DATE:
February 25, 1991
TO: Gary Wells
COPIES TO:

FROM: John Bradford
SUBJECT: Drill Target Compilation, Mosquito King

A. Bowler Creek

Data Available

- Noranda 1:5000 geology map
- Noranda SE-88 HLEM anomalies
- DDH locations
- Noranda detailed soil grids ($600 \times 400 \mathrm{~m}, 50 \mathrm{~m}$ lines: Harry and Dick grids)

Anomalies

Anomaly A

- multielement soil anomaly, $-100 \times 550 \mathrm{~m}$, open to SW ; trend at acute angle to strike of units and EM conductors; zoned from Cu - Zn along SE to Ag - Pb to NW; partially overlaps double (or broad) 350 m long Max-Min conductor.
- reinterpretation of Noranda geology suggests anomaly lies between two high angle cross-faults in area of mafic $>$ felsic volcanics.
- soil anomaly tested by one DDH: Dick-1, with weak $\mathrm{Zn}-\mathrm{Pb}$ mineralization. Conductor possibly tested by GM-9, with weak $C u$ mineralization (Zn, Pb values unknown). Three DDH apparently collared just S of conductor.

Anomaly B

- Cu - Ag soil anomaly; possibly related to mafic dyke/fault.

Anomaly C - China Creek area

- EM anomaly coincident with China creek horizons; tested by BC-
 $\mathrm{BC}-13,16$ and 17 may have tested horizon or may have missed (either too short or collared to S of horizon).
- no soi.. data for this area.

Anomaly D

- long series of EM anomalies (with partially coincident mag, according to Black, 1978), tested by BC-6, BC-9, GM-10, GM-11, Harry-1, 2, which intersected low grade (up to $1.2 \% \mathrm{Zn}, 0.44 \% \mathrm{Cu}$) mineralization over 1-4 m widths; not closed off by drilling.
- soil, mag data unavailable.

Anomaly E - Harry Grid

- overlapping NNE trending Cu, Pb and Ag anomalies ~100x400 m; 2 multielement cores; open both ends; low Zn values.
- geophysics, geology not available.
- not drill tested.

Priority

1 - A, C
$2-\mathrm{D}, \mathrm{E}$
$3-B$

B. Mosquito King

Data Available

- I: 5000 geophysical compilation, incorporating: Huntec IP, Craigmont EM-16, Orell Shootback EM, Walcott IP, Noranda HLEM.
- Craigmont $\mathrm{Pb}, \mathrm{Zn}, \mathrm{Cu}$ soil data.
- Noranda $\mathrm{Pb}, \mathrm{Zn}, \mathrm{Cu}$ and Ag soil data, EM and mag for Gash grid (poorly located).
- 1:5000 geology compilation.
- DDH locations.

Anomalies

Anomaly A - Main showing area

- coincident surface mineralization, $\mathrm{Zn}-\mathrm{Pb}$ soil anomaly, IP and EM-16 anomaly. Open and untested to NE of $\mathrm{MK} 81-1$ ($15 \% \mathrm{Zn}+\mathrm{Pb} / 1.15$ m).
- IP anomaly open to NE (extends to edge of grid).
- SW extent of zone is probable F3/F4 fold hinge, with Ball.park sl uwing to W being the continuation of the same horizon. Hinge area tested by MK81-2A, B ($7 \% \mathrm{Zn}+\mathrm{Pb} / 1.83 \mathrm{~m}$). Plunge of fold should be ascertained if possible and tested down plunge.
- intersections from Ballpark anç Main showing areas suggest grade and thickness increase to NE.
- should ascertain why DDH 77-1 and 77-2 failed to intersect mineralization (too short?). Need sections.

Anomaly B - Eastern showing area

- semi-coincident surface mineralization, 400 m long EM anomaly, $\mathrm{Zn}-\mathrm{Pb}$ soil anomaly. Untested by drilling. Trench \#7: 26\% $\mathrm{Zn}+\mathrm{Pb} / \mathrm{I}$ m.
- Main showing is probably continuous to Eastern showing area. Total strike length of Anomalies $A+B: 1.0-1.3 \mathrm{~km}$. Covered by Noranda's Gash grid.

Anomaly C - Ballpark showing area

- semi-coincident surface mineralization, Pb soil anomaly, IP and Shootback EM anomalies. Tested by 9 drill holes, 5 of which intersected low grade mineralization (best: MK81-8, with 4% $\mathrm{Zn}+\mathrm{Pb} / 1.5 \mathrm{~m})$.
- strike extent limited to $N E$ by fold hinge, but open and untested to SW of $\mathrm{DDH} 77-4$ ($3.6 \% \mathrm{Zn}+\mathrm{Pb} / 1 \mathrm{~m}$). Westernmost trench (\#13): 10% $\mathrm{Pb}+\mathrm{Zn} / 1 \mathrm{~m}$. Shootback EM anomaly extends to NE of suspected hinge zone -300 m.

Anomaly D

- Zn-Pb soil anomaly, between EM-16 anomalies. Small gap between this anomaly and the downslope dispersion from the Main and Ballpark showings. Untested.

Anomaly E

- 500 m long EM anomaly (weaker response than Anomaly B) and semicoincident Pb soil anomaly. Untested.
- on Gash grid, 500 m N of Eastern showing,

Anomaly F

- 250 m N of Ballpark showing, coincident Huntec IP, EM-16 and weak

Shootback EM anomaly; no soil response. Untested.

Anomaly G

- coincident $\mathrm{Zn}-\mathrm{Pb}$ soil anomaly and EM-16 anomaly; tested by DDH 77-5 (no intersection).

Anomaly H

- overlapping broad IP, EM-16 and weak Shootback EM anomalies, broad Pb anomaly. Weak conductive/magnetic zone (Noranda report 14439; data unavailable).
- tested by Trench N-4 (location poor). Conductivity due to graphitic sediments and up to 5% disseminated Py-Po; mag response due to increased disseminated magnetite. Trench \#3 (just N of $N-$ 4?) : $2.3 \% \mathrm{Zn}+\mathrm{Pb} / 1 \mathrm{~m}$.

Anomaly I

- Pb-Zn soil anomaly within broad Shootback EM anomaly. Soil anomaly open to west. Untested.

Anomaly J

- broad conductive zone (EM-16 and Shootback), with coincident $\mathrm{Pb}-$ Zn soil anomalies. Pb-Zn-Ag soil anomaly and EM conductor (Noranda report; data unavailable).
- tested by DDH 77-6 (no intersection) and Noranda trench \#3. Mineralization SE of road consists of 2 m wide zone of disseminated sulphide ($0.48 \% \mathrm{~Pb}$), NW of road includes 29 m wide (not true width) zone of up to $6.0 \% \mathrm{~Pb}, 2.45 \% \mathrm{Zn}$ in individual samples.

Anomaly K - Spar showing

- surface mineralization and coincident IP anomaly. To SW (along strike?) is coincident $\mathrm{Pb}-\mathrm{Zn}-\mathrm{Cu}-\mathrm{Ag}$ soil anomaly (Noranda report; data unavailable). To NNE is 800 m long HLEM conductor.
- tested by 9 drill holes (locations poor); 2 of which intersected horizon (almost collared in it). Strike extent unknown and untested in both direotions. Noranda trench $\# 2$ indicated 7 m wide zone of disseminated galena, up to $1.4 \% \mathrm{~Pb}, 0.9 \% \mathrm{Zn}$.

Anomaly L

- broad area of long HLEM anomalies (probably formational).
- tested by Noranda trench \#1. Uncovered graphitic sediments, no mineralization.

Anomaly M

- coincident Huntec IP, EM-16 anomaly. Trench \#6: $22 \% \mathrm{Zn}+\mathrm{Pb} / 1.2 \mathrm{~m}$.

Numerous other geophysical anomalies, suspected to be formational; need geochemistry to sort out.

Priority

1-A, B, C, K
2 - D, E, F, G, J, M
3 - H, I, L

Area	Number	Type	Width	Zn\%	Pb\%	$\mathrm{Ag}(\mathrm{g} / \mathrm{t})$
Eastern	7	chip	1.0	14.70	11.10	136.09
Main	8	chip	1.2	7.80	6.52	69.59
Ballpark	10	chip	1.2	7.20	5.65	94.61
	11	chip	0.7	8.30	2.60	49.36
	12	chip	1.4	3.40	2.81	55.19
	13	chip	1.0	4.23	6.33	148.43
Western	2	chip	1.0	0.43	11.50	142.60
	3	chip	1.0	1.65	0.72	13.03
	6	chip	1.2	16.20	5.74	128.89
Spar	adit	chip	3.0	8.25	36.60	836.43

