LARA PROJECT

827414 92B

ORE MINERALOGY OF THE CORONATION AND CORONATION EXTENSION ZONES

Min Scan Consultants Ltd., Toronto, October,1989

Report No. Nor-89-01

LARA PROJECT

ORE MINERALOGY OF THE CORONATION AND CORONATION EXTENSION ZONES

<u>INTRODUCTION:</u> Polished thin-sections of 141 drill core samples were received from Dave Carson for examination, description and classification. Plans and sections showing locations of holes samples were also provided as well as a complete listing of drill core assays. of the 141 sections received, 108 were from the main Coronation Zone and 33 from the Coronation Extension.

The mineralogy of the main Coronation Zone and of the Coronation Extension are very similar and the general description of minerals and ore types, below, applies to both. However, distributions of ore types within the two zones are shown on separate plots.

A report prepared by CANMET in 1987 summarised the mineralogy of the deposit and also contained a series of probe analyses of tetrahedrite/tennantite grains. Some information concerning the silver content of galena and of electrum grains was also recorded.

<u>ASSAYS:</u> A complete listings of assays from which samples for study were collected, was provided by Noranda. For convenient reference during this study a shorter assay file was prepared by extracting from the drill hole listing assay results related to sections for which thin-sections were prepared (Table 1). Using data from this table, correlation matrices were prepared showing the relationships between the elements of economic interest in the deposit as a whole, and separately in the Main and Extension Zones (Table 2). <u>ORE MINERALOGY</u>: The principal ore minerals throughout the deposit are sphalerite, pyrite, chalcopyrite, galena and tetrahedrite. Bornite, rutile and arsenopyrite occur in very small amounts and, as will be discussed in detail below, fine gold, or electrum, grains were observed in many of the samples. The presence of trace amounts of pearceite was mentioned in the CANMET report, but definite identification of this mineral was not made during the present study. Gangue minerals most commonly associated with the sulfides are coarsely crystalline carbonate, and fine to medium grained quartz and feldspar; sericite is locally abundant in heavily sheared samples.

The estimated maxiumum widths of sphalerite, pyrite, chalcopyrite, galena and tetrahedrite grains were noted during the examination of individual thin-sections and are recorded in Table 4. The results are summarised for all of these minerals, except sphalerite, in Figs 2,3,4 and 5. It was considered that, because sphalerite commonly occurs in massive or semi-massive bands, a plot of this type would not be useful.

<u>Sphalerite</u> is generally the most abundant ore mineral present. It occurs most commonly as semi-massive to massive bands from a few mm. to several cms. in width, within which are found abundant inclusions of the other sulfides species (Plates 1 and 2). In zones affected by shearing, sub-parallel, arcuate fractures are commonly developed within the sphalerite and lenticular fragments are broken off along the margins of massive bands.

Sphalerite also occurs in lesser amounts as irregular inclusions within the semi-massive chalcopyrite bands to be described later (Plate 7), and as interstitial grains within bands of granular pyrite.

<u>Pyrite</u> is generally the next most abundant sulfide. It is commonly found as subhedral to sub-rounded inclusions in massive sphalerite bands (Plates 1 & 2) These pyrite inclusions range from 0.5 to 1.5 mm. in width and are are frequently traversed by irregular fractures which are frequently filled by fine stringers of chalcopyrite, galena, tetrahedrite and, rarely, gold (Plate 18). Fine irregular inclusions of these minerals and of sphalerite are also found within unfractured portions of the pyrite grains. In portions of the deposit where shearing is particularly intense, pyrite grains within sphalerite bands are frequently pulled out into a discontinuous bands of irregular fragments.

In addition to its common mode of occurrence as an inclusion within sphalerite bands, pyrite also occurs, in some parts of the deposit, as generally fine grained, subhedral, granular aggregations or stringers. Varying subordinate amounts of the other sulfide minerals occur as anhedral grains within the interstices of the pyrite aggregations (Plates 9 & 10).

<u>Chalcopyrite</u> occurs frequently, as anhedral, very irregulary outlined, inclusions within massive or semi-massive sphalerite bands. They often show some tendency to be elongated parallel to the banding of the sphalerite and range from 0.1 to 0.5 mm. in width (Plate 1). Within the sphalerite there are also some very fine stringers of chalcopyrite (and of galena) which appear to define original boundaries in aggregations of granular sphalerite, now annealed into semi-massive or massive hands.

In some portions of the deposit chalcopyrite becomes the dominant sulfide present. In these cases it forms completely anhedral, semi-massive to massive stringers and bands, from 2 or 3 mm. to several cms. in width, which contain subhedral pyrite inclusions to 0.75mm in width and anhedral, generally finer inclusions of sphalerite, tetrahedrite and galena (Plates 5,6 & 7).

Tarnishing of the chalcopyrite is not common; when present it appears to be related to the presence of fine gold inclusions.

<u>Galena:</u> Galena most often occurs as irregular inclusions, ranging from 0.1 to 0.5mm in width within massive sphelerite bands. The galena inclusions are frequently intergrown with grains of tetrahedrite and chalcopyrite, also occuring as inclusions within the sphalerite. Very occasionally galena is the dominant sulfide species - in such cases it forms semi-massive aggregations of anhedral grains, in the 0.25 to 0.75mm. size range, which contain irregular inclusions of pyrite, chalcopyrite and sphalerite.

In the CANMET report the silver contents of several galena grains, as determined by microprobe analyses, are discussed. The limit of detection for silver in galena was calculated to be 210ppm; this value was exceeded in eight of analyses on grains from the Extension Zone but in only one grain, out of ten analysed, from the Main Coronation Zone. The eight spots above detection in the Extension Zone contained an average of 300ppm Ag, while the single detectable value recorded from the Main Zone, was 310ppm. The relationships between shown in Table 2 of this report shows that, in both zones, silver correlates more strongly with lead than with any other of the metals, suggesting that galena is likely to be host to a significant proportion of the silver present in the deposit.

<u>Tetrahedrite</u> is pf widespread pccurrence as inclusions in massive and semi-massive sphalerite bands. It forms anhedral to bulbous grains, ranging from 0.1 to 0.5mm in diameter which are often associated or intergrow with, galena and chalcopyrite (Plate 2). Tetrahedrite is also found as small inclusions in the chalcopyrite rich bands described above, and, in one sample, it is the dominant sulfide present and forms sub-rounded grains to 2 OR 3mm in width, with which are intergrown subordinate amounts of sphalerite and pyrite. Subordinate amounts of tetrahedrite also occur as interstitial grains in the granular pyrite aggregations referred to above (Plate 9) and as occasional disseminations of free grains in gangue.

Nine complete probe analyses of tetrahedrite grains were included in the 1987 CANMET Report, a copy of which is attached. These analyses show the grains to have compositions which vary widely within the tetrahedrite/tennantite compositional range and to have silver contents ranging from 0.3 to 14.8 percent. However, although it can thus be demonstrated that the tetrahedrite carries important amounts of silver, the correlation between silver and copper shown in Table 2 is not a strong one. This may explained by the fact that, as shown in the CANMET results, the copper and silver contents of tetrahedrite are almost exactly inversely proportional to each other.

<u>Gold</u>: Gold grains were observed in 39 of the 141 thin-sections examined. They occur in 33 of the 108 sections from the Coronation Zone and in 6 of the 33 sections from the Extension Zone. The total numbers of grains observed in the two zones were 201 and 25 respectively. In the Coronation Zone the dimensions of the gold grains mostly lie in the 2 to 40 micron range but there are several grain over 100 microns in length. In the Extension Zone the gold is generally somewhat finer grained with most particles lying in the 2 to 20 micron range. Fig.1 is a histogram of the areas of all of the gold grains from both zones; it shows that the grain sizes have an approximately lognormal distribution. In Table 5 the total areas occupied by the gold in each thin-section are listed; a more extensive listing of individual grains and their dimensions is given in Table 6.

As is shown in Plates 11 through 18, the gold occurs as isolated inclusions in other sulfide minerals, or as strings of fine grains along grain boundaries in sulfide aggregations. Some of the larger grains are encrusted by heavy bluish tarnish (Plates 17 & 18). Table 5 includes a list of the minerals which act as hosts for the gold particles and it can be seen that tetrahedrite is the most common and pyrite the least common, host mineral. The lack of gold particles in pyrite does not necessarily mean that there is no gold present in that mineral but does indicate that, if present, the gold must be contained within the sulfide lattice or in solid solution. The presence of gold in a variety of hosts, rather in one or two preferred minerals, is reflected in Table 2 by the lack of any strong correlations between gold concentrations and those of copper, lead or zinc. In Table 5 the amount of free gold observed in thin-sections can be compared with reported assay values from the samples they represent. The general lack of correlation between the amounts of gold observed and the reported values indicate that gold is very variable in distribution and that significant amounts may be contained, as solid solutions, within sulfide grains.

Electron microprobe examination of several particles of gold from the deposit were discussed in the CANMET report; the authers reported that the silver content of several of the largest grains they observed, ranged from 36.4 to 42.3 per cent. Strictly speaking, therefore, the gold in this deposit appears to be a high-silver variety of electrum and the tarnishing often associated with the larger gold grains is likely related to their high silver content.

<u>CLASSIFICATION OF THE ORE</u>: The mineralogical composition and texture of the ore in this deposit show continous variation and there appear to be no well defined boundaries separating different varieties. The degree of variability is demonstrated by the frequent lack of agreement between the observed mineralogy of a polished section and reported metal content of the interval from which it was selected.

However, for practical purposes, the ore has been divided into the types described below and listed in Table 1. General distribution of these ore types within the Coronation and Coronation Extension Zones is shown in Figures 6 through 11.

Type A: This is the commonest type of ore in the Lara Deposit. It consists of massive and semi-massive bands of sphalerite from a few mm. to several cms. in width in which are embedded abundant inclusions of all of the other sulfides present in the deposit (Plates 1,2 &3) .The sphalerite is generally rather homogeous in nature but in the more heavily sheared zones it contains many, sub-parallel arcuate fractures and, at the margins of massive bands, is broken up into lenticular fragments up to about 0.25mm. in width. Pyrite, generally, forms the most abundant inclusions in the sphalerite bands. It forms equant, sometimes subhedral, grains which lie mostly in the 0.25 to 0.75mm. size range. The pyrite grains are much more heavily fractured than those of the other sulfides and, in the more heavily sheared zones, are broken up into trains of irregular fragments. The frastures within pyrite grains are frequently filled with fine stringers of the other sulfide species present and, on rare occasions, by fine veinlets of gold (Plate 18).

Chalcopyrite and galena make up the next most abundant set of inclusions in the sphalerite bands. Their relative proportions vary greatly and in some cases one or other of the two may be absent entirely. They both form very irregularly outlined, anhedral grains, often with wispy terminations, which are generally extended parallel to the banding of the sphalerite and vary in width from a few microns up to 0.5mm. The chalcopyrite and galena are often intergrown with each other and with the pyrite inclusions discussed above.

Tetrahedrite is also of widespread occurrence as an inclusion in sphalerite. It forms anhedral to occasionally sub-rounded grains up to 0.3mm in width which are intergrown with chalcopyrite, pyrite and, most commonly, with galena.

Minor amounts of arsenopyrite can be observed in Type A ores and very fine rounded inclusions of bornite occur occasionally within pyrite grains; small amounts of pearceite were noted in the CANMET study but have not been observed in the present set of samples.

As listed in Table 5 and discnssed above, fine inclusions of gold occur sporadically within the Type A samples. The gold may be found within any of the sulfide minerals and is often located at, or close to, intergranular boundaries.

<u>Type B:</u> In some zones chalcopyrite replaces sphalerite as the dominant constituent; ores in these zones have been classified as Type B. In these zones chalcopyrite forms very irregularly outlined semi-massive to massive bands within which are included subordinate amounts of pyrite, galena, sphalerite and tetrahedrite (Plates 5,6 & 7).

Pyrite may occur as equant subhedral grains, similar to those found in Type A Ore, but often occurs as sparse, much finer grains. Sphalerite forms irregulary outlined inclusions to 0.5mm in width, while galena and tetrahedrite form generally finer inclusions in the 0.1 to 0.25m range. Fine gold inclusions occur in a few examples of Type B Ore (Table 5).

<u>Type</u> C: Ores composed mainly of sub-equal amounts of sphalerite and pyrite, accompanied by only minor amounts of chalcopyrite, galena and tetrahedrite (Plate 8), are classified as Type C. As in Type A, the sphalerite forms semi-massive to massive bands in which the pyrite occurs as equant, sometimes subhedral inclusions. The pyrite is however, generally finer than in Type A Ores, with most grains being less than 0.25mm in width. The minor amounts of other sulfides which do accompany the sphalerite in Type D Ores, occur as very fine (<0.5mm) anhedral inclusions.

<u>Type D</u>: Type D ores are composed essentially of aggregations of fine grained pyrite accompanied by minor amounts of other sulfides. The pyrite occurs as subhedral equant grains, mostly in the 0.15 to 0.25mm size range. Varying amounts of sphalerite, galena, tetrahedrite and, occasionally, of chalcopyrite occur as anhedral grain, interstitial with respect to the pyrite aggregations (Plate 10). Several cases in which Type D ores contain fine gold inclusions are listed in Table 5.

<u>Type E</u>: In occasional zones, the sulfides, rather than occurring in the complex intergrowths described above, form discrete grains which may be up to 0.5mm in width but are generally finer and are disseminated in the felsic or carbonate matrix. Pyrite is the sulfide which most often occurs in this manner but bands of disseminated chalcopyrite or sphalerite have been observed. <u>Type F:</u> Tetrahedrite is generally present as a subordinate, fine grained, constituent of the Lara Ores. However, in one zone, LA-184;365.4m, it forms sub-rounded grains up to several mm in width and is the dominant sulfide present. This band has been classified as Type F Ore. The tetrahedrite is accompanied by subordinate amounts of sphalerite and pyrite and minor intergrowths of chalcopyrite and galena. Scattered fine gold specks occur within tetrahedrite.

It is interesting to note that the zone containing this tetrahedrite-rich ore also has the highest silver content of all those from which samples were selected for this study - it contains 29.36 ozs/t Silver.

<u>Type G</u>: One band was observed in which galena is the dominant sulfide - this has been classified as Type G Ore. In this zone the galena occurs as semi-massive stringers up to several mm in width with which are intergrown variable subordinate amounts of chalcopyrite and pyrite.

APPENDIX: PROBE ANALYSES OF TETRAHEDRITE/TENNANTITE GRAINS LISTED IN CANMET REPORT.

TABLE 1

Quantitative EDXA analysis of tetrahedrite/tennantite

	No.1	No.2	No.3	No.4	No.5
Element	wt.%	wt.%	wt.%	wt.%	wt.%
	·				
Cu	41.2	41.0	38.4	39.6	38.9
Ag	0.4	0.3	1.4	1.2	2.0
Fe	2.7	2.7	1.4	2.1	1.9
Zn	5.2	5.2	6.1	5.6	6.3
Sb	4.2	4.4	18.4	13.5	6.1
As	19.3	20.4	9.2	13.1	18.2
S	27.7	27.8	25.8	26.8	27.2
	100.7	101.8	100.7	101.9	100.6

Coronation Zone

Extension Zone

Element	No.6 wt.%	No.7 wt.%	No.8 wt.%	No.9 wt.%	
Cu	27.9	27.2	28.0	37.8	
Ag	14.1	14.8	13.8	2.4	
Fe	3.2	3.1	3.3	3.6	
Zn	3.8	3.8	3.7	5.3	
Sb	22.8	23.6	23.3	14.9	
As	4.4	3.5	4.2	14.9	
S	24.2	23.8	23.9	27.0	
	100.4	99.8	100.2	100.7	

Tetrahedrite in sphalerite: Nos. 6, 7, and 8. Tetrahedrite in gangue: No. 3. Tennantite in gangue: Nos. 2 and 4. Tennantite in chalcopyrite: No. 5. Tennantite in galena: No. 1. Tennantite in sphalerite: No. 9.

Fig.2 LARA DEPOSIT

 $\mathcal{V}_{\mathcal{O}}$

Frequency

Maximum Width (mm)

Fig.3 LARA DEPOSIT

Size Distribution of Chalcopyrite Grains

Maximum Width (mm)

Frequency %

Fig.4 LARA DEPOSIT

Size Distribution of Galena Grains

Maximum Width (mm)

Fig.5 LARA DEPOSIT

Size Distribution of Tetrahedrite Grains

Maximum Width (mm)

Fig. 7

055

LEGEND : Type A Fype B LARA PROJECT CORONATION ZONE BLOCK I-B DISTRIBUTION OF ORE TYPES Type G Type G

BLOCK III

DISTRIBUTION OF ORE TYPES

Type B Type C Type C Type D Type E Type F Type G

083

011:

0 81

0 81

LEGEND : Type A Type B Type C Type D Type E Type F Type G

LARA PROJECT CORONATION EXTENSION ZONE BLOCK II DISTRIBUTION OF ORE TYPES

0 99

0.5

Fig. 12

0120

TABLE 1

ASSAYS OF SAMPLES REPRESENTED BY POLISHED SECTIONS

CORONATION ZONE

(N.B.Assays are repeated when more than one sample was taken from a single assayed interval)

DRILL HOLE	DEPTH (M.)	ORE TYPE	BA %	CU %	PB %	ZN %	AG OZ/T	AU OZ/T
12	52.6 53.0 53.5 54.5	E D B A	0.62 0.59 0.26 0.18	3.95 0.04 4.43 1.22	0.16 0.21 0.63 0.94	1.60 3.75 5.53 8.90	4.82 3.01 3.44 4.02	0.203 0.377 0.076 0.135
15	52.0 53.0 55.0 55.7	A A A A	0.27 0.45 0.19 0.25	0.43 0.14 1.94 1.20	0.96 0.43 1.01 0.69	4.50 2.95 11.10 7.10	2.49 2.56 3.12 12.05	0.103 0.058 0.255 0.224
22	107.0 110.0 111.6 111.8	D D E D	0.30 0.25 0.51 0.51	0.12 0.42 0.27 0.27	1.34 0.33 0.07 0.07	2.70 2.55 0.18 0.18	2.64 0.66 1.79 1.17	0.062 0.028 0.635 0.635
27	66.8 68.2 69.7	E B B	0.33 0.40 0.28	0.21 1.92 11.20	2.00 0.55 0.28	3.30 4.52 1.48	4.79 2.37 4.45	0.114 0.050 0.125
33	74.7 76.0 76.5	A A A	0.10 0.50 0.60	0.74 1.12 0.30	9.40 1.60 2.97	18.00 4.80 5.43	3.71 2.55 1.28	0.060 0.047 0.098
34	77.1 78.5 80.0 81.0	A D A A	0.50 0.92 0.20 0.30	1.04 0.14 0.81 1.16	9.25 1.07 0.68 0.39	18.00 1.96 13.80 5.30	29.20 1.71 1.15 1.73	0.117 0.016 0.022 0.057
36	23.9 24.2 25.4 26.5 27.0	A A D C A	0.34 0.34 0.39 0.36 0.36	1.42 1.42 0.09 1.60 1.60	1.45 1.45 0.15 0.78 0.78	9.20 9.20 0.92 5.10 5.10	7.50 7.50 1.44 2.15 2.15	1.345 1.345 0.113 0.160 0.160
38	75.0 76.0	B B	0.25 0.30	1.20 1.48	0.72 0.33	4.80 1.53	1.84 1.41	0.085 0.040
39	51.8 52.4 52.8	C A A	0.20 0.05 0.15	0.49 0.40 1.00	2.60 0.66 1.37	5.60 1.50 10.05	1.05 6.26 4.30	0.090 0.300 0.052
62	88.4 88.8	A A	0.14 0.62	0.80 0.30	2.50 0.46	1 8. 10 3.60	3.95 4.85	0.032 0.214

	89.6 90.0 91.0 92.0	C A A A	0.62 0.40 0.40 0.40	0.30 1.21 1.21 1.21	0.46 0.70 0.70 0.70	3.60 8.50 8.50 8.50	4.85 6.22 6.22 6.22	0.214 0.318 0.318 0.318
63	113.0 115.0	D D	0.30 0.48	0.28 0.13	0.18 0.10	4.25 1.90	1.07 0.54	0.062 0.040
64	37.7 38.7	D D	0.30 0.30	0.30 0.30	0.98 0.98	2.10 2.10	4.35 4.35	0.105 0.105
67	171.0 171.5	A A	0.13 0.13	1.98 1.98	1.85 1.85	8.20 8.20	6.00 6.00	0.066 0.066
129	48.0 49.0 49.5	A E A	0.27 0.68 0.65	0.25 0.05 0.46	0.84 0.02 0.72	4.90 0.10 6.55	0.89 0.13 0.99	0.028 0.144 0.072
132	26.0 26.7 27.0 27.5 28.3 28.7 29.0	A A A A A B	0.25 0.17 0.17 0.29 0.15 0.15 0.60	0.47 4.45 4.45 2.13 1.28 1.28 1.00	2.00 3.30 3.30 1.92 11.27 11.27 0.12	4.60 21.50 21.50 17.14 27.34 27.34 4.56	2.93 8.36 5.62 17.76 17.76 0.75	$\begin{array}{c} 0.040 \\ 0.403 \\ 0.403 \\ 0.050 \\ 0.144 \\ 0.144 \\ 0.043 \end{array}$
134	17.0 17.3 17.8 18.5 19.8 23.0 26.0 28.0	A A A A D A B	0.09 0.22 0.22 0.24 0.36 0.38 0.35 0.58	1.04 1.28 1.28 1.24 0.93 1.80 2.00 1.33	3.50 1.40 1.40 0.98 1.16 0.16 0.56 0.04	27.20 8.80 8.80 10.00 10.93 1.59 3.18 0.38	9.30 14.21 14.21 10.27 3.31 1.71 1.60 1.28	0.205 2.594 2.594 0.270 0.026 0.046 0.148 0.149
135	10.5 11.5 12.6 13.5 14.2	A A A A A	$0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 1.00$	3.00 2.00 3.00 2.00 2.00	5.00 7.00 5.00 4.00 4.00	25.00 27.00 22.00 15.00 23.00	$10.00 \\ 11.00 \\ 11.00 \\ 11.00 \\ 8.00$	0.432 0.310 0.370 0.416 0.087
136	14.2 15.7	A A	0.12 0.11	0.68 1.28	2.00 4.56	9.52 24.00	1.81 7.75	0.028 0.100
139	9.5 29.7 31.4 33.1 33.6 34.0 35.0	A A A A A A	0.00 0.15 0.28 0.18 0.10 0.08 0.10	1.00 0.58 1.00 0.92 2.08 1.74 1.76	1.00 1.92 2.68 1.60 7.25 8.60 6.10	10.00 10.90 15.50 11.90 32.29 26.74 21.44	4.00 1.52 9.01 5.86 15.71 10.09 14.25	0.090 0.044 0.050 0.496 0.419 0.220 0.068
141	4.0 4.5 5.0 5.4	A A A A	0.20 0.20 0.20 0.20	1.32 1.32 1.32 1.32	10.90 10.90 10.90 10.90	21.20 21.20 21.20 21.20 21.20	20.02 20.02 20.02 20.02	2.425 2.425 2.425 2.425

	18.0 19.0 20.0 21.7 23.5 25.5	A C C D A	0.20 0.20 0.28 0.26 0.32 0.54	0.96 0.96 1.28 0.70 0.76 0.37	6.72 6.72 2.70 0.80 0.78 0.08	18.00 18.00 12.80 7.46 6.53 2.75	10.12 10.12 3.47 1.76 3.53 1.42	0.277 0.277 0.045 0.039 0.026 0.228
142	64.5 65.3 66.0	D A A	0.53 0.28 0.30	0.00 1.02 0.34	0.02 0.46 0.53	0.04 2.42 4.75	0.22 1.64 1.41	0.378 0.179 0.020
144	62.1 62.6	D A	0.24 0.18	1.11 1.96	1.00 1.90	3.58 8.40	5.34 3.52	0.231 0.056
146	35.4 36.5	A A	0.08 0.08	4.75 4.75	3.80 3.80	22.70 22.70	16.47 16.47	0.113 0.113
182	225.2 225.7 226.2	A A A	0.08 0.04 0.20	3.20 4.76 1.08	7.00 5.85 8.80	27.75 31.72 34.50	6.65 9.54 7.60	0.171 0.179 0.156
184	356.0 357.0 358.2 359.7 359.9 365.4	A A B B F	0.60 0.31 0.31 0.32 0.32 0.37	0.40 0.30 0.42 12.90 12.90 9.25	1.23 1.09 0.36 0.13 0.13 0.16	3.20 6.00 2.32 2.08 2.08 3.40	1.86 1.80 0.88 3.81 3.81 29.36	0.190 0.037 0.018 1.081 1.081 0.485
199	128.5 130.8 131.8 132.7	D D C C	0.38 0.13 0.44 0.26	0.04 0.49 0.35 0.49	0.63 0.35 0.15 0.27	1.31 4.25 2.58 11.20	1.84 6.46 2.23 1.50	0.358 0.360 0.104 0.070
203	35.7 36.2	A A	$0.16 \\ 0.16$	1.51 1.51	1.27 1.27	12.60 12.60	3.38 3.38	0.158 0.158

CORONATION EXTENSION ZONE

46.5	Α	0.70 0.95 4.50 10.90 18.20 0.184
48.0	Α	0.51 1.44 3.10 13.30 8.12 0.198
49.0	А	0.51 1.44 3.10 13.30 8.12 0.198
50.1	В	0.92 0.80 0.04 0.27 0.97 0.218
50.6	В	1.50 2.31 0.10 4.76 4.30 0.620
110.4	А	0.18 0.62 6.75 16.20 7.00 0.116
77.0	С	1.15 0.27 0.34 1.04 0.85 0.193
77.0	С	1.15 0.27 0.34 1.04 0.85 0.193
78.5	А	0.35 0.36 8.37 33.00 14.40 0.073
80.7	В	3.70 1.36 0.28 0.95 2.39 1.126
80.9	Е	3.70 1.36 0.28 0.95 2.39 1.126
82.0	E	0.35 0.63 2.46 22.10 2.72 0.150
	46.5 48.0 49.0 50.1 50.6 110.4 77.0 77.0 78.5 80.7 80.9 82.0	46.5 A 48.0 A 49.0 A 50.1 B 50.6 B 110.4 A 77.0 C 77.0 C 78.5 A 80.7 B 80.9 E 82.0 E

48	93.4	А	0.37	0.86	2.38	19.93	5.09	0.066
51	102.6 102.8	A A R	0.22	2.86	4.50 4.50	16.02 16.02	16.35 16.35 0.25	0.261
	103.0	в	1.47	0.30	0.39	0.0/	0.25	0.007
77	62.3 62.5	B A	0.25 0.25	$1.16 \\ 1.16$	6.45 6.45	21.60 21.60	13.28 13.28	0.560
	62.6 64.2	A A	0.25 0.37	$1.16 \\ 1.59$	6.45 5.80	21.60 13.70	13.28 15.03	0.560 0.190
80	210.0 210.6 210.7	C A C	1.07 0.40 0.27	0.13 0.73 2.40	0.63 5.00 14.40	1.17 11.70 6.80	2.12 6.46 8.87	$0.069 \\ 0.121 \\ 0.622$
	210.7 210.9 212.5 213.5	G B A	0.27 0.52 0.52	2.40 2.60 0.41	14.40 0.44 0.84	6.80 7.20 6.00	8.87 2.92 2.47	0.622 0.151 0.096
85	88.5	A	0.40	0.69	0.32	15.40	4.71	0.057
	89.0 89.8	A A D	0.90 0.36 0.36	1.82 3.16 3.16	1.60 0.36	12.80 4.40 4.40	11.62 2.58 2.58	0.173 0.372 0.372
	50.0		1 50	0.57	4 25	9.90	10.01	0.044
114	74.5 75.5 76.0	A A	0.21	0.07	4.25	7.75	1.95	0.044
	/0.0	A	0.20	2.70	2.30	52.72	0.07	0.00/

TABLE 2: COEFFICIENTS OF CORRELATION BETWEEN METALS IN ASSAYS LISTED IN TABLE 1

A) MAIN ZONE AND EXTENSION ZONE

	CU	PB	ZN	AG
PB	0.053			
ZN	0.129	0.764		
AG	0.312	0.625	0.578	
AU	0.144	0.079	-0.008	0.302

B) MAIN ZONE ONLY

	CU	PB	ZN	AG
PB	0.052			
ZN	0.149	0.836		
AG	0.342	0.634	0.580	
AU	0.131	0.115	0.054	0.372

C) EXTENSION ZONE ONLY

CU	PB	ZN	AG
0.140			
0.032	0.579		
0.164	0.616	0.569	
0.311	-0.070	-0.367	-0.133
	CU 0.140 0.032 0.164 0.311	CUPB0.1400.0320.1640.6160.311	CUPBZN0.1400.0320.5790.1640.6160.5690.311-0.070-0.367

TABLE 3

SUMMARY OF SULFIDE MINERALOGY

CORONATION ZONE

DRILL HOLE	DEPTH (M.)	PRINCIPAL SULFIDES	SUBORDINATE SULFIDES	TRACES
12	52.6 53.0 53.5	MINOR DISSEM PYR PYR CPY>PYR	SPH>GAL TETRA>SPH>GAL	CPY GOLD
	54.5	SPH>CPY>PYR>GAL	TETRA	
15	52.0	PYR>SPH	CPY>GAL>TETRA	
	53.0	SPH>PYR>CPY	TETRA>GAL	
	55.0	CPY>SPH>PYR	GAL>TETRA	COLD
	55./	PYR>SPH>CPY	TETRA>GAL	GOLD
22	107.0	PYR	SPH>GAL>TETRA	CPY GOLD
	110.0	PYR	CPY>GAL>SPH>TETRA	GOLD
	111.6	SCATT.FINE CPY		66 1 B
	111.8	PYR	CPY>TETRA>GAL>SPH	GOLD
27	66.8	TRACES SULFIDES ONLY		
	68.2	PY>CPY	SPH	GOLD
	69.7	СРҮ>РҮ	SPH>GAL	
33	74.7	SPH>PYR>GAL	TETRA	CPY
	76.0	SPH=CPY	GAL=PYR	
	76.5	SPH>PYR>GAL		CPY
34	77.1	SPH>PYR>GAL>TETRA		CPY GOLD
	78.5	PYR>SPH>GAL		CPY
	78.5 80.0	PYR>SPH>GAL SPH>PYR	GAL>CPY>TETRA	CPY
	78.5 80.0 81.0	PYR>SPH>GAL SPH>PYR SPH>PYR>CPY	GAL>CPY>TETRA TETRA>GAL	СРҮ
36	78.5 80.0 81.0 23.9	PYR>SPH>GAL SPH>PYR SPH>PYR>CPY PYR>SPH>CPY	GAL>CPY>TETRA TETRA>GAL GAL>TETRA	СРҮ
36	78.5 80.0 81.0 23.9 24.2	PYR>SPH>GAL SPH>PYR SPH>PYR>CPY PYR>SPH>CPY CPY>SPH	GAL>CPY>TETRA TETRA>GAL GAL>TETRA TETRA	CPY Gal pyr au
36	78.5 80.0 81.0 23.9 24.2 25.4	PYR>SPH>GAL SPH>PYR SPH>PYR>CPY PYR>SPH>CPY CPY>SPH PYR	GAL>CPY>TETRA TETRA>GAL GAL>TETRA TETRA CPY>TETRA>GALENA	CPY GAL PYR AU GOLD
36	78.5 80.0 81.0 23.9 24.2 25.4 26.5	PYR>SPH>GAL SPH>PYR SPH>PYR>CPY PYR>SPH>CPY CPY>SPH PYR MINOR DISSEM SULFIDES	GAL>CPY>TETRA TETRA>GAL GAL>TETRA TETRA CPY>TETRA>GALENA	CPY GAL PYR AU GOLD GOLD
36	78.5 80.0 81.0 23.9 24.2 25.4 26.5 27.0	PYR>SPH>GAL SPH>PYR SPH>PYR>CPY PYR>SPH>CPY CPY>SPH PYR MINOR DISSEM SULFIDES SPH>CPY>PYR	GAL>CPY>TETRA TETRA>GAL GAL>TETRA TETRA CPY>TETRA>GALENA GAL	CPY GAL PYR AU GOLD GOLD GOLD
36	78.5 80.0 81.0 23.9 24.2 25.4 26.5 27.0 75.0	PYR>SPH>GAL SPH>PYR SPH>PYR>CPY PYR>SPH>CPY CPY>SPH PYR MINOR DISSEM SULFIDES SPH>CPY>PYR CPY>PYR>SPH	GAL>CPY>TETRA TETRA>GAL GAL>TETRA TETRA CPY>TETRA>GALENA GAL TETRA>GAL	CPY GAL PYR AU GOLD GOLD GOLD GOLD
36 38	78.5 80.0 81.0 23.9 24.2 25.4 26.5 27.0 75.0 75.0 76.0	PYR>SPH>GAL SPH>PYR SPH>PYR>CPY PYR>SPH>CPY CPY>SPH PYR MINOR DISSEM SULFIDES SPH>CPY>PYR CPY>PYR>SPH CPY>SPH>PYR	GAL>CPY>TETRA TETRA>GAL GAL>TETRA TETRA CPY>TETRA>GALENA GAL TETRA>GAL TETRA=GAL	CPY GAL PYR AU GOLD GOLD GOLD GOLD
36 38 39	78.5 80.0 81.0 23.9 24.2 25.4 26.5 27.0 75.0 75.0 76.0 51.8	PYR>SPH>GAL SPH>PYR SPH>PYR>CPY PYR>SPH>CPY CPY>SPH PYR MINOR DISSEM SULFIDES SPH>CPY>PYR CPY>PYR>SPH CPY>SPH>PYR PYR>SPH>GAL	GAL>CPY>TETRA TETRA>GAL GAL>TETRA CPY>TETRA>GALENA GAL TETRA>GAL TETRA=GAL CPY>TETRA	CPY GAL PYR AU GOLD GOLD GOLD GOLD
36 38 39	78.5 80.0 81.0 23.9 24.2 25.4 26.5 27.0 75.0 75.0 76.0 51.8 52.4	PYR>SPH>GAL SPH>PYR SPH>PYR>CPY PYR>SPH>CPY CPY>SPH PYR MINOR DISSEM SULFIDES SPH>CPY>PYR CPY>PYR>SPH CPY>SPH>PYR PYR>SPH>GAL SPH=PYR>GAL	GAL>CPY>TETRA TETRA>GAL GAL>TETRA CPY>TETRA>GALENA GAL TETRA>GAL TETRA=GAL CPY>TETRA CPY>TETRA	CPY GAL PYR AU GOLD GOLD GOLD GOLD
36 38 39	78.5 80.0 81.0 23.9 24.2 25.4 26.5 27.0 75.0 75.0 76.0 51.8 52.4 52.8	PYR>SPH>GAL SPH>PYR SPH>PYR>CPY PYR>SPH>CPY CPY>SPH PYR MINOR DISSEM SULFIDES SPH>CPY>PYR CPY>PYR>SPH CPY>SPH>PYR PYR>SPH>GAL SPH=PYR>CPY	GAL>CPY>TETRA TETRA>GAL GAL>TETRA CPY>TETRA>GALENA GAL TETRA>GAL TETRA=GAL CPY>TETRA GAL>YETRA	CPY GAL PYR AU GOLD GOLD GOLD GOLD
36 38 39 62	78.5 80.0 81.0 23.9 24.2 25.4 26.5 27.0 75.0 75.0 76.0 51.8 52.4 52.8 88.4	PYR>SPH>GAL SPH>PYR SPH>PYR>CPY PYR>SPH>CPY CPY>SPH PYR MINOR DISSEM SULFIDES SPH>CPY>PYR CPY>PYR>SPH CPY>SPH>PYR PYR>SPH>GAL SPH=PYR>GAL SPH>PYR>CPY PYR>SPH	GAL>CPY>TETRA TETRA>GAL GAL>TETRA CPY>TETRA>GALENA GAL TETRA>GAL TETRA=GAL CPY>TETRA GAL>YETRA GAL>YETRA CPY>GAL>TETRA	CPY GAL PYR AU GOLD GOLD GOLD GOLD
36 38 39 62	78.5 80.0 81.0 23.9 24.2 25.4 26.5 27.0 75.0 75.0 76.0 51.8 52.4 52.8 88.4 88.4 88.8	PYR>SPH>GAL SPH>PYR SPH>PYR>CPY PYR>SPH>CPY CPY>SPH PYR MINOR DISSEM SULFIDES SPH>CPY>PYR CPY>PYR>SPH CPY>SPH>PYR PYR>SPH>GAL SPH=PYR>GAL SPH>PYR>CPY PYR>SPH SPH>PYR	GAL>CPY>TETRA TETRA>GAL GAL>TETRA CPY>TETRA>GALENA GAL TETRA>GAL TETRA=GAL CPY>TETRA GAL>YETRA GAL>YETRA CPY>GAL>TETRA CPY>GAL>TETRA	CPY GAL PYR AU GOLD GOLD GOLD GOLD
36 38 39 62	78.5 80.0 81.0 23.9 24.2 25.4 26.5 27.0 75.0 75.0 76.0 51.8 52.4 52.8 88.4 88.8 89.6	PYR>SPH>GAL SPH>PYR SPH>PYR>CPY PYR>SPH>CPY CPY>SPH PYR MINOR DISSEM SULFIDES SPH>CPY>PYR CPY>PYR>SPH CPY>SPH>PYR PYR>SPH>GAL SPH=PYR>GAL SPH>PYR>CPY PYR>SPH	GAL>CPY>TETRA TETRA>GAL GAL>TETRA CPY>TETRA>GALENA GAL TETRA>GAL TETRA=GAL CPY>TETRA GAL>YETRA GAL>YETRA CPY>GAL>TETRA CPY>GAL>TETRA CPY>GAL	CPY GAL PYR AU GOLD GOLD GOLD GOLD
36 38 39 62	78.5 80.0 81.0 23.9 24.2 25.4 26.5 27.0 75.0 75.0 76.0 51.8 52.4 52.8 88.4 88.8 89.6 90.0	PYR>SPH>GAL SPH>PYR SPH>PYR>CPY PYR>SPH>CPY CPY>SPH PYR MINOR DISSEM SULFIDES SPH>CPY>PYR CPY>PYR>SPH CPY>SPH>PYR PYR>SPH>GAL SPH=PYR>GAL SPH>PYR>CPY PYR>SPH SPH>PYR SPH>PYR	GAL>CPY>TETRA TETRA>GAL GAL>TETRA TETRA CPY>TETRA>GALENA GAL TETRA>GAL TETRA=GAL CPY>TETRA GAL>YETRA GAL>YETRA CPY>GAL>TETRA CPY>GAL>TETRA CPY>GAL GAL>TETRA>CPY	CPY GAL PYR AU GOLD GOLD GOLD GOLD
36 38 39 62	78.5 80.0 81.0 23.9 24.2 25.4 26.5 27.0 75.0 76.0 51.8 52.4 52.8 88.4 88.8 89.6 90.0 91.0	PYR>SPH>GAL SPH>PYR SPH>PYR>CPY PYR>SPH>CPY CPY>SPH PYR MINOR DISSEM SULFIDES SPH>CPY>PYR CPY>PYR>SPH CPY>SPH>PYR PYR>SPH>GAL SPH=PYR>GAL SPH>PYR>CPY PYR>SPH SPH>PYR SPH>PYR SPH>PYR	GAL>CPY>TETRA TETRA>GAL GAL>TETRA CPY>TETRA>GALENA GAL TETRA>GAL TETRA=GAL CPY>TETRA GAL>YETRA GAL>YETRA CPY>GAL>TETRA CPY>GAL>TETRA CPY>GAL>TETRA	CPY GAL PYR AU GOLD GOLD GOLD GOLD
36 38 39 62	78.5 80.0 81.0 23.9 24.2 25.4 26.5 27.0 75.0 75.0 76.0 51.8 52.4 52.8 88.4 88.8 89.6 90.0 91.0 92.0	PYR>SPH>GAL SPH>PYR SPH>PYR>CPY PYR>SPH>CPY CPY>SPH PYR MINOR DISSEM SULFIDES SPH>CPY>PYR CPY>PYR>SPH CPY>SPH>PYR PYR>SPH>GAL SPH=PYR>GAL SPH>PYR>CPY PYR>SPH SPH>PYR SPH>PYR SPH>PYR SPH>PYR>CPY	GAL>CPY>TETRA TETRA>GAL GAL>TETRA CPY>TETRA>GALENA GAL TETRA>GAL TETRA=GAL CPY>TETRA GAL>YETRA GAL>YETRA CPY>GAL>TETRA CPY>GAL>TETRA CPY>GAL>TETRA CPY>GAL	CPY GAL PYR AU GOLD GOLD GOLD GOLD

	115.0	PYR	SPH	GAL>CPY
64	37.7 38.7	PYR PYR>SPH>GAL	SPH>TETRA>GAL TETRA	
67	171.0 171.5	SPH>PYR SPH>PYR	GAL>CPY>TETRA CPY>GAL>TETRA	
129	48.0 49.0	PYR>SPH TRACES SULFIDES	GAL>TETRA>CPY	
	49.5	PYR>SPH>CPY	GAL	
132	26.0 26.7 27.0 27.5 28.3	SPH>PYR>CPY SPH>PYR>CPY SPH>PYR>CPY SPH>PYR>CPY SPH>PYR>CPY SPH>PYR>GAL	GAL GAL GAL>TETRA GAL>TETRA CPY>TETRA	GOLD TETRA
	28.7	SPH>PYR	CPY>GAL	GOLD
	29.0	PYR>CPY	SPH	TETRA
134	17.0 17.3 17.8 18.5 19.8 23.0	SPH>PYR SPH>CPY>PYR>TETRA SPH>PYR PYR>SPH SPH>PY>CPY CPY	GAL>TETRA>CPY GAL GAL>TETRA>CPY GAL>TETRA>CPY GAL>TETRA PYR>SPH	GOLD GOLD
	26.0 28.0	SPH>SPH CPY	CPY>GAL PYR=SPH	TETRA GOLD
135	10.5 11.5 12.6 13.5 14.2	SPH>PYR SPH>GAL SPH>PYR>CPY SPH>CPY>PY SPH>CPY>GAL	CPY>GAL>TETRA CPY>PYR>TETRA GAL=TETRA GAL TETRA>PYR	GOLD TETRA GOLD GOLD
136	14.2 15.7	SPH>PYR SPH>PYR	GAL>CPY GAL>TETRA	СРҮ
139	9.5 29.7 31.4 33.1 33.6 34.0 35.0	SPH>PYR SPH>PYR>CPY SPH>PYR>GAL SPH>PYR>CPY>GAL SPH SPH SPH	GAL=CPY>TETRA GAL CPY>TETRA TETRA PYR>GAL>TETRA>CPY GAL>CPY>PYR>TETRA GAL>TETRA	GOLD GOLD GOLD
141	4.0 4.5 5.0 5.4 18.0 19.0 20.0 21.7 23.5	SPH>GAL SPH>GAL SPH>GAL>CPY>PYR SPH>CPY SPH>PYR>CPY SPH>GAL>PYR SPH>PYR CPY>SPH>PYR PYR	PYR>CPY>TETRA PYR>CPY>TETRA TETRA PYR GAL CPY CPY>GAL GAL>TETRA SPH>GAL>TETRA	GOLD 5.0 ASPY TETRA RUTILE CPY
	25.5	PYR=SPH	CPY	

142	64.5 65.3	PYR PYR>CPY>SPH	SPH	
	66.0	PYR>SPH	GAL>TETRA>CPY	
144	62.1 62.6	PYR>SPH>CPY SPH>PYR	GAL>TETRA CPY>GAL>TETRA	GOLD
146	35.4 36.5	SPH>CPY>PYR>GAL SPH>CPY	TETRA PYR>GAL>TETRA	
182	225.2 225.7	SPH>CPY>PYR SPH>CPY>PYR>GAL>TETRA	TETRA>GAL	
	226.2	SPH>GAL>PYR	CPY>TETRA	GOLD
184	356.0	CPY>GAL>SPH>PY		
	357.0	SPH>PYR>GAL	TETRA>CPY	GAL GOLD
	358.2	SPH>PYR>CPY	TETRA>GAL	
	359.7	CPY	SPH>PYR	GOLD
	359.9	CPY	SPH>PYR	GOLD
	365.4	TETRA>SPH>PYR	СРҮ	GAL GOLD
199	128.5	PYR		SPH>GAL
	130.8	PYR	TETRA	GAL>CPY
	131.8	SPH>PYR>CPY	GAL>TETRA	GOLD
	131.8	SPH=PYR	TETRA	GALENA
	132.7	PYR=SPH	СРҮ	GAL
203	35.7	SPH>PYR>CPY	GAL	
	36.2	PYR>SPH>CPY	GAL	

CORONATION EXTENSION ZONE

40	46.5 48.0 49.0	SPH>GAL>CPY SPH>PYR SPH>PYR>GAL TPACES SULPTDES	TETRA GAL>CPY>TETRA TETRA	СРҮ
	50.6	PYR=CPY	SPH>TETRA>GAL	GOLD
42	110.4	SPH>GAL>CPY	PYR	ASPY
44	77.0 78.5 80.7 80.9 82.0	MINOR DISSEM SULFIDES SPH>PYR>GAL CPY>PYR SCATTERED TRACES SULFIDES MINOR DISS PYR	SPH>GAL>TETRA	CPY GOLD
48	93.4	SPH>PYR>GAL	СРҮ	
51	102.6 103.0	SPH>PYR>CPY>GAL CPY>PYR	SPH	
77	62.3 62.5	CPY>SPH>PYR SPH>GAL	РҮ>СРҮ	

	62.6	SPH>GAL>CPY	TETRA>PYR	GOLD
	64.2	SPH>GAL>PYR>CPY	TETRA	
80	210.0	PYR	SPH>GAL>CPY	
	210.6	SPH	CPY>PYR>GAL>TETRA	
	210.7	GAL>CPY	PYR>SPH>TETRA	
	210.9	GAL>PYR>SPH>CPY		
	213.5	CPY>PYR>SPH	GAI.	
	213.5	PYR>SPH	CPY>GAL	
85	88.5	SPH>PYR	TETRA>GAL	СРҮ
	89.0	SPH>CPY>PYR>GAL	TETRA	
	89.8	SPH>CPY		GAL>PYR
	90.0	PYR>CPY	SPH	COLD
			51 M	0000
114	74.5	SPH>PYR>GAL		СРҮ
	75.5	SPH>GAL>PYR	СРҮ	TETRA
	76.0	SPH>GAL>CPY	PYR	
		· · · · · · · · · · · · · · · · · · ·		

TABLE 4

SUMMARY OF SULFIDE GRAIN SIZE (Maximum Width of Grains in mm)

CORONATION ZONE

DRILL HOLE	DEPTH (M.)	SPH	PYR	СРҮ	GAL	TETRA
12	52.6 53.0 53.5 54.5	0.30 0.25 6.00	0.75 0.75 1.00	0.20 5.00 1.00	0.20 0.25 0.25	0.75 0.15
15	52.0 53.0 55.0 55.7	5.00 3.00 2.00 1.00	0.75 0.50 1.00 1.00	1.00 0.50 2.50 1.50	0.05 0.10 0.05 0.10	0.05 0.50 0.05 0.50
22	107.0 110.0 111.6	0.10 0.50	0.50 1.00	0.10 1.00	0.10 0.50	0.10 0.50
	111.8		1.00	0.10	0.10	0.10
27	66.8 68.2 69.7	0.75 0.20	0.20 0.30	3.00 8.00	0.10	
33	74.7 76.0 76.5	6.00 4.00 8.00	0.75 0.50 0.50	0.50 4.00 0.15	0.25 0.05 0.30	0.50
34	77.1 78.5 80.0 81.0	10.00 0.50 4.00 7.00	0.50 0.50 1.00 2.00	0.02 0.40 1.00	0.10 0.25 0.20 0.25	0.50 0.20 0.25
36	23.9 24.2 25.4 26.5 27.0	1.00 2.00 0.50 1.00 8.00	1.00 0.05 0.75 0.20 1.00	0.20 2.50 0.10 0.15 2.50	0.20 0.50 0.10 0.15 0.10	0.20 0.50 0.10 0.15
38	75.0 76.0	0.75 2.00	2.00 1.00	3.50 2.50	0.25 0.10	0.50 0.10
39	51.8 52.4 52.8	4.00 2.50 6.00	0.25 0.50 0.50	0.15 0.25 1.50	0.50 0.25 0.05	0.05 0.50 0.05
62	88.4 88.8 89.6 90.0	10.00 3.00 5.00	0.20 1.00 1.00 2.00	0.50 2.50 0.05	0.30 0.10 0.30	0.02 0.30

	91. 0 92.0	5.00	1.00	1.00	0.05	0.05
63	113.0 115.0	0.50 0.05	0.40 0.50	0.05 0.05	0.05	0.20
64	37.7 38.7	0.50 0.25	0.25 0.20		0.10 0.40	0.10 0.40
67	171.0 171.5	5.00 6.00	2.00 0.75	0.10 0.05	0.05 0.02	0.05 0.02
129	48.0 49.0 49.5	2.00 10.00	2.00 1.00	0.25 1.00	0.25 0.25	0.25
132	26.0 26.7 27.0 27.5 29.0	8.00 4.00 10.00 0.10	1.00 2.00 0.60	0.75 4.50 3.00 0.75	0.30 0.40 0.75	0.10 0.20 0.50
134	17.0 17.3 17.8 18.5 19.8 23.0 26.0 28.0	8.00 8.00 10.00 1.50 6.00 0.50 7.50 1.50	$ \begin{array}{r} 1.00\\ 1.00\\ 1.50\\ 0.50\\ 1.00\\ 2.50\\ 1.00\\ 0.15\\ \end{array} $	2.00 0.20 0.20 1.00 5.00 0.50 2.50	0.50 0.50 0.10 0.25 0.10 0.01 0.05	0.50 1.00 0.20 0.20 0.10
135	12.6 13.5 14.2	8.00 5.00 8.00	1.00 1.00 1.25	0.50 1.00 0.50	0.20 0.15 0.20	0.20 0.10 0.25
136	14.2 15.7	5.00 15.00	1.00 1.50	0.50 0.10	0.10 1.00	0.50
139	9.5 29.7 31.4 33.1 33.6 34.0 35.0	25.00 25.00 5.00 10.00 10.00 5.00	1.00 1.00 0.75 0.50 0.75	2.00 0.25 1.50 0.05 1.50 1.00	0.50 0.10 0.50 0.50 0.30 0.10	0.10 0.10 0.25 0.15 0.10
141	4.0 4.5 5.0 5.4 18.0 19.0 20.0 21.7 23.5 25.5	$ \begin{array}{r} 10.00 \\ 10.00 \\ 10.00 \\ 20.00 \\ 5.00 \\ 1.00 \\ 1.00 \\ \end{array} $	$1.00 \\ 1.00 \\ 2.00 \\ 0.01 \\ 1.00 \\ 0.40 \\ 1.00 \\ $	$\begin{array}{c} 0.50 \\ 0.50 \\ 0.50 \\ 0.02 \\ 0.75 \\ 1.50 \\ 0.25 \\ 1.00 \\ 1.00 \end{array}$	0.50 0.50 1.00 0.02 1.50 0.20 0.50	0.75 0.75 0.50 0.25 0.20 0.50
142	64.5 65.3 66.0	0.20 2.00 5.00	0.20 1.25 1.00	1.50 0.25	0.50	0.25

144	62.1 62.6	0.40 20.00	1.00	3.50 1.00	0.30	0.02
146	35.4 36.5	15.00 10.00	0.30 1.00	0.50 2.50	0.25 0.25	0.25 0.10
182	225.2 225.7 226.2	25.00 6.00	1.00 0.75 0.50	1.00 0.25 2.00	0.10 0.10	2.00 0.50 2.00
184	356.0 357.0 358.2 359.7 359.9 365.4	0.25 7.50 7.50 1.00 1.00 7.50	0.10 1.00 1.50 0.50 0.50 3.00	4.00 0.05 1.50 25.00 25.00 0.50	1.00 0.20 0.25 0.10	0.75 0.50 7.00
199	128.5 130.8 131.8 131.8 132.7	10.00 7.00 10.00	0.20 0.20 0.75 1.00 1.00	3.00 0.75	0.30 0.15	0.15 2.00
203	35.7 36.2	5.00 0.50	0.05 1.00	0.50 2.00	0.40 0.10	

CORONATION EXTENSION ZONE

40	46.5 48.0 49.0 50.1	6.00 20.00 15.00	1.00 1.00	0.20 0.20 0.05	0.25 0.10 0.50	0.05 0.05 0.25
	50.6	2.50	0.30	0.50	0.05	0.05
42	110.4	7.50	0.30	0.25	0.10	
44	77.0 77.0	1.00	0.50	0.01	0.20	
	78.5 80.7 80.9 82.0	10.00 0.50	1.00 1.00	0.05 3.50	0.10 0.05	0.02
48	93.4	6.00	0.50	0.75	0.10	
51	102.6 103.0	1.00 0.05	1.00 2.00	1.00 5.00	0.50	0.15
77	62.3 62.5 62.6 64.2	$1.00 \\ 6.00 \\ 6.00 \\ 10.00$	0.75 1.00 1.00 0.50	5.00 1.00 0.50 0.20	0.10 0.50 0.50	0.10 0.20
80	210.0 210.6 210.7	0.50 25.00	0.50 1.00	0.25 1.00 5.00	$0.10 \\ 1.00 \\ 10.00$	0.02

	210.9 213.5 213.5	2.00 2.00 5.00	5.00 0.80 1.00	1.50 5.00 0.50	0.10 0.05	
85	88.5 89.0 89.8 90.0	10.00 5.00 5.00 0.10	0.50 1.00 0.05 0.50	0.10 0.50 0.25 0.40	0.10 0.10 0.05	0.10 0.10
114	74.5 75.5 76.0	20.00 25.00 10.00	0.75 0.75 2.00	0.05 0.50 0.05	0.05 0.10 0.30	0.05

TABLE 5

LISTING OF SAMPLES CONTAINING FREE GOLD

(Including number of grains in each slide and their combined areas in square microns)

CORONATION ZONE

DRILL HOLE	DEPTH 1 (M.) (FOTAL GRAINS	TOTAL AREA	HOST MINERALS	AU ASSAY	ORE TYPE
12	53.5	10	2204	TETRA + CPY	0.076	В
15	52.0	1	42	SPH	0.103	А
	55.7	5	989	TETRA + SPH	0.224	А
22	107.0	5	25	TETRA	0.062	D
	110.0	2	310	TETRA + SPH	0.028	D
	111.6	43	10225	CPY + TETRA	0.635	Ε
	111.8	9	614	СРҮ	0.635	D
34	77.1	6	591	TETRA	0.771	А
36	24.2	1	16	TETRA + SPH	1.345	А
	25.4	1	60	SPH	0.113	D
	26.5	2	25	CPY + SPH	0.160	С
	27.0	2	42	СРҮ	0.160	А
38	75.0	4	198	TETRA + SPH	0.085	В
39	52.4	1	75	GAL + SPH	0.300	А
132	26.0	1	16	CPY + GAL	0.040	А
	26.7	2	61	TETRA + SPH	0.403	А
	28.7	1	12	GAL + SPH	0.144	А
134	17.3	10	2177	SPH + TETRA	2.594	А
	17.8	1	75	GAL + SPH	2.594	А
	26.0	1	16	TETRA + SPH	0.148	А
135	12.6	1	10	TETRA + GAL	0.370	А
	13.5	3	200	CPY + GAL	0.416	A
	14.2	1	21	СРҮ	0.087	A
139	33.1	11	2720	TETRA + CPY + GAL	0.496	Δ
100	33.6	2	60	SPH + TETRA	0.419	Δ
	34.0	4	1065	CPY	0.220	Δ
	54.0	7	1005		0.220	21
141	4.0	10	1150	SPH + TETRA	2.425	А
144	62.1	2	68	TETRA	0.231	D
182	226.2	1	200	TETRA	0.156	А
184	359.7	27	28279	CPY	1.081	В
	359.9	18	13933	CPY+PYR	1.081	В
	365.4	12	426	TETRA	0.485	F

CORONATION EXTENSION ZONE

40	50.6	15	565	СРҮ	0.620	В
44	80.7	2	66	TETRA + GAL + CPY	1.126	В
51	102.8	1	200	CPY+TET+GAL	0.261	А
77	62.6	3	68	GAL + CPY	0.560	А
80	210.9	1	650	GAL + SPH	0.622	G
85	90.0	4	94	СРҮ	0.372	D

TABLE 6

LISTING OF OBSERVED GOLD GRAINS (Dimensions in Microns)

CORONATION ZONE

DRILL HOLE	DEPTH (M.)	GRAIN	LENGTH	WIDTH	AREA
12	53.5	1 2 3 4 5 6 7 8 9 10	7 30 45 50 15 20 10 10 11 20	2 12 15 8 5 10 5 10 3	14 360 540 750 120 100 100 50 110 60 2,204
15	52.0	1	7	6	42
	55.7	1 2 3 4 5	12 18 30 25 35	5 8 7 9 10	60 144 210 225 350 989
22	107.0	1 2 3 4 5	1 1 8 3	1 1 2 2	1 1 16 6 25
	110.0	1 2	25 10	10 6	250 60 310
	111.6	1 2 3 4 5 6	10 3 20 3 1 6	2 1 10 3 1 3	20 3 200 9 1 18

	$\begin{array}{c} 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 435\\ 36\\ 37\\ 38\\ 9\\ 40\\ 41\\ 42\\ 43\end{array}$	$\begin{array}{c} 10\\ 15\\ 4\\ 15\\ 15\\ 10\\ 3\\ 2\\ 2\\ 10\\ 3\\ 10\\ 25\\ 40\\ 8\\ 12\\ 100\\ 40\\ 10\\ 30\\ 10\\ 10\\ 30\\ 10\\ 10\\ 30\\ 10\\ 10\\ 20\\ 6\\ 520\\ 20\\ 6\\ 20\\ 50\\ 40\\ \end{array}$	$\begin{array}{c}3\\12\\2\\5\\6\\2\\1\\1\\2\\5\\10\\15\\3\\4\\0\\20\\15\\5\\3\\6\\5\\8\\6\\12\\6\\5\\12\\10\\8\\10\\20\\20\end{array}$	$\begin{array}{c} 30\\ 180\\ 8\\ 75\\ 90\\ 60\\ 6\\ 2\\ 2\\ 4\\ 1\\ 6\\ 50\\ 250\\ 600\\ 24\\ 48\\ 4000\\ 800\\ 100\\ 450\\ 50\\ 50\\ 50\\ 50\\ 9\\ 9\\ 90\\ 60\\ 800\\ 100\\ 450\\ 50\\ 50\\ 50\\ 240\\ 36\\ 25\\ 240\\ 200\\ 48\\ 200\\ 1000\\ 800\\\\ 10, 225\\\\ 10, 225\\ \end{array}$
111.8	1 2 3 4 5 6 7 8 9	4 20 5 3 15 1 20 8	2 1 10 4 3 10 1 8 8	8 200 20 9 150 1 160 64 614
77.1	1 2 3 4 5 6	20 8 6 10 12 3	15 8 3 8 10 3	300 64 18 80 120 9

					591
36	24.2	1	4	4	16
	25.4	1	15	4	60
	26.5	1 2	4 3	4 3	16 9 25
	27.0	1 2	3 8	3 4	10 32 42
38	75.0	1 2 3 4	20 7 2 7	7 3 1 5	140 21 2 35 198
39	52.4	1	15	5	75
132	26.0	1	4	4	16
	26.7	1 2	10 7	4 3	40 21
					61
	28.7	1	4	3	12
134	17.3	1 2 3 4 5 6 7 8 9 10	20 40 10 10 10 5 4 50 50	7 4 10 10 8 7 3 3 15 15	140 160 100 100 80 70 15 12 750 750
					2,177
	17.8	1	25	3	75
	26.0	1	15	8	120
135	12.6	1	5	2	10
	13.5	1 2	7 5	5 3	35 15

		3	15	10	150
					200
	14.2	1	7	3	21
139	33.1	1 2 3 4 5 6 7 8 9 10 11	10 7 40 65 40 2 5 17 15 17 50	7 15 10 10 1 1 1 8 12 10 10	70 7 600 650 400 2 5 136 180 170 500
	33.6	1 2	7 5	5 5	35 25
	34.0	1 2 3 4	15 5 30 40	10 3 10 15	150 15 300 600 1,065
141	4.0	1 2 3 4 5 6 7 8 9 10	30 20 7 2 10 20 25 20 3 8	5 2 2 5 10 15 10 3 6	150 100 14 4 50 200 375 200 9 48
144	62.1 62.1	1 2	5 12	4 4	20 48 68
182	226.2	1	20	10	200
184	359.7	1 2 3 4	180 80 25 30	75 80 5 7	13500 6400 125 210

		5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 25 26 27	$ \begin{array}{r} 15 \\ 15 \\ 12 \\ 10 \\ 25 \\ 60 \\ 10 \\ 7 \\ 3 \\ 30 \\ 30 \\ 65 \\ 5 \\ 30 \\ 5 \\ 30 \\ 5 \\ 30 \\ 45 \\ 40 \\ 10 \\ 20 \\ 40 \\ 50 \\ 25 \\ \end{array} $	3 3 2 5 10 25 2 14 2 10 10 20 2 25 20 20 10 1 15 3 4	45 45 24 50 250 1500 20 14 6 300 300 1300 1300 100 750 900 800 100 20 600 150 100 20 600
184	359.9	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	250 4 2 3 30 35 15 4 6 8 20 6 6 8 20 6 8 21 25 30	50 2 2 8 6 8 3 3 4 10 4 3 6 1 1 10 8	$ \begin{array}{r} 12500 \\ $
	365.4	1 2 3 4 5 6 7 8 9 10 11 12	3 6 10 10 1 8 8 3 12 15 20 6	2 6 5 3 1 2 2 2 3 3 8 4	13,933 6 36 50 30 1 16 16 6 36 45 160 24

CORONATION EXTENSION ZONE

DRILL HOLE	DEPTH (M.)	GRAIN	LENGTH	WIDTH	AREA
40	50.6	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	3 1 15 7 10 3 7 2 1 4 1 2 15 10 25	1 10 4 10 1 2 2 1 2 1 2 1 7 2 5	3 1 150 28 100 3 14 4 1 8 1 2 105 20 125
<i></i>	80.7	1	7	6	565
	00.7	2	12	2	24 66
51	102.8	1	20	10	200
77	62.6	1 2 3	10 3 3	5 3 3	50 9 9
					68
80	210.9	1	65	10	650
85	90.0	1 2 3 4	7 4 1 12	3 3 1 5	21 12 1 60
					94

Plate 1: Typical Type A Ore composed of massive sphalerite which contains equant grains of heavily fractured pyrite and anhedral chalcopyrite and galena inclusions. LA-182; 225.7m.

Plate 2: Coarser grained variety of Type A. The dark grey, massive sphalerite contains inclusions of pyrite (yellow), chalcopyrite (orange), galena (light grey) and tetrahedrite (medium grey). LA-132; 27.5m.

Plate 3: An example of Type A in which the massive sphalerite contains fewer inclusions than were shown in Plates 1 and 2. Internal fracturing of the sphalerite is common. LA-146; 35.4m.

Plate 4: An example of heavily sheared Type A Ore. The massive sphalerite in this case has been broken up in elongated or lenticular fragments. LA-132; 27.5m.

Plate 5: An example of Type B Ore in which massive chalcopyrite is the principal component. It contains minor anhedral inclusions of sphalerite and galena. LA-40; 50.0m.

Plate 6: This example of Type B Ore contains subhedral grains of pyrite in addition to anhedral inclusions of sphalerite and galena. LA-27; 69.7m.

Plate 7: Massive chalcopyrite with an irregularly outlined inclusion of sphalerite. Type B Ore. LA-184; 359.7m.

Plate 8: Type C Ore composed mainly of sub-equal amounts of subhedral pyrite and anhedral sphalerite. LA-141; 20.0m.

Plate 9: Type C Ore. As Type D ore becomes more pyrite-rich it grades into Type D Ore which is made up mainly of fine grained pyrite accompanied by varying, minor amounts of sphalerite, galena and tetrahedrite. LA-39; 51.8m.

Plate 10: Type D Ore composed of finely granular pyrite with minor amounts of interstitial sphalerite (dark grey) and tetrahedrite (medium grey). LA-64; 38.7m.

Plate 11: Grains of gold and minor galena located along a boundary betweeen sphalerite (dark grey) and tetrahedrite (medium grey). LA-15; 55.7m.

Plate 12: A fine layer of gold and sphalerite along an interface between tetrahedrite and chalcopyrite. LA-139; 33.1m.

Plate 13: A film of gold, chalcopyrite and tetrahedrite between two pyrite grains. LA-139; 33.1m.

Plate 14: A stringer of fine gold and galena inclusions in massive sphalerite. LA-134; 17.3m.

Plate 15: Gold grains included in a chalcopyrite/tetrahedrite intergrowth. LA-22; 111.6m.

Plate 16: A small, isolated gold inclusion in tetrahedrite close to a boundary with sphalerite. LA-139; 33.1m.

Plate 17: Large gold grain with heavy blue-grey tarnish indicating the presence of significant amounts of silver. LA-184; 359.7m

Plate 18: Gold veinlets in fractured pyrite. The heavy tarnish noted in Plate 17 is again present. LA-184; 359.7m.