August 1, 1955
2642 Nelson Avenue
West Vancouver, B. C.
S. M. Manning

Professional Mining Engineer Province of British Columbia

REPORT

on

PROPOSED MINING PROGRAMAE

REXSPAR URANIUM \& METALS MINING CO. LMMITED

KAMLOOPS MINIMG DIVISION

BRITISH COLUMBIA

I, S. M. Manning, of the Clity of Vancouver, in the Province of British Columbia, HERESY CIERTIFY:

1. THAT I am a Mining Engineer with business address at 2642 Nelson Avemue, West Vancouver, $\mathrm{B}_{4} \mathrm{C}_{*}$
2. THAT I was registered as a Professional Mining Bngineer of the Province of British Columbia in 1934 and have been practicing ny profession for thirity years.
3.

THit I have no direct or indirect interest whatsoever, nor do I expect to recelve ary, in the property of Moxspar Uranium \& Notals pining Co. Limited, as covered in the report which is attached horeto, and have no intereat, now do I expect to receive or acquire any interest, in the securitilios of the Rexspar Uranium \& Metals Co. Linited.
4. THAT the accompanying Report is based on an examination of the property duming Decenber Lth to December 20th inclusive, 195\%, Ju2y 1955, and a study of all available ongineering rocords on file at the property.

These records consist of
(a) the loge of all diamond drill holes,
(b) the core of all diamond drill holes. These, with few exceptions, are kept in two good buildings, are in munesical order, well stored and in good conditiong
(c) geologic and assay plans and sections covering the
(1) suxface
(2) underground workings,
(3) diamond drill holesg
(d) self potential plans;
(e) plans of the proposed method of mining the indicated and partially developed orebodiesg
(i) geological reporis written over the past feur years by various engineors such as Leaming, Gatenby, etc.g
(g) annual reports by Ferguson, Atkins and Scott.

MPS

Scale
Axval Kap - Mineral Clains - Coclogy $2^{n}=2000^{8}$
Soction $a^{\circ}-a^{m}$ $2^{\prime \prime}=1000^{\prime}$
Section Hit $^{[}$ $2^{11}=1000^{\circ}$
"A" Zone Plan - Oxe Outline $2^{11}=20^{1}$
"BD" Zone Open Pit Contours $1^{\prime \prime}=20^{1}$
"BD" Zone Ogen PAt with Access Roads $2^{\prime \prime}=100^{\circ}$
SECTHONS
Scale
"MD" zone
Grous Soctions Nos. $24,6-252$ Inclusive 2" 200
Longitudinal Sections No. 9 - 19 Inciusive $2^{3}=20^{\circ}$
Han Zone
(4), 50,51
Cross Sections Nos. 45 - 52 Inciusive $1^{11}-200$
Longitudinal Sections through "A" Orobody $1^{\prime \prime}=20^{\circ}$
Longitudinal Sections through Reference Line $1^{17}=20^{\circ}$
Longttudinal Sections through Referonce Line plus $50 \mathrm{~N}, \mathrm{E}_{\text {, }}$ to $250 \mathrm{~N}, \mathrm{E}_{\text {, }}$ Inciusive. $2^{11}=20^{\circ}$
Introduction 1
Property and Tsitile 1
Location and Accessibility 2
Physical Peatures 2
Mineralogy 2
Geology 3
Ore Bodies and Ore Reserves 4
Result of Exploration Work 5
Total Ore Reserves "BD" and "A" Areas 5
Calculation of Ore Reserves "BD" Zone 6
Calculation of Ore Reserves "A" Zone 6
Method of Ore Calculation 7
Overburden 7
Sumary of Overburden Yardage 8
Open Pit Mining 8
Details of Mining Method 9
Sturnaxy of Mining Costs 10
Direct Mining Costs - Orebrealding by Open Pit 11

- Air Requirements 11
- Establishment of Benches in Ore 12
- Overburden Removal 13
- Cost of Overburden Removal 13
- Drill Steel and Bits 34
- Clearing Pit Sites 14
- Road Maintenance 24
- Hauling 15
- Ore Storage 16

IIDDEX

Tndirect Costs - Mining 18

- Laboratory for Mine 18
- Accenmodation 19
- Suriace 20
- Administration 20
Totel Mining Costa 20
Capital Requirenents for Mine 21.
Tlectrical Power Requirements
- 60 Ton Unit 22
-500 Ton Unit 23
Capital Requirenents for Power Plant 24
Power Cost 25
Personnel and Labour Requirements 27-28
Buildings 29-31

INPRODUCTION

The group of claims first received attention in 1918 when Fluorspar was discovered on the property. Later, some attention was paid to a bog manganese deposit, and to some lead-ginc showings.

Attention was drawn to the property during the second world war when it was again investigated for fluorspar, and in 1942-43 about 5,000 feet of diamond drilling was completed on the Fluorite Zone.

The presence of uranium mineralization on the property was first suspected in late 1949 and confimed in 1950.

Active prospecting and development of the uranium showings continued in the five following years. This consisted of surface prospecting, underground developnent and diamond drilling, together with continuous geological surveying and mapping of the underground workings and surface rock exposures.

As a result of this work, which is still incomplete, two bodies of uranium ore have been outlined and developed and several other radioactive areas have been discovered which are now being tested.

PROPERTY AND TITLS

The property consists of one hundred and twelve claims and fractions, all of which are in good standing as of Augusi, 1955. They cover an area rectangular in shape approximately $4 \frac{2}{2}$ niles long by 2 miles wide.
of the one hundred and twelve claims, twenty-three contiguous and adjoining claims of this group have been surveyed by a registered British Columbia Land Surveyor and have been Crown Oranted. Further surveying is being done at the present time.

The title to the property is held by:-
Rexspar Uranium \& Metals Mining Co. Limited Suite 1922, 44 King Street West, Toronto, Ontario.

LOCATION AND ACCESSIBTIITY

The property is located at Birch Island, B. C., a small settlement on the North Thompson River. It is a small farming community through which runs the Canadian National Railway. Birch Island is 12 hours by train from Vancouver, B. C., and 2 hours by train and 3 hours by a fair all-weather automobile road from Kamloops, B. C.

The claims lie on the south side of the main line of the railway, which at Birch Island station, runs east and west along the south shore of the North Thompson River. The property, roughly rectangular in shape, extends scatherly from the railway for a distance of approximately four and one-half miles. In a west-east direction
the claims extend from the ridge west of Foghorn Greek easterly to Cedar Creek and beyond. Foghorn Creek runs northerly towards Birch Island.

The ore bodies found and developed on the property lie about two and one-half miles due south of Birch Island Station and are reached from there by an all-weather truck and auto road 7.5 miles in length.

PHYSICAL FEATURES

Elevations vary from 1,480 feet at Birch Island station to 5,000 feet at the southern end of the property.

The claims cover hills which slope moderately to the north except where creeks running nearly due north cut deeply into them.

The moderate slopes are covered with gravel and small trees and lend themselves to easy and cheap road construction.

Precipitation:

Full precipitation and temperature records from 1932 to 1945 from Molliets sheep ranch at Vavenby are as follows:

Rain (av. per year)	12.40^{n}	Average Annual Snowfall 3.66 feet
Snow (equiv. rain)	4.40^{n}	Lowest Recorded Temp. 045° (Jan. 1943)

Conditions at Birch Island would be practically Identical with those at Molliets sheep ranch at Vavenby.

From the experience of the past two winters it is estimated that 3 to $3 \frac{2}{2}$ of snow lay on the ground at camp level; and in the Valley at the lower mill site, the depth of snow was 1^{\prime} to $1 \frac{1}{2}$ '.

MINERALOCY

A mineralogical report by the Radioactivity Division of the Department of Mines and Technical Surveys of Ottawa was made on two classes of rodk which comprised a three hundred and seventy pound bulk sample assaying $0.082 \% \mathrm{U}_{3} \mathrm{O}_{8}$ (chemical) and $0.091 \% \mathrm{U}_{3} \mathrm{O}_{8}$ (radiometric). This report states in part:
"I. (a) Dark coloured, medium grained, predominantly biotite-rock.
(b) Light coloured, very fine grained rock in which feldspar and quafte are more abundant than the mica.
2. The dark rock is more schistose and more heavily pyritized than the massive light coloured rock.
3. The radioactivity is due to a uraniferous thorite and
pitchblende. The thorite is more abundant and usually occurs in the dark-coloured biotite-rock while the pitchblende is formed in the lighter, more feldspathic rock."

The dark coloured biotite-rock containing the uraniferous thorite is the ore type rock.

GEOLOCY
(See map No, 111-1 and cross Sections $\mathrm{G}-\mathrm{A}$, $\mathrm{H}-\mathrm{H}$)
The area of the property was mapped geologically in 1930 by J. F. Walker, of the Geological Survey of Canada. His Iindings are in Summary Report 1930, Part A.

Walker states (the Company's property) is underlain by ${ }^{\text {m}}$ metamorphosed sediments of the Pre-Cambrian age, cut by later granodiosite intrusives". Locally the trachyte is considered to be of Pre-Cambrian age and the overlying andesite of triassic.

Mrr.Walker's report was used as a basis for the recent geological mapping which was conducted by Mr.S.Leaming, assisted by I. Gatenby, A.McLeish and JoLandry; and was under the continuous supervision of Technical Mine Consultants Limited, since 1950.

A Petrographic report by the University of Toronto in early 1953 made on twenty-six specimens from the property indicate four or live groups of rocks.
(1) Tuffs with trachytic fragments embedded in biotitesericite matrix possibly formed by the metamorphism of an argillaceous matrix of the fragnents (mineralized zones).
(2) Highiy feldspathic, fine grained porphyritic trachytic tuffs with possibly one or two flows of the same composition (possibly simply large fragnents).
(3), Rocks consisting almost exclusively of biotiteosericite.
(4), llocks consisting chiefly of pegmatitic albite.
(5) Rocks consiating principally of silty argillite.

The basement rocks underlying the property outcrop north and south of the mineralized zones and extend northerly close to Birch Island. They consist chiefly of a schistose light coloured rock of which the chief mineral appears to be sericite. These rocks contain occasional argillaceous bands and lenses varying in thickness from one foot to fifty feet.

At the top of the schists are several of these dark argillaceous lenses, one of which is fifty feet thick.

Overiying this argillaceous bed is a thick bed of trachyte varying in thickness from fifty feet to four hundred feet. This is the ore bearing member of the series.

Capping this and outcropping on the south west limits of the property is a green rock of andesitic composition, the schistose
parts of which are called chlorite schists. Associated with the green-gray rocks are some whitish sericitic-carbonaceous rocks, possibly sediments.

The beds strike approximately north 30 degrees east and dip 25 degrees northwesterly or with the hill.

ORE FODLES AND ORE RESERVES

Proving and assessing the ore bodies has been vigorously pursued since 1950. This work has been under the direction of A. B. Perguson (now manager of Panel Consolidated), W. Atkins (now manager of Rix Athabasca), J. Scott, resident manager and S.M. Manning of Technical Mine Consultants Limited.

In the year 1951 some surface prospecting, some bulk sampling and metallurgical testing of the then known uranium-bearing areas were undertaken at a cost of $\$ 8,073.41$.

In 1952 a surface diamond drilling programme was inaugurated in late June and completed in mid December of that year. Most of the drilling was on two areas known as the "A and the "Black Diamond" or "BD". Total expenditures for the year were $\$ 80,807.74$.

In 1953 further surface exploration and diamond drilling were begun in May and when nearing completion in the fall, a programme of underground development and diamond drilling was then cormenced.

Underground work on the "BD" area consisted of a crosscut at elevations 3,330 feet above sea level. It was driven easterly for a length of 189.5 feet. Total expenditures for the year amounted to $\$ 181,818.34$.

In 1954 the underground work was continued, together with further surface exploration and diamond drilling.

Underground work on the "BD" zone, which was completed in April, consisted of 813.5 feet of drifts and crosscuts, and 66.0 feet of raises.

The drifts and crosscuts were just under the main ore zone but two downward undulations in the bottom of the ore body were exposed by the workings.

Total expenditures for the year amounted to $\$ 198,711.02$.
During the 1955 season comnencing in January 1955 further underground work was carried out on the "A" zone; consisting of drifting, cross-cutting, raising and underground diamond drilling. This work was completed at the end of June and since then surface diamond drilling has been carried out on the "A" zone, "BD" zone and the area between the Fluorite and "BD" zones.

The estimated expenditures for the above 111 amount to \$121.942.00.

Result of Exploration Work
As a result of the years' work listed above,
(1) the limits and grade of two ore bodies have been fairly closely defined. One is in the "BD" area and the other in the "A" area,
(2) work in several additional promising areas is continuing mainly as surface drilling exploration. Probably these areas will increase the ore reserves appreciably.

Total Ore Reserves (see tabulation)

	Tons	Grade\%	Lbs./里
"BD" orebody	459,967	. 0855	1.710
"A" "	617,232	. 0855	1.711
Total	1,077,199	. 0855	1.7105

Calculation of Ore Reserves
(See plans "BD" and "A" areas
scale $1^{1 "}$ equals 20 feet:
Cross sections 246.5 to 252.0
Longitudinal sections 9 to 19)
Vertical cross sections and longitudinal sections were drem through the "BD" ore body and cross sections only through the "A" ore body. They are at horizontal intervals of 50 feet. Ore outlines were plotted on the sections according to assays and diamond drill hole geology, and the areas thus outlined calcula ted. These areas were considered constant for a distance of 25 feet on both sides of the section line and were multiplied by 50 to give the cubic contents per section.

BD ZONE

> 1 ton $=9.1 \mathrm{cu}_{.} \mathrm{ft}_{\text {。 }}$ Length for each section 50 ft

Section Area Sq. Ft. Assay\% $\mathrm{U}_{3} \mathrm{O}_{8}$ Area x Assay Volume Cu. Tt. Tonnage Lbs. $\mathrm{U}_{3} \mathrm{O}_{8} / \mathrm{T}$

247.0	0					
247.5	10446	0.055	570.770	522,300	57,396	1.100
248.0	10733	0.0868	931.510	536,650	59,032	1.736
248.5	12348	0.078	959.170	617,400	67,846	1.560
249.0	12064	0.0983	1186.233	603,200	66,352	1.966
249.5	14.655	0.0826	1210.485	732,750	80,603	1.652
250.0	13010	0.0973	1266.475	655,500	72,105	1.946
250.5	6924	0.1008	697.704	346,000	38,082	2.015
251.0	$\underline{3373}$	$\underline{0.0957}$	$\underline{322.778}$	$\underline{168,650}$	$\underline{18,551}$	$\underline{1.914}$
Totals	83533	0.0855	7145.125	$4,182,650$	459.967	1.710

A 20 NE

METHOD OF ORE CALCULATION

1. The ore structure or occurrence of the BD zone based on geological reports, logs of diamond drill holes and assays, was first drawn on each of the ten cross sections, then all occurrences grading . 05% of $\mathrm{J}_{3} \mathrm{O}_{8}$ and over were colored solid red and those of. 03% up to $.049 \% \mathrm{U}_{3} \mathrm{O}_{8}$ were hatched in red.
2. The outline of the area to be mined per each cross section was then outlined in green.
3. Tach axea was then subdivided into blocks so as to include at least one set of assays per block. These blocks are outlined in green also.
4. The tencross sections \#\# 247 to 251.5 inclusive show the ore areas and these 10 areas are subdivided into 95 blocks as shown on the attached maps.
5. Twelve longitudinal sections \#9 to 19 inclusive also show the ore areas. It will be noted that the low grade bands indicated by the cross sections show up quite clearly on these sections also. They lie in a more or less horizontal attitude indicating that these fairly flat dipping sheets might be able to be mined separately.
6. On the "A" zone the ore was blocked out similar to the "BD" zone as shown on 14 cross-sections attached.

OVERBURDEM

This is a calculation of the cubic yards of overburden lying above the ore zone and extending to the surface and has to be removed in order to permit the ore body to be mined by the open pit method. This amounts to 412,906 cubic yards in the BD zone and 253,850 cubic yards in the A zone, for a total of 666,756 cubic yards.

In this method it is proposed to remove the overburden with the aid of contractors prior to mining the ore..

In the $B D$ one the mine engineers calculate that 73% or 301,421 cubic yards of the overburden in this zone is loose gravel or loose rock to be mined by shovellirg, bulldozing or slushing.

In the A zone diamond drilling tests show that the loose rock averages 5 feet in depth, giving a total of 32,500 cubic yards.

Summary of Overburden Yardage

	Total Waste	Loose Waste	Solid Waste
A zone	253,850	32,500	221,350
BD Zone	412,906	301,421	111.475
	666,756	333,921	332,825

OPEN PIT MINIMO

Due consideration has been given to various methods of mining and it has been decided to remove the waste on both ore bodies with the aid of contractors, then mine the ore with Company equipment and staff on a selective mining basis. Because of the attitude of the ore bodies and the fact that ore lenses are intercalated with bands of low grade material, it is advisable to mine selectively to regulate grade to meet requirements.

It is considered advisable to do the mining in the more temperate season, April 1st to December 1st, and to mine and store in this period sufficient ore to satisfy the mill requirements of 500 tons per day for 360 milling days or 180,000 tons of ore per year. To win this ore it is required to mine 71,460 tons of low grade material for a total of 251,460 tons. This tonnage or 84,666 cubic yards are required to be mined in 8 months or in 190 mining days. This amounts to $\frac{84,666}{8}=10,583$. cubic
yards per month of 26 working days or 407 cubic yards per day $=1209$ tons per mining day of which 862 tons is ore and 347 tons is low grade.

The ratio of ore to overburden is 1 to 2. 50% of the overburden is loose and 50% solid. Thus for every cubic yard of ore plus low grade mined, 1 cubic yard of loose waste and 1 cubic yard of solid waste has to be mined.

```
Gravel 1 cubic foot = 100 1bs.
Solid gneiss 1 cubic foot = 170 lbs.
Schist I cubic foot = 168 lbs.
```

1 ton gravel or loose rock $=20$ cubic feet 1 cubic yard $=1.35$ tons 1 ton waste rock in place $=11.9$ cubic feet 1 cubic yard $=2.27$ tons 1 ton ore in place $=9.1$ cubic feet 1 cubic yard $=2.97$ tons

The ore and waste in the pit area has a flat, 15 degree dip with the hill and it is believed the walls of the pit will therefore stand well on a 70 degree slope. On this basis benches 30 feet in height with berms 10 feet wide are laid out for the open pit as shown on the 20 scale plan, but would be mined in sections governed by the attitude of the ore body and low grade bands. The benches are plotted on each cross section line of the plan and then sketched between the cross section lines. The sketched part will therefore not be accurate.

DETAILS OF MTNIMG METHOD

On examination of the sections it is obvious that the most flexible mining method must be adopted.

With this in mind it has been decided to work the pits by 30^{\prime} benches. Then by using wagon-drills, jack-hammers, slushers and loading equipment the ore and low grade can be mined and moved separately.

Drilling and blasting 407 cubic yards with wagon drills Canadian Ingersoll Rand, Rate of drilling 2 s inch bit $=1$ foot per minute. This is based on $11 / 3$ inch bit drilling 1.67 feet per minute at Rexspar.

Spacing: Holes 7 feet apart, rows 5 feet apart to commence with. Experience will decide correct spacing in the various types of ground encountered.

Benches 30 feet deep.
Holes 32 feet deep.
Holes required 10 .
Footage to be drilled 320 feet.
Changes required 3.
Steel required $12 \mathrm{ft} ., 22 \mathrm{ft}$. and 32 ft .
Drilling time 288 minutes $=5$ hours 20 minutes. Say 6 hours not counting changes.

Length of cut 73 feet.
Width of cut 5 feet.
Volume $\frac{73 \times 5 \times 30}{27}=408$ cubic yards.

It is planned to keep the drilling well in advance of the working face to obtain information by probing and spot sampling thus enabling the engineer to plan the blasting programme. It is also planned to check each truck load by scintillation counters.

It is best to blast as many holes as possible at the same time because the gas pressure developed in each hole working against that developed in the other holes gives better fragmentation.

SUMMARY OF MINING COSTS

Direct costs per ton based on mining 180,000 tons of ore per year of 208 working days in 8 months working period; in addition mining, removing and stock piling 71,460 tons of intercalated low grade material.

	Ore	Low Orade
BD Zone	154,913 cu. yds.	,554 cu. yds.
A. Zone	207,822 cu. yds.	2,578 cu. yds.

Ratio Low Grade:Ore - $1: 2.5$

Ore Breaking
Air Supply
0.047

Loading
0.111

Establishment of Benches
Per Ton
-
$\frac{\text { PerTon }}{0.182} \quad \frac{p}{11}$

Removal of Overburden
$0.486 \quad 13-14$
Drill Steel and Bits
0.047

Clearing Pit Sites
0.005

Road Maintenance
0.021

14
Hauling: Ore 7.5 miles © 4ϕ per ton mile
$0.301 \quad 15-16$
(exclusive of depreciation on equipment - see pg. 16)
Storage
$0.063 \cdot 16-17$
Total Direct Cost........ 1.285

Indirect Costs

Mining Supervision, etc. Laboratory	
	. 224
	. 055
	. 279
	Sub-Total
	Total.

\$ Per Ton
1.564 (Bt. Fwd.)

General Costs

$$
\begin{array}{lll}
\text { Accommodation } & .092 & \frac{p}{19} \\
\text { Surface } & .132 & \\
\text { Administration } & \underline{.205} & 20 \\
& \underline{ } & .430
\end{array}
$$

Mill portion 50%, Mine portion $50 \%=.215$
Power misc.

Total cost..... | $\frac{.215}{.040}$ |
| :--- |
| $\$ 1919$ |\quad 23

MINING COSTS

Orebreaking by Open Pit Crew Required and Costs - Breaking and loading 407 cu . yds. per day or 862 tons ore and 347 tons low grade. Total tons 1209.

Drilling: I blaster at \$15.00 per day - \$15.00
1 miner at $\$ 15.00$ per day - 15.00
1 helper at $\$ 12.00$ per day - 12.00
Bonus - $\quad 15.00$
857.00

Powder: $\$ 24.00 / 100$ lbs. $1.0 . b$. the mine
Required 1 lb . of 75% Forcite per cu . yd.
$=470 \mathrm{lbs} \cdot \frac{x}{100}=$
97.68

Caps required: 10 caps 25
$=$
2.50

Total
*157. 18
Per Ton
.282
$\begin{aligned} \text { Cost per ton }= & \frac{\$ 157.18}{862}= \\ & \frac{\$ 157.18}{407}=\$.386 \text { per cu. yd. }\end{aligned}$
Air Requirements
Operator (also as machine doctor, bit grinder, etc.)
Fuel (48 gal. per day © 24 4)
per day $\$ 20.00$
011 11.52

Repairs and Maintenance © $\$ 8.00$ per day 8.00 Cost Per Day... $\$ \longdiv { 4 0 . 5 2 }$
Cost per ton ore $=\frac{40.52}{862}$
.047
$\frac{\$ 40.52}{407}=\$.100$ per cu. yd.
Total per cu. yd. $=80.486$.

Loading
Timco operator $\$ 20.00$ per day

* helper © 12.00 per day

Overtime and Bonus

$$
\$ 10.00
$$

Fuel, oil, maintenance $\$ 6.75$ per hour \$54.00 $\$ 96.00$

Cost per ton ore $=\$ 96.00$
.111
$\$ 96.00=\$ 0.235$ per cu.yd. 407
i
Himco 105 has I2 cu.yd.bucket - above $\$ 6.75$ per hr. based on Copper Mountain cost for 13 cu.yd. Morthwestern Shovel.

Establishment of Benches in Ore and Low Grade
5000° of Eenches to cut by mining at 40° per day.
Per day crew: 2 miners \$30.00
1 helper
1 loading operator $\quad 20.00$
1 padman
12.00

1 mechanic compressor
Bonus $30.00 \quad 30.00$
Operation Cost Per day $\quad 20.52$
" ${ }^{\prime \prime}$ " ${ }^{\text {Etimco Loader } 54.00}$
Explosives: 100 Lbs .forcite $24 / \mathrm{lb}$. 24.00
12 caps 25
Per Day $\$ 225.52$

Total tomnage 12,500 tons i.e. 125 daye = Less average cost per ton loaded 0. $340=$ Extra cost to be added
i.e.add oxtra mining cost of $\frac{23,940}{1,077,199}=$ $1,077,199$

28,190.00
$4,250,00$
$\$ 23,940.00$

Sub-total | .022 |
| :--- |
| .362 |

Overburden Removal

Loose For Moving Broken Solid For Moving

A Zone	36,725	363,014	tot. 399,739
BD Zone	340,606	182,819	tot. 523,425
	377,331	545,833	tot. 923,164
	(40.9%)	$(59,1 \%)$	

It is planned to remove the overburden as far by buildozer as possible. The engineers estimate that 88% can be moved in this manner and the remaining 12% to be loaded and trucked i.e. $812,384 \mathrm{cu}$. yds. to be bulldozed and $110,780 \mathrm{cu}$ - yds . to be loaded and trucked.

Operations will be carried out on both pits simultaneously at the rate of 1000 cu . yds. per day from each. It will require 2.42 years to remove the overburden.

Cost of Overburden Removal
Bulldozing: Require 2 TD-18 machines
1 TD-24 machine
The International Harvester Co. quote operating costs:
TD-18 per hr. $9.35=$ per day $8 \mathrm{hrs}=74.80$
TD-24 per hro $10.38=$ " " " " $^{2}=83.04$
Above costs include diesel fuel, lubricating oil, repairs, maintenance and operator's time © \$2.25 per hour.

2 TD-18 machines	149.60
1 TD-24	83.04
3 helpers	36.00
Bonus	30.00
Diff. on Operators Wages 25 per hour	12.00
	$\$ 310.64$

In each 1000 cu . yds, of broken material there are 409 cu . yds. from the loose material and 591 cu . yds. from the solid.
$591 \mathrm{cu} . \mathrm{yds}$. $=360 \mathrm{cu}$. yds. In place
184\%
88% can be bulldozed $=880 \mathrm{cu}$. yds.
12% has to be loaded $=120$ "

360 cu , gds, of solid to drill and blast at the mining

$$
\text { cost of } .486=\$ 174.96
$$

Bulldozing $880 \mathrm{cu}, \mathrm{yds}$. (\$0.353 per cu, yd.) 310.64
Loading 120 cu . yds. © 235 (page 12) 28.20
Hauling $120 \mathrm{cu}, \mathrm{yds}, 1$ mile © 15% per ton mile

- 44.5 per cu. yd. mile 53.40
$\$ 567.20$

$$
\text { Cost per cu. yd. }=\frac{3}{6} .567
$$

Total cost for $923,164 \mathrm{eu} . \mathrm{yd}=\$ 523,434.00$
Overburden removal per ton of ore $=\frac{523,434}{1,077,199}=$
Drill Steel and Bits Required per Year (180,000 Tons of Ore)
Wagon drills will require 10 sets steel per year 14" round
lugged 12 ft. - 22 ft. - 32 ft. 6600.00
Estimate bits to drill 500 feet each
" 120,000 feet of drilling - 240 bits - $\$ 28.40=6,816.00$

Plugger steel, carbide tipped, will require 10 sets per year, Copco steel at $\$ 70.80$
per set $\quad 708.00$ with 20 short lengths © $\$ 15.80$

$$
\text { Cost per ton }=\frac{8,44,0.00}{180,000}=
$$

Clearing Pit Sites
10 acres © $\$ 500$ per acre $\$ 5000$
cost per cu. yd. overburden $=$ \$.007
cost per ton of ore $=\frac{5000}{1,077,199}=.005$
Road Maintenance
For gravel roads maintenance costs average $\$ 500$ per mile per year

$$
\frac{7.5 \text { miles } \& 500}{180,000}=\$.021 \text { per ton of ore }
$$

Hauling:

$1 \mathrm{cu} . \mathrm{yd}$. ore solid $=1.6 \mathrm{l} \mathrm{cu}$. yds broken
$2 \mathrm{cu} . \mathrm{yd}$. ore broken $=1.81$ tons
It is considered good practice to contract the hauling of ore rather than to do it with Company trucks. Besides being a major item of capital cost Company trucks require a Company repair shop with expensive machinery, welding equipment and mechanics, etc. Company drivers with no personal interest in their vehicles are not considerate of the machine resulting in very heavy maintenance charges.

```
To haul \(407 \mathrm{cu} . \mathrm{yds} .=1,209\) tons per 8 hrs . - 862 tons H.O. \(7 \frac{1}{2}\) miles ( 374 tons L.G. 1 mile)
```

Ore

```
Distance 7.5 miles
Trips per 8 hrs . \(=8\)
Trucks 40 ton capacity, \(\cos t \$ 48,000.00\) each
1 truck hauls \(8 \times 40=320\) tons per day
Therefore \(862=3\) trucks required
    320
```

Low Grade

Distance 1 mile for low grade
Trucks loads $\frac{347}{40}=8.7$ 40
One truck can handle this in 4 hours allowing 4 hours per day for maintenance of 4 trucks.

Required 4 trucks at $\$ 48,000$ each, one as spare. Depreciation over 6 years on 10,000 hours.

Recommend $300 \mathrm{H} . \mathrm{P}_{\text {. trucks }}$ type $25 \mathrm{~L} . \mathrm{D}$ 。 17 cu . yd. side dump with large tires, semi automatic transmission, hydraulic booster and hydro tarder at $\$ 48,000$ ea.

Operating Costs per Truck

```
Wages I driver © $20 per day 曹 2.50
Fuel }7\mathrm{ gals. per hour © 20$ gal. 1.40
Englne oll
    .30
Repairs 10,000 hour basis ($15,000) 1.50
Tires I set = $11,000 good for 5,000 hrs. 2.20
Tire maintenance
.00

\author{
3 Per 2on \\ - 921 (酯, Fud.)
}

\section*{Hawling: (cont \({ }^{1}\) )}

Per 8 hours \(=\$ 64.00 \times 4\) trucks \(=\$ 259.20\) per day
Cost per tom \(=\frac{259.20}{802}=\quad .301\)
Operating cost per ton rile \(=\underline{0.301}=\$ 0.04\) 7.5

Depreciation on basis of 10,000 hours - \$4.80 per hour.

Per 8 hours \(=\$ 38.40 \times 4\) trucks
- \(\$ 153.60\)

Cost per tan \(153.60=\$ 0.178\)
Deprociation cost per ton mile \(=\frac{0.278}{7.5}=\frac{.021}{\$ .064}\)
Total \(\quad\). \(\quad\).
Sub-Iotal \$. 222

\section*{Ore Storage:}

On the basis of operating the open pit and underground mine 8 monthe in the sumer season only at 862 tons per day and the min1 all yoar at 500 tons per day, ore storage facilities are a nocessity.

There is an excellent site at the foot of the bench on the same lot as the mill or on lot 2618.

Required to have stored at the ond of the season \({ }^{3}\) s 8 months \({ }^{1}\) operation a further 4 months \({ }^{1}\) eupply, namely 60,000 tons, or 20,202 cu. yds. or 33,232 cu. ydis. of broken muck. This is equivalent to a cube 200 feet \(l o n g, 200\) feet high and 6i. feet wide.

The ore would be durped along the 37 degree sloping hill side for a length of 223 feet at an elevation of 40 feet vertically above the flats and when the full 60,000 tons of ore are stored the dimensions at the top of the pile would be rectangular in shape, 166 feet along the hillside by 100 feet vide. This pile, sloping at 37 degrees would extend out on the flats from the bottom of the hinl for the same width as the top, namely 100 feet. Tts aides sloping also at 37 degrees would extend a maximm length along the hillside of 276 seet.

It is plannod to feed the ruly direct for the 8 nonthes perilod and stock pile 60,000 tons for the 4 months \({ }^{\prime}\) period.
\[
-17
\]

Ore Storage: (cont'd)

During the 4 months one man with a bulldower can keep the mill supplied.

Costs: \(\$ 9.35\) per hour \(=\) per day \(\$ 74.80\)
Total Cost for period: \$8,976
spread over 180,000 tons \(=\) cost per ton \(=\$ 0.05\)
One truck spotter-grizzley man is required at \(\$ 12.00\) per day for 190 days per year \(=\$ 2,280\) for 180,000 tons \(=\$ .013\) per ton.

Total Storage cost per ton of ore

\section*{TMDIRECT COSTS}

\section*{Mining:}

Supervision per year

Foreman 125 per day
2 Samplers \(\$ 400\) per month
Engineering and Geology
Main air and water lines maintenance
Dry operation and maintenance
Dry heating
Camp 1ighting 10 KW Transportation engineess

7,800
\(2,600 \quad \$ 17,400 \quad\) \$.097
12,000
.067
1,000
.005
2,800
2,800
5,600
.031
1,800
.010
2,4.00
.014

Cost per ton \(\frac{48,710}{200}\).
30.224 180,000

\section*{Laboratory for Mine:}
\[
\begin{array}{lr}
\text { Operation } & 7,000 \\
\text { Supplies } & 2,600 \\
\text { Maintenance } & 400 \\
& \$ 10,000
\end{array}
\]

\section*{GENERAL POR WHOLE CAMP}

\section*{1. Accommodation \\ 2. Surface \\ 3. Administration \\ 4. Power}

2 cookhouses, one at Mine and one at Mill
4 Houses for Married Men
30 Single Men - board - \(\$ 2.25\) per day


\section*{No school required - there is one at Birch Island.}

\section*{POWER MISCELLANEOUS: (see page 23)}

386 horsepower has been alloted for miscellaneous use such as shops, power plant operation, camp heating, camp lighting, etc.

For the mine it amounts to 0.04 per ton .040
\[
\overline{.092} \quad . \overline{.319}
\]


\section*{ADMINISTRATION:}
Supervision (Mangement and Toronto Office) \$2,000 Mine Office (Accountant Assistant and Typist) 12,000
Legal Expense 2,000
Audit fees 2,000
Insurance and Fire Protection 8,000
Travel Expense 1,000
Taxes 500
Less Purchase Discount -300


TOTAL MININO COSTS

\section*{Direct and Indirect}

Depreciation write-off' -6 years or on \(\$ 532,391\) for 1,077,199 tons

Total cost per ton of ore at mill 2.313
for \(1,077,199\) tons494

CAPITAL REQUIREMENTS
Ore Breaking:
Hoses and piping Orinder ..... 87,626 ..... 87,626 ..... 640 ..... 640
500
\(\$ 8.766\)
48,000
31,500
\(\$ 29,497\) ..... 53,64,0

22,820
\(\$ 233,391\)
2 Holman \(25 / 8^{\prime \prime}\) rock drills - \(\$ 395\) ..... 790
2 " airlegs © \$175 ..... 350
3 - oilers - \({ }^{-1} 22\) ..... 66
2 sets hoses and couplings © \$60 ..... 120
1 I.R. 600 cu . ft. compressor ..... 19326 ..... 19326
Ore Louding:
1 horthwestern Shovel 1 l cu. yd. cap.
1 Eimco 105 Loader
Overburden:2 TD-18 bulldozers\(1 \mathrm{TD}-24\)
1.I.R.wagon drill complete
2 Holman rock drills complete1.I.R. 600 cu . ft. compressor
Overburdon Loading:1 Einco 105 Loader

\section*{Road Construction:}
It will be necessary to reconstruct part of the present road and build 3 miles of new road for a total length of \(7 \frac{1}{2}\) miles.
The road is planned for a width of 18 feet with no part of it having a grade of over \(7 \%\). It will be ditched and have sulverts where necessary.
Capital cost for 3 miles and culverts 3 miles 50,000
In addition there w111 be 5,740 feet of branch
"main" roads to the open pit at a cost of
\(13,000\}\)
Side roads to the "main" roads to the pit
total 4,450 leet and will cost 3,000
Improvement to "A" area road
New road to mill site - I mile
3,000
10,000
Total Cost \(\$ 79,000\)
A. Gravelling 28,000 cu. yds. © 2.00 ser cu.yd. \(\frac{28,000}{07,000}\)
\(107,000 \quad 107,000\)
Transport of ore, low grade and waste done by owner-driven trucks on contract or if Company-owned trucks are usede 192,000
Totas \(\$ 532,391\)
Depreciation \(\frac{8532,391}{2027}=0.49 \mathrm{~h}\) per ton 1,077,199

BUEGMTCAL PONEL REOUIREMENTS

\section*{756 Tons por day}
\begin{tabular}{|c|c|c|}
\hline & \(\mathrm{Ha}_{0} \mathrm{P}_{0}\) & H.P. \\
\hline \multicolumn{3}{|l|}{Shops, Power Plant, Lighting} \\
\hline Water etc. & & 386 \\
\hline Grusher plant \(32^{\prime \prime}\) \% 40 m ( \(8 \mathrm{hrs} / \mathrm{ng} \mathrm{ght}\) & 290 & \\
\hline arinding \(24 \mathrm{hrs/day}\) & 70 & \\
\hline Sub-Total & & 360 \\
\hline \multicolumn{3}{|l|}{Leaching Plant (one towes \(6^{\circ} \times 3 \times 1\) )} \\
\hline \multicolumn{3}{|l|}{1 - Tvo stage alt compressor} \\
\hline \multicolumn{3}{|l|}{1 - Surge Tank atc.} \\
\hline & 73 & \\
\hline \multicolumn{3}{|l|}{\(2-60 \times 8{ }^{0}\) Drun filters © \(3 \mathrm{H}_{0} \mathrm{P}_{\text {. each }}\)} \\
\hline \multicolumn{3}{|l|}{2 - Repuipers - 3 HsP. each} \\
\hline \multicolumn{3}{|l|}{1 - Vacuum Pump E Equipnent for filtor} \\
\hline \multicolumn{3}{|l|}{3-50 x 50 Agitators and ppte. Tanies} \\
\hline \multicolumn{3}{|l|}{1 - Clarifier \(4^{0} \times 80\) leaf mid. Vacmun pump} \\
\hline \multicolumn{3}{|l|}{1 - Reagent Bin and two feeders} \\
\hline \multicolumn{3}{|l|}{1 - M1ter press} \\
\hline \multicolumn{3}{|l|}{2 - Autonatic sampler} \\
\hline \multicolumn{2}{|l|}{Total leaching} & 300 \\
\hline \multicolumn{2}{|l|}{Total connected load H.P.} & 2046 \\
\hline \multicolumn{2}{|l|}{* * \% \% \%} & 780 \\
\hline \begin{tabular}{l}
Stean rogustred to gatiafy \\
Slectrical and Process Requtrements (20/ 3tcan por kFF )
\end{tabular} & & \\
\hline \begin{tabular}{l}
Connected load 780 mv , a \(85^{\circ}=663\) \\
663 kv . \(0.20 \mathrm{If}=\)
\end{tabular} & & \\
\hline Process steas 3000 & & \\
\hline TOTA 16260 & & \\
\hline
\end{tabular}

\section*{500 tons per day}
HeP.
Shops, Power Plant, Lighting, Water etc. *(386) ..... 386
Crushlng Plant \(32^{\prime \prime} *\), 0 " *(290) ..... 290
Grinding ot Thickening *(70) ..... 558
Ieaching ..... 1250
Filtration ..... 227
Ton Erchange and Proetpitation ..... 123
1 M11 Miscellanoous ..... 65
Pllot Plant ..... TOTAL
\(\frac{3(300)}{3(1046)}\)

W w Pllot Plant.300
3189
Stean reguired to satisfy
Mleothicax am Process Requiroments
(20/: stean por kin.)
Connected addstionnl load 1599 Kw . © \(85 \%=2359\)

2359 KM . \(20 \mathrm{fl}=\)
Addttional process steam
Total addstional
pilot Mant
Total connected load stean
Iy zumning crushing plant at night
save \(290 \mathrm{H}_{4} \mathrm{P}_{0}=216 \mathrm{Kw}\) et \(85 \%\)
= 284 ITv .
Total atean Ioad
\begin{tabular}{rlllll}
-3680 & " & \# & " & " & " \\
\hline 57760 & " & " & " & " & " \\
19253 & i & " & " & n & "
\end{tabular}
Total ITv. 2888 per hour.
\#. H.P. 3872 per hour.

\section*{Botles and Altermator requirenents}

A 400 H.P. Water tube bosler will genorate \(21,000 /\) stean at 225 paig therefore require \(3-400 \mathrm{H.P}\). bollers \(=72,000 \mathrm{ll}\) stean.

A

\section*{Bofler (1)}
\(1400 \mathrm{H} . \mathrm{P}, 225\) psig Water Tube Boiler Automatle stoker; coal handling convegors feed-bins, ash disposal smolke stack ete. used unst
60. Ton尞 \(88,700,00\)
Turbine House (2)
Complote with 1000 Rw . 2300 volt tuxbo-altornator with all accesse ories and with water supply for condonalng unit available and clowe byo.
used unit
8 72,500,00
TOTAL \({ }^{-160,200.00}\)

\section*{500 TOR}

\section*{Boller}

3-400 H.P. units as per 60 ton job A(2) 3 used untts \(\$ 253,000.00\)

\section*{Turbine House}

Complete with 2000 NW .2300 volt surbo-alternator unit and all accessories etc. as A(2)
( \(86,000.00\)

TMANSHISSTOH LITES
M417 to Hine, 3 miles.

Three miles, 2300 Volt , alternatively 4000 volt, 3 phase, 60 cyele wood pole, Copper Condnctor Transmission line - 2000 KVA - across sloping wooded country not mountainous.
\begin{tabular}{lr} 
Line & \(\$ 3,000.00\) \\
Double Transformations & \(\$ 25,000.00\) \\
& \(\$ 38,000.00\)
\end{tabular}

Hydro Electric Plant \(2-350 \mathrm{H} . \mathrm{P}_{0}\) units total \(700 \mathrm{H} . \mathrm{P}_{0}\)
500 ft. hoad, horizontal pipe length 7150
Water turbines complete with generators and all accessories a \(\mathbf{1 2 O}_{3} \mathbf{2 0 0 . 0 0}\)

\section*{Coal}
at \$2.00 per ton F.O.B. Pithead plus \$3.90 freight total \(\$ 4.90\) at Bixch Island 57760 steam \(=2888 \mathbb{Z} \mathrm{~V}_{0}\). per hour I/ Goal \(=20,000\) B.T.U. Water Tube Boiler \(80 \%\) eff. \(=8,000 \mathrm{~B}_{6} \mathrm{~T}_{8} \mathrm{U}_{6}\)
 1,2000
Require 57,760 \#ateam per hour (cam procuee \(72,000 /\) stean)
Coal cost \(=\frac{57,760}{8}=7220.0 /\) of casl per hour say 7200 If
8.6 tons per hour
86.4
31
\(31,204.0\)
\[
3.6 \text { tons } 04.90=\quad \text { Cost per hour .. .. } \$ 27.6400
\]

Cost per year \(=\$ 152,409.60\)
Per 敛. hour \(=\frac{17.64}{2888}=\)
Zabour Cost
1st Class 2 Foreman \(\$ 25 / \mathrm{da}\). ( \(\$ 650 \mathrm{mos}\) )


\section*{Per month}

3xd ". 3 Helpers \(\$ 1.50 / \mathrm{hr}\). \(12 /\) da \((\$ 312\) mo. \()\)
\begin{tabular}{ll} 
Cost per year \(\$ 37,752\) \\
Fer Kw. hous \(=\frac{4.3694}{2008}\) & Per hour .. .. \(4.369 \%\) \\
\hline
\end{tabular}

Supplies


Operating cost per ton \(\frac{\$ 227,923.60}{\frac{150,000}{}=\$ 1.2662}\)
Depreciation " " " \(\frac{339,000}{1077,199}=\frac{30.3147}{32}\)
Totel cost per ton
32.5809
\[
\text { Ratio M413 }=\frac{3543 \mathrm{H}_{0} \mathrm{P}_{0}}{3871 \mathrm{H}_{0} \mathrm{P}_{0}}=\frac{91_{.} 2 \%}{200.0 \%}=\frac{31.259}{1.262}
\]

STEAM COSF
Per 1000 2bse steam \(=\underline{\$ 26.3788}=\$ 0.4570\)

\section*{Power costs (cont'd)}

Nost of the fotal power produced has been taken care of in the mill report except that pertaining to shops, power plant operation, camp heating, camp lighting, etc.

386 horse power has been alloted for the above miscellaneous uses and for contingencies.

It amounts to \(\$ 0.132\) por ton and has been spist \(30 \%\) to the mine and \(70 \%\) to the mill nanely \(\$ 0.040\) and \(\$ 0.092 \mathrm{per}\) ton.
STAPE AND LABOUR
cost \(3 /\) TOW

\section*{Oeneral office:}
\begin{tabular}{lr} 
Manager \(\$ 750.00\) per month & 89,000 \\
Accountant \(8 \$ 100.00\) per month & 4,800 \\
Tisekeeper \(\$ 300.00\) per month & 3,600 \\
Typist \(\$ 175.00\) per month & 2,100 \\
Warehouseman \(\$ 300.00\) per month & 3,600 \\
First Aid - Clezt \(9 \$ 250.00\) per month & 3,000 \\
\hline
\end{tabular}
\(\$ 26,100 \quad 0.145\)
Mine \(50 \%=0.072\)
Mil1 50\% = 0.073
Power House:
1-1st elass foreman \$650.00 per month 7,800
3 - 1st class operators © \(\$ 520.00\) per month 18,720
3 - 3xd class helpers
\begin{tabular}{lll} 
Mil1 \(100 \%\) & \(\$ 37,752\) & 0.210 \\
Mine wil & &
\end{tabular}
Shops Operation:
Kechine shop - 2 mechanics \(\$ 2.50\) per hr. 12,480 Electrical shop -1 electrician \(9.50 / \mathrm{hr}\). 6,240 Plumbing shop -1 plumber e \(\$ 2.50 \mathrm{hr}\). \(6,24,0\) Carpenter shop - 1 carpenter \(0.3 .50 / \mathrm{hr}\). 6,240 4 helpers \({ }^{1} 12.00\) per day \(\underline{\underline{14}, 976}\)
\begin{tabular}{lll} 
\\
Mine \(10 \%\) & 0.256 \\
Mi11 \(90 \%\) & 0.23
\end{tabular}
MINE
COST 3/2ON
Supervision:
Sngineer - \(\$ 540.00\) per month ..... \$6,480
Ceologist © \(\$ 460.00\) per month ..... 7.200
2 samplers © \(\$ 300.00\) per month ..... 5,400
1 assayer © \(\$ 450,00\) per month ..... 3,000
1 assistant assayer © \(\$ 250.00\) per month ..... \$27,600
0.153
Operation: (for 8 months only)
1 foreman © \$25.00 per day
5,200
Ore:
1 blaster © \(\$ 20.00\) per day 4,160
1 miner © \(\$ 20.00\) per day ..... 4,160
1 helper © \(\$ 17.00\) per day ..... 3,536
1 compressor-operator - mechanic © \(\$ 20.00\) per day ..... 4,160
Loading Ore:
1 shovel or Eimco operator \(\$ 25.00\) per day ..... 5,200
1 padinan © \(\$ 17.00\) per day ..... 3,536
Overburden:
1 blaster © \(\$ 20.00\) per day ..... 4,160
1 miner © \$20.00 per day ..... 4.160
1 helper © \$17.00 per day ..... 3,536
1 compressor-operator - mechanic \$ \(\$ 20.00\) per day 4,1603 bulldozer operators © \$20.00 per day12,480
3 helpers © \$17.00 per day ..... 10,608
1 loader-operator © \$25.00 per day ..... 5,200
Extra Men Por Benches, etc.:2 miners © \(\$ 20.00\) per day
1 helper © \(\$ 17.00\) per day8,3203,536
\(\left.\begin{array}{lll}\text { Hauling: } \\ 4 \text { truck drivers } 0 . \$ 2.50 \text { per hour } & \$ 86,112 & .478\end{array}\right)\)
\begin{tabular}{lr}
\((\mathrm{a}),(\mathrm{b}),(\mathrm{c}),(\mathrm{d})\) & 122,430 \\
(e) & 9,394 \\
(f) & 20,878 \\
(g) & 1,292 \\
(h) & 1,870 \\
(i) & \(\mathbf{1 , 3 2 0}\) \\
& \\
& \(\$ 157,184\) \\
\hline
\end{tabular}
(a) Dwellings - as per wright Engineers

5 houses ( 2 bedrooms, min.) \$45,000
(b) Office - as per Wright Engineers 21,000
(c) Bunkhouses, as per Wright Engineers 3 - 14 man bunkhouses 25,500
(d) Cookery - as per Wright Engineers for 40 men

(e) Warehouse
\(20^{\circ} \times 50^{\circ}\) © 7.00 per sq. ft. 7,000

Warehouse Equipment :
Platform scales \(\quad 125.00\)

Table " 35.00
2 handled cart - \(\quad 30.00\)
Adding machíne \(\quad 400.00\)
\(\begin{array}{ll}\text { Typewriter } & 250.00\end{array}\)
Card Wheel Ledger 400.00 Furniture \(\quad 300.00\)

Contingencies \(10 \%\)
(f) Shops

A11 shops in one building \(20^{\circ} \times 70^{\circ}=1400 \mathrm{sq}\). ft.


Machine Shop Equipment:

Small lathe 2,000
Drill press 800
Blacksmith forge 250
\& anvil
Are welder \(\quad 1,690\)
Oxy welder 200
1 grinder 250
Pipe threader \(\quad 500\)
Power hacksaw 400
Pipe cutter \(\quad 350\)
Vise 125
Misc. tools \(\quad \underline{1,000}\)

1,540
8.540

854
\$9.394

7,000
.
(f) Shops (cont'd) ..... \(\$ 17,365\) (Bt. Pwd)
Carpenter Shop Equipment:
Bench saw ..... 500
Portable power saw ..... 60
Saw set
100 ..... 885
Electrical Shop Equipment:Water distilier80
Battery charger ..... 150
Chain Block and
misc. tools 500
730(g) \(0: 11\) House\(12 \times 12\) © 7.00 per sq. ft.1,000
Equipment:
Chain block ..... 100
Faucets and stand ..... \(\frac{75}{175}\)
Contingencies 10\% ..... 175
,, 175 ..... 117
12,292
(h) First Aid Station
\(14 \times 14\) building © \(\$ 7.00\) per \(8 q\). . Lt . ..... 1,400
Pirst Ajd Equipment300
Contingencies 10\% ..... 170
31,870(i) Fire-fighting Equipment3 hydrants570
Hose and fittings 6301,200
Contingencies 10\% ..... 120

\section*{WATER SUPPLY}

Domestic and Mill
Toghorn Creek is the only creek on the property or in the near vicinity that can be relied upon to supply water all year round in sufficient quantities for the mill and millcamp facilities.

Water rights are held on this Greek as follows:
Mr. Moss - 60.8 acre peet 1 acre feet squals \(43,560 \mathrm{cu}\). ft. - \(272,250 \mathrm{gals}\).

135.8 " \(\quad\) " \(915,448 \mathrm{cu}\). Pt. equals \(36,971,550\) gals.
C.N.R. \(4,0,000\) gallons per day Forestry 1,000 gallors per day Rexspar 25,000 " "

The Moss rights are for irrigation purposes and the water therefore is used for a short time only during the summer months. One measurement taken on January 9th, 2955, of Foghorn Creek where it passes into a culvert under the Cof. \(\mathrm{A}_{\text {. tracks measured }}\) 420 cu . Pt. per minute or 2,625 gallons per minute. This would supply Moss: requirements in 235 hours or less than 10 days; and the others in 16 minutes.

It would seem therefore, based on the January measurement, that there is plenty of water for domestic and mill requirements.

Required a 4 in . wooden pipe 1 ine 5,000 reet long
Costs for the first 2,500 feet -50 foot head © \$0.91 \(\$ 2,275.00\)
second 2,500 " -100 "

200 " - 200 " \(\%\) • 0.98 196.00
Sub-Total 4,796.00
One 50,000 gallon wooden storage tank installed at Birch Island
\(4,500.00\)
Installation of pipe and small Darn \(1,000.00\)
10,296.00
* 15\% Contingencies \(\frac{1,544.00}{\text { Total }} \frac{11,840.00}{}\)

The 4 inch diameter wooden pipe will deliver 200 Imperial gallons a minute. Alternatively a well can be sunk on the flats on the south side of the railroad at Birch Island and water supplied by pump to a storage tank for domestic purposes.

\title{
Ressparis' Prouluction Plans
}

\author{
By John W. Scott \\ Manager, Rexspar Uranium \& Metals Mining Co. Litd.
}

DEVELOPMENT work on the Rexspar property at Birch Island, B.C., has now advanced to the point where production plans for a 500 ton per day operation are being prepared.

Final calculations on the over-all grade and tonnage of uranium deposits are now being made. Estimates will soon be ready for a production contract submission. Metallurgical test work is reaching a successful conclusion and pilot plant design is underway.
Detailed surface diamond drilling and underground exploration have delimited two major ore lenses, designated the "A" and "BD" zones, proving a large tonnage of commercial ore.

Exploratory drilling is continuing on additional favorable areas adjacent to
the orebodies outlined, with several outlying areas of high radio-activity and favorable structure awaiting further attention.

Development work on the property to date totals approximately 31,000 feet of surface diamond drilling, 8,300 feet of underground diamond drilling, \(1,700 \mathrm{ft}\). of drifting and crosscutting, and 470 ft . of raising, with a large proportion of this work concentrated on the " \(A\) " and "BD" orebodies.

Geologically, these orebodies occur in trachytic breccia, flows, and possibly tuffs which overlie with apparent conformity a thick sequence of fissile thinbedded quartzites and argillites.

All are considered to be in the preCambrian Shuswap series. Dips are gentle to moderate.

J. W. Scott, author of this árticle, and S. M. Manning, engineer of Technical Mine Consultants, Ltd., photographed at Birch Island, rail point which serves the Rexspar operation.

\section*{"A" Zone}

The "A" zone orebody was discovered by the earliest uranium prospecting on the property, outcropping on the East slope of the main ridge between Foghorn and Holt Creeks, some 70 or 80 ft . below the crest of the ridge.

After some trenching and sampling of the outcrops in 1951, surface diamond drilling was undertaken in 1952 and 1953. Thirty-four holes totalling approximately \(5,400 \mathrm{ft}\)., were drilled at roughly 50 foot spacing on lines 75 ft . apart, across the comparatively flat top of the ridge above the outcrops.

This work outlined a lenticular orebody apparently striking about N. 15 degrees E . and dipping 30 degrees northwest into the hill.

Length outlined was approximately 500 ft ., slope depth 125 ft ., and average thickness 19 ft .

The northeasterly holes on the boundary of this drilling showed some irregular ore intersections and, late in 1954, a programme of underground development was approved to test these showings, and to obtain more definite information on the down-dip behaviour of the previously outlined ore.

Underground work was started in early January, 1955, continuing until the end of May.

An adit was driven directly N. 30 degrees \(W\). at the north end of the established ore lens, and at elevation 3,840 , some 30 ft . below the lowest previous ore intersections.

The adit intersected low grade ore type material from the collar, with good grade ore coming in at about 100 ft . in the adit and continuing for an additional 200 ft .

A drift to the north was driven on the best ore section, continuing in ore for some 160 ft . in this direction.

A south branch was driven off the
main adit to get under the known lens, and orepass and manway raises were put up to the footwall of the ore. From the top of the ore pass a 25 degree raise was driven up the footwall of the ore to surface on the top of the ridge, having a total length of 217 ft .

Two additional short raises, spaced at \(70-\mathrm{ft}\). intervals along the footwall raise, were driven up through the ore lens normal to the dip.

These latter raises intersected ore thicknesses of 37 and 47 ft . An enlarged programme of underground diamond drilling was undertaken when it became apparent that a major addition to the ore lens was in sight. In all, 706 ft . of drifting and crosscutting, 405 ft . of raising, and \(3,549 \mathrm{ft}\). of underground drilling were completed by the end of May.

A supplementary programme of close spaced surface diamond drilling was started on completion of the underground work, to fill in the complete detailed outline of the ore lens.

This work was finished at the end of July, with \(4,021 \mathrm{ft}\). drilled in 39 holes.

The orebody extends for a length of about 700 ft ., outcropping on the top of the ridge at its southern extremity, and angling down the east slope at an approximate N. 25 degrees E. direction.

Average width down the slope is about 180 ft ., with an average ore thickness nearing 50 ft . The lens is very favorably situated for open-pit mining, with ore extending close to the surface over most of the area.

\section*{"BD" Zone}

The "BD" zone area, lying on the steep westerly slope of the main ridge leading down to Foghorn Creek, and located approximately \(1,600 \mathrm{ft}\). distant and 500 ft . below the "A" zone, was located during the early exploratory work in 1951.
Surface drilling totalling approximately \(8,100 \mathrm{ft}\). in 37 holes was completed in this area during 1952 and 1953, indicating a very substantial ore lens extending 250 ft . on strike (N. 30 degrees E.), 250 ft . down dip, and averaging approximately 50 ft . thick.
These favorable results, combined with increasing difficulty in drilling through increasing depths of overburde: to the north, led to the decision to undertake a programme of underground development on the lens during the winter of 1953-54.
A crosscut adit was driven at elevation 3330 , passing through 120 ft . of low-grade ore at the portal, and continuing under the main lens to its approximate north-south axis.
Drifts were then driven north and south to the limits of the lens, with an
additional central east-west crosscut driven to provide diamond drill stations. A single raise was driven up through the ore lens, showing a 62 ft . ore section.

This programme was completed in May, 1954, with drifting and crosscutting totalling \(10,003 \mathrm{ft}\)., raising 66 ft ., and underground drilling \(4,755 \mathrm{ft}\)., in 48 holes. An additional \(2,068 \mathrm{ft}\). of surface drilling in 14 holes was completed following the underground work, to further explore the down-dip extension of the ore lens.

The completely outlined lens showed a strike length of 500 ft ., slope depth averaged 250 ft ., with average thickness 50 ft .

Here again the ore lens is favorably located for open pit mining, lying closely conformable to the steep east slope of Foghorn Creek under fairly shallow overburden and waste rock. Increasing depth of overburden to the north will require underground mining methods for a small proportion of the ore.

\section*{Additional Ore Possibilities}

Current exploration is being concentrated around the periphery of the main ridge between the " A " and " BD " zones, an area considered to be most favorable for the discovery of additional ore bodies.

The known bodies occur as replacement lenses in a member of the main trachyte series, locally known as the pyrite-mica formation. This formation is characteristically made up of trachyte fragments in a sheared matrix consisting of biotite with some sericite, abundant pyrite, and varying amounts of fluorite and celestite.

Control of the localization of ore lenses within the pyrite-mica formation is not well understood, but appears to be related to the intensity of faulting and fracturing, and also to crystallization of the biotite and pyrite.

Beds showing coarse biotite and cubic pyrite have not shown ore grade values to date-where these constituents are fine grained and the formation shows a characteristic schistose and banded structure, ore values occur.

Previous exploratory drilling on the ridge circumference has shown widespread pyrite-mica occurrences with thicknesses up to 100 ft .

Current drilling in an area some 1000 ft north of the "BD" zone has yielded a 15 -foot intersection of commercial ore.

Somewhat narrower intersections in previous holes in the vicinity indicate the possibility of a fair sized ore lens here, and drilling is being concentrated in the neighboring area.

Major occurrences of the favorable formation have also been found on the
lower slopes of the North Thompson Valley along Cedar Creek, on claims held by Deer Horn Mines Ltd.-some three miles distant from the known orebodies. Little work has been done to explore the possibilities here, but a limited drilling programme is planned for the current season.

Some trenching and diamond drilling have been carried out on favorable showings on the west bank of Foghorn Creek, opposite the "BD" orebody. Drilling results have been unsatisfactory, with very poor core recovery due to the difficult slide rock and overburden conditions. A further programme of limited underground exploration from the known ore grade showings, has been prepared for this area.

\section*{Production Plans}

Studies of mining plans, mill locations, water and power supply, etc., were started early in the current season and are now well advanced.

Detailed surveys and calculations for open pit operation on both the "A" and "BD" orebodies have been completed. Overburden and waste to be removed from the "A" orebody totals 250,000 cu. yds.; from the "BD" orebody approximately \(400,000 \mathrm{cu} . \mathrm{yds}\).

The favorable location of the orebodies on the relatively steep slopes of the ridge provides close and convenient dumping areas for waste, and ensures relatively low cost operation. Existing access roads to both zones can readily be improved for mining operations at low cost.

Due to the strong possibility of finding new orebodies at lower levels, and also to the necessity of bringing in large supplies of fuel and materials for the treatment process, a mill site in the North Thompson valley, adjacent to the C.N.R. main line, has been selected. Property in the selected area has been acquired for plant and camp construction, and preliminary plans have been drawn up. The location chosen offers optimum conditions for both construction and operation.

With the known and potenticd orebodies spread over a three mile horizontal, and 2500 ft . vertical range, truck haulage from the mining area to the plant is considered the most satisfactory method of ore transport.

Haul from the "A" and "BD" open pits will be about 8 miles. Plans for improving and relocating in part, the existing road to Birch Island to meet ore haul reqiurements have ben completed.

Complete plans for submission to the Dominion Government agency are well advanced, and an early decision on production is anticipated.

\title{
exclusive connection with western union cable service
}

JOHN W. SCOTT, MINE MA NA GER,
REXSPAR URANIUM,
BIRCH ISLAND, B.C.
RESERVES JULY THIRTY FIRST DILUTION FIVE PERCENT PITS TEN PERCENT UNDERGROUND "A" PIT SEVEN FOUR FOUR EIGHT ONE OUGHT TONS AT ONE POINT FIVE SIX POUNDS "B" PIT ONE ONE SEVEN TWO FOUR THREE AT ONE POINT SIX THREE EIGHT "B" UNDERGROUND ONE THREE ONE SEVEN TWO SIX AT ONE FIVE SIX FOUR TOTAL "B". TWO FOUR EIGHT NINE SIX NINE AT ONE POINT FIVE NINE "BD" PIT SIX SEVEN SEVEN FOUR ONE OUGHT AT ONE POINT FIVE THREE TWO "BD" UNDERGROUND THREE FIVE SIX FOUR AT ONE POINT FOUR ONE LOWER "BD" UNDERGROUND FOUR FOUR ONE SEVEN SIX AT ONE POINT THREE SEVEN SEVEN TOTAL "BD" SEVEN TWO FIVE ONE FIVE OUGHT AT ONE POINT FIVE TWO TWO TOTAL OF THREE ZONES ONE SEVEN ONE EIGHT NINE TWO NINE TONS AT ONE POINT FIVE FIVE POUNDS SENDING LETTER
W.C. RINGSLEBEN,

77 YORK STREET, ROOM 113 , TORONTO, ONTARIO

IS YOUR MESSAGE COMPLETE? EXTRA WORDS COST ONLY A FEW CENTS.

Ruxspar leanves@10of/ton mill@6oo/day
Pusent usuves 980200 a 1.71
Recomatle@88.5\%
1483386
Gross revinue (a) \(10^{50}\)
Op Cost allwo \(5 \%\) dilution recalc, min rest. new mill cost to tratal \(890 /\) ton ind \(23^{\circ} d e v\)
\[
\text { Revimue } \frac{1,029,210 \text { tons @ } \frac{1090}{\text { minses } p \text { cott }} \frac{9159969}{6,415,584}}{\text { s44007 }}
\]
at \(8^{67}(\) nod Wherwin noder. \() 15575553-807(980200)=7,079,486\),

Coxspow Resuves@10.8 cfforn mill@500 /daur
Reserves.907593 tons a 1.71
@ 88.5\% recorem
Grass Revenue 14, 10 50 \(=1313\)
Op cost, no dilution no developent


Mive capital cost a A zone shpping Cost of soo trm swill 550,000 4, 00,000 AGW.
\[
\begin{array}{r}
\begin{array}{r}
483386 \\
569739
\end{array} \\
\begin{array}{r}
2053,125 \\
1627265
\end{array} \\
\hline 425,560
\end{array}
\]

On Hustor costo Tans \(88.5 \%\) recovery Lellming
ToTd lbs recorravable
Gross Revinue
Less Op Coat
\[
\begin{aligned}
& 16,157,012 \\
& \text { F }^{5} 962993
\end{aligned}
\]

Tons regid to futfill con taet
人bos
379883
514362


Giross revenue Firm addit
Luss Op. Cosh
\[
\begin{array}{r}
5400801 \\
3407551 \\
\hline 1993250
\end{array}
\]

Total Revenue minus op.cost.
Divelopment Coot
To dater unghly 400,000 in dirich expediture on DOWlling a Undinquand develpment yields (thostrm) 1136457 tons. Gdditional 380,000 tins eg'd shuld be ittainatle Po \$ 3sso,000 o say \(20^{\circ}\) per ton tual.
2. Reduaing development cost to \(20^{d}\) per tor veo fill contrect Total revernce mimus ip cost 8,790, 230

On Hustion basis reduce Dw cost I\% \(56^{\circ} /\) ton
Gross Revemne less op cost on 1136457 tons \(\$ 6,515336\)
Addit one at recovenable 1.51 bs . 514362 lhs regd.


Full contract Ruvemue less op ast.
\({ }^{6} 9,008,377\)

Kexspar Rearves @ \(10 \mathrm{cutr} / \mathrm{om}\).
Preant mincable reserveses - 980,200 tins (0 1.71 lbs
Recorerable@88.5\%
Gross revenue@10.00
\[
1,483,386
\]
\[
15,575,553
\]

Opcost@5\% dilution, \(\begin{gathered}300000 \text { der cost } \\ 301 \text { tom } \\ 8.58 / \text { /tom.on } 1,029,210 \text { tors }\end{gathered}\)
Reveniue los op cost (iluston)

levonme losppas1@89)/ton 15575553-9,232,014
Additional lbs regd to fulfill contrad 569739
Gross revanue @1050
Opcost@8.52 39.379826
Revenne liss op.cost
Revinue liss
@ 897
\[
5,982,260-3,407,739
\]

Total nevenue mivive ost @ 854

Euspow Gurewerves ussing \(10.8 \mathrm{ctr} / \mathrm{mm}\).
ruount minicatle userves 907,593 tins © 1.71165 . Recrurable Usore 88.5\%

Fross Revnuce © 10.50

\[
952,973 \times 8.54
\]

Revenue liss past.
\[
1,373,506165
\]
\[
8 / 4421813
\]
\[
\frac{8138390}{6,283,423}
\]
(Revunue has p coat @ 897/inn \(141421813-8548167\) 5,873,646)
\begin{tabular}{lll} 
Lbs regid to fulfil contract & 679619 \\
Tons (i.5recomede) & \(\$ 53,080\)
\end{tabular}

Gross revenme @ 10.50
\(7.136,000\)
Opcost@8.54 x453080.
Revinue less pp.ast
(a) \(8977136000-4064,28=3,071,872\)

Total revemue mimes ost a 854
\(u\) a 8.97.
\(9,550,120\)
\(8,945,518\)
\(8,9+5,518\)

900,000
\[
\begin{array}{r}
6283423 \\
400000 \\
\hline 6,683,400
\end{array}
\]


\(\begin{array}{lll}20 & 5 & 100 \\ 80 & 2.6 & \frac{208}{3.08}\end{array}\)```

