DIAMOND DRILL CORE LOGGING REPORT for
Drill Holes 87-1, 87-3 and 87-8
on the MACKTUSH PROPERTY
Alberni Mining Division
Latitude: $49^{\circ} 08^{\prime}$ North
Longitude: $124^{\circ} 52^{\prime}$ West
NTS: 92F/2W
for
SYMC Resources Ltd.
By John Wilson, F.G.A.C.

May 21, 1991

Table of Contents

page
Introduction 1
History of Diamond Drilling Reports 1
Core Logging Background 1
Drill Core Geology 2
Split Core 2
Conclusions 3
References 3
Certificate 3
APPENDIX I
Diamond Drill Logs for Holes 87-1, 87-3 and 87-8
APPENDIX II
Letter to Frank Loring, P.Eng. from J. Wilson, April, 1991.
Letter to Herb McMaster from Frank Loring, P.Eng., May, 1991.
Table of footage measurements and metric equivalents.
APPENDIX III
Previously reported core sample intervals.
APPENDIX IV
Table of "true width" sampling information.

Introduction

The Macktush property, south of Port Alberni, B.C. is owned by SYMC Resources Ltd. It consists of ten Modified Grid mineral claims in the Alberni Mining Division. Exploration and other studies have taken place on the property since 1982, largely on the COPPER 102 claim (record number 1911) which has an expiry date of October 31, 1991. This report presents recent diamond drill logs for holes numbered 1,3 and 8 , which were drilled and split in 1987.

History of Diamond Drilling Reports

In April of 1990 the writer, at the request of SYMC Resources Ltd., compiled results from diamond drilling, trenching and chip sampling that had been undertaken during the previous few years (Wilson,1990). The compilation included a field survey of positions of drill hole collars, trenches and portals. No exploration reports were available for the compilation and some of the data provided by SYMC Resources Ltd. was verbal. For example, some drill hole collars and trenches were located and surveyed in the field; other sites, under snow at the time, were identified by the president of SYMC Resources Ltd. and then surveyed. Assays were provided by certified commercial laboratory reports dated 1988. A table of sample information (Appendix IV), provided by SYMC Resources Ltd., listed chip sample and drill core assays across true widths. The true width measurements were used in the compilation for chip sampling information but could not be used to plot intersections on drill hole cross-sections. Instead, the sampling interval for drill core from holes 87-1, 87-3 and 87-8 was provided verbally by the president of SYMC Resources Ltd (Appendix IH).

In June of 1990, core from drill hole 88-5 was logged and sampled by N.C. Carter, Ph.D, P.Eng. for part of a geological report on the property (Carter,1990).

In December, 1990, at the request of SYMC Resources Ltd, the writer logged core from drill holes 87-1, 87-3 and 87-8. This report describes the drill core geology and the probable intervals of split core.

Core Logging Background

Following drilling in 1987, most of the core boxes were stored on the mineral claims. Boxes containing split sections from holes $87-1$ and $87-3$ were stored at the Port Alberni premises of SYMC Resources Ltd. In the ensuing years some of the contents of boxes stored on the claims had been lost when they tipped over while unattended. On December 12,1990 Herb McMaster of SYMC Resources Ltd. and the writer moved the remaining boxes of core to the Port Alberni premises of SYMC Resources Ltd. for the purpose of geological logging. All boxes were weather beaten from being stored outside.

Boxes from Hole 87-1 were all found to be labelled with hole number and footage. Of the 24 boxes that comprise the hole, core was found in boxes numbered 2 and 13 to 24 . A brief examination of the pile of jumbled, loose core at the field storage site revealed only quartz diorite with occasional inclusions of andesitic volcanic; no significant veining, alteration or mineralization was apparant.

All seven boxes comprising Hole 87-3 were found to be labelled with hole number and footage. Very minor core was missing.

John R. Wilson, F.G.A.C. Consulting Geologist

All 19 boxes comprising Hole 87-8 were found to be labelled with hole number and footage except box 13 which had no readable markings. Minor core was missing from the boxes. The designation of an unlabelled box as the thirteenth of Hole 87-8 was based on:

1. the geological continuity of drill core between the unmarked box and adjacent boxes 2. the position of a split section in the unmarked box which approximates the interval reported by Frank Loring, P.Eng. (Appendix II)
2. a statement from the president of SYMC Resources Ltd., identifying it as the thirteenth box

Drill Core Geology

Holes 87-1, 87-3 and 87-8 were drilled to depths of approximately 133, 41 and 106 metres respectively. Drill logs for the three holes are in Appendix I. Figures showing locations of the drill holes are in a report by Carter (1990) after a compilation map by Wilson (1990).

Split sections of core containing quartz veining, usually with fragments of silicified andesitic volcanic and minor quartz diorite, are from each hole. Veining is grey and white, multistaged, banded and brecciated with some open spaces. Split sections normally have 2% disseminated pyrite but sometimes have 5%. Minor disseminated chalcopyrite and malachite occur in some split sections. Thinner quartz veining to several centimetres, unassociated with brecciated country rock, occurs unsplit in Holes 87-1 and 87-8.

Core in the three holes consists of mainly quartz diorite with lesser andesitic volcanic inclusions in places.

Quartz diorite is medium grained and usually has a fresh appearance with white feldspar, pale grey quartz and black mafics. Sections of quartz diorite that carry andesitic volcanic inclusions have a mottled, chloritic green-grey character. Occasional thin clay-carbonate altered zones occur close to the sampled quartz veining. Sheared core with gouge is found in Holes 87-1 and 87-8.

Split Core

Split intervals measured during core logging (Appendix I) were found to differ from the intervals that had been reported earlier (Appendix III). They were closer to the "true width" intervals of Appendix IV. In April of 1991 a written request was made to Frank Loring, P.Eng., the supervisor of sampling in 1987, to provide a statement describing the split intervals and any other relevent information. This letter and the response is included in Appendix II.

Using the writer's core logging measurements described in Appendix I and the statement by Frank Loring, P.Eng. (Appendix II) a new series of sample intervals is proposed. Each of the three drill logs in Appendix I contains the reasoning which led the writer to believe the following sample intervals are more accurate than previous tabulations.

John R. Wilson, F.G.R.C. Consulting Geologist

Hole number	Split interval (metres)
$87-1$	$109.58-110.72$
$87-3$	$33.50-34.29$
	$36.58-40.39$
$87-8$	$71.63-72.88$

Conclusions

Core from Holes 87-1, 87-3 and 87-8 contain the same rock type: quartz diorite with inclusions of andesitic volcanic in variable proportions. Split sections in the three holes consist of quartz veining in a silicified country rock mixture of quartz diorite and andesite. Pyrite and occasional chalcopyrite or malachite are disseminated in the split sections of veined, silicified country rock.

Based on core logging by the writer and documentation provided by Frank Loring, P. Eng., the supervisor of sampling in 1987, the intervals of split core have been revised. It is believed that the intervals listed above and in Appendix I are more accurate than those reported earlier and listed in Appendices II, III and IV.

References

Carter, N.C. (1990): Geological Report on the Macktush Property. Private report for SYMC Resources Ltd.

Wilson, J. (1990): Compilation of Sampling and Diamond Drilling on the Macktush Property, private compilation for SYMC Resources Ltd. consisting of map, sections and tables.

Certificate

I, John Wilson, of Merville, British Columbia hereby certify that:

1. I am a graduate of the University of British Columbia with a BSc. (honours geology),1972.
2. I am a Fellow of the Geological Association of Canada.
3. I have worked as a professional mineral exploration geologist in B.C. and eastern North America every year since 1972.

APPENDIX I

Diamond Drill Logs for Holes 87-1, 87-3 and 87-8

SYMC Resources

from (metres)	description	sample trom to	sample no.	Au	Ag	Cu
0-8.23	CASING and missing core.					
8.23-14.03	QUARTZ DIORITE. Medium grained; white with black mafics. Fairly fresh appearance.					
14.03-69.19	Core missing.					
69.19-73.46	QUARTZ DIORITE. As above.					
73.46-96.62	QUARTZ DIORITE with ANDESITIC VOLCANIC INCLUSIONS. Dark greenish- grey. Minor quartz veining to 1 cm at $20^{\circ}-40^{\circ}$ to core axis (CA). Occasional epidote and hematite in veinlets.					
96.62-98.15	QUARTZ DIORITE. As above. Fairly broken core; sheared in places; weakly chloritic. Quartz stockworks common. Minor dissemenated and veinlet pyrite.					
98.15-99.21	QUARTZ DIORITE with ANDESITIC VOLCANIC INCLUSIONS. As above. White and grey veinlets throughout. Some chloritic slip surfaces and alteration. Minor disseminated fine grained pyrite. Very broken core.					
	$98.75-99.21 \mathrm{~m}$: strongest quartz veining in interval; mainly white quartz cut by chloritic veinlets. Up to 1% disseminated pyrite.					
99.21-100.58	ANDESITIC VOLCANIC. Chloritic; sheared with some gouge. Minor quartz yeins to 1 cm at 15° to CA .					

$100.58-104.85$
$104.85-106.22$
$106.22-109.58$

109.58-110.72

QUARTZ DIORITE. Crumbly core. Chloritic alteration of mafics. Intense quartz-carbonate stockworks. Up to 3% disseminated pyrite in places. Occasional 1 cm quartz veins at 15° 25° to CA.
103.33-104.85 m: sheared, broken and crumbly with quartz veinlets and veins. Disseminated and veinlet pyrite to 1%.

ANDESITIC VOLCANIC.
104.85-105.46 m: very sheared, with quartz veinlets and minor pyrite.
$105.46-106.22 \mathrm{~m}$: solid core, chloritic with strong quartz stockworks.

QUARTZ DIORITE with minor ANDESITIC VOLCANIC INCLUSIONS. As above. Mainly solid and fresh-looking. Occasional quartz-calcite veinlets.

Split section. Silicified ANDESITIC VOLCANIC and possible minor QUARTZ DFRITE. Many grey and white pyritic quartz veins to several cm. Quartz veins exhibit banding, brecciation, multiple stages. Veins are cut by minor chloritic veinlets. Quartzcarbonate veinlets occur throughout. Disseminated pyrite to 5% in patches but average is 2%. Veining angle is $35^{\circ}-50^{\circ}$ to CA.

Note: Approximately 35% of the split core remains in the tray. It occupies 1.6 metres of space and is bounded above and below by solid core.
The split section was logged by the writer as 109.48-111.25 metres but these measurements were rough because no footage marker blocks were in the tray; the measurements were based on footage marker blocks in adjacent boxes and on the footage summary inscribed at the end of the tray. Further errors may have been induced by lost core.
\qquad

from (metres) to	description	sample from to	sample no.	Au	Ag	Cu
$110.72-132.58$ End of Hole	The true interval of the split section is believed to be 109.58110.72 metres as indicated by Frank Loring, P. Eng. (Appendix II). The variance is likely due to missing markers, shifting core within the tray and minor lost core. QUARTZ DIORITE with ANDESITIC VOLCANIC INCLUSIONS. Fairly fresh appearance. Minor quartz-calcite veinlets. Note: Core boxes were weather beaten from being stored in the field. Some boxes had been tipped over while in storage and the contents jumbled. A brief examination of the pile of loose core revealed only quartz diorite with occasional inclusions of andesitic volcanic; no significant veining, alteration or mineralization was apparant. All boxes were found to be labelled with hole number and footages. Of the 24 boxes that comprise hole \#87-1, core was found and logged in boxes numbered 2 and 13 to 24. Logging indicated core recovery to be 100%.					

SYMC Resources

Diamond Drill Record

$\begin{aligned} & \hline \text { from to } \\ & \text { (metres) } \\ & \hline \end{aligned}$	description	sample from to	$\begin{aligned} & \hline \text { sample } \\ & \text { no } \\ & \hline \end{aligned}$	Au	Ag	Cu
0-2.74 m	CASING					
2.74-5.49	QUARTZ DIORITE with ANDESITIC VOLCANIC INCLUSIONS. Fractured and broken in places, but generally solid core.					
5.49-19.81	QUARTZ DIORITE. Medium grained. White with black mafics. Mostly fractured and broken above 14.32 m .					
	10.06-13.11 m: quartz-calcite stockworks and veinlets common.					
19.81-33.50	QUARTZ DIORITE with ANDESITIC VOLCANIC INCLUSIONS. Occasional 5 to 10 cm rusty weathered fracture zones. Occasional soft, buff coloured clay-carbonate alteration zones cut by 1 cm buff stained quartz veins.					
33.50-34.29	Split section. Silicified QUARTZ DIORITE and ANDESITIC VOLCANIC cut by grey and white quartz veins to several cm . Minor malachite. Disseminated fine pyrite to 2%. Sharp contacts with enclosing core. No obvious gradation or alteration in country rock adjacent to vein zone.					
	Note: Approximately 35% of the split section remains in the tray, occupying 79 cm of space. It is bounded above and below by solid core. No gaps indicative of lost core are evident in the box.					

from (metres) \quad to	description	sample from to	sample no.	Au	Ag	Cu
34.29-36.58 36.58-40.39 40.39-41.06 End of Hole	Loring (Appendix II) reports the sampling interval here to be from 33.53 to 34.29 metres. The variance could have been induced during conversion from feet to metres and from rounding-off discrepancies during measurement. QUARTZ DIORITE with ANDESITIC VOLCANIC INCLUSIONS. Split section. 40\% QUARTZ VEINS and 60\% ANDESITIC VOLCANIC with minor QUARTZ DIORITE. Quartz veining occurs throughout the section but a one metre wide quartz-vein rich zone is in the middle of the interval. Quartz veining is white and grey, often banded and carries minor disseminated pyrite as 2 mm crystals. Some veins contain open spaces filled with quartz crystals. Veining cuts very rusty, iron stained, greenish andesite and some quartz diorite. The country rock contains traces of disseminated pyrite varying up to 5% across 15 cm in places. Occasional quartz stockworks cross the andesite and quartz diorite. Note: Approximately 25% of the split core section (quartered?) remains in the tray and occupies the first 3.81 metres of core box space. It is followed by 67 cm of solid core which marks the end of the hole. Loring (Appendix II) reports the sampling interval here to be from 37.19 to 41.00 metres, a length of 3.81 metres, which is equivalent to the sample width the writer measured. QUARTZ DIORITE. Medium grained; white with black mafics. Weak to strongly iron stained / weathered. Note; Core boxes were weather beaten from being stored in the field but all boxes had readable labels indicating hole number and footage. Minor core was missing from the boxes, apparantly due to tipping over while in storage. All seven boxes that comprise hole \#87-3 were logged. Core recovery appeared to be $95-100 \%$, normally the latter.					

\qquad

	description	$\begin{array}{\|l\|} \hline \text { sample } \\ \text { from to } \\ \hline \end{array}$	sample no.	Au	Ag	Cu
0-2.14	CASING.					
2.14-14.93	QUARTZ DIORITE. Medium grained. White with black mafics. Fairly fresh appearance, although exhibiting a reddish iron stain throughout due to weathering. Weathering is strongest in top 9 m , gradually weakening with depth. Minor chlorite on fractures. Rare quartz-calcite veining to 1 cm wide at 0° to 10° to core axis (CA).					
14.93-64.31	QUARTZ DIORITE with sections of ANDESITIC VOLCANIC INCLUSIONS. The quartz diorite is as above but seldom with a pink weathered tinge. The weathering is restricted to obvious fracture zones. Volcanic inclusions are often dominant, giving core a mottled, dark character with indistinct green-gray crystals with weak chtoritic alteration. Calcite-quartz stockworks are common in volcanic-rich sections. Especially strong 0.5 to 3 cm quartz veining at $20-40^{\circ}$ to CA is at 35.7 to 64.31 m . Strong quartz stockworks with minor, patchy chloritization of mafics, some argillic alteration and minor red iron weathering at 57.0 to 61.0 m . 31.09-34.14 m: occasional shear and gouge 35.05 m : shear at 50° to CA ; poor core recovery; chloritic and possibly epidote alteration. $35.36 \mathrm{~m}: 3 \mathrm{~cm}$ banded quartz vein at 45° to $\mathrm{CA} ; 15 \%$ pyrite crystals to 3 mm are within a grey quartz band cut by later 1 cm apparently barren white quartz veining. 40.48 m : 1 cm white quartz vein at 25° to CA .					

from (motres) to	description	sample from to	sample no.	Au	Ag	Cu

$64.31-71.63$ $71.63-72.88$	$41.76 \mathrm{~m}: 5 \mathrm{~mm}$ white quartz vein at 20° to CA. $43.89 \mathrm{~m}: 3 \mathrm{~cm}$ banded quartz vein with trace pyrite in grey quartz at 40° to CA . 51.82 m : shearing and quartz-calcite veinlets at 15° to CA. QUARTZ DIORITE and some ANDESITIC VOLCANIC INCLUSIONS. Medium-grained quartz diorite as above, but much less veined and altered. Minor $0.5-1 \mathrm{~cm}$ quartz-calcite veining. Minor epidote veinlets in lower 2 m . Split Section. QUARTZ VEIN. Multi-stage, banded and brecciated. Some open spaces and quartz crystals. Some buff coloured, iron stained patches. Total sulphides (pyrite and trace chalcopyrite) is $3-5 \%$. Notes: The split section is in core box \#13 which, unlike adjacent boxes, contains no footage marker blocks or inscriptions describing footage, hole number or box number. The designation of this box as number 13 of hole $87-8$ is based on: 1. the statement of Herb McMaster, president of SYMC Resources Ltd., identifying it as such. 2. the geological continuity of drill core between box \#13 and adjacent boxes 3. the position of the observed split section which approximates the interval recorded by Frank Loring, P.Eng. (Appendix II). Accurate measurements of core intervals in box \#13 are hindered by missing footage markers, some missing core and the broken, apparantly quartered nature of the split section.						

\qquad Page_2

trom (metres)	description	sample from to	sample no.	Au	Ag	Cu

72.88-76.66

An estimated 120 cm of split core remains in the tray. Based on the nearest footage markers, core box \#13 begins with solid core from 69.49 to 71.63 m . The next section, measured from 71.63 to 74.68 m , consists of split core and a probable gap of missing core. The end of the box contains solid core from 74.68 to 76.20 m .

The true interval of the split section is believed to be 71.63 to 72.88 m . The letter by Frank Loring, P. Eng. (Appendix II) describes a zone of quartz with chalcopyrite and molybdenite starting at 71.63 metres. It is followed by quartz containing pyrite starting at 71.93 metres, which is followed by more quartz containing chalcopyrite and molybdenite from 72.72 to 72.88 metres. The latter interval corresponds with his sample number 60354. It is assumed that the split section was from 71.63 to 72.88 metres based on:

1. the coincidence of Loring's and the writer's 71.63 metre measurement.
2. an estimated 120 centimetres of split core remaining in the tray (nearly equivalent to the assumed split interval).
3. the sample section ends at 72.88 metres, according to Loring. The variance with the interval measured during logging is likely due to missing markers, shifting core within the tray and missing core.

QUARTZ DIORITE with ANDESITIC VOLCANIC
INCLUSIONS. Mottled, mixed grey-green appearance. Minor pinkish iron stain. Many quartz veinlets, both white and grey. Up to 5% disseminated and veinlet pyrite in patches but $0.5-1 \%$ pyrite is usual.
$75.4 \mathrm{~m}: 2 \mathrm{~cm}$ banded white and grey quartz vein with 2% pyrite at 15° to CA. Up to 5% disseminated pyrite in adjacent 10 cm of silicified country rock.
$75.9 \mathrm{~m}: 2 \mathrm{~cm}$ banded white and grey quartz vein with 1% pyrite at 20° to CA. Up to 5% disseminated pyrite in 10 cm zone of adjacent country rock

Hole no. \qquad Page

from (metres) to	description	sample from to	sample no.	Au	Ag	Cu

	Note: Core boxes were weather beaten from being stored in the field. Some had been ipped over in the past and minor core lost. All boxes were found to be labelled with sometimes barely visible markings of hole number and footage except box \#13 which had no readable markings (see previous "Note"). All 19 of the boxes that comprise hole 87-8 were logged. Some minor gaps in the core are presumed due to loss while in storage. Reduced core recovery attributable to drilling is 85% at 31.09 to 34.14 m and 90% at 76.2 to 79.86 m. Core recovery elsewhere appears to be 100%.			

APPENDIX II

Letter to Frank Loring, P.Eng. from J. Wilson, April,1991.
Letter to Herb McMaster from Frank Loring, P.Eng., May, 1991.
Table of footage measurements and metric equivalents.

John R. Wilson, f.g.f.c.
Bos 233, Merville, B. C., UOR 2MO
Mineral Esploration
(604) 334-2639 Mining Geology

Mr. Frank Loring, P.Eng., c/o Mr. Herb McMaster

April 29, 1991
Dear Mr. Loring,
Herb McMaster of SYMC Resources Ltd. has asked me to prepare diamond drill logs for core produced on the Macktush property, near Port Alberni in 1987.

I am contacting you for clarification of the footage intervals of core that, I have been told, was split under your supervision.

Before my involvement with the project some sections of core were lost due to tipping over while in storage, and some footage markers were lost from core boxes.

Boxes containing split sections were not full due to sampling, occasional lost core and the end of one hole occuring within a sampled box.

As usual, subsequent shifting of core within the boxes during handling over the years has expanded or contracted apparant lengths depending on the position of missing core. Reconstruction of drill core sequences has been further hindered in some cases by the absence of footage markers.

Herb McMaster has provided me with a copy of a one page summary of drill core and chip sample intervals and assays taken on the property. According to Herb, drill core sampling intervals listed on the sheet indicate work done under your supervision.

If you varify these intervals it would strengthen our documentation.
The following tabulation includes core sampling data found on the one page summary described above as well as necessary locational information.

If you agree with the data please forward a statement bearing the same information and other comments you consider necessary, accompanied by the usual Professional Engineer's stamped certificate/statement of qualifications to Mr. Herb McMaster, 3009 Kingsway Avenue, Port Alberni, B.C., V9Y 1 X7.

Data for a Statement on Macktush Drill Core Splitting
Subject: Diamond drill core sampling, Macktush Property.
Location: Copper 102 claim, Record \#1911 (October), Alberni Mining Division, NTS 92F-2W.

Details: Core from three NQ diamond drill holes, dated 1987, was split as follows:

Hole	Split Interval (feet)	
Number From Io DDH 87-1 360 365,$~$		

DDH 87-3 $110 \quad 113.5$
$\begin{array}{lll}\text { DDH 87-3 } & 122 & 134.5\end{array}$
DDH 87-8 234
DDH 87-8 236
Supervisor of Core Sampling: Frank Loring, P.Eng.

Thank you for your assistance in this matter.
Yours sincerely,

John Wilson, FGAC

John R. Wilson, f.g.f.c.

> Frant C. Loring. P. Eng.
> Goneutting Engineer
> R. R. 2 . Muasitum Beath E. Cu
> VOR $2 T 0$
> May E, $2=91$
symC Resources Lto.
3009 kingeuzy Ave.
Fort Alberni, $\mathrm{E}=\mathrm{C}$.
Attentiony Mr a Herb Momaster
Re;
 clarificetion ef core samotes frm your property; bekem by myself an t987u

DOH E7-1
Foutage 35 . 5 to 563.25 Grey, schisted, varying mineraly mixed gtz . Semple Potiz.
Foutage SE3n 25 wo SE4. Basic voumanacs.
Fowtege $\operatorname{Ge} 4$ to 37: Granodigrite. Some minerad.
DDH 87-3

Foutage 112.5 to 121 Altered diorite. Qtz.
Fowtage t2z to 1345 Broten gtz. Rusty Some munerain Semple 6056.

DDH 87-C
Fowtege 232 to $2 S$ Grey atz Some pyrite.
Fogtage 235 to 2 ge Qtz . Some chalce and moly.
Foutage 236 to 238.6 Qta. $\operatorname{some} p y r i t e$.
 605.4.

These semples were taken dn Eeptembery Oetober, and November, of tge7, wither personally by myself or by Mr. Hert Mcmaster working with me under my Eupervisionu
\because trust thet this $i=$ the information thet yoh regufrea

Frank EnEring, PıEng
Coneultimg Engineer
R.R.2, Querseum Eeach, B.C. vor 2TO

CERTMFICATE

 that:

1. I am a consulthng engineer registered wish the Assocuetion uf Professionel Engineers ot Eritish EOLumbia since 19EE.

Za am a graduate ot Minigan Technologicai University with Bachelor at Science degrees in Mining and Mechanical Engineeringu (1942)
3. I have practiced engineering wver much ot Canede, and in several parts of the united states, since graduationa I grew up in a mining camp in Duebec, and was exposed to prospectingy drilling samplimg and asseytng practices from an early age, and have continued this activiby ever-since.

Qualicum Beach, E.C.
May 5, 599.

Table of footage measurements and metric equivalents

	feet	metres
Drill Hole 87-1	359.5	109.58
	363.25	110.72
	364.0	110.95
	371.0	113.08
Drill Hole 87-3	110.0	33.53
	112.5	34.29
	121.0	36.88
	122.0	37.19
	134.5	41.00
Drill Hole 87-8	232.0	70.71
	235.0	71.63
	236.0	71.93
	238.6	72.72
	239.1	72.88

APPENDIX III

Previously reported core sample intervals.

Diamond Drill Hole No.	Interval (metres)
$87-1$	$109.73-112.70$
$87-3$	$33.53-35.36$
$87-3$	$35.36-40.64$
$87-8$	$71.32-72.50$
$87-8$	$72.50-74.29$

By Carter (1990) after Wilson (1990), based on verbal information from SYMC Resources Ltd.

APPENDIX IV

Table of "true width" sampling information. By SYMC Resources Ltd.

Note: dll samples Eaken by SYMC RESOLRCES I.TD.

