May 23,1994

TIME PROPERTY

Stewart Area Skeena Mining Division British Columbia

Introduction

The TIME property includes a geological environment typical of the Stewart area which has demonstrated potential for precious and base metals mineralization.

Previous limited work in the area of the present claims has indicated several areas in which stream sediments contain highly anomalous precious and base metals values. Grab samples collected from two localities have yielded values of up to 45.6 g/t gold and 3160 g/t silver.

Location and Access

The TIME property is situated west of the upper Kitsault River some 35 km southeast of Stewart. Lac's Red Mountain project is 30 km north on the opposite side of the Cambria Icefield.

Access to the TIME property is by helicopter.

Mineral Property

The TIME property consists of two 4-post mineral claims in the Skeena Mining Division and owned by Richard T. Heard of 349 East 21 Street, North Vancouver, B.C. V7L 3B9. Details of the claims are as follows:

Claim Name	Record Number	<u>Units</u>	Date of Record
TIME 1	324216	20	March 27,1994
TIME 2	324217	20	March 27,1994

Regional Geological Setting

The TIME property is situated within Stikine terrane adjacent to the western margin of the Coast Plutonic Complex.

The property is within the prolific Stewart and Anyox - Alice Arm mineral districts. Major past producing mines of the region include the Premier and Big Missouri gold-silver deposits, Dolly Varden and Torbrit silver deposits, Granduc and Anyox massive sulphide deposits and Kitsault (BC Moly) porphyry molybdenum deposits.

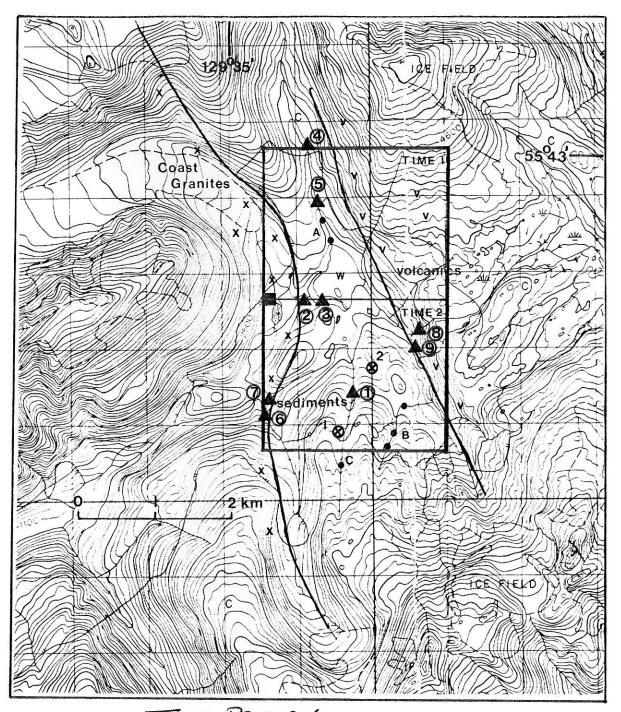
The nearby Red Mountain gold property of Lac Minerals Ltd., 30 km north of the TIME claims, includes at least four en-echelon northwest trending zones of semi-massive sulphides hosted by Hazelton Group volcanic rocks marginal to a granodiorite stock which was previously investigated for molybdenum mineralization.

Published reserves prior to the 1993 field season were 2.8 million tons grading 0.37 opt gold. 1993 work, which included 100,000 ft. of surface diamond drilling and 2,000 ft. of underground decline and crosscutting, indicated a resource of between 2 and 3 million ounces gold which is being firmed up by a current \$14.5 million development program.

Property Geology

The Time mineral claims cover a northwesterly trending sequence of Jurassic (Hazelton Group) fragmental volcanic rocks and clastic sediments which are in contact with granitic rocks of the Coast Plutonic Complex.

This area west of the upper Kitsault River (Dolly Varden, Torbrit mines) was subject to only cursory prospecting in the past due to its relatively remote location. Recent attention was directed to the area in response to highly anomalous stream sediments detected by a Government regional geochemical survey in 1979.


Stream sediment sampling in the early 1980's confirmed original Government results (which did not include analyses for gold) and indicated at least three different geochemical "domains" on the property. These include area "A" in the northern property area (see attached sketch map) where stream sediments yielded highly anomalous arsenic values and up to 3.5 ppm silver and 60 ppb gold. Area "B" returned higher base

metal values including up to 270 ppm copper, 170 ppm lead, 1500 ppm zinc, 4.7 ppm silver, 130 ppm barium and 15 - 75 ppb gold. Stream sediments in "C" drainage returned slightly lower base metal values (186 ppm copper, 60 ppm lead, 1300 zinc) and up to 4.1 ppm silver and 40 ppb gold. Samples from drainages adjacent to the sedimentary - volcanic contact in the eastern property area yielded enhanced base metal plus strongly anomalous barium values.

Limited prospecting within the TIME 2 claim detected quartz-sulphide float in area "2" (see sketch map) which returned assays of 1.8% lead, 3.3% zinc, 1.3% arsenic, 850 g/t silver and 3.2 g/t gold. A 2 metre wide shear zone, exposed over a strike length of 50 metres in a small creek (Area "1" - see sketch map) includes quartz veins and stringers up to 30 cm in width. The quartz contains pyrite and blue-grey metallic minerals and sampling of the zone has returned values of 1.5 g/t gold and 35 g/t silver. A grab sample of nearby quartz float assayed 45.6 g/t gold and 3160 g/t silver. Significantly, no base metal values are associated with this zone.

Previous work on the property included an attempt to test the area "1" showing by three drill holes in mid winter by a party unfamiliar with the property and the precise location of the showing. It is extremely doubtful that these holes were even close to the zone.

The TIME property includes at least two mineralized environments; shear zones with gold-silver values and potential VMS or sedex base and precious metal mineralization in proximity to volcanic-sedimentary contacts which may be analogous to Eskay Creek.

TIME PROPERTY

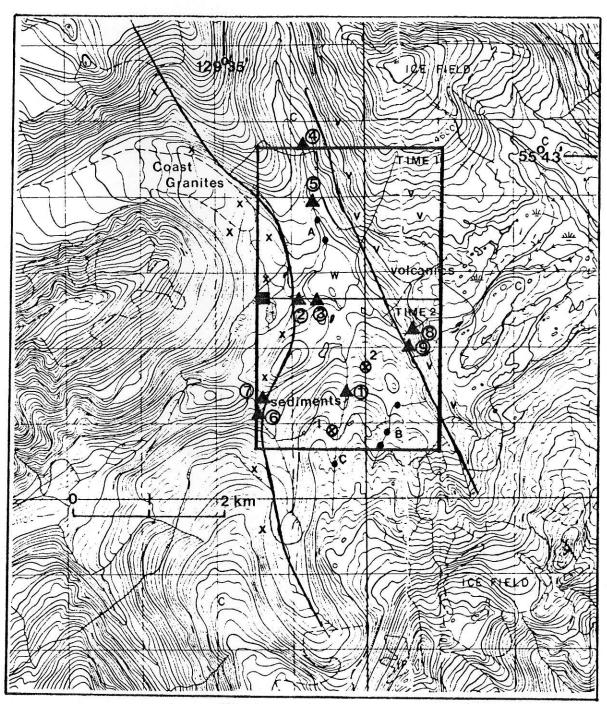
5 1995 STREAM SEDIMENT SAMPLES

TIME PROPERTY

Stewart Area

Locations of 9 stream sediment samples are shown on the property diagram contained in the accompanying summary report. Four rock samples were collected at or near stream sediment sample sites as indicated; one was from showing area 1 indicated on the property diagram.

Significant results are summarized as follows:


Stream Sediment Samples

Samp]	le No.	Au(ppb)	Ag(ppm)	Cu(ppm)	Pb(ppm)	Zn(ppm)
TIME	94-1	66	1.5	256	95	790
TIME	94-2	39	2.0	144	60	606
TIME	94-3	47	0.6	111	37	152
TIME	94-4	11	0.8	107	32	253
TIME	94-5	22	1.3	109	32	232
TIME	94-6	152	2.9	105	124	319
TIME	94-7	22	0.1	58	107	686
TIME	94-8	14	0.7	75	30	121
TIME	94-9	57	1.0	97	32	147

These results confirm earlier ones; a comparison with previous Provincial Government sampling (RGS-2,1978) indicates that most Ag values above are +98th percentile of all samples collected, as are higher Cu, Pb and Zn values. No results for Au are available for RGS-2.

Rock Samples

Sample No	o. Location	Au(ppb)	Ag(ppm)	Cu(ppm)	Pb(ppm)	Zn(ppm)
60396	TIME 94-1	71	3.6	89	193	299
60397	Showing	394	6.4	76	457	239
60398	TIME 94-2	35	47.8	216	437	499
60399	TIME 94-3	19	3.4	90	98	97
60400	TIME 94-9	4	1.2	81	104	378

TIME PROPERTY

5 1995 STREAM SEDIMENT SAMPLES

COMP: N C CARTER
PROJ: BAND MAST SAD TIME

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

ATTN: N.C. Carter

TEL:(604)980-5814 FAX:(604)980-9621

FILE NO: 45-0283-LJ1

DATE: 94/10/06 * silt * (ACT:F31)

SAMPLE NUMBER	AG PPM	AL %	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPM	CO PPM	CU F PPM	E K	LI PPM	MG %	MN PPM	MO PPM	NA %	NI PPM	P PPM	PB PPM		SR PPM PI	TH TI	PPN	/ ZN I PPM	GA PPM	SN PPM	PPM I		u-Fire PPB
BAND 94-5 BAND 94-6 BAND 94-7 BAND 94-8	.2 .3 .3	.47 .56 .53 .85	1 1 1	1 1 1	46 59 66 74	.9 1.0 1.1 1.4	5 7 6 5	.88 .89 .82	.1	7 8 8 11	25 2.7 29 3.3 30 3.2 48 3.5	2 .07 0 .06 4 .10	22 25 24 29		534 668 676 1150	1 2 1 3	.01 .01 .01		870 950 880 1380	21 18 20 42	9 13	106 107 98 62	1 .06 2 .07 2 .06 1 .03	63.5 59.8 45.8	67 63 101	1 3 3 1	1 1 1 1 1	3 4 4 4	24 28 27 27	3 4 6
BAND 94-9 BAND 94-10 TIME 94-1 TIME 94-2 TIME 94-3 TIME 94-4	1.1 1.5 2.0	.91 .84 .92 .74 .78	1 1 1 1 1	1 1 1	87 119 101 87 224 152	1.9 1.5 2.1 2.0 1.5	14 8 7 7	.70 .40 .40 .63	.1 .1 .1	18 14 19 12 14	66 4.6 68 5.8 256 6.3 144 4.9 111 5.1 107 3.7	1 .14 6 .04 6 .04 5 .08	37 31 25 25 25 25 22	1.57 1.65 1.68 1.53	1046 2879 1488 959 869	17 24 19 4	.01	33 1 163 113 53	1210 2470 1810 1340 1630 1100	55 95 60 37 32	23		3 .13 1 .03 1 .04 1 .05	159.1 188.1 188.3 103.0	790 606 152		1 2 2 1 1	10 8 8 5	45 61 59 32 32	17 35 66 39 47
TIME 94-4 TIME 94-5 TIME 94-6 TIME 94-7 TIME 94-8 TIME 94-9	1.3 2.9 .1 .7	.79 .69 1.36 .79	1 1 1 1	1 1 1	144 60 225 104 77	1.4 1.6 1.9 1.4	11	.62 1.91 .78 1.00 1.07	.1	9 12 22 11 12	109 4.1 105 5.3 58 4.4 75 4.1 97 4.5	8 .23 6 .09 2 .07 3 .08	23 20 23 26	1.35 1.49	735 708 8496 852 740	9 4 12 4 3	.04 .01 .01 .01	59 64 85 44	1140 1420	32 124 107 30 32	14 20 23	111 96		124.0 84.0 58.0 107.4	232 319 686 121	2 1 1 3 1	1 1 1	6 5 6 5 4	37 27 23 29 28	22 152 22 14 57

TIME PROPERTY - STREAM SEDIMENT SAUPLES	
·	

COMP: N C CARTER

PROJ: BAND MAST SAD TIME

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

ATTN: N.C. Carter

TEL:(604)980-5814 FAX:(604)980-9621

FILE NO: 4S-0283-RJ1

DATE: 94/10/06

* rock * (ACT:F31)

SAMPLE NUMBER	AG PPM	AL %	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPM	CO PPM	CU PPM	FE %	К %	LI PPM	MG %	MN PPM	MO PPM	NA %	NI PPM	P PPM	PB PPM	SB PPM I	SR PPM P	TH PM	7 I %	V PPM	ZN PPM	GA PPM	SN PPM	PPM F		u-Fire PPB
60381 60382	.1	.69	332 458	1		2.9	9	2.22	.1	27 7	18 21	12.01	.15	19	1.10	1105 235	77	.02		1100 1080	24 34		543 158			62.0	45 125	1	1 2	6	40 25	11
60383 60384	. 1	.66	932	1	94 70	1.6		2.39	.1	9	26 17	4.28 3.14	.15	18	1.09	1110 3051		.03		1840 1620	35 50	20 3 38				04.7 19.8	61 68	2	1	5 3	35 22	7
60385	<u>:i</u>	.87	1	<u>i</u>	197	1.9	8	1.82	<u>.i</u>	11	21	4.68	.52	19	1.14	887	4	.02	20	1830	34	26	295	2.	01	75.7	75	3	1	4	18	6
60386 60387	.1	.09	674 1	1 18	54 91	8. 2.6	9	9.66	:1	3 13	7 76	2.22 6.56	.09 .52	1 27	1.26	3051 601		.01 .02	18 124	250 5420	223 62	29 !	578 578	5 .		9.3	1019 137	4	1	7	91 82	13
60388 60389	.1 22.8	.54 .28	648 8957	1	54 63	3.1	10 17	3.35	1. >100.0	20 3	56 26	>15.00 3.41	.08 .41	17 1	.96 .07	1457 54	1 2	.02 .01	61 11	700 1650	46 1120	60 t	337 52	5 .	01	57.6 10.3	44 157	1	1	5	38 91	10 274
60390	37.1	.23	283	1	47	.9	12	.09	-1 >100.0	15	777	3.22 2.94	.25	3	.28	285	5	.01 .01	14	290 450	8905 >10000	40 610	10 38	4 .1	01 01	15.4 5.7	1582 >10000	1	1	7 1 148	37 30	995 2665
60391 60392	>200.0 >200.0	.08	462 458	33	6	.8	203	.03	>100.0	20 >	10000	2.40	.03	2	.10	165 133	18 21	.01	14	470	>10000	363	33	4 .	21	11.9	>10000	3	2	83 304 1	67	229
60393 60394 60395	182.1 53.9 2.5	.43 .57 .20	288 94 52	1	15 4 14	1.6	16		>100.0 >100.0 69.1	37 26 4	6473 1857 79	4.64 6.15 1.02	.10 .01 .10	10	.46 .71 .19	669 947 893	26 8 8	.01 .01 .01	24 11		>10000 >10000 377	66 44 7	24 8	2 .	01		>10000 >10000 4159	1	3	3 1	05 234	3440 73 25
60396 60397	3.6 6.4	.47 .81	154 1	1	62 47	1.3	10 5	.22	.1 .1	6	89 76	2.51	.17	13 30	1.24 1.78	233 436	6	.03	53 28	410 860	193 457	15 25	34 39	3.	01	79.0 69.7	299 239	9 8	1		01	71 394
60398 60399 60400	47.8 3.4	.41 .67	25 1	1	68 103 247	.8	7 16 6	.55 .60 1.35	.1 .1	7 9 8	216 90 81	1.90 3.80 3.37	.10 .11 .24	12 14 22	.83 1.10 1.51	470 238 818	5	.02 .10 .01	65 33 57	640 810 550	437 98 104	18	60 66 115	1.	19	88.3 85.8 47.3	499 97 378	4 6 7	1		197 117 61	35 19

* TIME PROPERTY - ROCK SAMPLES								