Property Examination - Quet Property 926/9/16 82

826152

MEMORANDUM

DATE:	December 17, 1990	
A TO:	I.D.Pirie	
COPIES À COPIES TO:	A. Davidson, File	
de From:	C. Burge	
SWET SUBJECT:	Quet Property Submittal by Aranlee Resources	92G/9,16

Summary and Recommendations

The Quet property was optioned by Noranda Inc. last year in order to test a set of gold enriched quartz sulphide veins exposed over a 1.5 km strike. The gold values range from 1.0 to 4.18 grams and widths up 8 meters were reported in surface showings (cliff faces). The veins are zinc and lead rich and do not carry chalcopyrite.

After much road construction Noranda drilled seven holes totaling 1250 meters and tested 600 meters of the total strike. The mineralized zones are frequently interrupted by mafic dikes and as a result mineralized intervals are rarely wider than 1.5 meters. The bulk tonnage gold potential has therefore been eliminated (within the drilled portion of the stratigraphy). Noranda subsequently dropped the property.

The terrain, geologic setting and style of mineralization at Quet are all reminiscent of the infamous Maggie property. No further action is recommended at present, however, a field examination of the property as part of the 1991 Harrison Recce is warranted to address the volcanogenic massive sulphide potential.

Location

The Quet property is located in the Sloquet Creek valley which drains east into the Lillooet River at the north end of Harrison Lake. Unfortunately the claims lie adjacent to the eastern boundary of Garabaldi Park and the mineralized stratigraphy (tested by Noranda) trends west into the Park. The valley to the south of the project area contains hot springs that are rumoured to be included in a future government conservancy plan.

Geology

The Quet claims are underlain by lower Cretaceous Fire Lake volcanics and sediments and the Coast Plutonic Complex. The Fire Lake belt is not physically connected to the Harrison Lake volcanics to the south and correlation with the productive Britannia formation remains in question.

The property geology is typical pendant intermediate flows and pyroclastic rocks interbedded with argillites and cut by mafic and intermediate dikes. The southern portion of the claims is underlain by a large diorite body grouped as part of the Coast Plutonic Complex. Airborne Mag/EM flown by Noranda suggests that the diorite may be more extensive than surface geology suggests. It may, in fact, cut off the mineralized zone at depth. The clastic rocks in the mineralized zone dip moderately south into a cliff and emerge on the south side of the same hill. The rocks hosting the mineralized zone are not strongly deformed.

<u>Mineralization</u>

Main Zone:

The mineralization tested by the Noranda program consists of a number of gold enriched quartz sulphide veins occurring over a strike length of 1.5 km. Gold values up to 4.18 g/t occur but 2 to 3 gram material is the norm. The widths on surface range up to 4 meters however drill intercepts are narrow (see attached tables). The veins contain sphalerite and galena with zinc grading up to 5%. Gold grades do not appear to be tied to base metal values.

Other Showings:

Gossans 2 km to the north of the main zone have yielded values up to 21% Zn and 2.56 g/t Au. These showings may have more potential if it can be determined that:

- 1. They don't trend into the park.
- 2. That they may be stratabound.
- 3. That the CPC won't interfere with downdip component.

DDH #2

.

te

	Significant Results								
ł		To (m)	width (m)	Au (ppb)	yd (bbm)	Zn (pp=)			
• •	-107 (11.6	50630	1811		
	` 07 7	88.7	1.5	2620	11.0	20631	2056		
	01.6	94.9	1.7	1620	6.5	5642	973		
	93.4	100 5 01	- 4.3	1809	5.97	2429	1108		
	96.3	100.0	1.5	1130	8.9	-1554	10,548		
	107.6		2.0	1450	46.62	4004	3426		
	113.6	115.0	1 5	1420	11.4	1/240	9225		
	123.3	124-8	1 5	3600	40.4	32336	1846		
	129.8	131.3	1 5	1060	8.6	5201	763		
	137.4	138.9	1.5	2030	17.7	2686	1260		
	143.4	144.9	1.5	1230	6.9	2741	1300		
•	153.9	155.4	1.5	1150	13.5	2631	676		
	165.1	166.6	1.5	1130	15.3	2835	496		
	166.6	168.1	1.5	1030	22.8	3295	641		
	174.1	175.6	1.5	960	17 1	1515	813		
	177 1	178.3	1.2	1010	1/				
	1//.1								
	DDH	# 'S							
	<u>Significa</u>	nt Results	ł						
	From (m)	To (m)	width (m)	Au (DDD)	Ag (DDm)	Zn (ppm)	Pb. (ppm)		
	(/	(-/							
	35.7	37.2	1.5	614	14.5	13572	2169		
	37.2	38.7	1.5	549	18.7	14502	2370		
	38.7	_40.2	1.5	2251	46.2	23222	4128		
	41.7	43.2	1.5	958	20.4	15100	1410		
	43.2	44.7	1.5	1460	15.9	1838	874		
	50.2	52.2	2.0	1023	5.7	1237	394		
	53.4	54.6	1.2	1510	18.9	10967	2309		
	57 6	59.4	1 8	990	4.8	2243	210		
	57.0	./ .	1.0	550	410		·.		
	DD H	# 4	-						
	<u>Significa</u>	nt Result	s						
	From (m)	To (m)	Width (m)	Au (ppb)	Ag (mgg)	Zn (nom)	Ph (nnm)		
	42 7				3 (FE)	dii (PPm)	10 (PDm)		
	45 0	44.3	1.5	1074	18.5	822	842		
	40.0	47.3	1.5	1558	26.9	2063	1179		
	53.5	55.0	1.5	1036	27.5	3130	1319		
	04.3	66.1	1.8	1430	9.9	1898	763		
	89.5	91.0	1.5	1240	40.7	2214	2137		
	95.5	96.7	1.2	1570	41.9	5541	2537		
	127.9	128.2	0.3	1490	161.8	26562	AA50		
						2000 C	4436		

