

Summary of Work Done

Geology	31 man-days mapping	1:10,000	scale	e pac	e and	l com	pass
		mapping	tied	to	road	locat	ions
		obtained	from	exist	ing for	restry	and
		topograpl	hic ma	ps.			

Geochemical	33 man-days sampling	located as above. Rocks analyzed				
	166 rock samples	for Cu, Zn, SiO_2 , TiO_2 , CaO, MgO,				
	14 soil samples	Na ₂ 0, Ba. Soils tied to small				
		flagged grid and analyzed for Au,				
		Ag, Cu, Pb, Zn and As.				

0 ther	4 man-days	clearing	trees	from	roads	to	gain
		access.					

RESULTS

Geology (Map 1)

Exposure on the Anna and Sc claims is patchy, expecially towards the east. Overburden is glacial in origin, but is not considered to be particularly deep.

The area is underlain by a northerly trending sequence of volcanics, intrusions and sediments. Dips are highly variable and can be either east or west. Tops are uncertain. Previous mapping, most recently by Preto et al (BCDEMPR Preliminary map #56) has placed these rocks in the Upper Paleozoic Fennell Formation close to its contact with the Eagle Bay formation. The Fennell formation is host to the Chu Chua massive sulphide deposit 6km to the north.

Underlying the western part of the claims, over their entire north-south length, is a sequence of mafic flows and pillowed flows interbedded with thin cherty argillite units and intruded by diorite. The volcanics are quite massive and apparently undeformed. Minor silicification was noted locally, principally in an area west of Bottrel Creek.

The cherty argillites are always thin (<20m) and, at this scale of mapping, have not been traced laterally for any distance. Where bedded they indicate steep westerly dips. Pyrite is occasionally present.

The diorites are medium to coarse grained and occur as both ovoid, plug-like bodies and thinner, NE trending dykes.

Immediately to the east there is a much thicker section of chert and cherty argillite. Dips vary from steeply east and west in the north part of the map area to shallow $(20-30^{\circ})$ west in the south-central part. The chert is often brecciated.

Once again, dioritic intrusions are in evidence. Other rock types found associated with the cherts include thin felsic tuff units and fine grained wackes.

Adjacent to the cherts to the east, and principally exposed on claim SC2, is a felsic volcanic sequence of rhyolitic flows and pyroclastics, quartz-feldspar porphyry (QFP) intrusions and minor sediments. The felsics pinch out to the south but are open to the north. The QFP occupies a plug like body with a thin northerly offshoot. Within the plug 5-10% pyrite occurs as a stockwork. The rhyolites are extremely siliceous. The sediments are predominantly argillitic with lesser wacke and chert.

In the south east corner of the claims a sequence of intermediate to felsic tuffaceous rocks is recognized. These are accompanied by minor quartz-feldspar porphyry (QFP) intrusion and coarse quartzose wackes. Quite detailed mapping in this area suggests that it is strongly folded. Only minor (pyrite) mineralization was recognized along with local sericite. However, a zone of gossan was noted just within the claim group in the extreme south east corner. This was covered by two 120m long lines, 50m apart and soil samples taken at 20m intervals. The location of these lines is shown on Map 2. The results of the soil samples are in Appendix 2. No significant values were obtained.

Lithogeochemistry

A total of 166 rock samples were taken from or immediately adjacent to the SC and Anna claims during the program. They were chosen to be representative of the different lithologies in the mapped area. Samples were of fresh rock, weighed 1 1/2-2 lbs and were analyzed at TerraMin Research

Labs in Calgary for Cu, Zn, Ba, SiO₂, TiO₂, CaO, MgO, and Na₂O. Cu and Zn were determined by aqua regia digestion with AA finish, while the rest were determined by Lithium Borate fusion, dilute HCl leach and AA finish.

In this particular area, because of the abundance of sediments, approximately 20% of the samples were from sedimentary rocks. Sample locations are plotted on Map 2 with the elemental data on Maps 3 and 4. Appendix 1 consists of a listing of the data.

Table 2 summarizes the data for this area. The mafic volcanic rocks are low to moderate TiO₂ basalts or basaltic andesites. They show a relatively small range of alkalis. A single high MgO values (12.9%) is believed to be due to misclassification of a diorite as a mafic volcanic. Trace metals provide only a single anomalous value - 138 ppm Cu in a sample from the silicified zone west of Botrel Creek. Ba gives 2 anomalous values, both from thin mafic tuffs within the sediment/felsic package on SC.

Intermediate to felsic volcanic rocks are considered together because of the very few samples classified as intermediates and the fairly continuous range of SiO₂. The range is, in fact, remarkably large (37%) but makes a good normal population. TiO₂ is consistently low (<0.5%).

Alkali numbers are consistently low and have a fairly even distribution within the total range. A single high CaO value of 8.81% is from a sample located adjacent to a diorite and appears to have carbonate contamination related to that intrusion. Almost half of the samples have less than 2% Na $_2$ O. Nine out of ten samples containing less than 1% Na $_2$ O come from the area of the felsic centre of SC2.

Trace element values are not particularly high. However, three Cu values greater than 50 ppm come from the area east of Sprague Creek. The single potentially anomalous Zn value (125 ppm) comes from the south east corner of the Anna claims.

Ba values are consistently very high. Because anomalous values are scattered throughout the felsic rocks a specific locus of interest is hard to determine, but the area of the SC2 felsic centre is again worthy of note.

Mafic intrusive rocks, almost exclusively classified as diorite, are represented by 18 samples. TiO₂ distribution suggests two populations, one less than 1.1% and one greater than 1.3%. The lower population occurs in a narrow E-W belt across the SC claims, which is rather hard to explain given the N-S strikes. It may simply represent a higher erosion level in that area.

TABLE 2
SUMMARY STATISTICS

	Mafic Volc.	Int-Felsic Volc. (55)	Mafic Incrus. (18)	Felsic Intrus.	Sediments-Chert
sio ₂ (%)	range 45.5-55.0 x = 50.8	range $56.3-93.7$ $\bar{x} = 73.4$ good normal pop.	range 42.1-53.1 x = 49.2	range 58.2-81.5 x = 73.9 (58.2 is anom.)	range 70.6-94.5 x = 63.0
rio ₂ (%)	range 0.9-2.1 x = 1.49	range 0.07-0.70 x = 0.25 95% < 0.5	range 0.63-2.50 x = 1.40 2 pop. <1.1; >1.3	range 0.07-0.37 x = 0.17	range 0.07-0.40 x = 0.20
CaO (%)	range 3.19-14.7 x = 9.23	range 0.03-8.81 x = 1.25 8.81 is anomalous	range 4.49-16.4. x = 9.80	range 0.01-2.07 x = 0.43	range 0.02-3.01 x = 0.66 >1.5 is a 2nd pop?
1g0 (%)	range 4.0-12.9 $\bar{x} = 6.48$ >8 may be anomalous	range 0.12~2.74 $\bar{x} = 1.05$ 2 pop ^{ns} Modes=0.75,2.25	range 3.18-14.7 x = 7.27 > 10 is anom.	range 0.00-2.88 x = 0.47 >1.2 is high	range 0.18-3.23 x = 1.26
Na ₂ O (%)	range 1.17-5.88 x = 3.51	range 0.02-6.54 x = 2.10 6.54 is anomalous	range 1.42-4.80 x = 3.09	range 0.37-7.95 x = 3.97 high group >6%	range 0.03-3.52 x̄ = 1.04 2 pop. <1.00%; >1.50%
Cu (ppm)	range 12-138 x = 51.9	range 1-120 x = 19 92% 50 ppm > 50 is anomalous	range 3-125 x = 32.7	range 1-48 $\overline{x} = 7$ > 15 (s anom.	range 1-280 x = 17.4 280 is anomalous
Zn (ppm)	range 20-82 x = 56	range 3-125 $\hat{x} = 38$ > 100 is anomalous	range 12-740 $\bar{x} = 47.3$ (corrected) 740 is anomalous	range 1-72 x = 23 >50 is high	range 5-188 x = 43.2 188 is anomalous
За (ррт)	range 40-6200 x = 262 1000+ is anomalous	range 60-9100 x = 2119 > 2500 is anomalous	range 60-2700 x = 252 > 1500 is anomalous	range 30-8200 x = 1310 > 2250 is anomalous	range 80-9900 x = 3425 > 5000 is high

MgO values greater than 10% stand out as being anomalous, but, since both samples in this range are from the same intrusion, it is likely that it indicates simply a more mafic phase.

Of the trace and minor elemenets, Cu is remarkable only for its relatively low values for this rock type, a single high Zn value (740 ppm) is obtained from a small intrusion within the Bottrel Creek silicified zone and the only anomalous Ba value (2460 ppm) is obtained from a rather strange outcrop of indeterminate origins on the extreme eastern margin of the SC claims.

Overall, the statistics for mafic intrusions are very similar to those of the mafic volcanics.

Felsic intrusions (21 samples) are exclusively quartz-feldspar porphyries in this area. One of these, a small QFP in the south-central Anna claims, is distinctly anomalous, containing higher MgO, Zn, and Ba than normal for the area. The only other area that stands out is the area of the stockwork mineralization in the east-central SC's.

Of the sedimentary rocks for which geochemical data was obtained, only the cherts (6.1, 6.2) are considered to have a wide enough distribution and large enough population to merit statistical analysis. However although both CaO and Na₂O show more than one population, no obvious distribution pattern has emerged. The area of chert in the centre of the Anna claims, immediately south east of the Bottrel Creek silicified zone, stands out as being higher in Cu, Zn and Ba than other cherts in the area.

CONCLUSIONS AND RECOMMENDATIONS

Although mapped only at the semi-detailed reconnaissance scale of 1:10,000, stratigraphy in the property has been tied down quite well in all but the extreme eastern and southwestern margins. Regional strike is clearly N-S and tops may be to the west. This latter possibility is inferred from government mapping immediately to the west which indicates pillows facing west and from the presnce of mafic intrusions, which appear to have been feeders for the mafic volcanics, within the (underlying) sediments.

Whichever way tops are, the area contains a felsic-mafic transition with accompanying marine sediments, an environment ideal for massive sulphide deposition. Within this large area, two target areas immediately

stand out both geologically and geochemically. These are the felsic centre in the north-eastern SC claims and the Bottrel Creek area in the centre of the Anna claims.

Both these area should be covered by grids and mapped and sampled in more detail. They should be related to available airborne geophysics to determine the need for ground truthing.

It should also be noted that the distance between traverses, especially within the mafic volcanics, leaves lots of room for significant areas of alteration. Additional traverses, carried out after grid work defines stratigraphy more precisely, are definitely warranted.

ITEMIZED COST STATEMENT - ANNA CLAIM GROUP

Field Costs						
M. J. Burson	4 days mapping (July 15,16,17,31) @ \$175	700.00				
K. Heather	4 days mapping (July 15,16,17,18) @ \$175	700.00				
W. Shanks	5 days mapping (July 11,12,15,16,17) @ \$175	875.00				
M. Corrigan	2 days road clearing (June 24,25) @ \$100	200.00				
M. Corrigan	5 days sampling (July 15,16,17,18,28) @ \$100	500.00				
T. McRae	2 days road clearing (June 24,25) @ \$100	200.00				
T. McRae	5 days sampling (July 15,16,17,18,28) @ \$100	500.00				
K. Meagher	5 days sampling (July 11,12,15,16,17) @ \$100	500.00				
Accommodation	(house) 10 days @ \$20/day	200.00				
Food 32 man/d	lays @ \$15/day	480.00				
Truck Rental.	13 truck/days @ \$50/day	650.00				
Misc. (flagging,	sample bags, topofil, etc.)	250.00				
Analytical Cost	<u>-s</u>					
14 soil samples	@ \$9.20	128.80				
76 analyses @ \$	\$15.35/sample	1,166.60				
shipping costs 90 samples @ \$0.40/sample 36.00						
Office Costs						
Drafting 3 days	s @ \$125/day	375.00				
Interp. & repor	t (L. D. Pirie) 3 days @ \$300/day	900.00				
Misc. (materials	s, copying, typing etc)	150.00				
						

TOTAL

\$8,511.40

ITEMIZED COST STATEMENT - SC CLAIM GROUP

Field Costs

	TOTAL	\$9,542.50			
Misc. (materials	, copying, typing, etc.)	150.00			
Interp. & report	(LD. Pirie) 3 days @ \$300/day)	900.00			
Drafting 3 days	@ \$125/day	375.00			
Office Costs					
shipping (\$0.40/sample) 36.0					
90 analyses @ \$	15.35/sample	1,381.50			
Analytical Costs	<u>s</u>				
Misc. (flagging, sample bags, topofil, etc.) 250.0					
Truck Rental.	14 truck/days @ \$50/day	700.00			
Food 36 man/o	lays @ \$15/day	540.00			
Accommodation	(house) 13 days @ \$20/day	260.00			
K. Meagher	5 days sampling (July 14,18,19,29,30) @ \$100	500.00			
1. McKae	30,31) @ \$100	1,000.00			
M. Corrigan T. McRae	3 days sampling (July 8,9,14) @ \$100 10 days sampling (July 9,11,12,14,23,24,25,29,	300.00			
W. Shanks	5 days mapping (July 14,18,19,29,30) @ \$175	875.00			
	30,31) @ \$175	1,750.00			
K. Heather	10 days mapping (July 9,11,12,14,23,24,25,29,				
M. J. Burson	3 days mapping (July 8,9,14) @ \$175	525.00			

CERTIFICATE OF QUALIFICATIONS

I, Ian D. Pirie certify that:

- I am an Exploration Geologist residing at 307 2145 York Avenue,
 Vancouver, B. C.
- 2. I have a BSc (Hons) in Applied Geology from the University of Strathclyde, Glasgow, Scotland (1977) and a MSc (Geology/Geochemistry) from Queen's University at Kingston, Ontario (1980).
- 3. I have practised my profession since 1977.
- 4. I personally carried out or supervised the work reported herein.

Date

Ian D. Pirie

APPENDIX 1

Lithogeochemical Data Listing

SAMPLE NO.

LAT

DEP

ROCK

SIO2

CAO

MGO

NA₂₀

TIO2

BA

CU

ZN

SAMPLE NO.	LAT	DEP	ROCK	3102	CA0	MG0	NA20	T102	BA	CU	ZN
BCS2194	815.5	927.8	3.3	65.5	2.29	0.277	2.13	0.367	5000.	11.	80.
BCS2195	815.5 815.5	927.8	3.3 3.3	66.7 71.9	2.62	0.307	3.14	0.35	3000.	31.	54.
BCS2196		927.8		71.9 76.4	0.112 0.136	0.222 1.97	3.33	0.267	2210.	25. 39.	35.
BCS2199 BCS2213	862.7 832.8	916.3 78.9	6.1 4.1	48.8	0.136 5.64	5.27	0.156	0.334 1.9	8600. 230.	105.	97. 740.
SC5083	875.3	89.6	3.1	84.7	0.192	0.555	4.8 0.702	0.117	230. 990.	6.	91.
SC5084	875.	87.8	3.1	74.2	0.358	0.907	0.727	0.133	1780.	1.	58.
SC5085	879.	90.8	3.1	78.3	0.05	0.978	0.813	0.117	940.	1.	29.
SC5086	879.	88.7	3.1	79.6	0.309	0.948	1.82	0.133	630.	î.	34.
SC5087	881.1	81.6	6.1	94.5	0.101	0.25	0.235	0.117	3900.	12.	8.
SC5088	681.8	81.6	3.	93.7	0.049	0.522	0.03	0.133	2310.	11.	18.
SC5089	881.8	82.5	6.1	78.9	3.01	3.23	0.1	0.25	3620.	10.	72.
SC5090	867.	74.2	4.1	48.1	16.4	9.95	2.13	0.634	150.	4.	12.
SC5091	866.5	73.8	4.1	49.6	12.3	8.97	2.16	0.784	80.	76.	34.
SC5092	829.4	74.2	4.1	51.6	13.8	6.58	3.34	1.58	250.	11.	30.
SC5093	828.2	75.3	1.1	50.3	13.	7.21	3.67	1.62	170.	27.	36.
SC5094	826.8	81.	6.1	81.1	0.523	2.67	0.345	0.317	4500.	280.	103.
SC5095	825.2	80.2	5,1	77.4	0.032	1.71	0.375	0.2	8200.	4. 20.	68. 55.
SC5096	821.6 820.1	79.3 78.6	6. 3.1	79.4 78.5	0.346 0.031	1.19 0.29	0.442 2.63	0.384 0.133	6300. 3510.	4.	28.
SC5097 SC5098	818.8	77.5	3.1 6.	74.2	0.031	1.94	6.11	0.133	540.	12.	23.
SC5098	815.2	81.2	4.1	48.1	8.65	4.86	4.12	2.5	330.	8.	41.
SC5101	816.8	79.2	6.	72.3	0.89	2.09	3.72	0.25	1750.	3.	5.
SC5101	817.5	78.7	4.1	49.6	9.68	4.99	4.33	2.22	200.	3.	44.
SC5103	818.9	83.7	6.1	70.6	1.11	1.27	2.51	0.25	80.	2.	13.
SC5105	837.8	909.8	4.1	44.3	6.81	8.22	2.32	1.33	730.	26.	62.
SC5106	837.4	910.6	6.9	68.9	2.94	0.849	0.355	0.167	1970.	3.	23.
SC5108	843.3	912.8	6.	74.	1.2	2.09	0.291	0.517	4300.	138.	80.
SC5116	866.4	909.	6.7	64.6	0.239	0.625	0.572	0.167	1400.	3.	16.
SC5117	866.2	909.2	3.1	71.2	0.112	0.279	3.18	0.117	1540.	4.	7.
SC5118	866.5	909.7	3.1	75.3	1.76	0.759	1.9	0.15	1630.	2.	10.
SC5119	865.5	909.2	3.1	81.5	0.236	0.214	4.6	0.167	1380.	5.	_8.
SC5120	864.3	910.5	5.1	76.2	0.196	0.197	2.45	0.15	840.	2.	39.
SC5121	864.4	911.4	5.1	74.	0.048	0.01	7.37	0.133	120.	1.	9.
SC5122	864.6	911.2	5.1	80.2 81.5	0.031 0.064	0.007	7.28 2.51	0.133 0.133	50. 820.	1.	1. 16.
SC5123 SC5124	863.3 863.3	910.9 89.6	5.1 4.1	48.1	11.8	0.095 14.7	1.42	1.03	60.	3.	37.
SC5124 SC5126	813.9	924.9	3.3	62.	2.78	1.42	1.69	0.334	710.	25.	83.
SC5126 SC5127	813.1	924.2	6.9	70.2	0.316	0.559	3.36	0.334	980.	17.	5.
SC5127 SC5128	817.5	924.1	6.9	62.	2.36	0.589	2.67	0.317	1190.	9.	50.
SC5129	815.7	922.6	6.9	61.6	3.36	0.885	2.06	0.35	970.	15.	52.
SC5130	812.3	923.2	6.9	66.7	0.837	0.807	3.33	0.317	1230.	25.	20.
3C6059	898.4	924.5	6.	79.6	0.043	0.403	0.174	0.25	1580.	60.	146.
SC6060	879.3	915.9	6.	88.6	0.221	1.27	2.56	0.167	930.	5.	15.
SC6061	882.8	912.2	1.	50.9	7.05	7.13	3.59	1.43	5900.	62.	65.
SC6062	882.6	910.2	3.5	89.1	0.05	1.17	0.837	0.1	1000.	1.	27.
SC6063	886.3	911.	3.3	83.4	0.12	0.13	6.36	0.117	240.	2.	7.
SC6064	888.4	910.6	4.	51.8	4.45	4.91 1.47	2.	1.77 0.133	1450. 60.	61. 2.	68. 16.
SC6065	888.4 833.4	910.6 77.3	3. 1.2	88.1 50.3	2.03 10.6	5.97	1.02 3.6	1.47	60.	45.	73.
SC6066	835.1	77.5	1.2	49.4	9.77	6.5	4.02	1.45	60.	41.	62.
SC6067 SC6068	835.4	73.4	1.2	53.1	9.71	4.89	3.61	1.42	90.	52.	70.
SC6069	836.5	68.4	6.2	93.9	0.06	0.181	0.03	0.117	2210.	13.	5.
SC6070	873.5	62.4	4.1	51.8	10.7	5.54	2.47	1.35	110.	33.	56.
SC6070	871.9	69.8	1.1	52.4	11.1	7.16	3.6	1.47	100.	52.	58.
SC6072	869.5	69.4	1.1	52.2	10.4	6.7	3.52	1.48	60.	46.	62.
SC6073	883.	72.3	i.i	51.1	11.	7.73	3.32	1.48	260.	23.	20.
SC6074	875.5	60.9	1.1	52.4	10.9	8.14	2.72	1.3	70.	74.	61.
SC6075	818.1	925.2	3.3	69.3	3.69	0.337	4.39	0.234	1010.	15.	24.
SC6076	817.3	926.7	6.5	76.4	0.034	0.366	0.396	0.484	2540.	3.	4.

SAMPLE NO.	LAT	DEP	ROCK	\$102	CAO	MGO	NA20	T102	BA	CU	ZN
SC6077	810.5	925.	2.3	72.9	0.336	1.34	0.361	0.234	2290.	6.	125.
3C6078	816.1	919.5	2.3	66.1	1.17	0.678	3.77	0.317	1960.	20.	10.
SC6079	817.	918.3	3.3	68.2	1.06	0.449	6.54	0.3	1230.	14.	21.
SC6080	810.3	922.	2.3	64.2	3.74	0.945	2.75	0.25	1560.	10.	28.
SC6081	810.9	920.5	1.3	57.3	3.19	1.19	2.47	0.35	1540.	47.	31.
SC6082	812.5	914.2	2.3	61.	3.36	2.74	2.12	0.45	2220.	12.	32.
SC6083	810.7	915.8	3.3	65.7	0.87	0.924	1.93	0.567	1770.	2.	3.
SC6084	811.5	915.7	3.3	66.5	0.235	2.01	2.57	0.35	1550.	22.	92.
SC6085	811.2	913.4	3.3	68.2	0.578	0.711	2.22	0.217	1030.	18.	27.
SC6086	812.5	910.8	3.3	71.	0.297	0.821	3.55	0.334	1220.	5.	12.
SC6087	810.5	907.6	3.3	71.7	1.82	0.643	0.871	0.167	1390.	3.	6.
SC6088	811.1	907.4	3.3	56.3	4.03	2.45	3.19	0.617	850.	20.	46.
\$C6089	818.7	915.8	3.3	61.6	2.24	0.731	4.84	0.384	1520.	45.	6.
SC6090	808.7	926.2	3.3	61.4	2.73	0.627	3.13	0.35	1060.	14.	28.
5C6091	864.4	922.8	3.3	74.7	1.62	2.06	1.33	0.234	680.	87.	78.
SC6099	888.5	919.4	6.1	77.9	1.09	0.574	0.825	0.1	1890.	1.	19.
3C6101	888.	919.5	6.1	80.2	0.754	0.408	2.14	0.067	1510.	1.	188.
SC6102	887.7	99.7	3.1	70.4	2.49	0.884	2.72	0.183	950.	5.	40.
SC6103	887.5	89.1	5.1	75.3	0.255	0.071	3.19	0.1	730.	4.	22.
SC7059	867.5	925.5	1.3	51.8	8.21	6.83	3.28	1.32	3560.	52.	54.
SC7060	860.4	916.2	6.1	85.6	1.04	0.514	1.63	0.067	430.	3.	23.
3C7061	860.3	915.8	6.3	42.6	6.83	3.35	2.56	1.92	1140.	28.	83.
SC7064	827.5	81.9	6.1	87.9	0.052	0.928	0.148	0.183	3860.	19.	48.
3C7065	834.	82.7	6.2	82.1	0.021	1.67	0.991	0.267	9900.	27.	81.
SC7066	835.2	74.7	6.1	92.4	0.032	0.633	0.039	0.167	2600.	32.	21.
SC7067	835.7	73.2	1.2	54.1	9.01	5.74	4.64	1.42	100.	138.	67.
SC7068	838.	62.3	1.1	52.8	10.	5.49	5.1	1.55	40.	51.	60.
SC7069	855.	68.2	1.1	51.6	10.1	6.67	4.08	1.5	80.	38.	52.
SC7070	856.8	70.5	4.1	52.	7.69	7.28	2.74	1.62.	60.	42.	75.
SC7071	857.8	71.2	1.1	54.1	11.3	5.77	2.44	1.45	150.	42.	53.
5C7072	892.3	71.9	6.1	72.3	2.13	3.68	0.687	0.317	5700.	26.	110.
SC7073	884.9	74.7	4.1	51.1	10.9	5.11	4.26	0.951	420.	55.	14.
SC7074	868.2	910.7	3.4	75.9	0.305	0.865	3.61	0.15	1750.	3.	50.
SC7076	866.6	911.8	5.1	58.2	0.113	0.662	1.93	0.2	1370.	3.	72.
SC7077	866.6	911.8	5.1	80.2	0.028	0.022	7.63	0.133	90.	l.	3.
SC707B	865.6	911.2	5.1	81.3	0.011	0.	6.74	0.1	70.	2.	5.
SC7079	899.3	916.5	3.4	82.6	0.492	1.12	1.25	0.25	8700.	3.	14.
SC7080	899.4	923.1	6.5	89.4	0.	0.187	0.051	0.167	2150.	7.	43.
SC7081	857.3	910.	6.3	70.B	0.713	0.018	8.34	0.117	140.	1.	55.
SC7082	857.1	910.	6.1	76.2	0.337	0.284	3.29	0.083	670.	2.	7.
SC7083	855.5	910.5	6.3	43.4	8.35	3.98	1.18	1.85	1600.	24.	75.
SC7084	855.	913.2	6.9	51.8	7.44	3.76	3.53	2.02	640.	24.	84.
SC7085	889.8	911.6	6.1	92.6	0.102	0.718	0.121	0.15	3430.	18.	40.
SC7086	890.9	911.3	4.1	49.2	6.76	7.2	3.1	1.75	290.	35.	70.
SC7087	890.6	88.6	5.1	68.2	0.08	0.136	3.38	0.15	1000.	5.	25.
SC7088	890.4	88.7	5.1	76.4	0.148	0.138	3.38	0.167	940.	12.	17.

BLANK SPACES REPRESENT NUMBERS THAT ARE MISSING OR HAVE OTHERWISE BEEN CODED AS "SPECIAL VALUES". ALL Q'GAS PROGRAMS RECOGNIZE THESE VALUES AS MISSING AND TREAT THEM ACCORDINGLY.

APPENDIX 2

Soil Geochemistry

ANALYTICAL REPORT

Job # 84-166-B

Corp. Falconbridge Copper

Date Aug. 26, 1984

Client Project

"BAR" 215

Page 1/1

Au	Αq	As	Cu	Pb	Zn	
ppb	ppb	ppm	ppm	ppm	ppm	
-2	100	25	25	28	185	
4	140	18	16	37	250	
16	240	26	30	37	198	
14	140	35	23	93	540	
2	80	33	35	19	172	
6	270	52	29	16	162	
2	400	33	29	16	126	
20	280	27	42	14	130	
12	140	13	18	8	220	
16	200	16	28	13	208	
-2	150	18	37	34	390	
2	180	16	26	78	310	
24	250	13	28	26	220	
-2	190	18	23	29	580	
	-2 4 16 14 2 6 2 20 12 16 -2 2 24	ppb ppb -2 100 4 140 16 240 14 140 2 80 6 270 2 400 20 280 12 140 16 200 -2 150 2 180 24 250	ppb ppb ppm -2 100 25 4 140 18 16 240 26 14 140 35 2 80 33 6 270 52 2 400 33 20 280 27 12 140 13 16 200 16 -2 150 18 2 180 16 24 250 13	ppb ppm ppm -2 100 25 25 4 140 18 16 16 240 26 30 14 140 35 23 2 80 33 35 6 270 52 29 2 400 33 29 20 280 27 42 12 140 13 18 16 200 16 28 -2 150 18 37 2 180 16 26 24 250 13 28	ppb ppm ppm ppm -2 100 25 25 28 4 140 18 16 37 16 240 26 30 37 14 140 35 23 93 2 80 33 35 19 6 270 52 29 16 2 400 33 29 16 20 280 27 42 14 12 140 13 18 8 16 200 16 28 13 -2 150 18 37 34 2 180 16 26 78 24 250 13 28 26	ppb ppm ppm ppm ppm ppm -2 100 25 25 28 185 4 140 18 16 37 250 16 240 26 30 37 198 14 140 35 23 93 540 2 80 33 35 19 172 6 270 52 29 16 162 2 400 33 29 16 126 20 280 27 42 14 130 12 140 13 18 8 220 16 200 16 28 13 208 -2 150 18 37 34 390 2 180 16 26 78 310 24 250 13 28 26 220

¥ 5 3 2	, 553
× 531	* 63L
* 530	, 535
x 529	, 536
x 528	<i>y 5</i> 37
x 527	<i>√ 5</i> 38
x 525	× ≾39

× 539

BAR PROJECT ANNA CLAIMS SOIL GRID. SAMPLE LOCATIONS × 2,400

× 10, 180

× 6,270

× 12,140

* 2,80

x 16, 200

× 14, 140

x 42,150

د اله, 240

x 2, 180

× 4, 140

× 24,250

scale [10m

× <2,100

x <2,190

x Au, Ag (ppb)

BAR PROTECT

ANNA CLAIMS
SOIL GRID

Au , Ag

x 33,29

× 27, 42

* 52,29

* 13,18

7 33,35

× 16,28

× 35, 23

× 18,37

× 26,30

v 16,26

× 18,16

* 13, 28

× 25 25

× 18,23

x As, C., (ppn)

BAR PROJECT ANNA CLAMPS SOIL GRA AS, Cu. × 16,126

* 14, 130

* 16, 162

* 8,220

x 19, 172

. 13,208

× 93, 540

× 34, 390

* 37, 198

× 78,310

× 37,250

x 26, 220

* 28, 185

. 29,580

x 80,20 (ppm)

BAR PROTECT
ANNA CLAIMS
SOIL GL.S
AS, Zn.