY C	ERTIFICATE		AA
	<u>Booker Gol</u>	d Ltd. PROJECT HEAF 1070 - 609 W. Hasti	NE HILL File # 93-1 ngs St, Vancouver BC V6B 4W4	907 Page 2	ŤŤ
		SAMPLE#	Cu Ag** Au** % oz/t oz/t		
		E 205902 E 205903 E 205904 E 205905 RE E 205905	.812 .04<.001 .582 .06 .002 20.603 1.75 .146 .075 <.01 .001 .071 <.01 .001	FLAT SAMPLES TREM AUGUST 1993	исн T93-4
DATE R	1 GM SAMPLE LEACHEN - SAMPLE TYPE: ROC ECEIVED: AUG 10 1993 DATE REN	D IN 50 ML AQUA - REGIA, ANALYS K <u>Samples beginning 'RE' ar</u> PORT MAILED: <i>JUG</i> / 17/0	IS BY ICP. AG** & AU** BY FIRE ASS e duplicate samples.	Y FROM 1 A.T. SAMPLE.	IFIED B.C. ASSAYERS
dyte e					
6 508601					
cixis/Ex					
<i>₩</i>	Booker dol	GROCKERIOVE M	NE HIT LEC AN	907 . Page 1	₩
		A CONTRACTOR AND A CONTRACTOR	A REAL PROPERTY AND A REAL	* 4	

ANALYTICAL LABORATORIES LTD.	852 E. HASTINGS ST. VANCOU	VER B.C. V6A 1R6 PHONE(604)25:	3-3158 FAX(604)253-1716
BC BC	Doker Gold Ltd. File # 1070 · 609 W. Hastings St. V	93-2937 Page 1 ancouver BC V6B 4W4	<b>44</b>
	SAMPLE#	Cu Au** % oz/t	
20-30.	D 65751 D 65752 D 65753 D 65754 D 65755	2.058 .026 4.535 .029 2.064 .020 2.234 .019 1.966 .036	
	D 65756 D 65757 D 65758 D 65759 D 65760	2.121 .015 2.836 .014 2.005 .016 2.442 .009 2.468 .019	
P# 20 -	D 65761 D 65762 D 65763 D 65764 D 65765	2.495 .017 1.857 .023 1.549 .006 1.472 .005 1.303 .004	
	D 65766 D 65767 D 65768 D 65769 D 65770	1.216 .009 1.194 .005 .951 .006 1.193 .004 2.206 .008	
240-250	D 65771 D 65772 RE D 65772 D 65773 D 65774	2.016 .012 3.058 .014 3.100 .015 2.503 .011	
74-21	D 65775 D 65776 D 65777 D 65777 D 65778 D 65779	.718 .012 .819 .006 .700 .009 .563 .005 .439 .003	
110-120 .	D 65780 D 65781 D 65782 D 65783 D 65784	.432 .003 .480 .008 .531 .012 .444 .002 .368 .003	
PU 21	STANDARD R-1/AU-1	.849 .098	
1 GM SAMPLE LEACHE - SAMPLE TYPE: CUT DATE RECEIVED: OCT 18 1993 DATE REPO	ED IN 50 ML AQUA - REGIA, ANALYSIS BY TTING <u>Samples beginning 'RE' are di</u> RT MAILED: Oct 25/93 S	ICP. AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. uplicate samples. IGNED BYD.TOYE, C.LEONG, J.W	ANG; CERTIFIED B.C. ASSAYERS

	T CH SAMPLE LEACHED 1	SAMPLE#	Cu Au** % oz/t	
	PH 21 . 140-	D 65785 D 65786 D 65787 EE D 65787 RE D 65787	.441 .003 .316 .001 .331 .005 .329 .003	
Sample type: CUT	TING. Samples	beginning 'RE' a	<u>re duplicate samples.</u>	
		D 65775 D 65776 D 65776 D 65776 D 65776 D 65779	718 012 819 006 700 009 563 005 439 005	
			2.016 012 9.058 014 9.100 015 2.503 011 2.503 011 050	

ACME ANALYTICAL	LABORATORIES LTD.	852 E. H <u>Booke</u> 1070	ASTINGS ASS r Gold - 609 W.	ST. VANC AY CERT: Ltd. Hastings St,	OUVER B.C IFICATE File # 9 Vancouver	2. V6A 1 93-2646 BC V6B 4W4	R6	PHONE(604)253-3158	FAX (604) 253-1716
		SAMPLE#	Cu %	SAMPLE wt. gm	AU-100 oz/t	NATIVE Au mg	AVG. oz/t		
	1F.C. (H T 93-14	73472 B 73473 B 73474 B 73475 B 73475 B 73476 B	.212 2.349 2.706 .533 .307	620 670 530 670 560	.002 .019 .040 .010 .004	<.01 .02 .02 <.01 <.01	.002 .020 .041 .010 .004	60-65 65-70. 40 ft 70-80 20-90. 1.2110 Cu 90-100	(Contracts Measured) FROM OD OT NWEND) DOIL OF AU
	TRENCHT93-7	<b>€</b> 85948 B 85949 B	.218 .317	620 590	.002	<.01 <.01	.002	0-10] 0.26	7 Cm, 0.003 An.

1 GM SAMPLE LEACHED IN 50 ML AQUA - REGIA, ANALYSIS BY ICP. -100 MESH AU BY FIRE ASSAY FROM 1 A.T. SAMPLE. NATIVE AU BY FIRE ASSAY FROM TOTAL SAMPLE. - SAMPLE TYPE: ROCK