094E/13 Bill Property

Core Re-Logging and Sampling (Equity Engineering 2001)

1

About a third of the 1983-84 drill core was re-examined in 2001, with an emphasis on holes 84-3, -4 and -5. Notes on mineralized sections are attached in Appendix D.1. A few more sections were split for analysis, covering previously unsampled mineralization and clarifying sampling problems. Including the new samples, the following table summarizes significant intersections (>1 g/tonne Au over 2 metres) from the 1983-84 drilling; intersections equating to >10 g/tonne Au over 3 metres are highlighted.

Hole	•	From	То	Length	Au	Ag	As	Cu	Pb	Sb	Zn
		(m)	(m)	(m)	(g/tonne)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
83-1		76.00	78.00	2.00	4.3	N/A	2500	N/A	N/A	N/A	N/A
		102.00	104.00	2.00	12.5	N/A	300	N/A	N/A	N/A	N/A
		132.00	134.00	2.00	2.9	N/A	<100	N/A	N/A	N/A	N/A
83-2		50.00	62.00	12.00	6.7	N/A	6617	N/A	N/A	N/A	N/A
	incl.	52.00	54.00	2.00	35.0	N/A	11500	N/A	N/A	N/A	N/A
		92.00	98.00	6.00	5.0	N/A	5733	N/A	N/A	N/A	N/A
	incl.	94.00	96.00	2.00	11.9	N/A	4000	N/A	N/A	N/A	N/A
		106.00	122.00	12.00	1.7	N/A	3533	N/A	N/A	N/A	N/A
	incl.	120.00	122.00	2.00	5.1	N/A	12400	N/A	N/A	N/A	N/A
		130.00	136.00	6.00	1.2	N/A	6767	N/A	N/A	N/A	N/A
		166.00	168.00	2.00	1.3	N/A	2600	N/A	N/A	N/A	N/A
		186.00	190.00	4.00	1.0	N/A	3100	N/A	N/A	N/A	N/A
83-3		14.00	16.00	2.00	1.2	N/A	200	N/A	N/A	N/A	N/A
		58.00	62.00	4.00	1.6	N/A	2100	N/A	N/A	N/A	N/A
		64.00	66.00	2.00	1.1	N/A	2200	N/A	N/A	N/A	N/A
		114.00	116.00	2.00	1.7	N/A	1200	N/A	N/A	<u>N/A</u>	<u>N/A</u>
83-4		16.00	18.00	2.00	1.2	N/A	<100	N/A	N/A	N/A	<u>N/A</u>
83-6		60.00	62.00	2.00	13.8	N/A	5500	N/A	N/A	N/A	N/A
		116.00	128.00	12.00	6.1	N/A	2150	N/A	N/A	N/A	N/A
	incl.	116.00	120.00	4.00	11.0	N/A	2300	N/A	N/A	N/A	N/A
	and	126.00	128.00	2.00	12.0	N/A	7400	N/A	N/A	N/A	N/A
		208.00	210.00	2.00	2.5	N/A	<100	N/A	N/A	N/A	N/A
		222.00	224.00	2.00	1.3	N/A	400	N/A	N/A	N/A	N/A
84-1		76.40	78.40	2.00	1.6	0.1	3500	8	2	1	22
84-2		51.80	53.80	2.00	1.0	0.4	>10000	10	2	1	22
		88.20	90.20	2.00	1.4	0.2	210	9	1	1	28
		133.20	139.20	6.00	1.8	0.1	3537	16	1	1	34
		145.90	148.10	2.20	2.6	<0.1	2700	15	1	1	66
		179.20	181.20	2.00	1.4	<0.1	6300	47	7	1	26
		183.20	186.70	3.50	10.3	0.1	633	21	3	1	37
	incl.	183.20	185.20	2.00	16.5	0.2	500	14	4	1	24
		208.40	214.40	6.00	5.9	0.3	3583	41	2	1	69
	incl.	212.40	214.40	2.00	15.6	0.2	850	38	1	1	66
84-3		63.30	73.30	10.00	1.8	0.4	2548	36	3	1	36
		105.50	107.50	2.00	5.5	0.6	2350	44	1	1	36
		111.50	113.50	2.00	2.0	0.6	5400	46	5	1	50
		145.00	146.00	1.00	1.6	0.2	>10000	24	1	1	26
84-4		9.14	14.00	4.86	2.4	0.1	5643	34	1	1	47
		109.30	110.00	0.70	1.4	-0.1	1540	26	1	1	40
		172.50	173.00	0.50	25.6	6.2	28300	12	178	74	144

1983-84 Drilling: Significant Intersections

Hole		From	То	Length	Au	Ag	As	Cu	Pb	Sb	Zn
		(m)	(m)	(m)	(g/tonne)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
84-5		48.50	51.50	3.00	12.7	0.4	2500	64	4	1	44
	incl.	48.50	50.00	1.50	24.7	0.1	2600	60	4	1	26
		130.80	132.90	2.10	4.1	7.9	>5000	760	15	140	48
		179.90	181.90	2.00	1.5	0.2	>5000	22	3	1	32
		233.70	234.70	1.00	3.5	0.4	>5000	82	7	1	38
		244.40	244.60	0.20	9.3	1.8	9900	7	4	2	10
		268.50	270.50	2.00	1.1	0.2	2900	32	7	1	60
84-6		87.20	87.50	0.30	1.8	<0.1	50	34	1	1	48
		108.00	108.50	0.50	4.2	<0.1	4600	30	2	1	62
		114.60	116.60	2.00	1.3	<0.1	2300	22	1	1	60
84-7		31.30	32.30	1.00	2.1	28	4600	1550	4	24	54
		65.80	66.10	0.30	21.1	0.8	>5000	98	15	2	38
		91.10	99.10	8.00	1.1	0.2	3925	31	1	1	46
		102.30	104.30	2.00	5.0	0.5	4600	52	1	1	36
		111.8	114.9	3.10	7.8	0.2	4690	15	1	1	41
	incl.	111.80	113.30	1.50	15.5	0.3	>5000	18	1	1	40
		125.2	129.2	4.00	3.6	0.2	2495	22	15	1	48
	incl.	127.20	129.20	2.00	6.5	0.2	4500	22	26	1	45
84-8		16.10	18.20	2.10	1.9	0.4	3900	68	8	1	70
		29.00	36.10	7.10	7.9	0.1	2921	23	3	1	76
	incl.	31.90	33.90	2.00	24.8	0.1	3000	24	4	1	70
		48.20	50.60	2.40	4.5	3.0	>5000	36	142	2	1220
		63.70	65.70	2.00	2.9	0.1	2050	16	1	1	96
		168.00	169.40	1.40	2.2	<0.1	1600	6	1	1	72
84-9		113.60	115.60	2.00	1.9	0.9	>5000	34	52	3	66
		152.60	154.60	2.00	2.0	0.8	>5000	40	37	1	46

The following table summarizes intersections with >50 metres exceeding 0.5 g/tonne Au. Some of them are simply an artefact of spreading a few gold-rich intervals over a broad intersection. However, some drill holes contain extensive widths of low-grade gold values due to multiple vein swarms and gold-bearing alteration. Despite the incomplete assaying for the 1984 holes, which lowers the average gold grade reported below, these broad low-grade intersections indicate potential for a bulk-mineable target at the T-Bill prospect.

Hole	From	То	Length	Au	Ag	As	Cu	Pb	Sb	Zn
	(m)	(m)	(m)	(g/tonne)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
83-1	60.00	176.00	116.00	0.58	N/A	93	N/A	N/A	N/A	N/A
83-2	50.00	198.73 ⁵	148.73 ⁵	1.17	N/A	2381	N/A	N/A	N/A	N/A
83-6	60.00	224.00	164.00	0.73	N/A	1383	N/A	N/A	N/A	N/A
84-2	57.80	218.20 ⁵	166.40 ^{1.5}	0.62	0.1	809	12	1	1	25
84-3	29.00	113.50	84.50	0.56	0.5	1544	35	15	1	43
84-5	48.50	135.50	87.00 ²	0.61	0.5	682	60	5	4	34
84-7	65.80	129.20	63.40 ³	1.02	0.1	1272	9	1	θ	16
84-8	9.70	85.0	75.30 ⁴	1.07	0.2	1043	12	15	0	122

¹Only 92.7 metres have been sampled; the remaining 73.7 metres were assigned zero grade. ²Only 60.3 metres have been sampled; the remaining 26.7 metres were assigned zero grade. ³Only 21.0 metres have been sampled; the remaining 42.4 metres were assigned zero grade. ⁴Only 31.5 metres have been sampled; the remaining 43.8 metres were assigned zero grade. ⁵End of hole (bottomed in mineralization)

	2002 Grid Coordinate		2 Grid Coordinate					
DDH #	Easting	Northing	Az./Dip	EOH(m)	Comments	3D IP Response		
83-1	8950	10130	180N/-45	209.1	tested a 500 ppb Au and 1000 ppm As soil anomaly (intersected 116m @ 0.58 g/t Au)	drilled into a near surface chargeability high coincident with a large resisitivity high		
83-2	8965	9930	090N/-45	198.7	tested a 5000 ppb Au and 2000 ppm As soil anomaly (intersected 149m @ 1.17 g/t Au)	drilled into a chargeability low and resistivity high		
83-3	9100	9660	090N/-45	189.9	tested a 500 ppb Au and 500 ppm As anomaly	drilled into a chargeability low directly above a flat-lying chargeability high; coincident resistivity high		
83-4	8460	9760	090N/-45	167.9	tested a 500 - 1000 ppm As soil anomaly	drilled through the top portion of a large chargeabilty high in the south portion of the grid; resistivity low here also		
83-5	8950	10130	000N/-45	112.2	tested a 500 ppb Au and 1000 ppm As soil anomaly	drilled through a small, near surface chargeability high and coincident resistivity high		
83-6	8875	9990	090N/-45	296.9	tested a 500 ppb Au and 1000 ppm As soil anomaly (intersected 166m @ 0.62 g/t Au)	drilled through the lower portion of a buried chargeability high and resistivity high		
84-1	8875	9990	090N/-70	196.6	tested continuity and grade of mineralized zones intersected in 1983 drilling	drilled chargeability low between two buried chargeability highs; the area is also a resistivity low		
84-2	9070	10100	270N/-45	218.2	tested continuity and grade of mineralized zones intersected in 1983 drilling (intersected 164m @ 0.73 g/t Au)	drilled through the same high chargeability/resistivity anomaly as 83-6		
84-3	8985	9930	000N/-45	184.1	tested continuity and grade of mineralized zones intersected in 1983 drilling (intersected 85m @ 0.56 g/t Au)	drilled into chargeability low and resistivity high		
84-4	9050	9750	000N/-45	207	tested continuity and grade of mineralized zones intersected in 1983 drilling	drilled into chargeability low situated above a flat-lying chargeability high (see ddh 83-3); coincident resistivity high		

-

	2002 Grid Coordinate					
DDH #	Easting	Northing	Az./Dip	EOH(m)	Comments	3D IP Response
84-5	9110	9850	000N/-45	314.9	tested continuity and grade of mineralized zones intersected in 1983 drilling (intersected 87m @ 0.61 g/t Au)	drilled through bottom portion of a near surface chargeability high; resistivity here is a transition from high (north) and low to high (south)
84-6	9090	10000	000N/-45	214.6	tested continuity and grade of mineralized zones intersected in 1983 drilling	drilled into a chargeability low and resistivity high
84-7	8980	10070	180 N /-60	160.3	tested continuity and grade of mineralized zones intersected in 1983 drilling (intersected 63m @ 1.02 g/t Au)	drilled through a large chargeability anomaly with coincident resistivity high
84-8	9235	9940	000N/-45	186.8	tested continuity and grade of mineralized zones intersected in 1983 drilling (intersected 75m @ 1.07 g/t Au)	drilled into a chargeability low, coincident with a change in resistivity from high (north) to low (south)
84-9	8670	9770	000N/-45	165.8	tested continuity and grade of mineralized zones intersected in 1983 drilling	drilled into chargeability low situated above a flat-lying chargeability high (see ddh 83-3); coincident resistivity high

• ·

.

-