PROSPECTING REPORT

MAGNETOMETER & SOIL SAMPLING SURVEY

ON THE

" DIVIDEND GROUP "

OF

MINERAL CLAIMS

IN THE

OSOYOOS MINING DIVISION

N.T.S. 82 E / 5 W

49 22 NORTH LATITUDE

119 51 WEST LONGITUDE

RECORDED OWNER, OPERATOR, & AUTHOR

LEO REICHERT

DECEMBER 1987

INTRODUCTION

(i) The "Dividend Group" of mineral claims consist of;

Claim Name Record Number Anniversary

Claim Name	Record Number	Anniversary
Jay #1	2487	Sept. 19
Jay #2	2488	Sept. 19
Oven	2447	June 30
Green Mtn.	2491	Sept.29
Black's Camp	2490	Sept.29
Dividend	2433	June 16
Union Gap	2435	June 16
Paychex	2434	June 16
Pair of Sevens	2530	Oct. 31

they are located in the southern interior of British Columbia, 12 km east of Mascot Gold Mines (Nickel Plate Mine), Hedley B.C.

Access is by 4X4 vehicle on bulldozed roads from either Olalla Cr. Rd., Cedar Cr. Rd., Old Nickel Plate Rd., or Apex Ski Resort Rd.

Topography ranges from 7100 ft. (2164 m) to 4200 ft. (1280 m) above sea level.

Slopes are steep, valley floor and lower slopes are covered with evergreens and upper southern slopes are in bare alpine growth, upper northern slopes are heavily timbered.

(ii) Claims were first recorded on the property in 1899 and were active until the outbreak of W.W.l in 1913, as documented in the Ministry of Mines Annual Reports.

Exploration was centered on bodies of massive pyrrhotite carrying values in copper and gold. Work consisted of pits, trenches, adits and shafts. Further work was not recorded until 1966. Following is an excerpt from an "in house" report by Mr. Alex Burton P.Eng. (1981).

"A series of mineral occurences were recently recognized to be a linear zone of pyrrhotite lenses and disseminations with significant tungsten values as well as the previously known gold and copper values.

The several showings line up and appear to be part of a zone at least 2,400 metres (8,000 ft.) long that extends through a vertical extent of at least 300 metres (1,000 ft.) and maybe more than 450 metres (1,500 ft.) This is a significant and important mineral property with good potential for developing economic tonnages of open pit and maybe underground ore.

It warrants a thorough exploration program on the several surface showings as well as along srtike extensions on the zone."

Since the report by Alex Burton in 1981 the claims have lapsed and the ground has been legally restaked and added to by the present owner, operator and author, Leo Reichert.

(iii) A 35.3 km exploration grid was laid out in June 1987. Silva ranger compasses with magnetic declination adjustment (21 30" East declination was used) and dip needle clinometers as well as hip chain topofils were utilized for bering and distance measurements with slope correction. The lines were marked by blazing and flagging with orange ribbon on a line spacing of 100 m with stations at 20 m intervals, coordinates were marked with waterproof ink felt pens on typek tages tied to flagging.

A magnetometer survey was conducted over 25.54 km of the exploration grid by the author using a McPhar M700 magnetometer, (Serial No. 7132). The M700 magnetometer is a vertical field magnetometer employing the flux gate principle. All readings were taken facing east to minamize fluctuation with respect to the horizontal direction of the earth's magnetic field. Although the survey was conducted with the accepted method of recording time of reading and tie in with known base stations to determine diurnal drift, the readings were not corrected for the observed fluctuations were negligible compared to the anomalies found on the property. (60 gamma fluctuations, 1,000 gammas considered anomalous, 100,000 gammas maximum observed anomaly).

The most sensitive scale (10 gamma readings) on the magnetometer was used and adjusted to known stations from assessment report #10,092 in order to tie in magnetic readings with the previous survey. This was possible by deleting a constant of 57,000 gammas which was later added to all readings.

Readings were taken at 10 m intervals along all lines and occasionally at 5 m intervals where magnetic gradient is steep. Over 3,000 separate readings were taken, in some anomalous areas a detailed fill in grid with 20 m line spacing was added.

Geochemical Survey

A total of 90 soil samples were collected at 20 m intervals along lines spaced at 100 m. Samples of no less than 250 grams were taken from the "B" horizon (15 - 40 cm depth) using a shovel. The samples were placed in Kraft paper gusset bags and grid coordinates marked on them with waterproof ink felt marking pens. Chemex Labs Ltd., 212 Brooksbank Ave., North Vancouver prepared the samples by drying, then sieveing through -35 mesh and ring pulverizing to approximately -100 mesh. A 30 gram sample was then fire assayed with atomic absorpion as the finishing step for a gold geochemical assay with a detection limit of 5 ppb.

Sample locations were confined to very limited areas of the property in an attempt to verify and rediscover soil anomalies described by Cochrane (1975) assessment report #5574, as well as keeping within a limited budget.

A total of 29 rock samples were submitted from various locations on the property and assayed similarly for gold. At an old drill site near the north west boundry of the Green Mtn. claim, 200 ft. (61 m) of BQ size diamond drill core was discovered in core boxes. The date and operators of the drilling is unknown, but the core was logged by the author and divided into 19 rock samples which were submitted. The bearing and dip of the hole could not be determined but drill cuttings indicate location of hole, because the topography slops steeply to the north the author speculates the hole to have a bearing in a southerly direction with a dip of 45 - 60 from the horizontal.

Regional Geology

H.S. Bostock first mapped the area in 1927 for the G.S.C. and Printed "Map 628 A, Olalla." In the area of the claims Triassic sediments and lesser amounts of volcanics were mapped as the Old Tom, Shoemaker and Independence Formations. These Formations are cut by post Triassic granodiorite.

Geological Survey

The author was confined to the grid lines during the cource of the magnetometer survey and only brief, general notes are available due to the limited time spent. Areas that were not easily assessed were simply noted as outcrop.

(iv) A list of claims that the work was actually performed on follows;

Magnetometer Survey (August & September) - Black's Camp
- Dividend
Geochemistry Survey (October) - Dividend
Diamond Drill Hole Assays (October) - Green Mtn.

Interpretation & Conclusions

Magnetometer Survey

Primarily, the Magnetometer survey was successful in newly discovering a very large, and strongly magnetic zone in the north east quadrant of the Dividend claim. The anomalous zone measures over 1,100 m long and over 200 m wide at it's widest point with the strongest magnetic releif of 100,000 gammas over 30 m at 71&00 E on L 74 N. No surface showings were visible to indicate type or size of mineralization, although in 1982, a small showing of massive pyrrhotite replacement skarn adjacent to crystalline limestone was observed. by the author, in the general area. B.C.M.M.A.R. describe the LeRoi & Scotia Group of claims to be situated on the northern

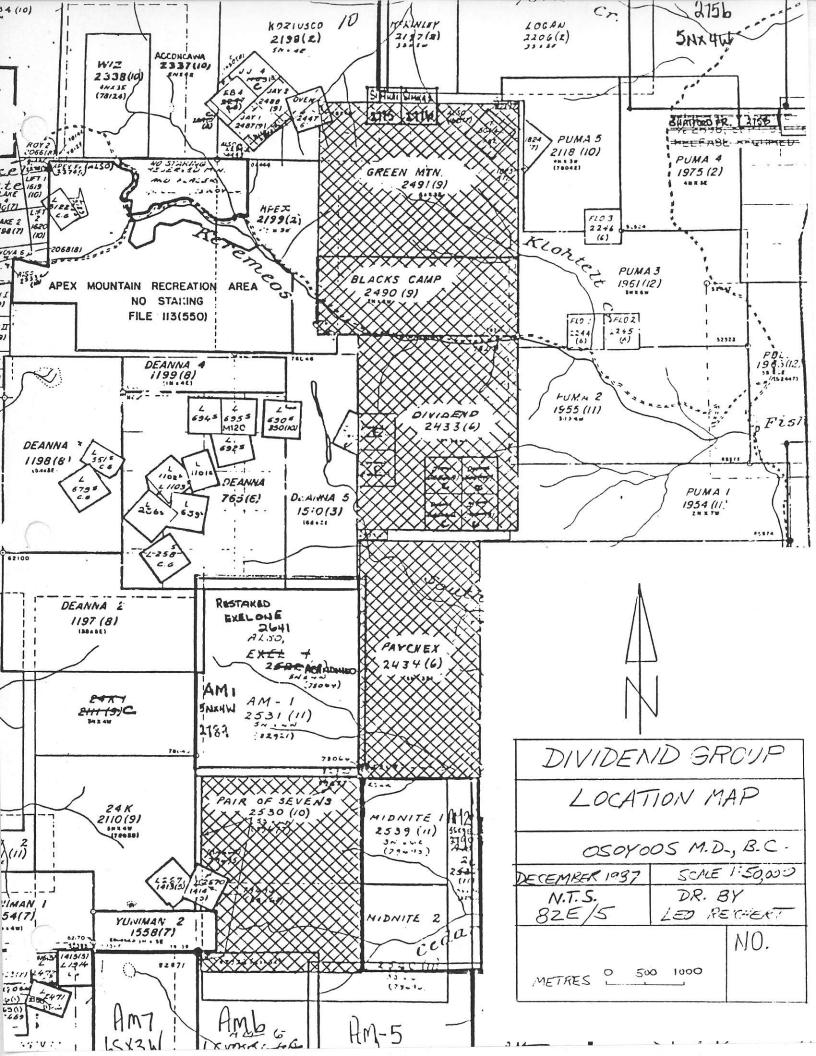
slope of Dividendd Mountain, and in 1905 report;

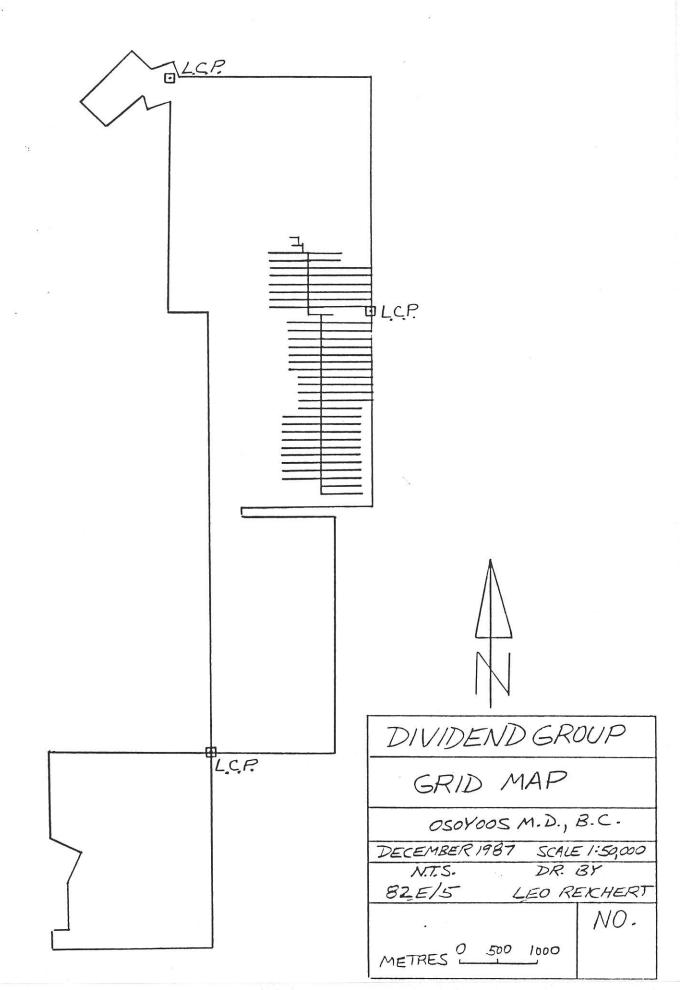
"During last season a tunnel and crosscut therefrom were made on the property. This work disclosed an extensive body of high grade copper gold ore running about 5% copper and several dollars in gold. The property is well situated for operation through tunnels."

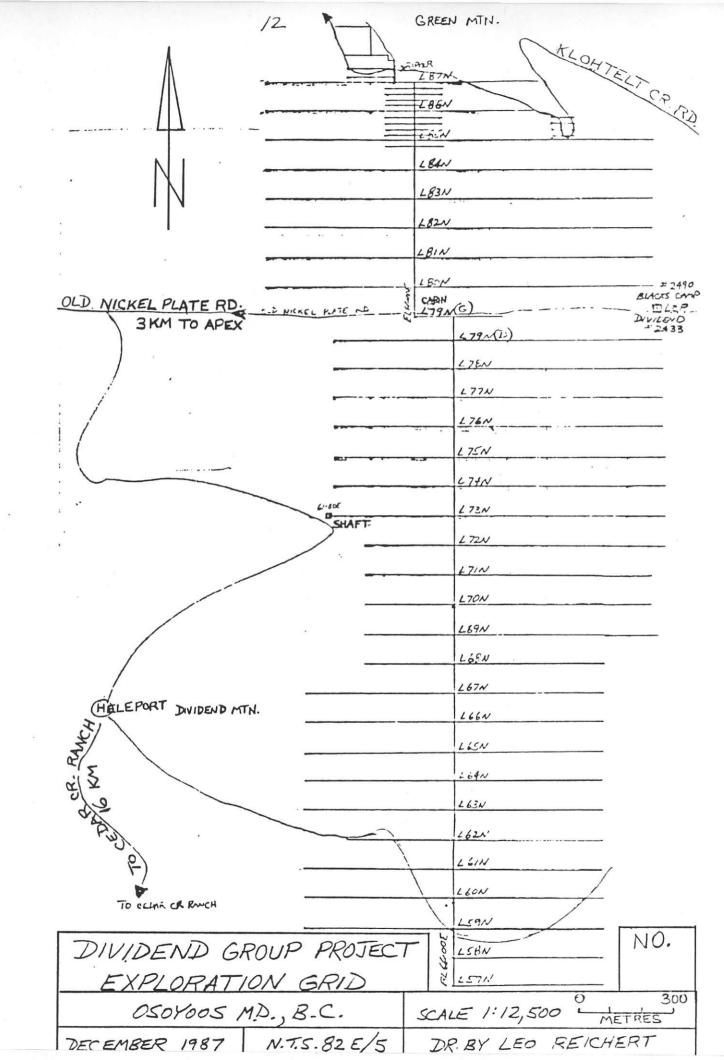
These facts clearly demonstrate the need for an extensive exploration program in order to determine the parameters of the mineralization causing this newly discovered large and powerfull magnetic anomaly.

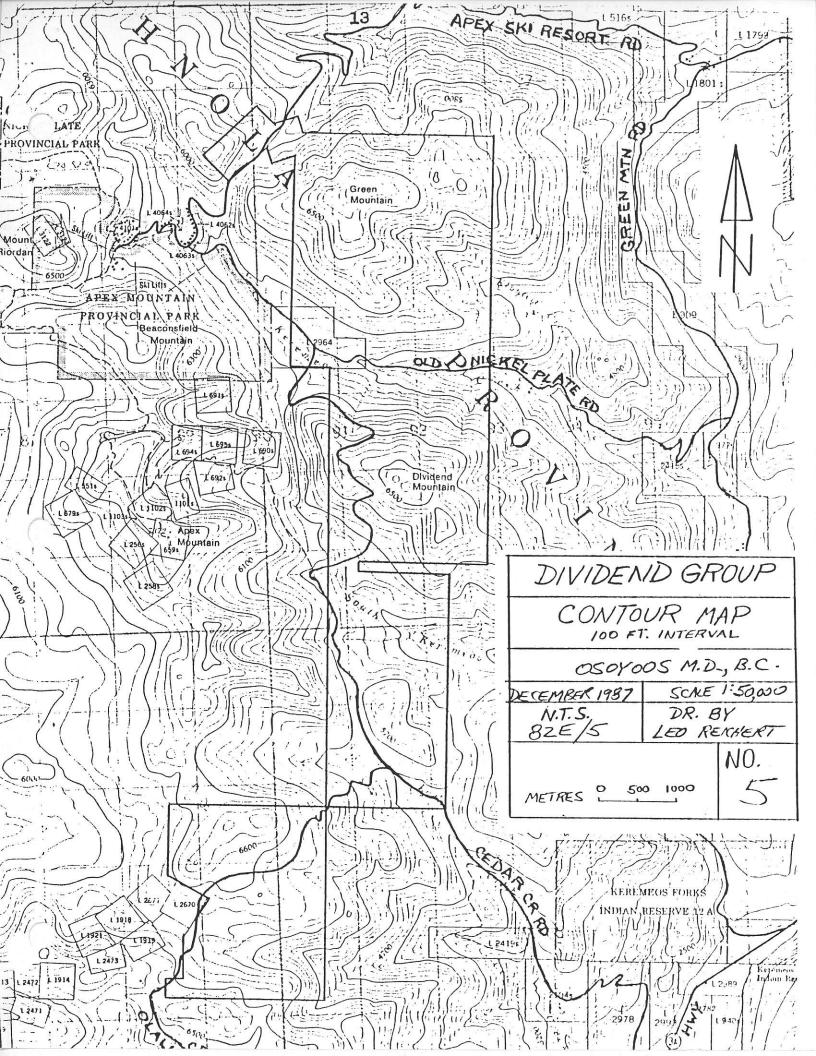
Secondarily, the magnetometer survey was successful in detailing a priviously known area of massive sulphide mineralization by defining and extending it's shape and size to an unprecedented extent.

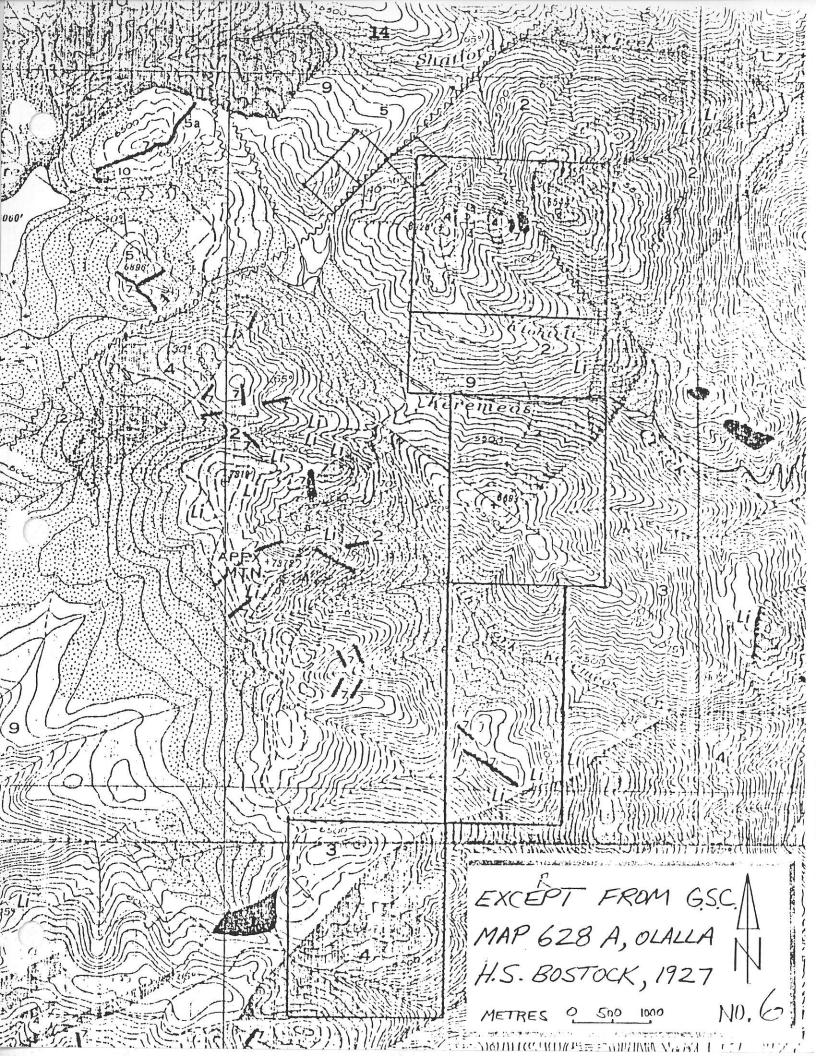
Follow up work is needed to the north and south as well as to the west where a substantial diamond drilling program was conducted in November 1987 near the west boundary of the Green Mtn. claim by Siemont Resources on it's neighboring property. The assays of the diamond drill core found abandoned in this area were not remarkable.


Geochemistry Survey


The limited soil survey did not duplicate the results of assessment report # 5574, although several anomalous gold values were recorded. The geochemistry survey should be extended to all regions of the claims and in that way may prove invaluable in determining gold mineralization.


SUMMARY


Future exploration should consist of extending grid to the north and west as well as filling in and detailing grid over the large anomaly on the north slope of Dividend Mountain followed up with prospecting, magnetometer, soil and geological surveys as well as road building, trenching and diamond drilling where required.


100

	CENOZOIC	13	MARRON FORMATION: mainly busult and andesite; more acid lavas in northern part of map-area, related breccia, agglomerate and tuff; conglomerate
	CE		SPRINGBROOK FORMATION: mainly conglomerate; sundstone, shale, tuff, talus deposits
10 m m	1	POST - THIAS	Granite porphyry
	•iir	115	Granite
(40)		9	Granodiorite
	OIC		Syerite
	MESOZOIC	1	Mainly dionite; gabbro, quartz dionite
*		6	Pyroxenite
		TRIASSIC (1)	WOLFE CREEK FORMATION AND HEDLEY FORMATION (undifferentiated); 51, WOLFE CREEK FORMATION (mainly): andesite, basalt, breccia, tuff; minor sediments; 55, HEDLEY FORMATION (mainly): quartzite, cherty quartzite, argillite, liniestone; breccia, tuff
		TRIASSIC OF	
* *		4	OLD TOM FORMATION: mainly basalt and andenite (greenstone); related dioritic intrucives; chert
		3	SHOEMAKER FORMATION: mainly chert; tulf, greenstone, immestone
		2	INDEPENDENCE FORMATION: chert, greenstone, breccia, argillite, limestone
ja	•		BRADSHAW FORMATION: urgillite, tuff, quartzite, tireccia, andesite
		Property Courts and	

Mussive limestone, breccia, conglomerate (at base).
Unconformably overlies (3) and (4), age unknown EXCEPT FROM

MAP 628 A, OLALLA

Crystalline rocks of granutic composition. H.S. BOSTOCK, 1927

Origin uncertain

Changan

30

DESCRIPTIVE NOTES

The area has been prospected since the early nineties, but production has been limited to small formages of copper and nodybedenom ores. These occur as fissure vein and contact metamorphic deposits in the victinity of the body of pyroxenite and related introdives at Uralia. Some of the deposits carry ()—a values in gold and silver and the principal ore minorals are chalcopyrite, molybdands, pyrite and magnetile. In the central and northern part of the mapharea the Mosovici strata, introded by bodies of granddonte (9) and grainte (10), are much metamorphosed and contain scattered minoral deposits most of which are near small introdive masses and dykes of diontic composition (7). The deposits include both fissure voin and contact melamorphic types. They commonly carry corespicuous amounts of arsenopyrite and pyrithotile as well as one or more of a variety of other sulphide minerals including chalcopyrite, pyrite, subalcrife and fialena. Values are chiefly in cold.

pyrito, sphalarito and galeria. Valves are chiefly in gold. An area of Mesozoic and earlier stratified to its extends from earl of Okanojan valley westerly to Princeton. Its cort by introsives and partly covered by Terhary rocks but as a whole forms a nearly continuous belt and its divisible into four irregular segments, each composed of a group of rocks that on the whole is younger than the group forming the adjoining segment to the east of it. Onessic tooks of mainly Palaeotoic age he along Okanojan valley and form the easternmost segment. To the west of this between Okanojan and Similarneen valleys, is a segment occupied by a group of rocks of fate Palaeozoic age, and represented mainly in the Keremeos map-area to the southeast of the Otala mapharea. West of this is a third segment composed of several formations and forming a complex synchical structure. This segment is represented in the Otala mapharea by the Bradshaw (1). Independence (2). Shoemaker (3) and Old Tom (4) formations. The oldest formation in the segment is, however, believed to be the Blind Creek formation of the Keremeos mapharea and contains Periman Jossifs, fossifs, probably of early Mesozoic age, have also been obtained from the Independence and Shoemaker formations. The segment is cot off to the northwest by intersive rocks and by fault that extend northeast from the west side of Winters Creek. A Jourth segment, to which the Wolfe Creek and Healey formations (5a and 5b) belong, less northwest of the intrusions and faults. Its lower members contain Triassic fossifs. The contact relationships of the four segments are obscured by drift, by faulting, and by Mesozoic grantic intrusions. In the eastern part of the fourth segment are to the west whereas those of the western part of the third segment are to the east indicating that the line of third segment are to the east indicating that the line of intrusion and faulting between them follows a broken anticinal axis.

Buds of dark blue-grey chert form most of the Shoemakor formation and constitute a distinctive stratigraphic unit. Reportitions of belts of the Shoemaker and Old Tom formations and due in part to close folding and, in part, to faulting. In this maparea those belts appear to dip prevailingly eastward but faither south they form distinct antichnes and synchries. Many of the took types in the Independence formation resemble those of the Shoemaker, Old Tom and Bradshaw formations and in inspirity it was not always possible to distinguish independence strata from what may be foull shees or infielded bods of other formations. Alteration of the Independence, particularly by silitication and contact metamorphism, has added to the problem of its original composition and stratagender.

tem of its original composition and stratigraphy.

Fine, regular bedding is a distinguishing feature of the rocks of the footh segment in contrast with the irregular stratification of the abundant, cherty, measures of the finid segment. Within the central part of this map area the Bradshaw, independence, Shoemaker and Old Tom formations almost inventably show some contact metamorphism and on the involution solutions of Nicret Plate Lake the strata are almost solidly altered to garnet and other sticate minerals. The bodies of crystallina rocks of grantic appearance and composition (B) are probably remnants of greatly aftered roof pendants.

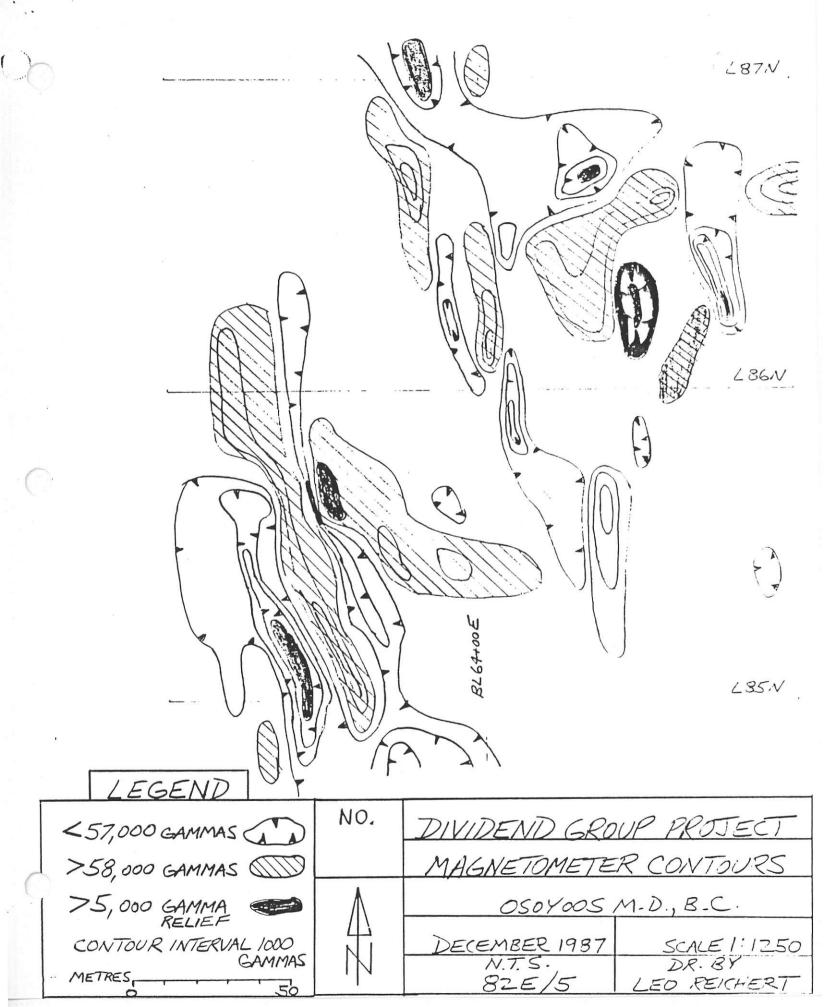
The pyroaento (o) is a dark groon rock and is intersected by numerous dykes ranging in composition from pyroxento to grante. Syente (8) intrudes the pyroxento and is a coarse, pirk fetd-patter rock.

The Epringtrook formation (12) rests upon a pre-Turtiary rock surface of steep refiel and varies greatly in thickness from place to place. It is composed of soils, afterioring laby, stream and take of soils and followed a materials. This artiformation in their sulleys below and during the earlier extresions of the Marron volcame rocks (13). Where the formation is thick the basel bods consist mainly of conglomerate containing huge angular boulders. These bods grade upwards into confinite rate composed of smaller, more rounded and better sorted materials. Upparmost strata include bods of polished publies, sandstone and white full access bills and, in one locality, Cordain prants of early Terhary, purhaps Paleocene age.

The volcanic rocks of the Marion formation were extruded over fulls of pre-Terhaty rocks and into valleys partly filled by the Springbrook formation. They filled these valleys and accumulated to a thickness of over 4300 feel and are believed to have covered all but the matest parts of the man area.

to have covered all but the highest parts of the map area.

The Terriary formations of the map area form a fringe to a broad Terriary synchrolia farther east faults extending north from Keromeos Creek across Shattord Creek indicate that this body of Terriary rocks has been down faulted along them. The faults appear to follow Keromoos Creek valley to Similkamoon River south of the map-area.


Clacial strike, erratics and morainal disposits have been observed on the highest semants in the area. The ice overrode Apex Mountain from the northwest but this high hidge was a sufficient obstruction to divert the ree pressure scottiward, allowing ice from Okahagan valley to spread southwestward into Keremoos Creak valley.

EXCEPT

	Λ	NO.	DIVIDEND GROUP PRO
	4		MAGNETOMETER ANOMA
	1		OSOYOOS M.D., B.C.
1		50	DECEMBER 1987 SCALL

METRES

N.T.S. 82E/5 LEO REICHERT

Drill Hole Log

DMPA	NY		•		- -				PROPER	RTY I	DIVIDEN	D GROU	P ·			Section No.	HOL	E No. 8	7-1
iteries	1	I/A				mering.		N/A	Lac E	500 n	a S of	TCE OIL	6,00	· 0 f	t. I	Leo :	Reichert	Date OC	t.27/87
iompli	rust : K	I/A	٠.		A	nyle tro	m Horizon	N/A			Mtn.	Bottun	LEL N/	A		Heritarias BQ			
pt fffee		A/A			L	ลเเลิญ	200 :	t.	Lucation			Level	N/			Recove	y - 95%		
FE	7		HECO	VEHY			•		055	COLUTIC	201		,		Samo	SAMPLE#	PPB.	ASSAY	· .
_	To	-		2	!				PES	CRIPTIC			Mineraliz	ation	100		Irana Z Au.		
-	THE RESERVE TO THE RE	25			MAI	NLY	DYKE	CONTAIN	VING CH	HRIY	REMULATI	5 (vov A	116)			125221H	75		
25	47.5	225			Di	E,	Disse	MINAT	EDF	RACIO	VRE FILL	ING (MAG	PYRE	HITTE		125 222 H	15		19
175	5z	45			BR	-GR	SKA	RN ZO	VE, FX	PACTUR	& FILL	NG (MAG)	PYRITE,	PYH		125223H	45		111
	55					" "			" "	N	11		"	//		125 224 H	45		
55	65	10			II.	06	. SIL	CIOUS	CHEET.	OX.	FRACTUR	E 11	11 -	"		125 225 H	15		
5	75	10			11	11		"	"	11	"	Ir	11	11		125226H	_ <5		
75	85	10			11	"		"	"	"	11	"	"	,		125227 H	5		
35	95	10			11	11		11		. //	"	"	11.	•		125228 H	25		
75	109	14			BR	-68	ESKA	er (HEAVY	r)	je.	11	11			125 229 H	5		
29	115	6			LT.	Co	4-5	14/10	US CA	HERT	OX. FRA	TURES.	NI	_		125 230H	15		
5	125	10							11	8	(NON /	MNEK) //			125231 H	15		
3	139	14							11				11			125232H	15		
,a	147	8		-	238				/	.5			//			125 233 H	20		
5	150	3			DK-	CR.	DYK	E, SK	APRN	•	(,	MAG)	P	44		125 234 H	5		
50	160	10			1.	Col.	SIL IC	IOUS CH	LET. C	OX. FK	HETURE	N/MS)	\sim	16		125235H	15		
01	170	10			100			/			•//		11			125236 H	45		
-01	80	10						1,	,				1)			125237H	45		
20	190	10						11					1/			125238H	45		
0	200	10						11					11			125239H	45		

Rock Sample Descriptions

Sample	#		Loc	atio	<u>n</u>			Des	crip	tio	n ((all	grabs	3)	Au p	<u>dg</u>
125201	H-	Adit	300	m W	of h	eler	port	- py	h. d	k b	lue	egre	en dyk	e	5	,
125202	H-	Tr.	300	m W	of he	1epo	ort	- gr	eygr	een	c e	ner t	ру, ру	h	1	.5
125203	H-	Tr.	300	m W	of he	1e po	ort	- ma	ssiv	е в	ulj	hid	e py,p	yh,	chpy	15
125204	H-	Adit	300	m W	of h	elej	port	ma	ssiv	е в	ul	hide	e pyh			65
125205	H-	L 59	N/6	6&60	E -	• wh:	ite	grey	,Fe	sta	ine	ed, qı	ıartzy	ch ch	ert	< 5
125206	H-6	60&07	N/6	5%80	E -	Lt&c	dk e	reen	ban	ded	l cł	ert,	pyh			< 5
125207	H-{	59&77	N/E	6&25	E -	Lt&1	Dk g	green	ban	d ed	l cl	ert;	pyh			< 5
125208	H-1	100 m	S	f he	lepor	rt- 1	Dk e	green	aka	m,	Fe	sta	ined f	Crac	et.	< 5
125209	H-1	100 m	150	f he	1epor	rt- 1	B r& C	reen	, con	rce	e sl	(arı)	, sche	eli	Lte	< 5
125240	H_!	500 m	190	e to	D Cre	an I	uttn	_ nk	ma	ΔΠ	ch	ant i	ovh			1 =

212 BROOKSBANK AVE , NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

BOX 514 KEREMEOS, B.C. VOX INO

* INVOICE NUMBER

18725695 *

BILLING INFORMATION

Date : 25-NOV-87

Project : P.O. # :

Account : BDN

Billing: For analysis performed on

Certificate A8725695

Terms : Net payment in 30 Days

1.5% per month (18% per annum) charged on overdue accounts.

Please remit payments to:

CHEMEX LABS LTD. 212 Brooksbank Ave., North Vancouver, B.C. Canada V7J-2C1

CHEMEX ANALYSIS CODE DESCRIPTION	SAMPLES ANALYZED	UNIT PRICE	AMOUNT
983 - Au ppb FA+AA Sample preparation and other charges	8 9	8.75	778.75
20335 mesh sieve + ring	90	2.50	225.00
	Tot	al Cost S	1003.75
	TOTAL	PAYABLE \$	1003.75

Chemex Labs Ltd

Analytical Chemists * Geochemists * Registered Assayers

212 BROOKSBANK AVE , NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

To REICHERT, MR. LEO

BOX 514 KEREMEOS, B.C. VOX 1NO

Project : Comments: Page No. :1

Tot. Pages: 3
Date :25-NOV-87

Date :25-NOV-87 Invoice #:I-8725695 P.O. # :

CERTIFICATE OF ANALYSIS A8725695

	SAMPLE DESCRIPTION	PREP CODE	Au ppb FA+AA			•				
	L59N 66+00E L59N 66+20E L59N 66+40E L59N 66+60E L59N 66+80E	203 203 203 203 203	40 25 15 65		/					
	L59N 67+00E L59N 67+20E L59N 67+40E L59N 67+60E L59N 67+80E	203 203 203 203 203	not/ss 20 15 < 5	1						
	L59N 68+00E L59N 68+20E L59N 68+40E L59N 68+60E L60N 66+00E	203 203 203 203 203	< 5 1 5 2 0 2 0 2 0		ı					
N.	L60N 66+20E L60N 66+40E L60N 66+60E L60N 66+80E L60N 67+00E	203 203 203 203 203	2 5 2 0 3 5 1 5 2 0							
	L60N 67+20E L60N 67+40E L60N 67+60E L60N 67+80E L60N 68+00E	203 203 203 203 203	2 0 2 5 1 5 8 5 1 5							
	L60N 68+20E L60N 68+40E L60N 68+60E L60N 68+80E L61N 66+00E	203 203 203 203 203	1 5 5 < 5 1 5 2 0							
	L61N 66+20E L61N 66+40E L61N 66+60E L61N 66+80E L61N 67+00E	203 203 203 203 203	1 5 1 5 < 5 2 0 3 5			-0				
	L61N 67+20E L61N 67+40E L61N 67+60E L61N 67+80E L61N 68+00E	203 203 203 203 203	3 5 2 5 4 0 2 5 4 0							
		-						1.1 4	3. 10.	

22

CERTIFICATION: Kouth's le

Chemex Labs Ltd

Analytical Chemists * Geochemists * Registered Assayers
212 BROOKSBANK AVF NORTH VANCOUVER.

BRITISH COLUMBIA, CANADA V7J-1CI

PHONE (604) 984-0221

To REICHERT, MR. LEO

BOX 514 KEREMEOS, B.C. VOX 1NO

Project : Comments: **Page No. :3 Tot. Pages:3 Date :25-NOV-87 Invoice #:I-8725695 P.O. # :

CERTIFICATE OF ANALYSIS A8725695

9						Lipis
SAMPLE DESCRIPTION	PREP CODE	Au ppb FA+AA				
W2 62+90N 67+90E WTTR 1+65E WTTR 1+80E 0+40S WTTR 1+85E WTTR 2+00E 0+80S	203 203 203 203 203	1 5	15 150m AZ 180°			
SH #1 0+30M S.E. SH #1 0+70 S.W. WTR 300 m W of HEEPORT WAD 300 m W of HELEPORT WO3 /GO m S of HELEPORT	203 203 203 203 203	15 SH#1 /5 5 60 80 35	s 250 m AZ 110°	FROM HELEPORT		
					: .	
					*	
			1			

23

212 BROOKSBANK AVE , NORTH VANCOUVER, BRITISH COLUMBIA CANADA V7J-2C1

PHONE (604) 984-0221

To: REICHERT, MR. LEO

BOX 514 KEREMEOS, B.C. VOX INO

* INVOICE NUMBER 18725696 *

TOTAL PAYABLE \$

399.50

D	T	T	T	T	NIC	; I	M	C	~	D	M	A	T	T	$\cap N$	
D	1	_	_	1	LAC	, ,	1.4	r	v	\mathbf{r}	MI	Λ		1	UN	

Date

: 19-NOV-87

Project :

P.O. # :

Account : BDN

Billing: For analysis performed on Certificate A8725696

Terms

: Net payment in 30 Days

1.5% per month (18% per annum)

charged on overdue accounts.

Please remit payments to:

CHEMEX LABS LTD.

212 Brooksbank Ave.,

North Vancouver, B.C.

Canada V7J-2C1

CHEMEX	ANALYSIS DESCRIPTION	SAMPLES ANALYZED	UNIT	AMOUNT
983 -	Au ppb FA+AA	34	8.75	297.50
300000 P	reparation and other charg			
205 -	Rock/Core - RING	3 4	3.00	102.00
		Tot	al Cost S	399.50
			-	

Chemex Labs Ltd.

nalytical Chemists * Geochemists * Registered Assayers

212 BROOKSBANK AVE , NORTH VANCOUVER. BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

To: REICHERT, MR. LEO

BOX 514 KEREMEOS, B.C. VOX 1NO

Project : Comments: **Page No. :1 Tot. Pages:1

Date :19-NOV-87 Invoice #:I-8725696

P.O. # :

CERTIFICATE OF AMALIBID AND ADDITION	CERTIFIC	ATE	OF	ANALYSIS	A87	256	9	5
--------------------------------------	----------	-----	----	----------	-----	-----	---	---

	SAMPLE DESCRIPTION	PREP	Au ppb FA+AA			<u>18</u>					
	125201 125202 125203 125204 125205	205 205 205 205	- 15 - 15 - 65		. 2						
	125206 125207 125208 125209 125210	205 205 205 205	- < 5 - < 5					×	,		
	125211 125212 125213 125214 125221	205 205 205 205 205		1							
25	125222 125223 125224 125225 125226	205 205 205 205	< 5 - < 5 - 15								
Ì	125227 125228 125229 125230 125231	205	2 5 5 - < 5	i							
	125232 125233 125234 125235 125236	205	2 0 5 - < 5	1					e e		
	125237 125238 125239 125240	205 205 205 205	- < 5			v			,		
							ı			7	

CERTIFICATION :

south he

REFERENCES

B.C. Minister of Mines, Annual Reports; 1899, 1901, 1902, 1903, 1904, 1905, 1907, & 1908.

B.C. Minister of Mines, Assessment Reports;

#803 Geophysical Report 1966

Magnetometer, Electromagnetic

Cominco Ltd.

#1803 Airborne Magnetometer Survey, 1968

Loak Creek Property

Apex Exploration and Mining Co. Ltd.

#3916 Magnetometer & geology 1972

JJ claims

New Northcal Mines Ltd.

#3918 Geophysical & Geochemical Report 1972

Karen Group, Klohtelt Creek

Lantern Gas & Oil Ltd.

#4794 Geochemical Survey 1973

JJ claims

New Northcal Mines Ltd.

#5199 Airborne Magnetometer Survey 1974
Dividend Mountain
Southcan Mining Ltd.

#5574 Geochemical Report 1975

Dividend Mountain

Southcan Mining Ltd.

#10,092 Geophysical Report 1981

Dividend Mountain

Summit Pass Resources Ltd.

also Property Examination 1981

by Alex Burton P. Eng.

for Summit Pass Resources Ltd. (in house)

Geological Survey of Canada, Maps;

Map 628 A Olalla

Map 538 A Kettle River, West Half

Map 15-1961 Revision of Map 538 A

ITEMIZED COST STATEMENT

Magnetometer Survey	
(25.54 km @ \$125.00/km)	\$3192.50
Geochemical Sampling	
(90 samples @ \$6.00/sample)	\$540.00
Rock sampling @ \$10.00/	
(29 samples @ \$10.00/sample)	\$290.00
Total Assaying	
(Chemex Labs)	\$1344.50
Shipping samples & return samples	\$150.00
Report materials & reproduction	\$200.00
Report labour	
(7.5 days @ \$100.00/day)	\$750.00
TOTAL COST	\$6,467.00

AUTHORS QUALIFICATIONS

- I, Leo Reichert, do hereby certify that I am a certified mining technologist and prospector with offices at Box 514, Keremeos B.C. vox-ino (Ph. 604-499-2580).
- (1) I graduated from the British Columbia Institute of Technology in 1972 with a diploma in mining technology, diploma #4538.
- (2) I completed and hold a certificate from the British Columbia Dept. Energy, Mines and Petroleum Resources, "Mineral Exploration for Prospectors" (April-May 1978) Selkirk College, Castlegar B.C.
- (3) I completed and hold a certificate from the British Columbia Mining School, Rossland B.C. (Dec.78-Mar.79)
 "Open Pit Operator Basic Training" #1970.
- (4) I completed and hold a British Columbia Dept. Energy, Mines and Petroleum Resources, "Certificate of Competency in Mine Rescue" (Mar. 1972) #5072.
- (5) I have been involved in mining exploration since 1978 and have worked the 1978,1979&1980 seasons for Wayland S. Read Ltd. as an exploration technician in the Yukon and B.C.
- (6) I was employed by "Newmont Mines", Similkameen Division as Senior Ore Control Technician from July 1972 to Nov. 1973.
- (7) I was employed by "Brenda Mines Ltd." Peachland B.C. as a summer student 1971 in the capacity of both surveyors helper and 100 ton truck operator.