MINNOVA INC.

HOLE NUMBER: TL-1 DRILL HOLE RECORD

IMPERIAL UNITS:

METRIC UNITS: X

PROJECT NAME: RICHTER PROJECT NUMBER: 656 CLAIM NUMBER:

PLOTTING COORDS GRID: TESTALINDEN NORTH: 920,00N

ALTERNATE COORDS GRID: TESTALIND NORTH: 9+20N

COLLAR DIP: -45° 0' 0"

LENGTH OF THE HOLE: 165.80m START DEPTH: 0.00m

LOCATION:

EAST: -885.00W ELEV: 1410.00

EAST: -8+85W ELEV: 1410.00

FINAL DEPTH: 165.80m

COLLAR GRID AZIMUTH: 270° 0' 0"

COLLAR ASTRONOMIC AZIMUTH: 240° 0' 0"

DATE STARTED: September 19, 1990 DATE COMPLETED: September 22, 1990

COLLAR SURVEY: NO MULTISHOT SURVEY: NO PULSE EM SURVEY: NO PLUGGED: NO CONTRACTOR: LONE RANGER CASING: RECOVERED

DATE LOGGED: September 19, 1990

RQD LOG: NO

HOLE SIZE: NQ

CORE STORAGE: GREENWOOD

PURPOSE: To test albite zn at depth ~60m below trench RTA.

DIRECTIONAL DATA:

Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
27.40	-	-46° 0'	ACID	OK		-	-	-	-	-	
61.00 92.40	-	-45° 0'	ACID	OK		-	-	-	-	-	
92.40	-	-48° 0'	ACID	OK		-	-	•	-	-	
118.90	-	-47° 0'	ACID	OK		-	-	-	-	-	
145.40	-	-48° 0'	ACID	OK		-	-	-	-	-	
-	-	/ -	-	-		-		-	-	-	
-	-	-	-	-		-	-	-	-	-	
•	-	-	-	-		-	•	-	-	-	
-	-	-	-	•		-	-	-	-	-	
•	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	•	-	-	
-	-	-	-	-		-	-	-	-	-	
-	•	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	•		ļ -	-	-	-	· -	
-	-	-	-	•		i -	-	-	-	-	
-	-	-	-	-		-	•	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-			-	-	-	-	
-	•	-	-	-		-	-	-	-	•	
-	•	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	•	-	-	-		-	-	-	-	-	
-	-	-	-	•		-	-	-	-	-	
						•					

MINNOVA INC. DRILL HOLE RECORD

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
0.00 TO 7.00	«CSG»					
7.00 TO 8.54	«FOL QTZTE» FOLIATED QUARTZITE	Colour: Light grey to white Grain Size: Fine grained Fine grained quartzite with folded foliation defined by clay rich/graphitic partings Tight isoclinal folds Fold axial plane strikes ~34/214 and is vertical Partings roughly 2cm apart	15	Fe oxide staining on fractures Chloritic (?) partings	Trace py along fracture surfaces	
8.54 TO 9.90	«PHYLL» PHYLLITE	Colour: Grey Grain size: Fine grained Fine grained clay rich phyllite Phyllitic foliation Foliation on mm scale 9.9m contact at	20 25	30-50% clay alt Fe oxidation of foliations	«30% weath py blebs» Mottled appearance Blebs have rusty weathered selvages Also small py stringers and stockworks	Pyritic alt appears controlled by foliation
9.90 TO 11.60	«FOL QTZTE» FOLIATED QUARTZITE	Colour: Light grey to white Grain Size: Fine to medium grained Description: See 7.0-8.54m'		Fe oxide staining along fractures Chloritic graphitic partings Weak carbonate alteration	Tr py along fracture surfaces	
11.60 TO 13.00	«SIL PHYLL» SILICEOUS PHYLLITE	Colour: Brown grey Grain size: Fine grained Fine grained brown grey phyllitic foliated material with compositionally banded qtz horizons Anastomosing phyllite around quartzose horizons 12.8-13.0m Fault gouge?	25	50% clay, possible sericitic Compositional qtz bands become carbonate at 13.0m, hare fault Ankerite 25%		
13.00 TO 16.50	«PHYLL QTZT E» PHYLLITIC QUARTZITE	Colour: Light grey Grain Size: Medium grained Well foliated and compositionally banded phyllitic quartzite Anastomosins phyllitic horizons Foliae are mm apart Some ptygmatically folded compositional bands	20	Weak carbonate	Pyritic stringers along foliae Fe staining of vein selvages <1mm wide Some stringers perpendicular to CA	

MINNOVA INC. DRILL HOLE RECORD

DATE: 18-October-1990

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		16.5m Contact at	20			
16.50 TO 18.90	«SIL PHYLL» SILICIFIED PHYLLITE	Colour: Grey green Grain Size: Medium Grained Medium grained greenish grey well foliated extremely hard (silicified) phyllite Foliation at	20	80% silicification	Pyritic foliae 2-3% Occasional pyrite stringer perpendicular to foliation	
		18.0-18.5m Increasing fracture density Either quartz vn or quartzite horizon Vuggy			18.0-18.5m Increasing pyritic fracs	
		vugg,		Fe carb (ank)<	Near lower contact, Fe staining along foliation	
18.90 TO 31.00	«SIL PHYLL/ PHYLL QTZTE » SILICEOUS PHYLLITE/ PHYLLITIC QUARTZITE	Colour: Light grey greenish grey Grain Size: Medium grained Description: See 13.0-16.5m Compositional banding is combination qtz, Fe rich calcite, Fe dol	25	Clay alt Fe rich calcite Fe dol	1-2% pyritic foliae	
		19.9-20.1 «QVN» Subvertical, 5% fractured	45	Fractures have Fe staining	«py along fracs» semi massive in areas	
		21.5-21.9m Foliation Small shear fabric ~perpendicular to foliation <between 30="" =="" deg<="" td=""><td>25 45</td><td></td><td> 21.5-21.9 «3-4% py comp band along fol iae»</td><td></td></between>	25 45		21.5-21.9 «3-4% py comp band along fol iae»	
		22.6 - 22.7m Quartz carbonate vein	25			
		24.9 - 27.4m Extremely well developed foliation Extremely competent Calcareous phyllite 30.1 - 31.0m Massive unfoliated quartzite		Carbonate banding Carbonate alt of matrix Banding is Fe rich calcite Matrix is dolomite Calcareous fractures, extremely	Trace fine grained py along fractures	Almost quartz vein in appearance
			. <u></u>	silicified		
31.00 TO 34.00	«CHL PHYLL»	Colour: Greyish green Grain Size: fine grained Very fine grained well foliated alternation bands of light and dark green with little to no quartz carbonate composition/bands		Chloritic		

DRILL HOLE RECORD

MINNOVA INC. DRILL HOLE RECORD

ANGLE FROM ROCK TYPE TEXTURE AND STRUCTURE TO CA ALTERATION MINERALIZATION REMARKS TO foliation at 20 Crenulation/shear fabric ~ parallel to CA Gradational interbeds 34.00 «SIL PHYLL/ Colour: Greyish green to white Chloritic along fractures Trace pyrite along fractures TO FOL QTZTE» Grain Size: Medium grained Pervasive calcite alteration 35.90 Fe staining along fractures Medium grained massive to weakly foliated quartzite with interbeds of chloritic calcareous phyllite Foliations parallel to CA 05 10 to 35.90 «CHL CALC P Colour: Greyish Green Chloritic Fe staining on fractures TO **HYLL»** Grain Size: Fine grained Pervasive calcite 38.00 CHLORITIC CALCAREOUS Fine grained well foliated alternating bands of 15 PHYLLITE light and dark green foliation at Crosscutting crenulation strikes 206 degrees 38.00 «MSSVE QTZT Chloritic calcareous fractures Colour: Grey/green grey Grain Size: Medium grained TO E» 38.60 Massive Wavy weakly foliated quartzite with calcareous fractures 38.4-38.5m Rusty iron staining 38.4-38.5m py, possibly cpy in fracts 38.60 «CHL PHYLL» Colour: Light green, grey green Chloritic CHLORITIC Grain Size: Fine grained 48.60 PHYLLITE Descripiton: See 31.0-34.0m Transitional in interbeds of calcareous phyllite with quartz carbonabe compositional bands foliation at 41.3-42.1m Qtz carb bands Vfg stratiform pyritic bands up to 3% and up to 1cm thick Vfg stratiform pyritic bands up to 3% 42.6-43.1m As above and up to 1cm thick 44.5-46m As above Calcite is extremely Fe rich

HOLE NUMBER: TL-1 DATE: 18-October-1990 FROM ROCK ANGLE TO TYPE TEXTURE AND STRUCTURE TO CA ALTERATION MINERALIZATION REMARKS 47.3-47.9m As above Vfg stratiform pyritic bands up to 3% and up to 1cm thick 48.60 «MAF INT» Colour: Brown green Wk calcite Tr py along fractures MAFIC Grain size: Fine grained Silicified 50.00 INTRUSIVE Fe staining 5-10% euhedral to subhedral 2mm feldspar phenos in Bleached locally vfg mafic matrix 50.00 «CHL PHYLL» Colour: Light green, grey green Chloritic CHLORITIC Grain Size: Fine grained TO 58.70 PHYLLITE Descripiton: See 38.6-48.6m Also quartz carb compositional banding and veining Extremely competant foliation 51.7-52.9m qtz-carb vning and compositional banding 52.0-52.9m Very fg stratiform sx bands Weak silicification assoc with qtz carb banding to 5% py, cpy, sp? 57.5-57.9m Interbed of foliated gtzite Fracture and foliation controlled Black quartz banding 35 mineralization to 1% foliation/contact py, cpy, po 58.7m Lower contact, foliation becomes swirled 2% mineralization follows foliation 58.70 «QVN» Colour: white Carbonate 20-30% Occur as vug fillings, fracture TO QUARTZ VEIN Grain Size: Fine grained gillings 59.10 «10-15% py,tr cp,po» 30 Massive, fractured, in some places vuggy 59.10 «MAF INT» Colour: Green clay (chl) alt Trace py as fracture fillings Grain Size: Medium grained Occasional qtz carb veinlet MAFIC Tr to 1% fg py diss in matrix TO 62.20 INTRUSIVE? Medium grained very weakly foliated possible mafic

intrusive Extremely competant

59.1-59.9m Strongly bleached

MINNOVA INC.
DRILL HOLE RECORD

FROM ROCK ANGLE TO CA **MINERALIZATION** REMARKS TYPE TEXTURE AND STRUCTURE **ALTERATION** TO 62.20 «CHL CALC P Colour: Green grey Pervasive chloritic and calcareous alt **HYLL**» Fe staining along fracture surfaces TO Grain Size: Fine grained 65.70 CHLORITIC Moderate silicification **CALCAREOUS** Fine grained weakly foliated/crenulated phyllite 30 PHYLLITE foliation 464.6-64.8 «10-15% sx, py po cp» 64.6-64.8m Interbed of quartzite 50% calcite Fe staining 65.70 «MAF DYKE» Colour: Dark greyish green 90 10-15% calcite TO MAFIC DYKE Grain Size: Fine grained Hematite in fine trace amounts 66.50 Dark greyish green hbld and feldspar porphyritic Phenocrysts are ~1mm dimension 66.50 70.5-70.7m pyritic foliae (2%) «CHL CALC P Colour: Green grey Chloritic foliae Quartz carbonate veining (1%) and carb **HYLL»** Grain Size: Fine grained 71.50 CHLORITIC alt of matrix **CALCAREOUS** Fine grained moderately foliated phyllite Fe staining on fractures PHYLLITE 25 foliation Occasional quartz carbonate veining parallel to foliation and perpendicular to foliation 71.5m Contact 20 71.50 «FOL QTZTE» Sericitic foliae Colour: white grey white **FOLIATED** Grain Size: Very fine grained 75.90 QUARTZITE Light grey white to dark grey white very fine 20 grained foliated quartzite Sugary 174.0-75.3 «vuggy» 474.0-75.3 «graphitic foliae» ₹74.0-75.3 «SM py, to 15%» Vnlts and foliation Quartz veinlets and pyritic veinlets along foliae Fe staining 75.90 «CALC PHYLL Calcite along foliae 1% pyritic, pyrrhotite foliae Vuggy near lower contact Colour: Grey Carbonate pervasive 20% TO Grain Size: Fine grained 77.50 CALCAREOUS PHYLLITE Calcareous phyllite with compositional bands near 35 upper contact

MINNOVA INC. DRILL HOLE RECORD

ANGLE FROM ROCK TO CA REMARKS TO TYPE TEXTURE AND STRUCTURE **MINERALIZATION ALTERATION** Graphitic, chloritic foliae 77.50 «FOL QTZTE» Colour: White TO FOLIATED Fe staining along fractures 84.14 QUARTZITE Description: See 71.5-75.9m 77.5-78.11m 5-10% pyritic, graphitic foliae up to 1cm wide spaced every 2-5cm; vuggy 78.3-80.7m 1-2% pyritic, graphitic foliae 80.6-81.3m Fe stained quartzite, not fractures 82.5-83.0m 15% pyritic foliae up to Fe staining 1cm width; vuggy quartzite 83.2-83.4m Phyllitic interbed folded into and out Carbonate altered phyllite 483.2-83.4 «15-20% py» diss in phyll 35 and 15% py in foliations of quartzite of core axis Fe staining 83.6-84.1m extremely folded/foliated quartzite Fe staining 15% vuggy pyritic foliae almost ptygmaticly folded with foliations every 5mm Main foliation 20 2nd folding perpendicular 45 Lower contact 84.14 «CHL CALC P Colour: Grey/green Pervasive calcite alteration (60%) HYLL» mm scale calcite laths/rhombs Fe staining occasionally on fractured TO Grain Size: Fine grained 92.10 CHLORITIC surfaces CALCAREOUS Well Foliated chloritic calcareous phyllite PHYLLITE foliation 30 87.7m Possibly fault gouge 489.7-89.8 Minor«fault» 16 90.8-91.2m Quartz carbonate boudins to 3cm along foliation 92.10 «FOL QTZTE» Colour: White grey FOLIATED Grain Size: Fine Grained 92.50 QUARTZITE Foliated fine grained white/grey quartzite

FROM ROCK ANGLE MINERALIZATION REMARKS TYPE TEXTURE AND STRUCTURE TO CA **ALTERATION** TO Quartz carbonate boudins along 92.50 «PHYLL» Colour: Brownish grey Weak carbonate foliation TO PHYLLITE Grain Size: Fine grained 93,60 Alternating thin light and dark bands 10 93.60 «CALC PHYLL Moderately silicified Colour: Green grey TO Grain Size: Medium grained Moderately calcareous 98.00 CALCAREOUS Calcite pods/laths/rhombs to 1mm PHYLLITE Green grey unbanded but foliated calcareous dimension phyllite 25 foliation 20 93.6m Upper contact 30 98.0m Lower contact 98.00 «CHL CALC P Colour: Beige grey green Pervasive carbonate and chlorite TO HYLL» Grain size: Fine grained Bleached appearance 101.50 Fe staining on fractures CHLORITIC **CALCAREOUS** Occasional thin alternating dark and lighter 30 PHYLLITE coloured bands with chloritic partings 101.50 «FOL QTZTE» Colour: Grey white Fe staining FOLIATED Grain size: Fine grained TO 102.30 QUARTZITE 102.30 «MYL SIL CA Colour: Green grey to brown grey LC PHYLL» Grain Size: Fine grained 107.90 MYLONITIC SILICEOUS CALCAREOUS 102.3-104.3m Brownish grey strongly foliated/ Fe staining on fracture surfaces Laminations on mm scale and mm apart PHYLLITE laminated with quartz/carbonate compositional Calcareous banding 104.3m foliation 10 104.3-107.9m Greenish grey well foliated/ Textures appear increasingly mylonitic 104.4m Qtz vn with tr-1% diss py compositionally banded mylonitic phyllite towards lower contact Thicker compositional bands (quartz carb) as 105.1-107.9m Brownish compositional Calcareous bands well as boudins with pressure shadows bands that may be pyritic Fe staining 107.9m Foliation 20

LOGGED BY:

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
107.90 TO	«FLT BX» FAULT	Colour: White Grain Size: Fine to coarse grained		Trace carbonate		Fault cross cuts foliation at low angle
108.00	BRECCIA	Blocky fault breccia	40			
		10cm wide with margins blockier than core				
108.00 TO 112.80	«FOL QTZTE» FOLIATED QUARTZITE	Colour: Grey white Grain Size: Fine grained		Chloritic, calcareous fractures	Tr pyrite along fractures	
		Fractured Occasional interbeds of siliceous phyllite material foliation	25			
		110.1m Clay fault gouge				
112.80 TO 114.30	«FLT BX & G	Colour: Varies	40	Chl, ser, caly		
TO 114.90	OUGE» FAULT	Grain Size: Varies		Possibly K-spar alt Graphitic		
	BRECCIA AND GOUGE	Faulted sheared gouged				
114.30 TO 122.25	«INTERMED I NT» INTERMEDIAT INTRUSIVE	Colour: Grey Grain Size: Fine grained Massive, very competant unfoliated equant intermediate intrusion 1-3% quartz eyes 30-40% mafics 60-70& plagioclase		Calcareous Fe staining on fractures		Texturally, this resembles albite zone material but is not as altered as at surface; may be intermediate intrusive heat source for albite zone alteration
		119.3-119.4m Small quartzite band Lower contact definintely intrusive 122.25m Clay gouge material	90	120.9m py vnlt at 10 deg to CA		
122.25 TO 123.10	«FOL QTZTE» FOLIATED QUARTZITE	Colour: Light grey Grain Size: Fine grained			Pyritic veining along fractures	Possibly faulted in
		Grey white fine grained foliated and folded quartzite Fractured, moderate density				

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
123.10 TO 125.60	«INTERMED/F ELS INT» INTERMEDIAT TO FELSIC INTRUSION	Colour: Grey Grain Size: Fine grained Equigranular mafic and felsic grains Dioritic in appearance Biotite, hnbld Unfoliated, competant unaltered			Tr py?	
125.60 TO 130.48	«QTZ EYE PO RPH» INTERMED QUARTZ AND PLAG PHYRIC INTRUSION	Colour: Dark grey Grain Size: Varies Inequant quartz eyes to 3mm dimension in finer grained equant matrix Massive competant though core is blocky		Silicified, calcareous		Has appearance of flow
130.48 TO 142.40	O MAF INT»	Colour: Dark grey to black Grain size: Fine grained Fine grained equant dark grey to black Competant, unfoliated Unfractured Occasional quartz eyes	10	Weak clay Calcareous, weakly chloritic Weak to moderate silicification 140.9-142.4m Pale green, bleached very strong chloritic alt, ser, wk carb Weak dol	Tr py 0.5mm wide py stringers at various angles to core Small qtz vns with tr-1% py, gn Diss py to 5% in core	
142.40 TO 147.80	«QZ VN» QUARTZ VEIN	Colour: White Grain Size: Fine grained Massive bull quartz vn with fracturing and vugs, possibly crosscutting foliated quartzitic zone 147.7-147.8m Brecciated silicified vuggy contact	10 20	Sericitic, chloritic	142.4-146.4 «loc, to 10% py, gn» occurring as fractures and vug fillings, tr cpy	Grades into foliated quartzite so may be qtz vned quartzite or remobilized quartzite Core is broken and blocky near lower contact
147.80 TO 165.80	«FOL/MSSVE QTZTE» FOLIATED TO MASSIVE QUARTZITE	Colour: White to grey Grain Size: Very fine grained Sugary textured folded/foliated quartzite Foliations subparallels core axis Extremely hard		Limonitic staining Talc, sericite, chlorite along foliations Stockwork quartz veining Quartz flooding	Tr py as fracture filling vnlts and along foliae «tr gn»	

DATE: 18-October-1990

HOLE NUMBER: TL-1

FROM TO	ROCK Type	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
		151.7-153.0m Silicified massive quartzite			Trace py	
		157.0m foliation	25			
		157.3-158.8m Extremely silicified massive qtzte		Minor chlorite sericite along fractures	Trace py	
		161.0-161.9m Foliated fractured quartzite		Sericite, chlorite	Trace py	
		164.6-165.8m Foliated stockwork veined quartzite		Sericite, chlorite, Fe staining	Trace py	
		END OF HOLE				

HOLE NUMBER: TL-1 DRILL HOLE RECORD LOGGED BY: PAGE: 11

Sample Number	From ()	To ()	Estima	ate Zn	Length	° _° Cu	° _o Zn	% Pb	gm: T Ag	gm:T Au	% S1O2	°6 T1O2	% Na ₂ O	% MgO	% Fe	PPM Cu	PPM Zn	PPM Pb	PPM Ag	PPB Au	a 1		
BCD 21051	7.4	8.3			77.4	69) , vis										# 1/2 11							
BCD21052	8.6	9,45					11.0									10 E 20 E							
BC021053	11.0	11.54		7	5 N			111111111111111111111111111111111111111															
BCD21054	15.0	15.8		-									2										
BC021055	16.63	17.0			•																15		
BC021056	17.9	18.45			4.77.1																		
BC021057	19.0	19.25			а П		i s	s , 8															
BC021058	19,4	19.75																					
BCD 21059	19.9	20.12			70.	12													**.g				
BC021060	21.45	218		, ā 5											1 7 2								
BC021061	23.3	23.7													201						1 E		
BC021063	30.43	31.1			· · /										1								
BCD21064	34.73	35.17						3 T 1						Page 2								2	
BC021065	37.7	38.3			ix t					8													
BCD21066	41.46	42.9																					
RCD21067	43.6	43,9				- C.S.				1 1 5 1 5 - 00	T T T												
BCD 21068	44.45	46.8								5 A .													
RCD 21069	47,3	47.9				1	10 MI												1 12 3	4 2			
BCO 21070	48.1	48,2									=												
BCD21072	49,9	50.5												na we ito A mili si to in me ito in me									
HOLE NO TL-1			77. 3 _ :																	PAGE			

Sample Number	From ()	To ()	Esti	mate Zn	Length	% Cu	º₀ Zn	° _° Pb	gm: T Ag	gm: T Au	% S1O2	°0 T1O2	% Na ₂ O	° _o MgO	% Fe	PPM Cu	PPM Zn	PPM Pb	PPM Ag	PPB Au			
BCD 21073	51.72	53.1								n *	5.						1 H						
RCD21074	57.5	57.9			,					£ , =													
BCD21075	58.0	58.5															== 1			-			
Ben21076	58.67	58.97																					
BCD 21078	60.05	60.45		1.0		·																	
BCDZIOBI	64.8	65.0										-								2 / 2			
BC021085	73.8	75.7				9 1/ s																	
BC021086	76.1	77.4																ind the			8 0		
BC021087	77.5	78.1																					
BCD21088	78.23	80.23					υ = 1															2 1	
BC021089	80.6	81.45																1		3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1			
BC021090	82.44	83.17			· · · · · /										1		e l						
BCD21091	83.25	83.6		:			:: ::									0 II - 8							
BC021092	83.66	84.1			8	1		a															
BCD 21093	85.5	96,63															·						
BC021094	94,35	95.0							-			-										1 2 1×	
BCDaln95	104.2	104,4														21 22							
BCD21096	105.3	106:7			•		l e c								2 0					9.5	100		
BCD21097	107.1	107.86						9.0											8 1				
BC021098	107.86	107.98	7				a a									1 (d = 1.7)	- 1 ² 1	. L					

Sample Number	From ()	To ()	Estin	mate Zn	Length ()	° Cu	º₀ Zn	% Pb	gm: T Ag	gm:T Au	% S1 O2	°0 T1O2	% Na ₂ O	°, MgO	% Fe	PPM Cu	PPM Zn	PPM Pb	PPM Ag	PPB Au	500 1		
B0021099	107.98	108.53													12.23-	75 A							
BC021100	109.75								i na								5 v		* 1 1 n a		= 1 = 1		
BCOZILOI	141.0						-									-							
BCD 21102	142.3					,										11 =1			1				
BC021103	145.75				:	5 5	1.2											· · · · · · · · · · · · · · · · · · ·	li ,				
BCD21104	148.9	151,6				2 2								- N									
BCD21105		114.85			a 31 * j									4									
	n en	121.17			= =											3 2 ·				=			
BCOZNOS	121.75				0 0 0								1 1 1 1										
ACORIO9		S 40 5		-			a = 6 2					10		1.5				2					
BCD21110	122.32					1					-								-				
BC021116	151,7														1,								
BC021117	157.3				/															20 20			
BCD21118	160.97	4										N # 1											
BC021119	164.7	165.85																					
Roy Vice		2 7 6															·						
					- 12																		
										le .													
															-			-					
							0 = 1																
						17.0 18																18	

HOLE NO TL-

LITHOGEOCHEMISTRY

MAJOR OXIDES

TRACE ELEMENTS

			,				JOH OXIDI							HACE E				i e				
SAMPLE NUMBER	FROM ()	()	SiO:	Al;O،	CaO	MgO	Na ₂ O	K ₂ O	FeO	MnO	TiO:	P,O.	ppm Cu	ppm Zn	ppm Pb	ppm Ag	ppb Au	Rock Type	Alt	Min	Grid	
30021062	24.39	27.44													. 1-1-5							
ohyll atz	rite	7							5 K													
3021071	47.45	49,9			7									1	2							
hlor ohy	1			74	1 %	i, :	5 cm											. 5 19		# II .		
3021077		59.94			7,174	= = = = = = = = = = = = = = = = = = = =								1	7 7				= =	:		
rafic Int						- 1							18 1/81 18 1/81 18 1/81 1/81									
3021079	11.	62.25			1 2																	
nafic In		98183		1			1						2	1,50	s 2, 5,	1			12 5		wight of	
CO 21080		64.68			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																	
	4 7	67.00																				
Abr.cak	10																					
30021082		66.5			l		l			L		<u> </u>		112						<u> </u>		
ratio dy	Ke																			T	<u> </u>	Γ
CD 21083		67.63						-														
Hor, cal	c.phyll																			Ι		
COZIOBH		72.56						2 32			-7									<u> </u>		
Fol Otzi	te														24.91					T	1	
Schallo6	115.0	115.8												112 8								
ntermediate	e Intrus	ie		,																		1
CD21107		1			i de												Š - 1 - 2			<u> </u>		
Intermediat						. 29		- 1														
lole No				7 6 L	Entere	d by	R. Young	+ 2 0 g 94 0	r, Plus		Log	ged by	C. Clay	ton			F	age No.		and the same of th		

LITHOGEOCHEMISTRY

•	1. 1.	1 3 5				MA.	JOR OXIDI	ES	45,18		-3			TRACEE	LEMENT	S						
SAMPLE NUMBER	FROM ()	TO ()	SiO:	Al;O.	CaO	MgO	Na ₂ O	K ₂ O	FeO	MnO	TiO:	P,O.	ppm Cu	ppm Zn	ppm Pb	ppm Ag	ppb Au	Rock Type	Alt	Min	Grid	
BCOZIIII	123.75	12555					-	1						_ = 1	5 5	- 1			31 22			- 7
Intermedia	ate Intr	usice		, i	-				1	, in				y 528					1 11 =			
BCDZIIIZ	125.65	126,7										2,5										
Intermedia	te Inta	BIVE					± 17			a 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	114				2				01 00			
BCD21113	129.05	131.5				2 × 11		-		X 100						=	× 2-1					
Intermediat	e Inta	15/1e											* * .		1.				11, 1 ×			
BCR21114	132.05	134.0		1 , 10		1 1			CX	* * 8				2		V 82.7			0 45.8			
Internedia	ite Intr	usive.	1 .	0 .	-		1					- B										
BC021115	/39.3	140,85				~ .													c			
Intermedia	te totru	SILE			n Ba		ļ						1 1	0.2		2			1.	\$		
					2		7. 7. 14		= ===								3 X		24 125		-	
					ä .														, 10			
									2						-				s 1 3x			
			*	× 11															E ²			
											1 0										•	
					-				3 6			· 10 = 20							=	11.8		
																a.					,	
		1 38				20 July 20	Ш				4	5 1										
1 2 2		1 me		N 11 5						1 4						9 1.					_	
E 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1												*		- 1						

Logged by _____Clayton

Page No.

Entered by R. Young

Hole No. TL-I

HOLE NUMBER: TL-2 DRILL HO

IMPERIAL UNITS:

METRIC UNITS: X

PROJECT NAME: RICHTER PROJECT NUMBER: 656

PLOTTING COORDS GRID: Testalinden NORTH: 940.00N

ALTERNATE COORDS GRID: Testalind.
NORTH: 9+40N

COLLAR DIP: -60° 0' 0"

CLAIM NUMBER: 6

EAST: -935.00W

EAST: -9+35W

LENGTH OF THE HOLE: 53.66m START DEPTH: 0.00m

LOCATION:

ELEV: 1420.00

ELEV: 1420.00

FINAL DEPTH: 53.66m

COLLAR GRID AZIMUTH: 270° 0' 0"

COLLAR ASTRONOMIC AZIMUTH: 240° 0' 0"

DATE STARTED: September 23, 1990 DATE COMPLETED: September 24, 1990 COLLAR SURVEY: NO MULTISHOT SURVEY: NO

PULSE EM SURVEY: NO PLUGGED: NO

CONTRACTOR: LONE RANGER
CASING: RECOVERED

DATE LOGGED: September 23, 1990

4, 1990 MUL 3 1990

RQD LOG: NO

HOLE SIZE: NQ

CORE STORAGE: GREENWOOD

PURPOSE: To test depth extent of Albite Zn 7 to attempt to intersect QVN in TL1. Setup on Albite Zn.

DIRECTIONAL DATA:

Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
36.58	-	-59° 0'	ACID	ok		•	-	-	-	-	· ·
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	•	-	•	•		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
•	-	•	-	-		-	-	-	-	-	
-	-	, •	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-		
•	-	-	-	-		-	•	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	_		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		_	-	-	-	-	
-	-	-	-	-		-	-	-	-	_	
_	-	_	-	-		_	_	-	_	_	
_	-	-	-	_		_	-	-	-	_	
	-	-	_	_			_	-	-	_	
-	•	_	_	-		_	-	-		-	
-	-	_	_	-		_	•	•	-	-	
_	_	_	_	_		_	_	_	_	_	
_	_	_	_	_			_	_	_	_	
_	_	_	_	_		_	_	_	_	_	
_	_	_	-	_		_	_	_	_	_	
_	_	_	-	-		_	-	<u>-</u>	_	-	
<u>-</u>	<u>-</u>	-	-	-		_	-	-	-	-	
-	-	-	•	•		_	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	

FROM TO	ROCK Type	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
0.00 TO 4.60	«CASING»					
4.60 TO 25.50	«ALBITE ZN» Albitized mafic intrusions "Albite Zone"	Colour: Buff (beige) to greyish green Grain size: fine grained Fine grained unfoliated highly fractured (stockwork) and veined intermediate to mafic intrusive (dioritic)		Extreme almost complete albitization Some fractures are chlorite filled Fe staining along fractures Trace calcite along some fractures Hematite along some fractures		
		7.3m 1cm wide quartz vein -vuggy vn selvages10.67-12.0m Buff to white highly fractured blocky core with strong Fe and hematite along fractures	10		7.3m trace py along selvages - weathered out	
		12.6m Pyrite vein -somewhat vuggy	15		¶12.6∤«py vn 1cm wide»	
		16.7m Quartz/albite/pyrite vein, vuggy	10	Fe staining -weathered py	√16.7 «qz/alb/py vn»	18.6m becoming more chloritic with depth, possibly less albitic
		25.5m Fault contact	30	23.17-23.5 ≪kspar» filling occassional voids		
25.50 TO 28.50	«SIL FLT BX & MYL» Silicified Fault bx &	Colour: Grey Grain Size: Variable Varying silicified shear fabrics and brecciated		Silicified Calcareous in mylonitic zones		Core is very blocky and fragmented
	Mylonite	zones with mylonitic appearing core with c=s	30			
28.50 TO 29.50	«SIL QTZTE QVN» Silicified Quartzite/	Colour: Grey white Grain Size: Fine grained Foliated to massive quartzite that has undergone		Weak carbonate along fractures Possibly some Kspar alteration	«tr py, gn»	
	Quartz Vein	quartz veining and silicification Foliation Bottom contact is vuggy	25			

DATE: 23-October-1990 HOLE NUMBER: TL-2

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
29.50 TO 31.60	«DIOR INT» Dioritic Intrusion	Colour: Greenish grey Grain Size: Fine grained to medium grained Massive unfoliated to weakly foliated fine grained to medium grained dioritic intrusion		Quartz carbonate veining Chloritic fractures	Trace py	
31.60 TO 50.20	«CALC CHL P HYLL» Calcareous Chloritic Phyllite	Colour: Grey Grain Size: Fine grained to medium grained Well foliated calcareous chloritic phyllite with closely spaced (5mm) compositional bands and boudins of quartz carbonate defining foliation	35	Pervasive quartz carbonate alteration Calcite is Fe poor Occasional stockwork quartz carb vning	Trace fine grained py occuring along foliations	Core is very competant
		38.7-41.4m Quartz carbonate veining and flooding 43.1-43.4m Massive quartzite -weakly foliated 50.2m Contact	25 30 35	38.7-41.4m Quartz carb veining and flooding 46.0-47.9m More abundant Fe staining along fractures and foliae; calcite is Fe rich with ankerite	38.7-41.4 -«1% py, po» foliae	
50.20 TO 53.66	«CHL PHYLL» Chloritic Phyllite	Grain Size: Fine grained Fine grained alternating light and dark chloritic bands Little to no quartz carbonate compositional bands	35	Fe staining along fractures Chlorite	Tr pyritic foliae	
		#51.8-51.9 wqz vn» END OF HOLE	45			

Sample Number	From ()	To ()	Est	imate Zn	Length ()	° _° Cu	° _° Zn	% Pb	gm: T Ag	gm: T Au	9.0 S1O2	°. T1O2	% Na2O	° ₀ MgO	% Fe	PPM Cu	PPM Zn	PPM Pb	PPM Aq	PPB Au		
Bedallao	4.57	7.5																				
BCOZIIZI	7.55	10.67																				
BCOZILZZ	10.7	13.65																	*			
BC021123	13.65	16.63	5					-														
BCD21124	16.7	19.4			:														4			
BCD21125	19.5	2216																				
BC021126	22165	25.0		_	-											7				c		
BCOZIIZZ	25.1	28.4				-								-								
BCOZIIZB	2815	29,4																				
BC021129	29,5	31.4																				
BCD21130	31,75	33,6	_																			
BCD21131	38,7	416			17	1		-							1							
BCD21132	43.0	43,32								a a												
BC021133	461	47.86	Ó																	-		
BG021134	519	52,0																		-,		
REFERENCE	13,																					
													-									
			-																			
										-			- >									

MINNOVA INC.
HOLE NUMBER: TL-3

DRILL HOLE RECORD

IMPERIAL UNITS:

METRIC UNITS: X

COLLAR DIP: -90° 0' 0" PROJECT NAME: RICHTER PLOTTING COORDS GRID: TESTALINDEN ALTERNATE COORDS GRID: TESTALIND. NORTH: 940.00N NORTH: 9+40N LENGTH OF THE HOLE: 93.00m PROJECT NUMBER: 656 CLAIM NUMBER: EAST: -935.00W EAST: -9+35W START DEPTH: 0.00m LOCATION: ELEV: 1420.00 FINAL DEPTH: 93.00m ELEV: 1420.00

COLLAR GRID AZIMUTH: 270° 0' 0" COLLAR ASTRONOMIC AZIMUTH: ° ' "

DATE STARTED: September 24, 1990 COLLAR SURVEY: NO PULSE EM SURVEY: NO CONTRACTOR: LONE RANGER
DATE COMPLETED: September 25, 1990 MULTISHOT SURVEY: NO PLUGGED: NO CASING: RECOVERED
DATE LOGGED: September 24, 1990 RQD LOG: NO HOLE SIZE: NQ CORE STORAGE: GREENWOOD

PURPOSE: To test depth extent of albite zone.

DIRECTIONAL DATA:

Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
56.40 92.99	-	-89° 0'	ACID ACID	ok OK		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	· -	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	•	-	-	-		-	-	-	-	•	
•	-	-	-	•		_	-		-	•	
-	<u>.</u>	-	-	-		-	-	-		-	
_	_	_	_	_		_		_	_	-	
_	_	_		_		_		-	-		
_	-	-	_			<u> </u>	-	-	-		
-		-	-	•		_	-	-	-		
•		-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	•	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
•	•	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	•	
						,					

DATE: 23-October-1990

FROM ROCK ANGLE REMARKS TO TYPE TEXTURE AND STRUCTURE TO CA ALTERATION MINERALIZATION «CASING» 0.00 TO 3.00 3.00 «ALBITE ZN» Colour: Grey white Fe Mn staining along fractures Silicification TO "Albite Grain Size: fine grained 15.70 Zone" Albitized Fine grained albitized mafic intrusion with high mafic fracture density 3.0-10.5m Surface weathering giving a intrusion Diorite rusty gossanous appearance √3.4-3.5 «qz vn» 3.4-3.5m Fe staining, chlorite 3.4-3.5m Tr-1% py ₹3.5-15.7 «1% py» occuring along 3.5-15.7m High density stockwork fracturing and Albite, chloritic fractures quartz pyrite veining; Some vuggy zones fractures and with quartz veinlets 20 5% pyrite 11.4 «qz py vn» 30 tr pyrite 12.0-12.2m Extremely vuggy fractured segment Chloritic fractures, Fe staining, Ir pyrite 15.7m Brecciated and fractured contact Shear Fabric silicified, possibly quartz vein **115.7 41t 3** «PHYLL QTZT Chloritic foliae Tr py 15.70 Colour: Grey white E» Grain Size: Fine grained Fe staining TO 16.90 Phyllitic Fine grained, well foliated phyllitic quartzitle Quartzite with chloritic foliae 60 16.9m Developing mylonitic fabric 16.90 «FLT GOUGE Colour: Reddish Brown Fe oxidation TO & BX» Grain Size: Variable Mn staining 19.20 Fault gouge and breccia Reddish brown highly fractured and gouged quartzite Quartz carb compositional bands 19.20 «SIL CHL CA Colour: Grey Weak carb (Fe poor) to Fe rich Trace to 1% fg py (diss) along foliae increase in thickness with depth in LC PHYLL» Grain Size: fine grained ie. banded Chlorite 59.30 Siliceous chloritic Well foliated, compositionally banded (quartz carb calcareous comp bands) phyllite Foliae mm apart 60 Crenulation cleavage 290/50

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		28.4-28.6m Quartz vein	65	Fe free to Fe rich + dolomite	Tr py, cpy	
		31.9-34.5m Well foliated and quartz carbonate veined		FE rich calcite	Tr-1% fg pyrite along foliae	
		34.5-36.1m Mafic intrusion; Fine grained, unfoliated		Fe rich carb veining and matrix alt	3% fg diss pyrite	
		41.7-42.7m Foliation to	65 70	carb, chl	1% py along foliae tr py,cpy	
		42.7-42.9m Quartz vein	25	Fe staining and discoloration; Fe free calcite to Fe rich calcite and Fe dol		42.7m Silicification increasing
		49.1-49.2m Quartz vein foliation	80 45	caterie to re Fren caterie and re dot	Tr py	
		49.4-49.7m foliated quartzite			Tr py, cpy	
		54.7-55.1m Mafic dyke, fine grained green with carb veins	75 80	Fe rich calcite, Fe dol, chlorite	√54.7-55.1 (12% py,po,tr cp,gn» (10-15%)	
		- \$54.7-55.1 -≪Maf dyke»				
		456.4-56.6 wqvn»; massive white, fine grained	80	Sericite	56.4-56.6m Weathered pyritic vein with quartz vein at 25 deg to CA	
		59.3m Contact		56.6-59.3m Increasing carbonate alt	1	
9.30 TO	«MSSV-WKLY FOL QTZTE»	Colour: White Grain Size: Fine grained		Fe staining along fractures Strong carb along fractures and foliae	In trace amounts assoc with quartz carbonate veinlets	
2.90	Massive to weakly foliated	Very competant Weak foliation	60	Occasiohnal quartz carb veinlets		
	Quartzite	63.8m Unit becomes more massive with increasing quartz veining		63.8m Silica flooding from quartz veining		
		67.1-67.4m 5cm wide quartz veins with trace py along selvages	30		67.1-67.4 «tr py in qz vn» 5cm wide quartz vein with tr pyrite along selvages	
		67.7-68.4m Well foliated quartzite	55	Chlorite foliae	Secreges	
		68.4-68.7m Chloritic phyllite with quartz compositional bands				

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		68.7-68.9m Vuggy quartz vein		Fe staining; carb along vugs and fracs		
	•	69.4-69.5m 1cm wide quartz vein	42			
		72.6-72.8m Silicified calcareous fault breccia; angular various sizes	55	72.6-72.8m Sil, carb alteration		
72.90 TO 73.30	«SIL PHYLL» Siliceous Phyllite	Colour: Grey green Grain Size: fine grained 72.9m Upper contact	55			
		Fine grained alternating lighter and darker coloured crenulated bands Foliae ~1mm apart and parallel to contact		Extremely silicified	Trace py in occasional quartz veinlet	
		73.3m Lower contact	50			
73.30 TO 78.80	«QZ VN STKW RK» Quartz Vein	Colour: White grey with green tint Grain Size: Fine grained				
70.00	Stockwork	Randomly oriented quartz stockwork veining and fracture fillings				
		Tracture fillings		73.3-75.9m Silica flooding and chloritic alteration of host rock	73.3-75.9 ≪2-5% py vnlts», void, fracture fillings	
				75.9-78.8m Primarily silicification; no chloritization	175.9-77.3 kepo,cp zone» 2-5% po as veinlets, fracture fillings and void fillings assoc with tr amount of cpy and py Po euhedral to 1cm cubes locally	
78.80 TO 83.30	«FOL QTZTE» Foliated Quartzite	Colour: Grey white Grain Size: Fine grained		Chloritic foliae Minor Fe staining, ank, ser along fractures		
65.50	waartzite	Fine grained well foliated quartzite with chloritic foliae	55	11 de cui es		
		80.8-81.0 «flt gouge»				

DATE: 23-October-1990

HOLE NUMBER: TL-3

ANGLE FROM ROCK REMARKS TYPE TO CAL ALTERATION MINERALIZATION TO TEXTURE AND STRUCTURE Some bands are very fine grained diss «CALC CHL P Foliae are chloritic 83.30 colour: Grey py up to 2cm thick Grain Size: Fine grained Carbonate alteration of matrix TO **HYLL**» Foliae are pyritic near these bands 93.00 Some talc and clay alteration Occasional pyritic veinlets Fine grained well foliated calcareous chloritic Pyrite in some quartz carb bands up to phyllite Alternation while quartz carbonate compositional bands with phyllitic bands 40 90.85-91.1m Interfolial po and cp Po tr-1% 50 91.2m 2cm wide quartz veins cp tr END OF HOLE

Sample Number	From ()	To (Estima	ate Zn	Length ()	°₀ Cu	° _° Zn	° ₀ Pb	gm: T Ag	gm:T Au	°,0 S1 O2	°0 T1 O2	% Na ₂ O	°, MgO	% Fe	PPM Cu	PPM Zn	PPM Pb	PPM Ag	PPB Au		2 - 1 - 2 - 2	
BC021135	3,05	6.0				200										7 12							•
BCD21136	6.0	865		1																			
BC021137	10.82	120																					
BEDZII38	12.3	15.37																					
BC021139	15.4	15,65			:	* •					10												
BCD21140	15.65	16.0				2 2			1 1														
Brozin	2185	3.05																					
BCD21142	120	12.3				W .	2																
BC021143	16.0	17.0							, , ,														
BCOZILHH	17.2	19,21					3 P		1		1										1		
BEDZI145	19.3	22.0							2						1 2								
B6021146	25,91	26.5							-						t								
BGD21147	26.5	29,0															1 211 1					1	
BCD21148	318	35,2																					
BC021150	36.15	3411				11					1 2						2 , .						250
BC021201	41.77	43.0								,		-	s = "									5 a = 2	
BC02 1202	43.0	43.25			-							1 8		,		7 1							
BCD21203	43.3	44.21			,				11.11										1				
BCO 2/204	49.1	49,25				11 21	7 4 2					2 2 2 2			1 12		5 g =	- w *2					
RCD21205	49.5	49,94			350 TR							1 1							. 7.				

HOLE NO Th-3

PAGE ____

Sample Number	From ()	To ()	Estu	mate Zn	Length ()	° Cu	° _o Zn	% Pb	gm: T Ag	gm:T Au	°, S1 O2	° 0 T1 O2	% Na2O	°。 MgO	% Fe	PPM Cu	PPM Zn	PPM Pb	PPM Aq	PPB Au		
BCQ21206	53.4	54.65								2					:-							
BCD21208	55.1	56.15																				
BCD21209	53.35	53,65																	*			
BCPZIZIO	59.35	62.0																				
BCD21211	67.0	67.35								=	-											
BC021212	68.85	69.05																				
B021213	69,6	69.8																				
BC021214	76,6	76.9				12										-						
BCD 21215	76.65	74.05																				
BCD21216	741	75.8																				
BC021217	75.9	78,9	_																			
BCD21218	80.73	81.17			/										1							
BC021219	83.6	84.35					-															
BC021220	86,0	26.58																				
BCD21221	87.45	88.1														3.*3	e , .			a		
BC021222	90.85	91,45	1																			
		-				,																
																-		-				
					<u> </u>																-	
										,				9								

HOLE NO TL-3

LITHOGEOCHEMISTRY

						MA	JOR OXID	ES	Liin	IOGEO	SHEMIS	ini		TRACE E	LEMENT	s						
SAMPLE NUMBER	FROM ()	. TO	SiO:	Al ₂ O ₃	Ca()	MgO	Na ₂ O	K ₂ O	FeO	MnO	TiO:	P,O.	ppm Cu	ppm Zn	ppm Pb	ppm Ag	ppb Au	Rock Type	Alt	Min	Grid	
BCD 21149	35.25	36,1		*, , , , , ,	in i						7.					- :						
Mafic Int	rusir						¥ 2					.1.6						= ,	÷			
BCD21207	54.65	55.1																25 cc 0 = 1				
Mufic Duk	ke									3 15 11 2 1 5	*			, A. T				A.				
					X1 8 *	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									7 TA.					3 1 5		
				a a =		15"		90 1,			100	i i								4		
3.				1			11 5 7, 1			7										11.		
							1					8 81									10: 1	
		7				le i							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
					8 8					·					7 11		-					
				1								= 100	1,000				12) ·		
		2			2	1 2	7		. 1	,				7 1						, ē		
																		20		1 1		
112															6.				18		W =	
6 1											5 T							42 2				
V 1	-								E1 2								5 T	F 12				
d e							1.	× .						T			ii ii					
											- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1											
			663 1 ²		2 20 20		05					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		7	4 2							
			11	1						1			4					11	-			

Page No

A V.

MINNOVA INC.
HOLE NUMBER: TL-4

DRILL HOLE RECORD

IMPERIAL UNITS:

METRIC UNITS: X

COLLAR DIP: -45° 0' 0" ALTERNATE COORDS GRID: TESTALIND. PROJECT NAME: RICHTER PLOTTING COORDS GRID: TESTALINDEN PROJECT NUMBER: 656 NORTH: 600.00N NORTH: 6+ 0N LENGTH OF THE HOLE: 150.00m START DEPTH: 0.00m CLAIM NUMBER: EAST: 120.00W EAST: 1+20W FINAL DEPTH: 150.00m LOCATION: ELEV: 1215.00 ELEV: 1215.00

COLLAR GRID AZIMUTH: 270° 0' 0"

COLLAR ASTRONOMIC AZIMUTH: 270° 0' 0"

DATE STARTED: September 26, 1990 COLLAR SURVEY: NO PULSE EM SURVEY: NO CONTRACTOR: LONE RANGER
DATE COMPLETED: September 28, 1990 MULTISHOT SURVEY: NO PLUGGED: NO CASING: RECOVERED
DATE LOGGED: September 26, 1990 RQD LOG: NO HOLE SIZE: NQ CORE STORAGE: GREENWOOD

PURPOSE: To test IP anomaly B at a depth of ~50m below

surface.

DIRECTIONAL DATA:

Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
26.21	-	-46° 01	ACID	ok		-	-	-	-	-	
61.28	-	-46° 0'	ACID	OK		-	-	-	-	-	
96.01	•	-45° 0'	ACID	OK		-	-	-	-	-	
114.33	-	-46° 0'	ACID	OK		-	-	-	-	-	
150.00	-	-46° 0'	ACID	OK		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	• -	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		<u> </u>	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-	,	-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-		-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	•	-	-	-	
-	-	-	-	-		-	•	-	-	-	
-	•	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
						1					

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
0.00 TO 6.10	«CASING»					
6.10 TO 13.70	«PHYLL QTZT E/FOL QTZT»	Colour: Dark grey Grain size: Fine grained Dark grey to black well foliated phyllitic quartzite with anastomosing graphitic (?) foliae Quartz carbonate lensoidal bands	30	Very weak carbonate Graphitic(?) foliae Silicification Minor Fe staining along fractures	Interfolial pyrite -occurs with graphitic foliae and in some instances as fracture fillings in trace amounts	
		9.2-9.7m quartz veining	30	Minor sericite		
		10.6-11.3m More strongly foliated; foliae every 1-3mm	45	Graphitic Foliae Occasional quartz veining	Interfolial pyrite to 15% in particular foliae Occasionally massive along foliae	
13.70 TO 32.00	«CHL CALC P HYLL» Chloritic Calcareous Phyllite	Colour: Green grey Grain size: Fine grained Green grey well foliated fine grained chloritic calcareous phyllite Quartz carbonate lenses and composition banding paralleling foliation	20	Chloritic foliae Quartz carb compositional banding and lenses Carbonate alteration of matrix (wk to strong)		
		13.7m Foliation 16.3-16.5m Quart vein 16.61m Foliation 16.9-17.61m Small, fine grained mafic intrusion 17.6m foliation 17.7-17.9m Fault gouge 21.8-22.2m Fault gouge 424.4-25.3 KFlt gouge» and blocky core Angle to core axis parallels foliation 26.5m Foliation 32.0m Contact (parallel to foliation)	20 28 90 24 28 14	22.2m Calcareous and chloritic alt increasing with depth		

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
32.00 TO 32.60	«ALT PHYLL» Altered Phyllite	colour: Buff Grain Size: Fine grained Fine grained foliated buff to greyish brown alt. phyllite Foliation Foliation defined by chloritic laminae and aligned lenses	18	30% dolomitic alteration Weak calcite Quartz carbonate stockwork veining Clay alteration 32.5-32.6m alteration intensifies near contact and is dark brown in colour	Foliae are pyritic to 25% within individual foliae (massive) Very fine grained pyrite in matrix	Possibly foliated altered intrusive??
32.60 TO 32.80	«DIOR» Mafic Intrusion (Diorite)	Colour: Grey green Grain Size: Medium grained Medium grained greyish green euhedral to subhedral equant dioritic intrusion		Weak dolomitic alteration	«20-30% py,po» diss	Moderately magnetic
32.80 TO 36.70	«ALT PHYLL» Altered Phyllite	Colour: Buff Grain size: Fine grained Description: See 32.0-32.6m Increasing stockwork quartz carbonate veining		30% dolomitic alteration Weak calcite Quartz carb stockwork Clay alteration		Possibly foliated altered intrusive?
		33.7-34.1m quartz vein 36.0m Foliation 35.6-35.8m Quartz vein 36.7m contact	20 10 14	Weak ser, chl	Tr py, gn?	This contact does not show any truncation of foliation so this is assumed to be altered phyllite
36.70 TO 49.30	«CHL CALC P HYLL»	Colour: Grey green Grain size: Fine grained Well foliated greyish green chloritic, weakly to moderately calcareous phyllite 37.0-38.4m Dolomitized phyllite Alternating chloritic bands with quartz carbonate bands 38.8-41.6m Dolomitic phyllite 47.2-49.2m Very fine grained chloritic phyllite	45	Carbonate tr to 15% Chloritic foliae 25% Clay alteration	Tr to 2% rg diss pyrite in matrix	

MINNOVA INC. HOLE NUMBER: TL-4 DRILL HOLE RECORD DATE: 25-October-1990

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
		49.3m contact	38	veins 48.4-48.8m Extreme silicification	47.2-48.2m fg diss pyrite to 10% 1-2% fracture filling py and veinlets	
49.30 TO 50.70	«SIL PHYLL» Siliceous/ silicified Phyllite	Colour: Grey Grain Size: Fine grained Fine grained well foliated alternating dark grey and greenish grey bands Very hard Foliation 50.7m Contact	38 32	505 silicification chlorite graphitic bands	1-2% py as stringer veinlets and along foliae	
50.70 TO 58.60	«CHL CALC P HYLL» Chloritic Calcareous Phyllite	Colour: Grey Grain Size: Fine grained Description: See 36.7-49.3m Quartz carbonate compositional bands Foliation	25	Chlorite (weak) Carb (mod) Clay (mod) Graphitic	Тг ру	
58.60 TO 60.80	«FOL QTZTE» Foliated Quartzite	Colour: Grey Grain Size: Fine grained Moderately foliated with graphitic foliae	28	Graphitic foliae Weak carbonate alteration along frac's and foliae		
60.80 TO 64.60	«GRPH CALC PHYLL» Graphitic Calcareous Phyllite	Colour: Grey to black Grain Size: Fine grained Alternating lighter and darker bands of fine grained foliated laminae Foliation 64.0-64.4m 1cm wide quartz vein, pyrite bands replacing quartz carb	26	Carbonate 10-20% Quartz carb comp bands Graphitic foliae	«interfolial py to 35%» along individual foliae Pyrite bands replacing quartz carb bands near contact	

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
64.60 TO 68.40	«FOL QTZTE» Foliated Quartzite	Colour: Dark grey Grain Size: Fine grained 64.6-64.7m Broken core, slightly gouged, possibly fault Dark grey fine grained foliated quartzite	26	Graphitic foliae Weak carbonate alteration	Pyritic foliae assoc with graphitic foliae	Missing core at base
68.40 TO 69.50	«ALT PHYLL» Altered Phyllite	Colour: Brown grey Grain size: Very fine grained Very fine grained weakly foliated brownish grey phyllite Crosscut by dioritic dykelets 69.5m Graphitic fault gouge		10% dolomitic Graphitic foliae	1% fine grained pyrite and po with dioritic dykeltets	
69.50 TO 69.90	«GRPH FLT» Graphitic Fault	Colour: Black to grey Grain Size: Fine grained Black, extremely graphitic fault gouge followed by silicified brecciated quartzite 69.9m Contact	35	Strong carbonate alteration of fracs. Graphitic Tr fuchsite in brecciated quartzite	Tr py	
69.90 TO 71.40	«FOL QTZTE» Foliated Quartzite	Colour: Grey Grain size: Fine grained Fine grained grey well foliated quartzite	35	Graphitic, chllritic foliae	Tr to 1% pyrite in fractures Pyritic veinlets	
71.40 TO 73.90	«CHL PHYLL» Chloritic Phyllite	Colour: Dark grey/green Grain Size: Very fine grained Very fine grained competent foliated chloritic phyllite foliation	35	Clay alteration Chloritic foliae Quartz carb compositional bands Pervasive dolomitic altertion	«2-3% py,po» diss and veinlets	
73.90 TO 75.00	«MAF INT» Mafic Intrusion	Colour: Grey green Grain Size: Fine grained 1-3mm euhedral to anhedral fsp phenocrysts in fg matrix Unfoliated		Weak to moderate dolomitic Weak Fe rich calcite Weak silicification	Trace pyrite	

MINNOVA INC. DRILL HOLE RECORD

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		75.0m Lower contact	05			
75.00 TO 78.70	«CHL PHYLL» Chloritic Phyllite	Colour: Dark grey/green to brownish localaly Grain Size: Fine grained to very fine grained Fine grained to very fine grained foliated chloritic phyllite with quartz carb compositional bands		Moderate dolomitic Calcareous bands Fractures calcareous Possibly feldspar alteration	2-3% pyrite occurring along foliae and in fractures	
78.70 TO 80.80	«DIOR INT» Dioritic Intrusion	Colour: Grey green Grain Size: Fine grained Massive, competant unfoliated fine grained equant subhedral feldspars unoriented 80.8m Contact	20	Calcareous Chloritic	Trace disseminated py throughout	
80.80 TO 81.40	«PHYLL + DI OR» Phyllite/ Diorite	colour: Grey green Grain Size: Fine grained to very fine grained Very fine grained to fine grained alternating phyllite and diorite		Talc bands Calcareous Chloritic	Tr diss py	Chilled margin
81.40 TO 95.10	«SIL PHYLL» siliceous Phyllite	Colour: Grey Grain Size: Very fine grained Very fine grained cherty appearing well foliated siliceous/silicified phyllite with interbeds of fine grained calcareous phyllite 87.4m Foliation 95.1m Contact	28 25	Silica 10% Dolomite 10% quartz carb veinlets and compositional bands	1-2% fg dis py and po throughout matrix Along fractures is radiating sand dollar py (marcasite) up to 10% of individual fractures	Gunmetal grey oxidation on fractures
95.10 TO 97.56	«FOL QTZTE» Foliated Quartzite	Colour: Grey, white grey Grain size: Fine grained Fine grained well foliated, graphitic foliae Foliae anastomose around lensoidal quartzite 97.56m Fault contact Fine high density stockwork quartz veining at contact	55	Graphitic foliae Graphite increasing down towards fault contact	Pyrite and pyrrhotite occur as stromgers along foliae and in fractures 96.0-96.3 <2% py,po strngers> occur with graphitic foliae	

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
97.56 TO 100.80	«FLT BX & G OUGE» Fault bx & gouge	Colour: Grey to black Grain Size: Fine grained Grey to black brecciated and gouged quartzite		Extremely graphitic	Pyrite stringers to 2%	
		97.56-97.7m Breccia with graphitic and py between bx clasts	55	Graphitic	Tr pyrite	
		100.5-100.8m Stockwork fractured		Graphitic	diss 100.5-100.8 diss 100.5 fg, diss 100.5 fg, diss	
100.80 TO 110.10	«SIL PHYLL & QTZTE» Siliceous Phyllite & Quartzite	Colour: Grey Grain Size: Fine grained Fine grained grey to black alternating siliceous phyllite and foliated to massive quartzite 102.5-102.6m Silicified graphitic brecciated core 102.8-103.1m Interbed of vfg phyllite 104.4-105.2m Massive to weak foliated quartzite with graphitic foliae and fractures 107.0-107.3m Broken core -minor gouge 108.6-108.7m Graphitic fault gouge 109.5-110.0m Quartzite and quartz veining	50	Extremely graphitic	2% py with graphite, tr-1% in quartz Up to 10% py assoc with graphitic foliae and occasionallu within quartz	Core is very broken
110.10 TO 114.70	«CHL PHYLL» Weakly Calcareous Chloritic Phyllite	Colour: Grey green Grain size: Fine grained Fine grained weakly foliated chloritic weakly calcareous phyllite 113.8-114.2m Small interbed of quartzite	45	Chlorite Weak carbonate		
114.70 TO 121.20	«FOL QTZTE/ SIL PHYLL» Foliated Quartzite/ Siliceous Phyllite	Colour: Dark grey with green tint Grain Size: Fine grained Weakly chloritic and calcareous foliated quartzite /siliceous phyllite Foliation varies to very low angle with core but on average		Weakly chloritic calcareous alteration		

ANGLE FROM ROCK REMARKS TO CA ALTERATION MINERALIZATION TYPE TEXTURE AND STRUCTURE TO Silicified 121.20 «CHL PHYLL» Colour: Light grey/green Occasional quartz carbonate bands Chloritic Grain Size: Fine grained TO Phyllite Graphitic fractures 124.70 Foliated (MInor graphitic) silicified chloritic phyllite 45 Foliation Pyritic, pyrrhotitic foliae to 5% Quartzite foliae are graphitic 124.70 «FOL QTZTE» Colour: Light to dark grey Grain Size: Fine grained TO Foliated 148.50 Quartzite Foliated quartzite with interbeds of fine grained chloritic phyllite containing quartz carbonate compositional bands and fractures Phyllitic horizons are brownish foliation 45 127.7-128.5m Fine grained light brown chloritic phyllite 129.7-130.2 cmm scale py vns» 129.7-130.2m Fractures core Graphitic/pyritic foliae to 15% 130.3-131.2m Finge grained chloritic phyllite 131.2-132.0m Stockwork quartz carb veins quartz carb veining 131.2-132.0m po vnlts 134.7m Fault gouge 134.9-135.1m Small mafic intrusion Chloritic, clay altered 134.6-136.8 «py to 20%» 137.3-137.7 «py to 15%» 134.6-136.8m Extremely broken core Extremely graphitic 137.3-137.7m Extremley graphitic 136.7m Fault gouge 138.2m Fault gouge 141.7-144.5m Interbed of greenish grey fine grained weakly calcareous phyllite 144.9-145.3 wflt gouge» Fractured brecciated quartzite 148.50 «CHL CALC P Colour: Grey green Quartz carbonate compositional bands HYLL» Grain Size: Fine grained 150.00 Chloritic Grey green fine grained chloritic calcareous Calcareous phyllite with quartz carbonate compositional Phyllite bands 40 Foliation/banding END OF HOLE

9.7 11.88 16.55 17.75 22.3		e Lengtr					7 1 1,2-								·
16.55							7								
16.55		:					 								
17.75		:									4				
		:	-									H = Z			
							+								
						-		-							
		+												,	
		-			,			1							
		-			78								т,		
		-													
		-							·						
	-														
		-												,	
															·
										-, -	1 2				

MAJOR OXIDES

TRACE ELEMENTS

			MAJOR OXIDES									TRACE ELEMENTS										
SAMPLE NUMBER	FROM ()	T()	SiO:	Al ₂ O ₄	CaO	MgO	Na ₂ O	K ₂ O	FeO	MnO	TiO:	P,O.	ppm Cu	ppm Zn	ppm Pb	ppm Ag	ppb Au	Rock Type	Alt	Min	Grid	
BCD21226	16.9	17,4	,						4 1													
		2																				
				n																		
6														1506			,			22		
					i i																	
							22															
	IK:						1															
																	l	İ		1		
				Γ							s+											
	1				<u> </u>						-									<u> </u>		
			3-																			
	T			1																		
										L ,			<u> </u>									
	T																					
		•												•								
	+1 -11	_			i i		0 1/				120			4				<u> </u>				
Hole No.	4-4		***************************************	-	Entere	d by	R. Your	9		•	Log	ged by _	C. Cla	ylon			F	Page No				