# MINERALOGY AND PREDICTIVE METALLURGY OF THE SAMATOSUM DEPOSIT

David J.T. Carson

February 4, 1988

# CONTENTS

.....

4

|                                                                                        | Page |
|----------------------------------------------------------------------------------------|------|
| SUMMARY                                                                                | 1    |
| PURPOSE AND SCOPE                                                                      | 4    |
| MINERALOGY                                                                             | 4    |
| MIDDLING RATINGS                                                                       | 11   |
| PREDICTIVE METALLURGY                                                                  | 12   |
| METALLURGICAL TEST SAMPLES                                                             | 14   |
| FIGURE 1 - Samatosum Deposit Longitudinal Section:<br>Drill Holes, Metallurgical Zones | 3    |
| TABLE 1 - Average Mineralogical Composition of the<br>Samples Studied                  | 5    |
| TABLE 2 - Electron Microprobe Analyses of TetrahedriteGrains, Samatosum                | 8    |
| TABLE 3 - Electron Microprobe Analyses of Sphalerite<br>Grains, Samatosum              | 9    |
| TABLE 4 - Electron Microprobe Analyses of Electrum<br>Grains, Samatosum                | 9    |
| TABLE 5 - Occurrence and Estimated Recovery of Goldby Flotation, Samatosum             | 10   |
| TABLE 6 - Average Middling Ratings of Zones I, II, III,<br>Samatosum                   | 11   |
| TABLE 7 - Legend for Mineral Sheets and Photomicrographs                               | 15   |
| MINERAL SHEETS - RG-64 to RG-137 attac                                                 | hed  |
| PHOTOMICROGRAPHS - PM-1 to PM-34 attac                                                 | hed  |

### SUMMARY

This study has been undertaken in order to establish the mineralogy, textures and middling ratings of the various parts of the Samatosum deposit. These data are used to determine if differing ore-types are present, to predict their metallurgical response, and to choose representative samples for metallurgical testwork.

The important ore minerals of the Samatosum deposit are <u>tetrahedrite</u>, <u>sphalerite</u>, <u>galena</u>, <u>chalcopyrite</u>, and <u>electrum</u>; <u>gangue minerals are pyrite</u>, <u>quartz</u>, <u>ferroan dolomite</u> and <u>muscovite</u>. <u>502</u>

The key sulphides, tetrahedrite (main silver-copper carrier) and sphalerite (main zinc carrier) are medium-coarse, possessing average middling ratings (tt,sp/py,gn) of 2.5 and will therefore require only a relatively coarse grind of about 50% -200 mesh for liberation. Chalcopyrite, which contributes less copper than tetrahedrite, is also medium coarse (2.7); galena (lead carrier) is finer-grained (3.7).

Because the ore has a relatively low pyrite content (<10%) and contains considerable quantities of soft minerals including tetrahedrite, sphalerite, carbonate, and muscovite, the work index will be low.

The orebody has been divided into three zones, I, II, and III on the basic of mineralogy/predictive metallurgy/mining sequence. Zone I contains massive high-grade ore in the upper part of the proposed open-pit; Zone II contains mainly-disseminated ore in the lower part of the open-pit, and Zone III contains mainlydisseminated ore (similar to the ore of Zone II) that will be mined by underground methods. Sub-zone  $I_0$  contains the ore to be mined initially, from the surface to ten meters depth.

Except for some covellite and other secondary minerals occurring in surface Trench-3, (in Zone  $I_0$ ), metallurgically-deleterious minerals such as pyrrhotite and porous pyrite/marcasite were not observed. Most of the ore contains +20% dolomite and should be relatively stable and non-acid generating.

Assuming that treatment of Samatosum ores is by flotation, with Pb-Cu-Ag/Zn separation, recoveries of +90% are anticipated for silver and copper, which occur mainly in tetrahedrite (36.1%Cu, 3.8% Ag), with subordinate amounts of copper in chalcopyrite; somewhat elevated middling ratings for galena may indicate reduced lead recoveries.

Zinc recoveries of 70-80% are anticipated, with lowered recoveries due to poor Pb-Cu-Ag/Zn separation caused by fine "chalcopyrite disease" in about 50% of the sphalerite, especially in Zone I, and due to significant amounts of zinc being carried by tetrahedrite to the Pb-Cu-Ag-Au concentrates of Zones II and III (tetrahedrite averages 4.9% Zn). Zinc separation may be particularly difficult in Sub-zone  $I_O$  where activation of sphalerite due to the presence of covellite is anticipated.

Because of a very strong association of the electrum with tetrahedrite rather than pyrite or arsenopyrite, <u>gold</u> recoveries to the Pb-Cu-Ag-Au concentrate are estimated to be about 90%.

Tetrahedrite, with its silver content and its association with gold, is by far the most important mineral at Samatosum. If the production of a <u>lead-copper-silver-gold concentrate</u> containing 50% tetrahedrite (average content=36.1% Cu, 23.3% Sb, 3.8% Ag, 3.4% As) is achieved, calculations indicate that it will contain approximately 19% Cu, 600 opt Ag, 1 opt Au, 11.6% Sb, 1.7% As,<<100ppm to a maximum of <u>+400ppm</u> Hg (high mainly in Zone I), and depending on ore source and grind, an estimated 10% Pb and 10-30% Zn.

Because the Samatosum sphalerite has a high zinc content (65.4% Zn) and the ore is low in pyrite, it should be possible to produce a <u>zinc concentrate</u> grading +55% Zn from the bulk Pb-Cu-Ag-Au flotation tailings; electron microprobe analyses of sphalerite grains indicate that the mercury content of the zinc concentrate will vary from <<100ppm to a maximum of approximately +400ppm, depending on the source of the ore.

It is recommended that samples that contain the ore intersection and appropriate dilution from each of several drill holes throughout the deposit should be tested individually, and then combined to form composites for Zones I, II, and III for more detailed testwork. An additional composite made up of samples from deep trenches and shallow drill-holes, should be obtained from Subzone  $I_0$  in order to test the initially-mined, partly oxidized ore.



### PURPOSE AND SCOPE

The Samatosum volcanic exhalative deposit is 25 km east of Barriere, B.C. and contains approximately 800,000 tonnes of ore averaging 1.1% Cu, 1.5% Pb, 3.0% Zn, 32 opt Ag, and 0.05 opt Au.

The Samatosum deposit and the available drill-core in Barriere were examined by the writer on July 14, 15, 1987. A total of 96 polished thin sections of samples collected from 24 drill holes and Trench #3, were made by Geoplastech Limited of Toronto and were examined under the microscope by the writer. Electron microprobe analyses were done on selected mineral grains by J.E. Clemson at the University of Toronto, and J.Stirling of the New Brunswick Research and Productivity Council.

The main purposes of this study are to establish the overall mineralogy and to determine the grain sizes and textures of the silver, gold, zinc, lead, copper, antimony, arsenic and nonsulphide gangue minerals in all parts of the deposit. These mineralogical data are used to predict variations in the metallurgical response from place-to-place in the orebody and to allow for the selection of representative samples for metallurgical testwork.

#### MINERALOGY

Pertinent data on the mineralogy of the 96 samples studied are presented on the attached <u>MINERAL SHEETS</u>, which also give the <u>MIDDLING RATINGS</u> (see below). The attached <u>PHOTOMICROGRAPHS</u> (PM-1 to PM-34) provide a visual record of the minerals and textures observed.

The important minerals in the Samatosum deposit are tetrahedrite (tt), sphalerite (sp), galena (ga), chalcopyrite (cp), pyrite (py), quartz (qz), carbonate (cb), muscovite (ms) and electrum (au). Minor amounts of gersdorffite (ge) and arsenopyrite (as) and very minor bournonite (PbCuSbS<sub>3</sub>) are also present.

The orebody can be divided into Zones I, II and III (Figure 1) on the basis of mineralogy/predictive metallurgy (see also PREDICTIVE METALLURGY) and the proposed mining sequence. Zone I contains upper-open-pit massive sulphide ore; Zone II has lower-open-pit mainly-disseminated ore; Zone III contains underground mainly-disseminated ore (no distinction has been made here between Minnova's zones A and B because, except for the upper part of A, which is massive sulphide, these two zones are mineralogically similar). Sub-zone  $I_O$  is the uppermost part of Zone I; this sub-zone contains the initially-mined ore, at least some of which (in surface trenches) is known to be partly oxidized; because the extensiveness of the oxidation is not known, the depth of Sub-zone  $I_O$  has been arbitrarily chosen to be 10 meters.

Table 1 gives the average (estimated) mineral percentages of the 96 samples studied, as well as a breakdown of the mineral percentages in Zones I, II and III. The estimated percentages of galena, chalcopyrite, sphalerite, and tetrahedrite in Table 1 are 2-3 times higher than the true over-all percentages of ore within the zones because the polished sections studied were made from core with higher-than-average sulphide content (in order to obtain sufficient gold-grain data), and also include some samples from Zone I that were anomalously high in (particularly) chalcopyrite and galena.

| ZONE<br>(no.<br>samples) | ру   | sp   | ga   | cp   | tt   | ge  | as   | qz   | gn<br>cb | ms   |
|--------------------------|------|------|------|------|------|-----|------|------|----------|------|
| Zone I(9)                | 12.2 | 24.8 | 13.2 | 26.3 | 12.1 | 0.0 | 0.07 | 6.3  | 4.8      | 0.1  |
| Zone II(53)              | 11.3 | 10.8 | 3.2  | 1.3  | 9.6  | 0.1 | 0.02 | 32.0 | 22.8     | 9.0  |
| Zone III(34)             | 10.7 | 9.4  | 2.6  | 2.0  | 8.9  | 0.1 | 0.02 | 37.6 | 18.1     | 11.7 |
| OREBODY (96)             | 11.2 | 11.6 | 3.9  | 3.9  | 9.6  | 0.1 | 0.02 | 31.6 | 19.4     | 9.1  |

TABLE 1 - AVERAGE MINERALOGICAL COMPOSITION OF THE SAMPLES STUDIED, SAMATOSUM

Numbers are estimated volume %

Despite its limitations, Table 1 can be used to illustrate the following mineralogical characteristics of the Samatosum orebody:

- Pyrite content is relatively low throughout (compared to most volcanogenic deposits), probably averaging less than 10%. Small, pyritic lenses that do occur, will be highly diluted with low-pyrite ore during mining.
- Tetrahedrite content is unusually consistent in all zones, probably ranging from 3-6%, depending on the amount of dilution.
- 3) High quantities of <u>sphalerite</u>, <u>galena</u>, and <u>chalcopyrite</u> (rather than high pyrite) make the Zone I ore massive sulphide.
- 4) Zones II and III are mineralogically similar to one another and consist of about 20% disseminated sulphides (mainly pyrite, sphalerite, and tetrahedrite) in 80% <u>quartz</u> carbonate-muscovite gangue (gn).

Characteristics of the various minerals at Samatosum are shown in the attached photomicrographs. Some pertinent features of the minerals are as follows:

-----

- Pyrite-FeS<sub>2</sub>: medium grained, mainly disseminated; nonporous (stable); 0.3% Ni content (microprobe) makes it anomalously anisotropic.
- Tetrahedrite-(Cu,Fe,Zn,Ag)<sub>12</sub>(Åg,Sb)<sub>4</sub>S<sub>13</sub>: mediumcoarse; mainly inclusion-free; commonly intergrown with chalcopyrite; fairly consistent in composition throughout the orebody (Table 2), averaging 36.1% Cu, 3.4% As, 23.3% Sb, 24.7% S, 2.1% Fe, 4.9% Zn, 3.8% Ag (highest silver in 67 analyses is 8.3% Ag in one grain in sample TR-3a); Hg content highest in Zone I, varies from not-detected (400ppm is the detection limit) to an average of 634ppm in TR-3a (highest value obtained is 1240ppm-one grain in RG-97-17.4).
- Sphalerite-ZnS: medium to coarse; 50% of Zone I
  sphalerites have "chalcopyrite disease"
  (cp/sp=5-6, see MIDDLING RATINGS); 65.4% Zn,
  low-iron (0.4-1.0% Fe, see Table 3); Ag not
  detected to 295ppm; Hg not detected to 784
  ppm (Table 3).
- <u>Galena-PbS:</u> very fine to coarse (coarse in Zone I); commonly intergrown with pyrite,tetrahedrite and sphalerite; Ag content 1.1%-one analysis in sample TR-3a, not detected and 0.7% in RG-136-56.5 (detection limits approximately 500 ppm).
- Chalcopyrite-CuFeS<sub>2</sub>: medium grained, partly coarse in Zone I; abundant only in Zone I; one grain in sample TR-3a has 0.6% Ag; not detected (<500 ppm) in other grains.
- Gersdorffite-NiAsS: very minor, commonly rimming tetrahedrite.

Arsenopyrite-FeAsS: very minor.

Quartz-SiO<sub>2</sub>: coarse-granular; strained near faults.

Carbonate-Ca(Fe,Mg)(CO<sub>3</sub>)<sub>2</sub>: coarse-granular; ferroan dolomite with about 4% Fe, 0.8% Mn (2 analyses, RG-122-237).

 $\frac{\text{Muscovite}-K(Al,Ti)_2(AlSi_3O_{10})(OH)_2: \text{ medium-grained};}{1.2\% \text{ TiO}_2 (1 \text{ analysis, } RG-122-237).}$ 

Covellite-CuS: 0.3% in TR-3a (surface trench).

 $\frac{\text{Chalcocite-Cu}_2\text{S: minor amounts observed only in sample}}{\text{RG-121-47.6 which is outside the orebody.}}$ 

7

- Oxides: minor Fe,Zn,Pb oxides observed in TR-3a (surface trench).
- Electrum-(Au,Ag): 842 grains observed (MINERAL SHEETS) are 1-110 microns in diameter (Table 5); 14 grains analysed by electron microprobe contain 21.7-38.0% Ag, averaging 30.4% Ag (Table 4); very strong association of electrum with tetrahedrite, and negligible electrum occurs as inclusions in pyrite (0.12%) or gangue (0.01%); estimated 91.2% gold recovery in Pb-Cu-Ag-Au concentrate (Table 5).

Note: abundant electrum inclusions in pyrite were observed only in sample RG-135-237 which is from a high-pyrite guartzmuscovite vein(?) at depth, below the orebody. In many volcanogenic exhalative deposits, including the original Rea Gold zone, gold and/or electrum grains commonly occur as inclusions in pyrite and/or arsenopyrite; interestingly though, gold in the tetrahedrite-rich low-pyrite parts of the Green's Creek deposit (which is mineralogically somewhat similar to Samatosum) occurs mainly on gangue grain boundaries (au/gn-gn) rather than in pyrite or tetrahedrite.

# TABLE 2 - ELECTRON MICROPROBE ANALYSES OF TETRAHEDRITE GRAINS, SAMATOSUM

| Zene I   |       |           |             |              | ZONES II & III |            |          |              |        |               |               |               |             |             |             |             |               |       |
|----------|-------|-----------|-------------|--------------|----------------|------------|----------|--------------|--------|---------------|---------------|---------------|-------------|-------------|-------------|-------------|---------------|-------|
| SAMPLE   | TR-3  | 97-<br>17 | 97-<br>17.4 | 108-<br>35.8 | 65-<br>76.3    | 89<br>48.8 | 89<br>50 | 89-<br>51.2  | 102-78 | 106-<br>121.7 | 106-<br>132.9 | 109-<br>123.5 | 112-<br>149 | 122-<br>237 | 122-<br>242 | 132-<br>192 | 136-<br>-56.5 | AVG.  |
| No.Anal. | (6)   | (6)       | (2)         | (3)          | (3)            | (5)        | (3)      | (4)          | (4)    | (4)           | (3)           | (3)           | (4)         | (5)         | (4)         | (3)         | (5)           | (67)  |
| Cu       | 34.21 | 36.44     | 36.79       | 35.74        | 36.72          | 36.05      | 36.21    | 36.24        | 35.35  | 35.77         | 38.55         | 36.65         | 36.39       | 35.86       | 36.45       | 35.34       | 35.01         | 36.10 |
| As       | 0.99  | 3.05      | 4.47        | 2.73         | 4.29           | 4.64       | 3.48     | <b>2.9</b> 8 | 3.25   | 2.79          | 4.67          | 3.91          | 2.39        | 2.81        | 3.67        | 4.61        | 3.62          | 3.43  |
| Sb       | 26.33 | 22.93     | 21.78       | 24.60        | 22.41          | 21.21      | 23.41    | 23.38        | 24.08  | 24.97         | 22.32         | 22.15         | 23.82       | 23.87       | 23.27       | 21.49       | 24.02         | 23.30 |
| S        | 23.80 | 24.17     | 24.75       | 24.40        | 24.84          | 25.12      | 25.04    | 24.81        | 24.65  | 24.51         | 24.88         | 24.78         | 24.54       | 24.30       | 24.58       | 24.71       | 25.53         | 24.67 |
| Fe       | 2.62  | 1.88      | 1.81        | 2.80         | 1.73           | 2.31       | 1.73     | 2.00         | 2.17   | 1.90          | 2.51          | 1.89          | 1.83        | 1.68        | 2.50        | 1.86        | 2.60          | 2.11  |
| Zn       | 4.27  | 4.87      | 5.52        | 3.97         | 5.36           | 4.35       | 5.06     | 4.59         | 4.69   | 5.15          | 4.57          | 5.62          | 4.90        | 5.01        | 4.19        | 6.53        | , <b>4.95</b> | 4.92  |
| Ag       | 6.98  | 3.69      | 3.53        | 3.44         | 4.49           | 4.16       | 3.50     | 3.35         | 3.74   | 3.94          | 0.56          | 3.51          | 3.31        | 3.48        | 3.82        | 3.69        | 5.16          | 3.79  |
| Total.   | 99.19 | 97.03     | 98.63       | 97.68        | 99.85          | 97.84      | 98.43    | 97.34        | 97.92  | 99.02         | 98.06         | 98.51         | 97.18       | 97.01       | 98.47       | 98.22       | 100.89        | 98.32 |

| No. Anal.         | (5)          | (5)          | (5)           | (4)  | (6)          | (5)          | (5)          | (5)  | (5)  | (5)  | (5)          | (5)  | (5)          | (5)  | <br> |      |
|-------------------|--------------|--------------|---------------|------|--------------|--------------|--------------|------|------|------|--------------|------|--------------|------|------|------|
| Hg-ppm<br>(range) | 408<br>-1061 | n.d.<br>-779 | n.d.<br>-1240 | n.d. | n.d.<br>-434 | n.d.<br>-505 | n.đ.<br>-553 | n.đ. | n.d. | n.d. | n.d.<br>-511 | n.d. | n.d.<br>-884 | n.đ. | <br> | n.đ. |

ï

Analyses by J. Stirling, New Brunswick RPC Detection limit approximately 400 ppm Hg; n.d. = not detected

α

Le carde a la carda a

|                        | OF          | SPHALERITE | GRAINS,     | SAMATOSUM   |         |        |
|------------------------|-------------|------------|-------------|-------------|---------|--------|
| SAMPLE<br>(ZONE)<br>Zm | NO.<br>ANAL | •<br>Ag-Hg | <u>% Zn</u> | <u>% Fe</u> | ppm Ag  | ррш Нg |
| TR-3a(I)               | 5           | 5          | 65.7        | 1.03        | n.d-295 | n.d504 |
| RG-65-76.3(II)         | -           | 4          | - :         |             | n.dtr   | n.dtr  |
| RG-97-17.4(I)          | 2           | 5          | 64.6        | 0.36        | n.dtr   | n.d.   |
| RG-105-87.7(II)        | 2           | 5          | 67.1        | 0.47        | n.dtr   | tr-784 |
| RG-106-132.9(111       | :)3         | 5          | 65.8        | 0.85        | n.dtr   | n.d.   |
| RG-108-35.8(I)         | -           | 6          | -           | -           | n.dtr   | n.dtr  |
| RG-109-123.5(III       | )2          | 5          | 65.1        | 0.45        | n.d242  | n.dtr  |
| RG-112-149(III)        | 2           | 5          | 66.4        | 0.74        | n.d.    | n.d712 |
| RG-132-192(III)        | 1           | -          | 64.3        | 0.94        | -       | -      |
| RG-136-56.5(II)        | 1           | -          | 64.4        | 0.86        | _       | -      |
| AVERAGE-RANGE          | (18)        | (40)       | 65.4        | 0.71        | n.d295  | n.d784 |

TABLE 3 - ELECTRON MICROPROBE ANALYSES

Detection limits approximately 200ppm Ag, 400ppm Hg; n.d.=not detected Zn and Fe analyses by J.E. Clemson Ag and Hg analyses by J. Stirling, New Brunswick RPC

|             | OF HEBOIKON  | GRAINS, | SANATOSON |        |
|-------------|--------------|---------|-----------|--------|
| SAMPLE      | NO.<br>ANAL. | % Au    | % Ag      | TOTAL  |
| RG-102-81   | 2            | 72.52   | 27.50     | 100.03 |
| RG-108-35.8 | 3            | 75.31   | 22.96     | 98.27  |
| RG-111-69   | 4            | 65.01   | 33.19     | 98.20  |
| RG-122-242  | 3            | 65.64   | 32.80     | 98.44  |
| RG-137-52.5 | 2            | 65.32   | 35.38     | 100.70 |
| AVERAGE     | (14)         | 68.76   | 30.37     | 99.13  |

TABLE 4 - ELECTRON MICROPROBE ANALYSES OF ELECTRUM GRAINS, SAMATOSUM

Analyses by J.E. Clemson

| OCCURRENCE              | NO.<br>GRAINS | SIZE<br>RANGE    | VOLUME u <sup>3</sup> | EFF.AVG.<br>DIAMETER | EST.%<br>REC. | CALC. VOL.<br>REC. u <sup>3</sup> | CALC.<br>% REC. |
|-------------------------|---------------|------------------|-----------------------|----------------------|---------------|-----------------------------------|-----------------|
| au/tt                   | 660           | 1-110u           | 1,505,792             | 16.3u                | 958           | 1,430,502                         | 62.60           |
| au/ga                   | 30            | 1-20x38u         | 74,430                | 16.8u                | 85%           | 63,266                            | 2.77            |
| au/cp                   | 12            | 1-14x36u         | 17,624                | 14.lu                | 958           | 16,743                            | .73             |
| au/sp                   | 9             | 1-5x50u          | 10,244                | 13.Ou                | 20%           | 2,049                             | .09             |
| au/py                   | 12            | 1-9x74u          | 52,625                | 20.3u                | 5%            | 2,631                             | .12             |
| au/gn                   | 8             | 1-14u            | . 4,084               | 9.9u                 | 58            | 204                               | .01             |
| au/tt-ga                | 23            | 1-26x130u        | 508,566               | 34.8u                | 958           | 483,138                           | 21.14           |
| au/tt-py                | 22            | 3-18u            | 9,122                 | 9.2u                 | 808           | 7,298                             | .32             |
| au/tt-ge                | 1             | 6u               | 113                   | 6.0u                 | 808           | 90                                | .00             |
| au/tt-gn                | 12            | 2-30u            | 17,081                | 14.0u                | 808           | 13,655                            | .60             |
| au/tt-sp-(py,<br>gn,ga) | 5             | 8-18u            | 7,805                 | 14.4u                | 808           | 6,244                             | .27             |
| au/ga-py                | 6             | <b>3-12x6</b> 0u | 59,971                | 26.7u                | 808           | 47,977                            | 2.10            |
| au/ga-gn,cp-gn          | 5             | 3-6u             | 320                   | 5.0u                 | 70%           | 224                               | .01             |
| au/ga-sp                | 3             | 12-7x24u         | 6,215                 | 15.8u                | 70%           | 4,351                             | .19             |
| au/sp-py,sp-gn          | 12            | 1-14u            | 4,747                 | 9.lu                 | 50%           | 2,374                             | .10             |
| au/py-gn                | 2             | 14u              | 2,874                 | 14.0u                | 50%           | 1,437                             | .06             |
| au/py-py                | 6             | 2-4x26u          | 3,193                 | 10.lu                | 50%           | 1,597                             | .07             |
| au/gn-gn                | 14            | 1-5u             | 293                   | 3.4u                 | 50%           | 147                               | .01             |
| TOTALS                  | 842           | 1-110u           | 2,285,099             | 17.3u                |               | 2,083,927                         | 91.2            |

# TABLE 5 - OCCURRENCE AND ESTIMATED RECOVERY OF GOLD BY FLOTATION, SAMATOSUM

- 

## MIDDLING RATINGS

Middling ratings\* are semi-quantitative (estimated) classifications of the fineness (grain sizes) of the specific textures or mineral intergrowths that control the degree of liberation of the economic minerals in an orebody. The ratings are from 1 (coarse) to 6 (predominance of -10u inclusions or intergrowths) and can be characterized as follows w/o liberation: 1-excellent, 2-very good, 3-good, 4-fair, 5-poor, 6-extremely poor. For the Samatosum orebody, assuming Cu-Pb-Ag/Zn separation by flotation, the pertinent middling ratings are the following:

- (1) sp/py,gn--sphalerite intergrowths with pyrite and gangue
- (2) ga/py,gn---galena intergrowths with pyrite and gangue
- (3) cp/py,gn---chalcopyrite intergrowths with pyrite and gangue
- (4) tt/py,gn---tetrahedrite intergrowths with pyrite and gangue
- (5) ga/sp---galena-in-sphalerite
- (6) cp/sp---chalcopyrite-in-sphalerite
- (7) tt/sp---tetrahedrite-in-sphalerite

Middling ratings (1)-(4) above relate to zinc(1), lead(2), copper(3), and copper-silver(4) recoveries and the purity of the zinc and lead-copper-silver-gold concentrates. Ratings (5),(6), and (7) relate to Pb-Cu-Ag/Zn separation which involves mainly losses of zinc to the lead-copper-silver-gold concentrate.

Middling ratings (1)-(7) were made for the 96 Samatosum samples studied and are given on the attached MINERAL SHEETS. Table 6 summarizes the middling rating data for Zones I, II, III, and for the entire orebody (see Table 7-MINERAL SHEETS LEGEND for explanation).

|         | sp/py,gn | ga/py,gn | cp/py,gn | tt/py,gn | ga/sp | cp/sp | tt/sp |
|---------|----------|----------|----------|----------|-------|-------|-------|
| Zone I  | 1.9      | 2.3      | 1.6      | 1.6      | 3.2   | 5.3   | 1.9   |
| Zone II | 2.8      | 3.9      | 2.7      | 2.7      | 2.7   | 1.9   | 1.9   |
| Zone II | I 2.9    | 4.0      | 2.9      | 2.5      | 2.4   | 1.8   | 1.2   |

# TABLE 6 - AVERAGE MIDDLING RATINGS OF ZONES I, II, III, SAMATOSUM

\* the Middling Rating method was developed initially for the Grum deposit, the top (stratigraphic) few meters of which have a very serious Pb/Zn separation problem due to the middling rating ga/sp=6("galena disease"); middling ratings for Brunswick ores are (approximately), sp/py=4, ga/py=5-6 and zinc and lead recoveries are about 80% and 60%; Geco middling ratings sp/po,py and cp/po,py probably average about 2.

#### PREDICTIVE METALLURGY

From Table 6 it is apparent that most of the middling ratings for all three zones of the Samatosum orebody average <3 and that the metallurgical response of most of the ore should therefore by very good. The only major problem encountered is in Zone I where the high average value of cp/sp=5.3 is due to severe "chalcopyrite disease" in more than 50% of the sphalerite, indicating that there will be high losses of zinc to the leadcopper-silver(-gold) concentrate. The only other, less serious problem, is indicated for lead (galena) in Zones II and III where average middling ratings for ga/py,gn=3.9-4.0 indicate reduced lead recoveries and/or reduced concentrate grades due to galena + pyrite and galena + gangue middlings. Significant positive features of the Samatosum ores are the absence of reactive, quickly-oxidizing minerals such as porous pyrite, marcasite, and pyrrhotite, and the presence of acid-neutralizing dolomite.

Unlike many volcanogenic/deposits which are pyritic throughout, the high-pyrite zones at Samatosum are soattered and small and would therefore never comprise a major part of the mill feed. Because of their relatively low average pyrite content and their content of soft sulphides and carbonate-muscovite gangue (Table 1), the Samatosum ores in Zones I, II, and III should possess a low work index. The coarseness of the key sulphides tetrahedrite and sphalerite, as indicated by tt,sp/py,gn middling ratings of about 2.5 (Table 6), should allow for a relatively coarse grind, in the order of 50% -200 mesh. Because tetrahedrite contains nearly all of the silver and most of the gold (as electrum inclusions) and copper, its flotation is of prime importance.

Zone I, the upper open-pit ore (Figure 1) consisting of coarse high-grade massive Pb-Zn-Cu-Ag sulphides, has much sphalerite with "chalcopyrite disease" (cp/sp=5.3, Table 6); even with fine grinding, this texture will cause serious Cu/Zn separation problems, and much of the zinc (as sphalerite+chalcopyrite middlings) will report to the Pb-Cu-Ag-Au concentrate. This problem may be augmented somewhat by the slightly elevated ga/sp average rating of 3.2 for Zones I (Table 6).

Sub-zone  $I_O$ , which contains the initially-mined ore, is arbitrarily defined here as the upper 10 meters of Zone I; this sub-zone is separated because near-surface oxidation could affect metallurgical response, but the extent and actual depth of oxidation are not known. Covellite has been observed in sample TR-3a which is from a surface trench in Sub-zone  $I_O$  (see MINERAL SHEETS). There are no other samples available from Sub-zone  $I_O$ , but if covellite is widespread, then Pb-Cu-Ag/Zn separation, due to zinc activation, may be extremely difficult in the initially-mined ore.

Zones II (lower open-pit) and III (underground) have very similar mineralogy and middling ratings. Middling ratings are low; excellent metallurgical response is therefore anticipated for Zn, Cu, and Ag (also Au-see below). Deductions regarding the metallurgy of silver, zinc, lead, copper, antimony arsenic, mercury and gold are as follows:

- <u>Silver:</u> mainly in clean, medium-coarse tetrahedrite (3.8%Ag); much smaller amounts also in galena, very minor amounts in chalcopyrite and sphalerite; very high (+90%) silver recoveries anticipated in Pb-Cu-Ag-Au concentrate.
- <u>Zinc</u>: mainly in low-iron, medium-coarse sphalerite (65.4%Zn), smaller amounts in tetrahedrite (4.9% Zn); fairly high recoveries (+80%) would be anticipated except for zinc activation in Zone I (chalcopyrite disease) and Sub-zone I<sub>O</sub> (chalcopyrite disease and covellite), and significant losses in Zones II and III due to zinc in tetrahedrite (4.9% Zn).
- Lead: in galena which tends to be finer than the other sulphides; recoveries of about 70-80% anticipated, depending on fineness of grind.
- <u>Copper</u>: in tetrahedrite (36.1% Cu), and locally, especially in Zone I, in chalcopyrite (33.3%Cu); high recoveries (90%) anticipated.
- <u>Gold</u>: gold occurs exclusively in the mineral electrum which contains about 70% Au; as shown in Table 5, a very large weight percentage of the gold observed and measured occurs in electrum grains that are within tetrahedrite (62.6%) or on tetrahedrite grain boundaries (22.33%); subordinate amounts of gold are within galena and chalcopyrite grains (3.5%) and on galena and chalcopyrite grain boundaries (2.3%); only 0.12% of the measured grains occurs as inclusions in pyrite; gold recovery in a Pb-Cu-Ag-Au flotation concentrate, based on the estimates and calculations outlined in Table 5, is anticipated to be about 90%.
- Antimony: antimony occurs almost exclusively in the tetrahedrite (23.3%Sb); +90% of the antimony will report to the Pb-Cu-Aq-Au concentrate.
- <u>Arsenic:</u> nearly all of the arsenic occurs in tetrahedrite (3.4%As) and will report to the Pb-Cu-Ag-Au concentrate; only traces of arsenopyrite are present.
- <u>Mercury</u>: probe analyses (Tables 2,3) indicate the presence of highly variable amounts of mercury in tetrahedrite and sphalerite, with fairly consistent high values (+500 ppm) in ' Zone I, and sporadic high values in Zones II

and III; calculations suggest that ore from Trench-3 may yield Pb-Cu-Ag-Au and Zn concentrates with as much as 400ppm Hg.

- Lead-Copper-Silver-Gold Concentrate: if the Pb-Cu-Ag-Au concentrate has 50% tetrahedrite, it will contain approximately 19% Cu, 11.6% Sb, 1.7% As, <<100ppm to a maximum of +400ppm Hg (high in Zone I-see Table 2), an estimated 2.0% Ag (600 opt) and 1 opt Au, and possibly 10-30% Zn (depending on the source of the ore).
- Zinc Concentrate: Samatosum sphalerite has high zinc (65.4%) and low iron (0.7%); because the ore is also low in pyrite, it should be possible to produce a high-grade (+ 55%) zinc concentrate from the inclusion-free sphalerite remaining (in the bulk tailings) after the chalcopyrite+sphalerite and galena+sphalerite middlings have floated to the Pb-Cu-Ag-Au concentrate. Rough estimates and calculations based on Table 3 suggest that the mercury content of the zinc concentrates will range from <<100ppm to a maximum of +400ppm, with high values for most of Zone I, and sporadic increses to 300-400 ppm for the ores of Zones II and III.

#### METALLURGICAL TEST SAMPLES

The following recommendations were made during the preparation of this report:

- (1) Drill-core samples from each of several drill-holes spaced throughout Zone I, Zone II and Zone III, should be benchtested individually. Each sample should include the ore interval plus appropriate hangingwall and footwall dilution (30-40%?).
- (2) More detailed tests should be carried out on composite samples representing the three zones. The composites should be assembled by combining samples from the individual holes tested (weight of each sample to vary with length of interval), as well as additional material from new drill holes (Metallurgical Holes, Figure 1).
- (3) Composites from Zones II and III should give similar results and can be combined, if additional material is required.
- (4) The initially-mined ore in Sub-zone  $I_O$  should be tested separately. Samples of ore+dilution from several deep trenches and shallow drill-holes could be tested and then combined to give Composite  $I_O$ .

|                                                    | TABLE   7   -   LEG     AND   AND                                         | GEND FOR MINERAL SHE<br>PHOTOMICROGRAPHS                                                       | E <b>TS</b>                                                                     |
|----------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| MINERAL                                            | ABBREVIATION                                                              | FORMULA                                                                                        | COLOUR (PM'S)                                                                   |
| pyrite                                             | ру                                                                        | FeS2                                                                                           | brassy-white                                                                    |
| sphalerite                                         | sp                                                                        | ZnS                                                                                            | bluish-grey                                                                     |
| galena                                             | ga                                                                        | PbS                                                                                            | silvery-white                                                                   |
| chalcopyrite                                       | cp                                                                        | CuFeS <sub>2</sub>                                                                             | yellow                                                                          |
| tetrahedrite                                       | tt (Cu                                                                    | , Fe, Zn, Ag) $_{12}$ (As, Sb) $_{4}$ S                                                        | 313 light grey                                                                  |
| gersdorffite                                       | ge                                                                        | NiAsS                                                                                          | off-white                                                                       |
| arsenopyrite                                       | as                                                                        | FeAsS                                                                                          | white                                                                           |
| quartz                                             | qz                                                                        | Si02                                                                                           | dark grey                                                                       |
| carbonate                                          | cb                                                                        | Ca(Mg,Fe)(CO <sub>3</sub> ) <sub>2</sub>                                                       | dark grey                                                                       |
| muscovite                                          | ms K(A                                                                    | 1,Ti) <sub>2</sub> (Si <sub>3</sub> AlO <sub>10</sub> (OH) <sub>2</sub>                        | dark grey                                                                       |
| covellite                                          | CV                                                                        | CuS                                                                                            | deep blue                                                                       |
| gold                                               | au                                                                        | (Au,Ag)                                                                                        | gold                                                                            |
| gangue                                             | gn qua:<br>+ca:<br>chlo                                                   | rtz(incl.minor feldsp<br>rbonate+muscovite (ir<br>orite and chloritoid)                        | par)<br>ncl. minor                                                              |
| (mp) <u>tt</u> indi                                | cates electron<br>(of tetra                                               | microprobe analysis<br>ahedrite)                                                               |                                                                                 |
| 2 au/tt=10u,20                                     | )u2 electrum<br>diameters d                                               | grains in tetrahedri<br>of 10 and 20 microns                                                   | ite, having                                                                     |
| 2 au/tt-gn                                         | 2 electrum graz<br>boundaries                                             | ins on tetrahedrite- <u>c</u>                                                                  | gangue grain                                                                    |
| sp/py,gn=3s                                        | phalerite-in-p<br>rating o                                                | yrite and -in-gangue<br>f 3                                                                    | has middling                                                                    |
| Note: sp/py,g<br>cp/py,g<br>cp/sp a<br>tt/sp r     | in and tt/py,gn<br>in and ga/py,gn<br>ind ga/sp rated<br>rated only if sj | rated only if sp and<br>rated only if cp and<br>only if sp>2%<br>p and/or tt are >2%           | t tt are >2%<br>ga are >1%<br>inclusion-free<br>sp has middling<br>ratings of 0 |
| Most ph<br>the pol<br>PM's ar<br>the ent<br>Sheets | otomicrographs<br>ished section;<br>e not necessar:<br>ire polished so    | are of high-sulphide<br>middling ratings giv<br>ily the same as the r<br>ection given in the M | e areas on<br>ven for the<br>catings for<br>Mineral                             |

**P**~

| TR-3a<br>M   | ру sp<br>3 16 | ga | ср | t t | ge      | qz          | ,ογ              |          |             |       |       |                           |       |                                                                                                                                                                                                                                                                                              |
|--------------|---------------|----|----|-----|---------|-------------|------------------|----------|-------------|-------|-------|---------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TR-3a 3<br>M | 3 16          |    |    | I   | as      | ms          | <sup>sp/gn</sup> | ga/gn    | cp/py<br>gn | tt/gn | ga/sp | cp/sp                     | tt/sp | Gold : Probe : Misc.                                                                                                                                                                                                                                                                         |
| 1            |               | 68 | •5 | 7   | 0<br>•1 | 3<br>2<br>0 | 1                | <b>I</b> |             | 1     | 4     | (6 <sup>+</sup> , 1)<br>4 | 1     | <ul> <li>3 covellite after sp,ga,cp</li> <li>2 oxidation product of ga (cerussite?) and<br/>sp (smithsonite?)</li> <li>massive, galena - rich, remobilized ore<br/>(mp) tt (7.0% Ag, 408-1061 ppm Hg); sp (1.0% Fe,<br/>n.d295 ppm Ag, nd504 ppm Hg); ga(1.1% Ag)<br/>cp(0.6% Ag)</li> </ul> |
|              |               |    |    |     |         |             |                  |          |             |       |       |                           |       |                                                                                                                                                                                                                                                                                              |
| Ť            |               |    |    |     |         |             |                  |          |             |       |       |                           |       |                                                                                                                                                                                                                                                                                              |
|              |               |    |    |     |         |             |                  |          |             |       |       |                           |       |                                                                                                                                                                                                                                                                                              |
|              |               |    |    |     |         |             |                  |          |             |       |       |                           |       |                                                                                                                                                                                                                                                                                              |
|              |               |    |    |     |         |             |                  |          |             |       |       |                           |       |                                                                                                                                                                                                                                                                                              |

| M = Massive<br>D = Dissemin | Ore<br>ated C | )re  |     |      |     |          |                  |             |                |                      |       |       |       |       | SAMATOSUN            |
|-----------------------------|---------------|------|-----|------|-----|----------|------------------|-------------|----------------|----------------------|-------|-------|-------|-------|----------------------|
|                             |               | MINE | RAL | PERC | ENT | AGES     |                  |             | M              | IDDLI                | NG R  | ATIN  | GS    |       | . ,                  |
| RG-64                       | ру            | sp   | ga  | ср   | † † | ge<br>as | q z<br>c b<br>ms | sp/py<br>gn | ga∕py<br>ga∕gn | cp/ <sup>py</sup> gn | tt/gn | ga/sp | cp/sp | tt/sp | Gold : Probe : Misc. |
| 89·5<br>D                   | 10            | 20   | 5   | •3   | 20  | 0<br>• 1 | 25<br>15<br>5    | 3           | 4              | _                    | 2     | 4     | 3.5   | 3.5   |                      |
| 89·9<br>D                   | 0             | 15   | 4   | 1    | 10  | 0<br>0   | 60<br>2<br>8     | 3           | 4              | 3.5                  | 2.5   | 3     | 2     | 3.5   |                      |
|                             |               |      |     |      |     |          |                  |             |                |                      |       |       |       |       |                      |
| /                           |               |      |     |      |     |          |                  |             |                |                      |       |       |       |       |                      |
|                             |               |      |     |      |     |          |                  |             |                |                      |       |       |       |       |                      |
|                             |               |      |     |      |     |          |                  |             |                |                      |       |       |       |       |                      |
| New Mit, Bold (1997)        |               |      |     |      |     |          |                  |             | -              |                      |       |       |       |       |                      |
|                             |               |      |     |      |     |          |                  |             |                |                      |       |       |       |       |                      |

and the second the second card that the second the second time that the second terms that the

L...

| M<br>y s<br>8 2 | INEF<br>sp | ga | PERC | ENT        | AGES     |                | 1     |                |                      |           |       |          |       | •                                                                      |
|-----------------|------------|----|------|------------|----------|----------------|-------|----------------|----------------------|-----------|-------|----------|-------|------------------------------------------------------------------------|
| y :<br>8 2      | sp         | ga |      |            |          |                | · · · | M              | IDDLI                | NG R      | ATING | S        |       | , · · · · · · · · · · · · · · · · · · ·                                |
| 8 2             |            |    | ср   | <b>† †</b> | ge<br>as | qz<br>cb<br>ms | sp/gn | ga∕py<br>ga∕gn | cp/ <sup>py</sup> gn | tt/gn     | ga/sp | cp/sp    | tt/sp | Gold : Probe : Misc.                                                   |
|                 | 25         | 5  | tr   | 8          | 00       | 5<br>0<br>39   | 3     | 4              | -                    | 3         | 3.5   | 0        | 2     | (mp) <u>tt</u> (4·5% Ag, n.d 434 ppm Hg); <u>sp (n.d.</u><br>tr Ag,Hg) |
|                 |            |    |      |            |          |                |       |                |                      |           |       |          |       |                                                                        |
|                 |            |    |      |            |          |                |       |                |                      |           |       |          |       |                                                                        |
|                 |            |    |      |            |          |                |       | •              |                      |           |       |          |       | •                                                                      |
|                 |            |    |      |            |          |                |       |                | i                    |           |       |          |       |                                                                        |
|                 |            |    |      |            |          |                |       |                |                      |           |       |          |       |                                                                        |
|                 |            |    |      |            |          |                |       |                |                      | · · · · · |       |          |       |                                                                        |
|                 |            |    |      |            |          |                |       |                |                      |           |       |          |       |                                                                        |
|                 |            |    |      |            |          |                |       |                |                      |           |       |          |       |                                                                        |
|                 |            |    |      |            |          |                |       |                |                      |           |       |          |       |                                                                        |
|                 |            |    |      |            |          |                |       |                |                      |           |       | <b>}</b> |       |                                                                        |
|                 |            |    |      |            |          |                |       |                |                      |           |       |          |       |                                                                        |

| M = Massive<br>D = Dissemine | Ore<br>ated C | )re  |     |      |            |          |                  |       |                |                         |                         |       |       |       | SAMATOSUM                                       |
|------------------------------|---------------|------|-----|------|------------|----------|------------------|-------|----------------|-------------------------|-------------------------|-------|-------|-------|-------------------------------------------------|
|                              |               | MINE | RAL | PERC | ENT        | AGES     |                  |       | M              | IDDLI                   | NG R                    | ATINO | SS    |       | · · · · ·                                       |
| RG-71                        | РУ            | sp   | ga  | ср   | <u>t</u> t | ge<br>as | q z<br>c b<br>ms | sp/gn | ga/py<br>ga/gn | cp/ <sup>py</sup><br>gn | tt/ <sup>py</sup><br>gn | ga/sp | cp/sp | tt/sp | Gold + Probe + Misc.                            |
| 106·3<br>¤                   | 3             | 5    | tr  | tr   | 6          | 0<br>0   | 76<br>8<br>2     | 3     | -              | _                       | 3∙5                     | 0     | 0     | 1     |                                                 |
| ۱۰80۱<br>م                   | 12            | 28   | 5   | 0    | 0          | .2<br>0  | 15<br>0<br>40    | 3     | 5              |                         |                         | 5     | 0     | 0     | py strongly anisotropic                         |
| 120·9<br>D                   | 10            | 8    | 2   | tr   | 8          | 0<br>0   | 66<br>5<br>.5    | 3     | 4              | —                       | 3.5                     | 3.5   | 0     | 2     | qz sheared, strained<br>py strongly anisotropic |
| ſ                            |               |      |     |      |            |          |                  |       |                |                         |                         |       |       |       |                                                 |
|                              |               |      |     |      |            |          |                  |       |                |                         |                         |       |       |       |                                                 |
|                              |               |      |     |      |            |          |                  |       |                |                         |                         |       |       |       |                                                 |
|                              |               |      |     |      |            |          |                  |       |                |                         |                         |       |       |       |                                                 |
|                              |               |      |     |      |            |          |                  |       |                |                         |                         |       |       |       |                                                 |

SAMATOSUM M = Massive OreD = Disseminated Ore MINERAL PERCENTAGES MIDDLING RATINGS q z c b sp/gn/ga/gn/cp/py/tt/gn/ga/sp/cp/sp/tt/sp ge Gold + Probe + Misc. **RG-**89 ру SD ga CD **†**† a s ms 70 0 12 au/tt =1(2), 2(3), 3, 4, 5(2) 6, 7, 8 u 48.2 2 ·5 6 2 2 2 • 10 ł 1 au/tt-an = 6utr 10 minor graphite D 23  $4 au/tt = 4, 6, 8, 12 \times 30 u$ 0 48.8 5 3 • ·2 15 50 3 2 0 0 3 . • [ 3 (mp) <u>tt</u> (4.2%Ag, n.d. - 505 ppm Hg) D 20 3 au/tt = 3,4,12u0 45 3.5 49.8 .5 5 2 17 3 2 0 3 2.5 tr • 1 10 D 20 • ·2 ·2 3.5 50.0 ·2 4 65 tr 0 (mp) tt (3.5% Ag, n.d. -553 ppm Hg); ge; 0 10 D <u>ms;</u> <u>cb</u> = dolomite 75 0

\_ \_ \_ ]

• ....

-

and the first of the second second

÷

50.5 3 •4 ·2 • tr 16 3 0 0 5 D 5 2 au/tt = 4, 8 u0 51.2 10 30 20 20 10 .4 3 4 3 4 3 3 3 au/tt - ga = 5,12,14u 0 5 5 ... (mp) tt (3.4% Ag; Hg n.d,) Μ 28 2 au/tt = 5,6u0  $51 \cdot 5$ 7 20 33 10 tr 2 3 4 2 4 0 ·2 0 much tt is in ga Μ 21 minor very fine tt veinlets in sp 0 52.0 50 20 8 0 3 4 3 • 4 0 0 0 М

| M = Massive<br>D = Dissemin | Ore<br>ated ( | )re  |     |     |            |          |                |             |                |             | <u> </u> |       |       |       | SAMATOSUM                                                                                                  |
|-----------------------------|---------------|------|-----|-----|------------|----------|----------------|-------------|----------------|-------------|----------|-------|-------|-------|------------------------------------------------------------------------------------------------------------|
|                             |               | MINE | RAL | PER | CENT       | AGES     | 5              |             | M              | IDDLI       | NG R     | ATIN  | SS    |       |                                                                                                            |
| RG-90                       | ру            | sp   | ga  | ср  | <b>†</b> † | ge<br>as | qz<br>cb<br>ms | sp/py<br>gn | ga/py<br>ga/gn | cp/py<br>gn | tt/py    | ga/sp | cp/sp | tt/sp | Gold : Probe : Misc.                                                                                       |
| 98·8<br>D                   | 8             | 12   | 4   | •   | l          | 0<br>0   | 35<br>0<br>40  | 3∙5         | 4.5            | _           |          | 4     | 0     | 0     |                                                                                                            |
| 99∙4<br>D                   | 3             | 2    | 2   | tr  | 10         | ·2<br>0  | 20<br>60<br>3  | 2           | 2.5            | -           | 2        | I     | 0     | 3     | l au/tt = 6u<br>l au/tt - gn = 2u<br>l au/gn(cb) = 7u                                                      |
| 100 · 0                     | 4             | 5    | •1  | ·I  | 15         | 1<br>0   | 10<br>50<br>15 | 3           | -              | -           | 3        | 1     | I     | 3.5   |                                                                                                            |
| ,01 ⋅ 8<br>D                | I             | 4    | ·2  | •1  | 10         | 0<br>0   | 53<br>30<br>2  | 2           | -              | -           | 2        | 1     | 1     | 3     | 5 au/tt = 1,5, 10,12,14u<br>1 au/tt-sp-ga = 18u                                                            |
| 102·0<br>D                  | 7             | •1   | •1  | tr  | 18         | ·1<br>0  | 45<br>20<br>10 | _           |                |             | 2        | _     |       | ο     | 4 au/tt = 6,8,12,22 u<br>1 au/tt - gn = 10 u<br>10 au/gn-gn = 1(2),2(4),3(2),4u(2)<br>4 au/gn = 4,6,7,12 u |
|                             |               |      |     |     |            |          |                |             |                |             |          |       |       |       |                                                                                                            |
|                             |               |      |     |     |            |          |                |             |                |             |          |       |       |       |                                                                                                            |
|                             |               |      |     |     |            |          |                |             |                |             |          |       |       |       |                                                                                                            |

|                             |               |      |     |     |            |          |                |             | يميشن ويرقاقني | المغروفية الإرابية الشبان |       |       |       |       |                                                                                                    |
|-----------------------------|---------------|------|-----|-----|------------|----------|----------------|-------------|----------------|---------------------------|-------|-------|-------|-------|----------------------------------------------------------------------------------------------------|
| M = Massive<br>D = Dissemin | ore<br>ated ( | Ore  |     |     |            |          |                |             |                |                           |       |       |       |       | SAMATOSUM                                                                                          |
|                             |               | MINE | RAL | PER | CENT       | AGES     | ;<br>;         |             | M              | IDDLI                     | NG R  | ATIN  | GS    |       |                                                                                                    |
| RG-97                       | ру            | sp   | ga  | ср  | <b>† †</b> | ge<br>as | qz<br>cb<br>ms | sp/py<br>gn | ga/py<br>ga/gn | cp/py<br>gn               | tt/gn | ga/sp | cp/sp | tt/sp | Gold + Probe + Misc.                                                                               |
| 7·0<br>м                    | ·4            | 50   | •7  | 8   | 30         | 0<br>•5  | 0<br>10<br>0   | I           |                | I                         | 1     | 1.2   | 6     | 2.5   | 74 au/tt = 1(2),2(15),3(7),4(4),5,6(16),<br>7(3),8(11),10(5),12(3),14(2),<br>16,18(2),20u(2)       |
|                             |               |      |     |     |            |          |                |             |                |                           |       |       |       |       | au/tt - sp - ga - gn =  2 u<br>3au/sp - gn =  ,3, 4<br>(mp) <u>tt</u> (3 · 7 % Ag, n.d 779 ppm Hg) |
| 17·4<br>M                   | 35            | •5   | 6   | 45  | 10         | 0<br>0   | 3<br>0<br>0    | -           | 3∙5            | 2.5                       | 2.5   | -     | _     | 2     | (mp) <u>tt</u> (3·5% Ag, n.d 1240 ppm Hg; <u>sp</u><br>                                            |
| 1,8 · O<br>₩                | •3            | 88   | tr  | 7   | 0          | 0<br>0   | tr<br>5<br>0   | 1           | -              | I                         |       | 0     | 6     | 0     |                                                                                                    |
| 19·0<br>M                   | 35            | I    | 10  | 53  | 1          | 0<br>0   | tr<br>O<br>O   | -           | 3              | 1.5                       | -     | _     | _     | -     |                                                                                                    |
| 19·7<br>M                   | 8             | 3    | 6   | 70  | 8          | 0<br>0   | 4<br>1<br>0    | 2           | 4∙5            | 1.5                       | I     | 6     | 4.5   | 3     | 3 au/ga = 2, 3(3), 4(2), 6(2), 7,8,10,12u(2)<br>  au/py-py = 3 u                                   |
|                             |               |      |     |     |            |          |                |             |                |                           |       |       |       |       |                                                                                                    |
|                             |               |      |     |     |            |          |                |             |                |                           |       |       |       |       | ·                                                                                                  |

| M = Massive  | Ore    |      |     |      |     |          |               |       | •           |             |       |             |          | · · · · | <u></u>       | SAMATOSUM    |
|--------------|--------|------|-----|------|-----|----------|---------------|-------|-------------|-------------|-------|-------------|----------|---------|---------------|--------------|
| D = Dissemin | ated ( |      |     |      | ENT |          |               |       |             |             |       | A T 1 1 1 / | <u> </u> |         |               |              |
|              |        | MINE | RAL | PERL |     | AGES     |               |       | M           |             | NG R  |             | 25       |         |               |              |
| RG-98        | ру     | sp   | ga  | ср   | tt  | ge<br>as | cb<br>ms      | sp/gn | ga/py<br>gn | cp/py<br>gn | tt/gn | ga/sp       | cp/sp    | tt/sp   | Gold : P      | robe · Misc. |
| 47∙0<br>¤    | 7      | 12   | 4   | 7    | 3   | 0<br>0   | 20<br>42<br>5 | 3     | 3           | 3           | 3     | 2           | 3.5      | I       | graphite = ·2 |              |
|              |        |      |     |      |     |          |               |       |             |             |       |             |          |         |               |              |
|              |        |      |     |      |     |          |               |       |             |             |       |             |          |         |               |              |
| , · ·        |        |      |     |      |     |          |               |       |             |             |       |             |          |         |               |              |
|              |        |      |     |      |     |          |               |       |             |             |       |             |          |         |               |              |
|              |        |      |     |      |     |          |               |       |             |             |       |             |          |         |               |              |
|              |        |      |     |      |     |          |               |       |             |             |       |             |          |         |               |              |
|              |        |      |     |      |     |          |               |       |             |             |       |             |          |         |               |              |

.....

.

|                             |               |      |         |      |            | متنداوبيويس | <u>مر و د موانا مار م</u> |             |                            |                         |       |       |       |       |                                                                          |
|-----------------------------|---------------|------|---------|------|------------|-------------|---------------------------|-------------|----------------------------|-------------------------|-------|-------|-------|-------|--------------------------------------------------------------------------|
| M = Massive<br>D = Dissemin | Ore<br>ated C | )re  |         |      |            |             |                           |             |                            |                         |       |       |       |       | SAMATOSUM                                                                |
|                             |               | MINE | RAL     | PERC | JENT/      | AGES        | ,<br>,                    |             | M                          | IDDLI                   | NG R  | ATING | S     |       |                                                                          |
| RG-99                       | ру            | sp   | ,<br>ga | ср   | <b>t</b> t | ge<br>as    | qz<br>cb<br>ms            | sp/py<br>gn | ga/ <sup>py</sup><br>ga/gn | cp/ <sup>py</sup><br>gn | tt/gn | ga/sp | cp/sp | tt/sp | Gold : Probe : Misc.                                                     |
| 71 · 1<br>D                 | 10            | 4    | •7      | 3    | •3         | 0<br>0      | 62<br>8<br>12             | 2.5         | -                          | 3.5                     | -     | 1     | 3     | 0     |                                                                          |
| 72·0<br>D                   | 4             | tr   | tr      | • 1  | 16         | ·2<br>0     | 35<br>25<br>20            | —           |                            |                         | 2     | _     |       | 0     | au/tt =  (2),6,8(2),10,12(2),14,18,24u<br>minor spheroidal py            |
| 74∙0<br>M                   | 15            | 27   | 7       | ·8   | 30         | ·1<br>·2    | 18<br>2<br>0              | 3           | 4.5                        |                         | 3     | 4·5   | 4     | 4     | 8 au/tt = 2,3,4(3),5(2),3x 44u<br>l au/tt - ga = 6u<br>l au/tt - py = 6u |
| 75·5<br>D                   | 20            | 4    | ·2      | tr   | ·5         | 0<br>0      | 58<br>2<br>15             | 3.5         |                            |                         | -     | 0     | 0     | 0     |                                                                          |
| 77·6<br>D                   | 15            | 7    | •7      | tr   | 2          | 0<br>0      | 65<br>0<br>10             | 3           | -                          | _                       | 2     | 1     | 0     | 1     | :                                                                        |
|                             |               |      |         |      |            |             |                           |             |                            |                         |       |       |       |       |                                                                          |
|                             |               |      |         |      |            |             |                           |             |                            |                         |       |       |       |       |                                                                          |
|                             |               |      |         |      |            |             |                           |             |                            |                         |       |       |       |       |                                                                          |

| M = Massive<br>D = Dissemin | Ore<br>ated ( | )re  |     |      |      |          |                |             |                |             |       |       | ···   |       | SAMATOSUM                                                                 |
|-----------------------------|---------------|------|-----|------|------|----------|----------------|-------------|----------------|-------------|-------|-------|-------|-------|---------------------------------------------------------------------------|
|                             |               | MINE | RAL | PERC | CENT | AGES     | 5              |             | М              | IDDLI       | NG R  | ATIN  | GS    |       |                                                                           |
| RG-100                      | РУ            | sp   | ga  | ср   | 11   | ge<br>as | qz<br>cb<br>ms | sp/py<br>gn | ga/py<br>ga/gn | cp/py<br>gn | tt/gn | ga/sp | cp/sp | tt/sp | Gold : Probe : Misc.                                                      |
| 47·3<br>D                   | I             | tr   | tr  | •    | 15   | ·2<br>0  | 58<br>18<br>8  | _           | -              | -           | 3     | _     | _     | 0     | 2  au/tt =  (2),2(5),3(5),4(2),5,6,12(2),<br> 4(2) 22u<br>  au/tt-ge = 6u |
| 48.0<br>D                   | tr            | 1    | ·3  | •1   | 18   | ·2<br>0  | 45<br>30<br>6  | -           |                | -           | 2     | _     | -     | 0     | 34 au/tt = 1(3),2(8),3(5),4(4),5(3),6(3)<br>7,8(3),10(2),22,110u          |
| 49·0 <sup>°</sup><br>D      | 10            | 18   | 6   | •    | 10   | 0<br>0   | 44<br>2<br>10  | 3           | 4∙5            | -           | 3     | 4     | 1     | 3.5   |                                                                           |
| 50 · 0`<br>₽                | 10            | 20   | 3   | •1   | 7    | 0<br>0   | 45<br>7<br>8   | 3           | 4              | _           | 2.5   | 3     | I     | 2     |                                                                           |
|                             |               |      |     |      |      |          |                |             |                |             |       |       |       |       |                                                                           |
|                             |               |      |     |      |      |          |                |             |                |             |       |       |       |       |                                                                           |
|                             |               |      |     |      |      |          |                |             |                |             |       |       |       |       |                                                                           |
|                             |               |      |     |      |      |          |                |             |                |             |       |       |       |       | · · · · · · · · · · · · · · · · · · ·                                     |

I see the second se

| M = Massive  | Ore    |                        |     |     |      |          |                |             | · · · · · · · · · |             |       |       |       |          | SAMATOSUM                                                                                                |
|--------------|--------|------------------------|-----|-----|------|----------|----------------|-------------|-------------------|-------------|-------|-------|-------|----------|----------------------------------------------------------------------------------------------------------|
| D = Dissemin | ated C | <sup>ore</sup><br>MINE | RAL | PER | CENT | AGES     |                |             | M                 | IDDL        | NG R  | ATIN  | GS    | <u> </u> |                                                                                                          |
| RG-102       | ру     | sp                     | ga  | ср  | t t  | ge<br>as | qz<br>cb<br>ms | sp/py<br>gn | ga/py<br>ga/gn    | cp/py<br>gr | tt/py | ga/sp | cp/sp | tt/sp    | Gold + Probe + Misc.                                                                                     |
| 75.0<br>D    | 4      | 4                      | 3   | 8   | •3   | 0<br>0   | 41<br>35<br>5  | 3           | 3                 | 2           | -     | 2     | 3     | 0        | 2 au/tt = 5,10u<br>  au/tt - py = 5u<br>  au/sp = lu;1au/ga = lu<br>2 au/py - py = 2,4u<br>albite common |
| 76·0<br>D    | 18     | 2                      | 2   | 1   | 10   | 0<br>•1  | 20<br>40<br>7  | 2           | 4.5               | 3           | 2.5   | 4     | 2     | I        | 5 au/tt = 2,3,5,10,12u<br>albite common                                                                  |
| 77·0<br>D    | 3      | 4                      | 4   | ·2  | 9    | 0<br>0   | 40<br>30<br>10 | 3           | -2-5              | -           | 3     | 8     | 0     | 3.5      | l au/tt = 18u<br>l au/tt - py = 12u                                                                      |
| 78 · 0       | 2      | 10                     | 1   | •3  | 11   | ·2<br>·1 | 30<br>30<br>15 | 2           | 3.5               | -           | 2.5   | 1     | 1.5   | 2.5      | 2 au/tt = 6,12u<br>(mp) <u>tt</u> (3·7%Ag,Hg n.d.); <u>ge</u>                                            |
| 79·0<br>D    | L      | 7                      | 2   | •1  | 7    | 0<br>0   | 68<br>10<br>5  | ۱۰5         | 3                 |             | 2.5   | 2     | 3∙5   | 3        | l au/tt = 3u                                                                                             |
| 79·8<br>D    | •5     | 3                      | •5  | •1  | 16   | · 4<br>0 | 20<br>55<br>5  | 2           | -                 | -           | 1.5   | 2     | 1     | 2        | 6 au/tt = 2,3(2),4,8,22<br>2 au/tt - gn = 3,·3 x I2u                                                     |
| 80·0<br>D    | ·2     | 20                     | 8   | ·2  | 30   | 0<br>0   | 5<br>16<br>20  | 2           | 3                 | -           | 1.5   | 2     | 2     | 2.5      | 3 au/tt = 3,4(4),5,6(2),7,8,10,12,24u<br>2 au/tt - ga = 8u(2)<br>2 au/tt - py = 4u(2)                    |
| 81 · O<br>p  | I      | •3                     | •1  | •1  | 15   | •1<br>0  | 35<br>40<br>8  | _           | _                 | _           | 1.5   | -     | -     | 1        | 2 au/tt = 24,28u<br>(mp) <u>au</u> = electrum (27·5% Ag)                                                 |

| M = Massive<br>D = Dissemin | Ore<br>ated ( | Dre  |     |     |            |          |                |             |                |             |       |       |       |       |                                   | SAMATOSI                                 | JM       |
|-----------------------------|---------------|------|-----|-----|------------|----------|----------------|-------------|----------------|-------------|-------|-------|-------|-------|-----------------------------------|------------------------------------------|----------|
|                             |               | MINE | RAL | PER | CENT       | AGES     | ;              |             | M              | IIDDLI      | NG R  | ATIN  | GS    |       |                                   |                                          |          |
| RG-104                      | ру            | sp   | ğa  | ср  | <b>†</b> † | ge<br>as | qz<br>cb<br>ms | sp/py<br>gn | go/py<br>go/gn | cp/py<br>gn | tt/gn | ga/sp | cp/sp | tt/sp | Gold • P                          | robe = Misc.                             |          |
| 77.0<br>D                   | I             | 3    | 2   | 4   | 10         | ·3<br>0  | 30<br>45<br>5  | 3∙5         | 3              | 3           | 2     | 3     | 3.5   | 2     | l au∕tt = lOu<br>l au∕tt - gn = : | 30 u                                     |          |
| 78·5<br>D                   | 10            | 25   | 5   | ·2  | 3          | 0<br>0   | 47<br>2<br>8   | 3.5         | 4              | _           | 3     | 3     | 0     | 3     | some fine py cry                  | stals in sp                              | • •      |
|                             |               |      |     |     |            |          |                |             |                |             |       |       |       |       | -                                 |                                          |          |
|                             |               |      |     |     |            |          |                |             |                |             |       |       |       |       |                                   |                                          |          |
|                             |               |      |     |     |            |          |                |             |                |             |       |       |       |       |                                   |                                          |          |
|                             |               |      |     |     |            |          |                |             |                |             |       |       |       |       |                                   |                                          | <u> </u> |
|                             |               |      |     |     |            |          |                |             |                |             |       |       |       |       |                                   |                                          |          |
|                             |               |      |     |     |            |          |                |             |                |             |       |       |       |       |                                   | an a |          |

server and the server

| M = Massive<br>D = Dissemine | Ore<br>ated C | )re  |     |      |     |          |                |             |                |                         |       |       |       |       | SAMATOSUM                                                                                                   |
|------------------------------|---------------|------|-----|------|-----|----------|----------------|-------------|----------------|-------------------------|-------|-------|-------|-------|-------------------------------------------------------------------------------------------------------------|
|                              |               | MINE | RAL | PERC | ENT | AGES     |                |             | M              | IDDLI                   | NG R  | ATING | SS    | ]     |                                                                                                             |
| <b>RG-</b> 105               | РУ            | sp   | ga  | ср   | tt  | ge<br>as | qz<br>cb<br>ms | sp/py<br>gn | gq∕py<br>gq∕gn | cp/ <sup>py</sup><br>gn | tt/gn | ga/sp | cp/sp | tt/sp | Gold : Probe : Misc.                                                                                        |
| 63·5<br>D                    | 5             | 12   | 3   | •1   | 10  | 0<br>0   | 40<br>25<br>5  | 2.5         | 4              | -                       | 2.5   | 3.5   | 0     | 2     | 2 au/tt = 3,7u<br>1 au/tt - ga-sp-gn = 18u<br>1 au/sp-gn = 4u<br>fine py crystals in sp                     |
| 68·5<br>D                    | 9             | •1   | •4  | ·I   | 5   | tr<br>O  | 30<br>50<br>5  | -           |                | _                       | 2.5   | -     |       | 0     | 8 au/tt = 1,3,5,6,7,16,12x66,12x100u                                                                        |
| 7 0· 0<br>₽                  | 35            | 15   | 5   | ·2   | 2   | 0<br>0   | 10<br>0<br>33  | 3.5         | 4·5            | _                       | 3     | 4     | I     | 2     |                                                                                                             |
| 70·8<br>∕ м                  | 20            | 30   | 10  | ·2   | 10  | 0<br>0   | 15<br>0<br>15  | 3∙5         | 4              | -                       | 3.    | 4∙5   | I     | 2     | 19 au/tt = 1(3),2(3),3,4(2) 5,6(3),7,8(3),<br>10,12u                                                        |
| 87·7<br>D                    | 34            | 10   | 3   | tr   | 4   | 0<br>•3  | 30<br>10<br>5  | 3∙5         | 4              | _                       | 3     | 4     | 0     | 3     | bournonite = -5<br>(mp) 3% <u>Mg,Al,silic; sp</u> (0·5% Fe,n.dtr<br>Ag,tr-784 ppmHg); <u>as; bournonite</u> |
|                              |               |      |     |      |     |          |                |             |                |                         |       |       |       |       |                                                                                                             |
|                              |               |      |     |      |     |          |                |             |                |                         |       |       |       |       |                                                                                                             |
|                              |               |      |     |      |     |          |                |             |                |                         |       |       |       |       |                                                                                                             |

• .•

SAMATOSUM M = Massive OreD = Disseminated Ore MINERAL PERCENTAGES MIDDLING RATINGS q z c b sp/<sup>py</sup>ga/<sup>py</sup>cp/<sup>py</sup>tt/<sup>py</sup>ga/sp cp/sp tt/sp дe Gold + Probe + Misc. **RG-**106 **t t** рy ga Сp SD as ms 3 au/tt = 2,4,8u 35 • 3.5 120.5 8  $i \alpha u/qn (cb) = 2 \times 28 u$ 4 tr 35 0 •  $\cdot$ ----0 18 D 13 au/tt = 1,2,4(2),5,10,12(2),16(2),18(2),26u 7 •3 3 au/tt - ga = 6,7,54u 25 2 20 3 2.53.5 3 2.5 3  $121 \cdot 7$ 15 3 3 4 4 au/tt-py = 5,6,8,14 u0 25 11 au/ga = 2(2), 4, 10(2), 14, 16, 18, 30, 20x38 M 24 x 32 u ....  $5 au/ga-py = 3,5,6, 14, 12 \times 60 u$ (mp) tt (3.9% Ag, Hg n.d.) 12 au/tt = 4,6(4),7,10,12,14,16,18,24 u 1 au/tt - ga = 32u 35 tr 35 2.5 122.5 10 10 0 5 au/tt-py = 1,4,6,8,10u 1 au/py-gn = 14u 2 au/py = 6,12u • } • • -0 10 D 20 i au/tt = 8u0 132.9 4 30 ·2 35 1.5 3 3 3 6 1 \_ (mp)<u>tt</u> (0.6% Ag, n.d. - 5il ppm Hg); <u>sp</u> (0.9% Fe, n.d. - tr Ag, Hg n.d.) ·2 4 M

>

| M = Massive<br>D = Dissemin           | Ore<br>ated ( | )re  |     |      |     |          |                |             |                |                         |       |       |       |       |                                        | SAMATOSU    |
|---------------------------------------|---------------|------|-----|------|-----|----------|----------------|-------------|----------------|-------------------------|-------|-------|-------|-------|----------------------------------------|-------------|
|                                       |               | MINE | RAL | PERC | ENT | AGES     |                |             | M              | IDDLI                   | NG R  | ATIN  | GS    |       |                                        |             |
| RG-107                                | ру            | sp   | ga  | ср   | t t | ge<br>as | qz<br>cb<br>ms | sp/py<br>gn | gq∕py<br>gq∕gn | cp/ <sup>py</sup><br>gn | tt/gn | ga/sp | cp/sp | tt/sp | Gold : Pr                              | obe : Misc. |
| 23·2<br>M                             | 5             | 30   | 2   | 30   | ••3 | 0<br>tr  | 20<br>13<br>0  | 1           | 3              | 1                       | -     | 2     | 6     | 1     | 2 au/cp = 3,6u                         |             |
|                                       |               |      |     |      |     |          |                |             |                |                         |       |       |       |       |                                        |             |
|                                       |               |      |     |      |     |          |                |             |                |                         |       |       |       |       |                                        |             |
| · · · · · · · · · · · · · · · · · · · |               |      |     |      |     |          |                |             |                |                         |       |       |       |       |                                        |             |
|                                       |               |      |     |      |     |          |                |             |                |                         |       |       |       |       |                                        |             |
|                                       |               |      |     |      |     |          |                |             |                |                         |       |       |       |       | ······································ |             |
| <u></u>                               |               |      |     |      |     |          |                |             |                |                         |       |       |       |       |                                        |             |
|                                       |               |      |     |      |     |          |                |             |                |                         |       |       |       |       |                                        |             |

| M = Massive  | Ore    | <u> </u> |     |    |     |          |                |             |                |             |             |       |       |       |                                                                                                                 | SAMATOSUM                                                                                                   |
|--------------|--------|----------|-----|----|-----|----------|----------------|-------------|----------------|-------------|-------------|-------|-------|-------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| D = Dissemin | ated ( | MINE     | RAI |    | FNT | AGES     |                | 1           | M              |             | NG R        | ΔΤΙΝΟ | is.   |       |                                                                                                                 |                                                                                                             |
| RG-108       | РУ     | sp       | ga  | ср | t t | ge<br>as | qz<br>cb<br>ms | sp/py<br>gn | ga/py<br>ga/gn | cp/py<br>gn | tt/py<br>gn | ga/sp | cp/sp | tt/sp | Gold + Pr                                                                                                       | obe = Misc.                                                                                                 |
| 35·8<br>м    | 18     | 5        | 1   | 20 | 46  | 0<br>0   | 8<br>2<br>0    | 3           | 3.5            | I           | 1           | 3.5   | 4·5   | 3     | 220 au/tt = 1(35),2(52<br>8(17),10(2(<br>30(2),2)<br>4 au/tt - ga = 12,18(2),<br>- 3 au/cp = 6,12,16u; 3        | 2),3(15),4(20),5(13),6(15),7(5),<br>)),12(13),14(6),16,18(3),20,24,<br>x74 u<br>,14 x 40u<br>au/ag = 2,3,6u |
|              |        |          |     |    |     |          |                |             |                |             |             |       |       |       | 2 au/sp = 6,5 x 50u<br>3 au/py-py = 6,12,4 x 26<br>1 au/gn(qz)=14u; som<br>(mp) <u>tt</u> (3.4 % Ag); <u>au</u> | Gu; 4 au/py=1,3,5,10u<br>ne euhedral qz crystals<br><u>i</u> =electrum(23·0%Ag); <u>sp</u>                  |
| 36·9<br>м    | 5      | 30       | 25  | 3  | 7   | 0<br>0   | 19<br>10<br>1  | 3           | 3.5            | 3           | 3           | 5.5   | 6     | 3     | au/tt = 3u; 6au/sp<br>2 au/ga-sp =  6,7x<br>3 au/sp-gn = 4(2),                                                  | = 1 (3), 3,4,8u<br>24u<br>10u                                                                               |
| ,            |        |          |     |    |     |          |                |             |                | -           |             |       |       |       |                                                                                                                 |                                                                                                             |
|              |        |          |     |    |     |          |                |             |                |             |             |       |       |       |                                                                                                                 |                                                                                                             |
|              |        |          |     |    |     |          |                |             |                |             |             |       |       |       |                                                                                                                 |                                                                                                             |
|              |        |          |     |    |     |          |                |             |                |             |             |       |       |       |                                                                                                                 |                                                                                                             |
|              |        |          |     |    |     |          |                |             |                |             |             |       |       |       |                                                                                                                 |                                                                                                             |

الاستية الاستيار المست المست المستية المستية المتدانية المتدامة فتحتما المتنابية المارية المتحدة المسته مستنه

| M = Massive<br>D = Dissemine | Ore<br>Dited O | re   |     |      |     |          |                |       |                         |                         |       |       |       |       | SAMATOSUM                                                                                                                                    |
|------------------------------|----------------|------|-----|------|-----|----------|----------------|-------|-------------------------|-------------------------|-------|-------|-------|-------|----------------------------------------------------------------------------------------------------------------------------------------------|
|                              |                | MINE | RAL | PERC | ENT | AGES     |                |       | М                       | IDDLI                   | NG R  | ATING | S     | ]     |                                                                                                                                              |
| RG-109                       | РУ             | sp   | ga  | ср   | t t | ge<br>as | qz<br>cb<br>ms | sp/gn | ga/ <sup>py</sup><br>gn | cp/ <sup>py</sup><br>gn | tt/gn | ga/sp | cp/sp | tt/sp | Gold : Probe : Misc.                                                                                                                         |
| 123·5<br>D                   | 8              | tr   | •1  | ·2   | 15  | ·I<br>0  | 30<br>45<br>2  | _     | -                       | _                       | 2.5   | -     | -     | 0     | I3 au/tt = 6(2),7(2),8,10(2),12,14(2),18(2),22u<br>  au/tt - ga = 30u<br>4 au/tt - py = 3,4,6,8u<br>  au/py - gn = 14u<br>3 _au/py = 2,6,10u |
|                              |                |      |     |      |     |          |                |       |                         |                         |       |       |       |       | (mp) <u>tt</u> (Ag=3·5%;Hg n.d.); <u>sp</u> (0·5% Fe, n.d242<br>ppm Ag, n.d tr Hg)                                                           |
| 125·5<br>D                   | 1              | •3   | ۰I  | ·2   | 3   | 0<br>0   | 40<br>45<br>10 |       | -                       |                         | 3     |       | _     | 0     |                                                                                                                                              |
| 7                            |                |      |     |      |     |          |                |       |                         |                         |       |       |       |       |                                                                                                                                              |
| 141·0<br>D                   | 20             | 10   | 5   | ·5   | ·8  | 0 0      | 59<br>0<br>5   | 3.5   | 4                       | ł                       | -     | 2     | -     | 0     |                                                                                                                                              |
| 142·0<br>D                   | 15             | 15   | 7   | ·2   | I   | 0<br>0   | 52<br>0<br>10  | 3     | 4∙5                     | _                       | _     | 2     | 2     | 0     |                                                                                                                                              |
|                              |                |      |     |      |     |          |                |       |                         |                         |       |       |       |       |                                                                                                                                              |
|                              |                |      |     |      |     |          |                |       |                         |                         |       |       |       |       |                                                                                                                                              |

| M = Massive<br>D = Dissemin | Ore<br>ated ( | )re  |     |     |            |          |                |                         |                |                         |                         |       |       |       | SAMATOSUM                                                                                                                                                                              |
|-----------------------------|---------------|------|-----|-----|------------|----------|----------------|-------------------------|----------------|-------------------------|-------------------------|-------|-------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             |               | MINE | RAL | PER | CENT       | AGES     | ;              |                         | M              | IDDLI                   | NG R                    | ATIN  | GS    |       |                                                                                                                                                                                        |
| RG-III                      | ру            | sp   | ga  | ср  | <b>t</b> t | ge<br>as | qz<br>cb<br>ms | sp/ <sup>py</sup><br>gn | ga/py<br>ga/gn | cp/ <sup>py</sup><br>gn | tt/ <sup>py</sup><br>gn | ga/sp | cp/sp | tt/sp | Gold + Probe + Misc.                                                                                                                                                                   |
| 64·0<br>D                   | 3             | •1   | tr  | 4   | 3          | ·2<br>0  | 44<br>44<br>2  |                         | -              | 2                       | 2                       | _     | _     | 0     |                                                                                                                                                                                        |
| 6 6 · 0<br>D                | 3             | 8    | 2   | 2   | 3          | ·3<br>0  | 40<br>40<br>2  | 2                       | 3              | 3                       | 3                       | 2     | 4     | 3     |                                                                                                                                                                                        |
| 6 9 · 0<br>D                | ·2            | 20   | 3   | 2   | 8          | 2<br>0   | 10<br>52<br>5  | 3.5                     | 6              | 3                       | 3.5                     | 1     | 4     | 3     | 31 au/tt = 1 (4), 2(5), 3(3), 4(2), 5(3), 6, 8(2), 10(2), 12,<br>14(2), 16, 18(3), 22, 30u<br>3 au/tt - ga = 14, 7x 24, 26 x 130.u<br>1 au/tt - gn = 3u<br>6 gu/cp = 1, 2(2), 3, 4u(2) |
| ,                           |               |      |     |     |            |          |                |                         |                |                         |                         |       |       |       | l au/ga-sp = l2u<br>graphite = ·l<br>(mp) <u>au</u> = electrum (33·2% Ag)                                                                                                              |
|                             |               |      |     |     |            |          |                |                         |                |                         |                         |       |       |       |                                                                                                                                                                                        |
|                             |               |      |     |     |            |          |                |                         |                |                         |                         |       |       |       |                                                                                                                                                                                        |
|                             |               |      |     |     |            |          |                |                         |                |                         |                         |       |       |       |                                                                                                                                                                                        |
|                             |               |      |     |     |            |          |                |                         |                |                         |                         |       |       |       |                                                                                                                                                                                        |

a La companya de la c

| M = Massive<br>D = Dissemin | Ore<br>ated C | )r <b>e</b> |     |      |      |          |                |             |                |                      |       |       |       |       | SAMATOSUM                                                                                       |
|-----------------------------|---------------|-------------|-----|------|------|----------|----------------|-------------|----------------|----------------------|-------|-------|-------|-------|-------------------------------------------------------------------------------------------------|
|                             |               | MINE        | RAL | PERC | CENT | AGES     | _              |             | M              | IDDLI                | NG R  | ATIN  | GS    |       |                                                                                                 |
| <b>RG-1</b> 12              | РУ            | sp          | ga  | ср   | tt   | ge<br>as | qz<br>cb<br>ms | sp/py<br>gn | ga/py<br>ga/gn | cp/ <sup>py</sup> gn | tt/gn | ga/sp | cp/sp | tt/sp | Gold : Probe : Misc.                                                                            |
| 145·2<br>D                  | 2             | •4          | tr  | tr   | 8    | ·1<br>0  | 50<br>30<br>10 | -           | -              |                      | 3     |       | _     | 0     | l au/tt-py≖l8u                                                                                  |
| 148·0<br>D                  | 6             | ·2          | ۰I  | tr   | 9    | ·3<br>0  | 65<br>10<br>10 | -           | -              | _                    | 3     | -     | _     | 0     |                                                                                                 |
| 149·0<br>D                  | 10            | 20          | tr  | tr   | 15   | ·1<br>0  | 20<br>25<br>10 | 2∙5         | _              | _                    | 2.5   | 0     | 0     | 2.5   | au/tt = 7u<br>  au/tt - py = 3u<br>  au/sp-py = 7u<br>(mp) <u>tt</u> (3·3%Ag, n.d884 ppmHg); sp |
| 1,5 O · O<br>D              | 5             | 10          | ·2  | tr   | 0    | 0<br>0   | 83<br>0<br>2   | 2           | -              | -                    | -     | 0     | 0     | 0     | (0·7% Fe,Ag n.d., n.d712 ppm Hg)                                                                |
| 151 · O<br>D                | 5             | ·3          | 3   | tr   | 0    | 0<br>0   | 62<br>0<br>30  | -           | 4∙5            | _                    |       | -     |       | _     |                                                                                                 |
|                             |               |             |     |      |      |          |                |             |                |                      |       |       |       |       |                                                                                                 |
|                             |               |             |     |      |      |          |                |             |                |                      |       |       |       |       |                                                                                                 |
|                             |               |             |     |      |      |          |                |             |                |                      |       |       |       |       |                                                                                                 |

and the second second

|               |        |      | ·        |          |     |            |           |       | <u> </u> |        | <u>.</u>   |       |          |          |                                                                      |
|---------------|--------|------|----------|----------|-----|------------|-----------|-------|----------|--------|------------|-------|----------|----------|----------------------------------------------------------------------|
| M = Massive   | Ore    |      |          |          |     |            |           |       |          |        |            |       |          |          | SAMATOSUM                                                            |
| D = Dissemino | otea u | MINE |          |          | FNT | AGES       |           |       | M        | ו וחחי |            |       | 20       | <b>ŋ</b> |                                                                      |
|               | ·      |      |          |          |     |            | αz        | 07    |          |        |            |       |          |          |                                                                      |
| RG-122        | РУ     | sp   | ga       | ср       | tt  | y e<br>a s | c b<br>ms | sp/gn | ga/gn    | cp/gn  | tt/gn      | ga/sp | cp/sp    | tt/sp    | Gold : Probe : Misc.                                                 |
| 277.0         | 50     | 16   | G        | 7        | 15  | 0          | 0         | 7     | 7        | 3.5    | 7.5        | 2.5   | <b>र</b> | 2.5      | au/tt =  6 u<br>  au/cp = 36 x 14u                                   |
| 231.0<br>M    | 50     | σι   | 0        | 5        | 15  | 0          | 5<br>5    | 5     | **       | 5.5    | 5.0        | 2.2   | 5        |          | (mp) <u>tt</u> (3·5%Ag);                                             |
|               |        |      | <b> </b> |          |     | 0          | 0         |       |          |        |            |       |          |          | 5 au/tt = 2,4,5,6,10u                                                |
| 238·0         | 50     | 3    | 8        | 2        | 12  | 0          | 10<br>15  | 3.5   | 4.5      | 3      | 3          | 2     | 3        | 2        | 2 447 94 - 0, 2 4 4                                                  |
|               |        |      |          | <u> </u> |     | 0          | 0         |       |          |        |            |       |          |          |                                                                      |
| 239·0         | 8      | •    | 2        | tr       | 2   | 0          | 80<br>8   | _     | 2.2      | -      | 4.2        | -     |          |          |                                                                      |
|               |        |      |          |          |     | 0          | 0         |       |          |        | . <b>F</b> |       |          |          | 14 au/11 = 3(2), 5, 6, 8, 10(2), 12, 14, 18, 24,<br>36, 6x24, 20x80u |
| 242·0<br>D    | 4      | .2   | .2       | ·2       | 15. | 0          | 80        | -     |          | -      | 1.2        | -     | -        |          | (mp) <u>tt</u> (3·8%Ag); <u>au</u> = electrum(32·8%Ag)               |
|               |        |      |          |          |     | 0          | 35        |       |          |        |            |       |          |          |                                                                      |
| 246·0<br>₽    | 15     | 15   | 5        |          | 2   | 0          | 7<br>20   | 4     | 4.5      | 3      | 4          | 4     | 3        | 3        |                                                                      |
|               |        |      |          |          |     |            |           |       |          |        |            |       |          |          | · · · · · · · · · · · · · · · · · · ·                                |
|               |        |      |          |          |     |            |           |       |          |        |            |       |          |          |                                                                      |
|               |        |      |          |          |     |            |           |       |          |        |            |       |          | 1        |                                                                      |
|               |        |      |          |          |     |            |           |       |          |        |            |       |          |          |                                                                      |
|               |        |      | <b> </b> | <b> </b> |     |            |           |       |          |        |            |       |          |          |                                                                      |
|               |        |      |          |          |     |            | -         |       |          |        |            |       |          |          |                                                                      |

real and the second second

| M = Massive<br>D = Dissemine | Ore<br>ated C | re   |     |      |            |          |                  |             |                |                         |       |       |       |       | SAMATOSUM            |
|------------------------------|---------------|------|-----|------|------------|----------|------------------|-------------|----------------|-------------------------|-------|-------|-------|-------|----------------------|
|                              |               | MINE | RAL | PERC | ENT        | AGES     |                  |             | М              | IDDLI                   | NG R  | ATING | SS -  | ·     |                      |
| RG-123                       | РУ            | sp   | ga  | ср   | <b>t t</b> | ge<br>as | q z<br>c b<br>ms | sp/py<br>gn | ga/py<br>ga/gn | cp/ <sup>py</sup><br>gn | tt/gn | ga/sp | cp/sp | tt/sp | Gold : Probe : Misc. |
| 111 · 5<br>D                 | 6             | 7    | 5   | 2    | 7          | 0<br>0   | 34<br>34<br>5    | 3           | 2              | 3                       | 1.5   | 2     | 3     | 2     |                      |
|                              |               |      |     |      |            |          |                  |             |                |                         |       |       |       |       |                      |
|                              |               |      |     |      |            |          |                  |             |                |                         |       |       | -     |       |                      |
| 1                            |               |      |     |      |            |          |                  |             |                |                         |       |       |       |       |                      |
|                              |               |      |     |      |            |          |                  |             |                |                         |       |       |       |       |                      |
|                              |               |      |     |      |            |          |                  |             |                |                         |       |       |       |       |                      |
|                              |               |      |     |      |            |          |                  |             |                |                         |       |       |       |       |                      |
|                              |               |      |     |      |            |          |                  |             |                |                         |       |       |       |       |                      |

:

| M = Massive<br>D = Dissemin | Ore<br>nated ( | Ore  |     |     |      |          |                |             |       |             |       | н<br>1                                |       |       | SAMATOSUM            |
|-----------------------------|----------------|------|-----|-----|------|----------|----------------|-------------|-------|-------------|-------|---------------------------------------|-------|-------|----------------------|
|                             |                | MINE | RAL | PER | CENT | AGES     | ;              | T           | N     | IIDDL       | NG R  | ATIN                                  | GS    | ]     |                      |
| RG-130                      | ру             | sp   | ga  | ср  | t t  | ge<br>as | qz<br>cb<br>ms | sp/py<br>gn | ga/gn | cp/py<br>gn | tt/gn | ga/sp                                 | cp/sp | tt/sp | Gold : Probe : Misc. |
| 195·0<br>D                  | 6              | ·2   | •1  | •3  | 3    | ·3<br>0  | 42<br>42<br>6  | _           | -     |             | 3.5   |                                       |       | 0     |                      |
| 198·5<br>D                  | 7              | 12   | 5   | •1  | 1    | 0<br>0   | 15<br>15<br>45 | 3           | 4     |             | -     | 3∙5                                   | 0     | 2     |                      |
|                             |                |      |     |     |      |          |                |             |       |             |       |                                       |       |       |                      |
| 1                           |                |      |     |     |      |          |                |             |       | ·           |       |                                       |       |       |                      |
|                             |                |      |     |     |      |          |                |             |       |             |       |                                       |       |       |                      |
|                             |                |      |     |     |      |          |                |             | -     |             |       |                                       |       |       |                      |
|                             |                |      |     |     |      |          |                |             |       |             |       |                                       | ,     |       |                      |
|                             |                |      |     |     |      |          |                |             |       |             |       | · · · · · · · · · · · · · · · · · · · |       |       |                      |

and the second s

L.....

E - - 1

| M = Massive<br>D = Dissemin | Ore<br>ated ( | )r <b>e</b> |     |      |      |          |                |             |       |             |       |       |       |       | SAMATOSUM                                                                                                                                                                                  |
|-----------------------------|---------------|-------------|-----|------|------|----------|----------------|-------------|-------|-------------|-------|-------|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             |               | MINE        | RAL | PERC | CENT | AGES     |                |             | М     | IDDLI       | NG R  | ATIN  | GS    |       |                                                                                                                                                                                            |
| RG-132                      | ру            | sp          | ga  | cp   | 11   | ge<br>as | qz<br>cb<br>ms | sp/py<br>gn | ga/py | cp/py<br>gn | tt/gn | ga/sp | cp/sp | tt/sp | Gold : Probe : Misc.                                                                                                                                                                       |
| 192·0<br>D                  | 9             | 30          | 5   | •3   | 15   | ·1<br>0  | 0<br>20<br>20  | 3           | 3.5   | -           | 3     | 4     | 4     | 3     | 1 au/tt - py = 14 u<br>2 au/ga- gn = 3u(2); 1 au/sp-gn = 4 u<br>3 au/cp- gn = 5,6u(2); 2 au/gn-gn = 4,5u<br>graphite = $\cdot 5_{(mp) \underline{tt}(3.7\% Ag); \underline{sp}(0.9\% Fe)}$ |
| 195∙0<br>D                  | 3             | •1          | ·2  | •4   | 10   | ·I<br>0  | 74<br>7<br>5   |             | -     | _           | 1     |       | _     | 0     | l au/tt = 38u                                                                                                                                                                              |
| 201-5<br>м                  | 2             | 6           | 1   | 50   | 3    | ·2<br>·1 | 8<br>20<br>10  | 2           | 3     | 1           | 2     | 2     | 4.5   | 2     | 4 au/tt = 1(2), 2,14u                                                                                                                                                                      |
| 1.                          |               |             |     |      |      |          |                |             |       |             |       |       |       |       |                                                                                                                                                                                            |
|                             |               |             |     |      |      |          |                |             |       |             |       |       |       |       |                                                                                                                                                                                            |
|                             |               |             |     |      |      |          |                |             |       |             |       |       |       |       |                                                                                                                                                                                            |
|                             |               |             |     |      |      |          |                |             |       |             |       |       |       |       |                                                                                                                                                                                            |
|                             |               |             |     |      |      |          |                |             |       |             |       |       |       |       |                                                                                                                                                                                            |

| M = Massive<br>D = Dissemin | Ore<br>ated ( | )re  |     |      |      |          |                | s.<br>I     |                |                         |       |       |       |       | SAMATOSUM                                                                                                                       |
|-----------------------------|---------------|------|-----|------|------|----------|----------------|-------------|----------------|-------------------------|-------|-------|-------|-------|---------------------------------------------------------------------------------------------------------------------------------|
| -                           |               | MINE | RAL | PER( | CENT | AGES     | ;              | <b></b>     | M              | IDDLI                   | NG R  | ATING | SS    | ]     |                                                                                                                                 |
| RG-136                      | РУ            | sp   | ga  | ср   | tt   | ge<br>as | qz<br>cb<br>ms | sp/py<br>gn | ga/py<br>ga/gn | cp/ <sup>py</sup><br>gn | tt/gn | ga/sp | cp/sp | tt/sp | Gold : Probe : Misc.                                                                                                            |
| 51·6<br>D                   | 2             | I    | 2   | ·I   | 7    | 0<br>0   | 55<br>30<br>3  | -           | 3.5            | -                       | 3∙5   | _     |       | 1     | 2 au/tt = 3,7u<br>2 au/tt -gn = 4,7u<br>2 au/gn-gn = 3,5u;   au/sp-gn = 6u<br>1 au/gn = 2u                                      |
| 53·5<br>D                   | 6             | 7    | 1   | •3   | ·5   | 0<br>0   | 75<br>2<br>8   | 3           | 3              |                         | ·     | 3     | 2     | 1     | · · ·                                                                                                                           |
| 55·5<br>D                   | 5             | 6    | 4   | ·2   | 5    | 0<br>0   | 35<br>5<br>40  | 2           | 4.5            | -                       | 3     | 4.5   | 2     | 2     |                                                                                                                                 |
| 56·5                        | 20            | 18   | 8   | 4    | tr   | ·1<br>0  | 10<br>0<br>40  | 3.5         | 5              | 5                       |       | 4.5   | 3     | 0     | py anom. anisotropic<br>(mp) <u>tt</u> (5·2 % Ag, Hg n.d.);<br><u>sp</u> (0·9 % Fe); <u>cp</u> (Ag n.d.); <u>ga(</u> 50·7 % Ag) |
| 58·0<br>D                   | 1             | 15   | 4   | 3    | 15   | ·1<br>0  | 30<br>27<br>5  | 1           | 3              | . 3                     | 1.5   | 2     | 4∙5   | 3.5   | 31 au/tt =1(2),2(5),3(5),4(5),7(2),8(4),10(5),<br>12(2),24 u<br>3 au/tt-ga = 3,8,16 u<br>1 au/tt-sp-py=10u; 2 au/tt-gn=5,10u    |
|                             |               |      |     |      |      |          |                |             |                |                         |       |       |       |       |                                                                                                                                 |
|                             |               |      |     |      |      |          |                |             |                |                         |       |       |       |       |                                                                                                                                 |
|                             |               |      |     |      |      |          |                |             |                |                         |       |       |       |       |                                                                                                                                 |

| M = Massive  | Ore    |      |     |     |            |          |                |             |                |             |       |       |           |       | SAMATOSUM                                                                                                                                                              |
|--------------|--------|------|-----|-----|------------|----------|----------------|-------------|----------------|-------------|-------|-------|-----------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D = Dissemin | ated C | )re  |     |     |            |          |                | ······      |                |             |       |       |           |       |                                                                                                                                                                        |
|              |        | MINE | RAL | PER |            | AGES     | r              |             | M              | IDDLI       | NG R  | ATIN  | <u>GS</u> |       | · · · · · · · · · · · · · · · · · · ·                                                                                                                                  |
| RG-137       | ру     | sp   | ga  | ср  | <u>† †</u> | ge<br>as | qz<br>cb<br>ms | sp/py<br>gn | ga/py<br>ga/gn | cp/py<br>gn | tt/gn | ga/sp | cp/sp     | tt/sp | Gold : Probe : Misc.                                                                                                                                                   |
| 49·5<br>₽    | 4      | 5    | 4   | 8   | 7          | ·2<br>0  | 5<br>62<br>5   | 3           | 2.5            | 1.5         | 2.5   |       | 4.5       | 2     | 2 au/tt = 4,6u<br>  au/tt - sp = 8u                                                                                                                                    |
| 5 I · O<br>D | ł      | 20   | •5  | 4   | 7          | tr<br>O  | 20<br>46<br>1  | 3           | _              | 1           | 3     | 1     | 4.5       | -3    | 2 au/tt = 8,18u<br>2 au/tt - py = 5,7u; 1 au/ga - py = 36u<br>1 au/sp-py = 14u; 1 au/sp-gn = 12u<br>3 au/py = 7,28,9x74u                                               |
| 52·5<br>м    | 1      | 20   | 7   | 7   | 45         | 0<br>0   | 17<br>3<br>0   | 25          | 3              | 3           | 2     | 4     | 4.5       | 3.5   | 31 au/tt = 3,5,6(3),7(3),8(4),10(4),12(3),14,16,18(2)<br>20,24(2),28,30,32,36u(2)<br>2. au/tt - ga = 10,30u; 1 au/tt - gn = 14u<br>(mp) <u>au</u> = electrum (35.4%Ag) |
| 53·8         | •3     | 15   | 7   | 6   | 25         | 0<br>0   | 44<br>0<br>3   | 2∙5         | 3.5            | 3           | 2     | 4     | 3.5       | 3     | 5 au/tt = 6,8,14(2),24u                                                                                                                                                |
| 54·О<br>м    | 52     | 3    | 2   | ·2  | 5          | 0<br>0   | 35<br>0<br>3   | 5           | 6              | _           | 55    | 1     | 0         | ł     |                                                                                                                                                                        |
| 54·5<br>D    | 7      | 18   | 7   | ·I  | 17         | 0<br>0   | 30<br>18<br>3  | 3.5         | 4∙5            | _           | 3     | 4∙5   | 1         | 3.5   | 7 au/tt = 2,3,4(3),5,6(2),7,8(2),10(2),12(2),<br>20u(2)<br>2 au/tt-ga = 10u(2)                                                                                         |
| 54·7<br>M    | 30     | 20   | 6   | •3  | 10         | 0<br>0   | 25<br>0<br>9   | 3           | 5.5            |             | 4     | 4.5   | 4         | 4.5   | 2 au/tt = 5,8u<br>graphite = 2                                                                                                                                         |
| 55·0<br>M    | 70     |      | 2   | •1  | 4          | 0<br>0   | 18<br>0<br>5   |             | 6              |             | 5     |       |           | 0     | ga,tt/py = 5-6<br>qz highly strained .                                                                                                                                 |

|                             |               |      |     |      |      |          |                |       |                      |                      | -     |       |       |       |                                        | · · ·       |          |
|-----------------------------|---------------|------|-----|------|------|----------|----------------|-------|----------------------|----------------------|-------|-------|-------|-------|----------------------------------------|-------------|----------|
| M = Massive<br>D = Dissemin | Ore<br>ated ( | Dre  |     | _    |      |          |                |       |                      |                      |       |       |       |       |                                        | SAMATC      | SUM      |
|                             |               | MINE | RAL | PER( | CENT | AGES     | ;              | Γ     | M                    | IDDLI                | NG R  | ATIN  | GS    |       |                                        |             |          |
| RG-137<br>cont'd            | ру            | sp   | ga  | ср   | tt   | ge<br>as | qz<br>cb<br>ms | sp/gn | ga/ <sup>py</sup> gn | cp/ <sup>py</sup> gn | tt/py | ga/sp | cp/sp | tt/sp | Gold + Pi                              | obe · Misc. |          |
| 56·0<br>M                   | 70            | ·2   | ·6  | •4   | 8    | · <br>0  | 18<br>0<br>3   | _     | _                    | _                    | 3.5   | _     | -     | 0     | qz highly strained                     |             |          |
| 57·0<br>D                   | 7             | 22   | 7   | 3    | 4    | 0<br>0   | 25<br>32<br>0  | 3     | 4∙5                  | 3                    | 2     | 4.5   | 3     | 2     |                                        |             |          |
| 59·5<br>D                   | 34            | 6    | 2   | ·3   | 3    | 0<br>0   | 52<br>2<br>1   | 2     | 4                    | _                    | 4.5   | 2     | 2     | 2     |                                        |             |          |
| 1                           |               |      |     |      |      |          |                |       |                      |                      |       |       |       |       |                                        |             |          |
|                             |               |      |     |      |      |          |                |       |                      |                      |       |       | •     |       |                                        |             |          |
|                             |               |      |     |      |      |          |                |       |                      |                      |       |       | ,     |       |                                        |             |          |
|                             |               |      |     |      |      |          |                |       |                      |                      |       |       |       |       | ······································ | . <u> </u>  |          |
|                             |               |      |     |      |      |          |                |       |                      |                      |       |       |       |       |                                        |             | <u> </u> |



200 180 MESH

(33) <u>RG-137-54.7</u> (Zone II): Sphalerite with tetrahedrite (tt/sp=4), galena (ga/sp=5), gangue, and chalcopyrite inclusions. Fortunately, most sphalerite in the Samatosum deposit is free of tetrahedrite inclusions.





(34) RG-137-54.7 (Zone II): Fine-grained galena and sphalerite (very dark grey in this photomicrograph) in pyrite (for right 2/3 of photomicrograph ga,sp/py=5-6); some coarser sphalerite on left has galena and tetrahedrite inclusions (lower-left). Fine intergrowths of galena and sphalerite in pyrite are not common at Samatosum but this texture is typical of many pyritic massive sulphide deposits such as Brunswick.





(31) RG-137-51 (Zone II): Sphalerite with "chalcopyrite disease" (cp/sp=5). Tetrahedrite, chalcopyrite, gangue.





(32) RG-137-52.5 (Zone II): Sphalerite-chalcopyrite-galena intergrowths (cp,ga/sp=3.5-4). Tetrahedrite (lower-left), and minor gangue.









(30) <u>RG-137-51</u> (Zone II): Pyrite with sphalerite, galena, chalcopyrite, gangue, and electrum inclusions (3 au/py=7,28,9x74u; 1 au/py-sp=14u; 1 au/py-ga=36u; 2 au/tt-py=5,7u).





(27) RG-122-242 (Zone III): Gersdorffite rimming tetrahedrite, in gangue (carbonate). Minor galena and chalcopyrite.





(28) RG-132-192 (Zone III): Sphalerite, galena, tetrahedrite, minor chalcopyrite, and clot of gangue grains (carbonate) with electrum on their boundaries (2 au/ga-gn=3,3u; 1 au/sp-gn=4u; 3 au/cp-gn=5,6,6u; 2 au/gn-gn=4,5u).





(25) RG-122-237 (Zone III): Pyrite with galena inclusions (ga/py=4.5). Chalcopyrite, tetrahedrite, gangue (cp,tt/py,gn=1-2).





(26) RG-122-242 (Zone III): Coarse tetrahedrite with electrum inclusions (4 au/tt=3,14,18,24u). Gangue (carbonate), and minor galena and pyrite in tetrahedrite.



200 184 Ο MESH

(23) RG-111-69 (Zone II): Gersdorffite crystals rimming chalcopyrite and tetrahedrite in dark grey quartz-carbonate gangue(cp,tt/gn=1-2). Minor sphalerite (right).





(24) RG-112-148 (Zone III): Tetrahedrite and pyrite disseminated in gangue (tt/py,gn=2-3).





(21) RG-106-132.9 (Zone III): Tetrahedrite-sphalerite-galena intergrowths (ga/sp=4; tt/sp=2). Minor pyrite and gangue.



200 184 MESH

(22) RG-109-123.5 (Zone III): Pyrite-tetrahedrite-gangue, with numerous electrum grains (3 au/tt=6,6,22u; 1 au/tt-ga=30u; 4 au/py-tt=3,4,6,8u; 1 au/py-gn=14u; 3 au/py=2,6,9u). Some fine tetrahedrite inclusions in pyrite. Some galena and fine chalcopyrite inclusions in tetrahedrite (upper-right).





(19) <u>RG-106-121.7</u> (Zone III): Gersdorffite crystal clot (white) with sphalerite ang galena inclusions, intergrown with gangue (black) and sphalerite. Disseminated pyrite crystals, and tetrahedrite (lower-left).



200 (184 () MESH

(20) <u>RG-106-121.7</u> (Zone III): Coarse tetrahedrite with sphalerite, pyrite, galena, chalcopyrite, and gangue inclusions. One grain of electrum (1 au/tt=16u). Note the variation in the colour of pyrite grains (cream to whitish) which is thought to be due to minor nickel content.





(17) RG-105-70.8 (Zone II): Typical tetrahedrite-sphaleritepyrite-galena intergrowths.





(18) RG-105-87.7 (Zone II): (transmitted light, crossed nicols) Curved Mg, Al silicate intergrown with tetrahedrite (black) and quartz grains.





(15) <u>RG-102-76</u> (Zone II): Coarse tetrahedrite, pyrite grains, chalcopyrite, galena, and diamond-shaped arsenopyrite crystal with tetrahedrite inclusions.





(16) <u>RG-102-79.8</u> (Zone II): (transmitted light, crossed nicols) Opaque tetrahedrite (black, on left) intergrown with grey to white carbonate, and quartz (top). Coloured muscovite grains.



200 184 MESH

(13) <u>RG-100-48</u> (Zone II): Coarse tetrahedrite with inclusions of electrum (1 au/tt=110u, largest gold grain observed), gersdorffite (elongate off-white grains on right), and galena. Gangue is black. Detached 10u electrum grain occurs in epoxy on left.





(14) <u>RG-100-49</u> (Zone II): Pyrite with galena inclusions on right (ga/py=4.5). Sphalerite with galena, tetrahedrite, and gangue inclusions on left.





(11) RG-89-48.8 (Zone II): Coarse tetrahedrite with gold inclusions (4 au/tt=4,6,8,12x30u) and gangue.



(12) <u>RG-98-47</u> (Zone II): Tetrahedrite (light grey, right), galena, sphalerite (grey, with tetrahedrite on right), chalcopyrite and pyrite disseminated in (dark grey) carbonate-quartz gangue (tt/gn=1; ga/gn=4). 200 184 MESH





(9) <u>RG-64-89.5</u> (Zone III): Sphalerite-tetrahedrite-galenachalcopyrite-gangue intergrowths (tt/sp=2; ga/sp=3.5; cp/sp=4.5).





(10) RG-65-76.3 (Zone II): Tetrahedrite-sphalerite-galenapyrite-gangue intergrowths (sp/py,gn=1; tt/py,gn=1; ga/sp=2).





RG-108-35.8 (Zone I): Chalcopyrite, pyrite, minor tetrahedrite, and one electrum grain (1 au/py-py=4x26u). (7)





RG-108-36.9 (Zone I): Sphalerite with chalcopyrite inclusions (cp/sp=6), and some galena inclusions. Galena-(8) tetrahedrite intergrowths (common). Minor pyrite crystals (lower-right) and gangue (dark grey).





RG-108-35.8 (Zone I): Coarse sphalerite (left) with some chalcopyrite inclusions. Coarse tetrahedrite (right) with chalcopyrite and electrum inclusions (2 au/tt=3,18u). Dark grey quartz crystal.



200 (184) MESH

(6)

RG-108-35.8 (Zone I): Coarse tetrahedrite and gangue (quartz+carbonate). Minor sphalerite in gangue. Three electrum grains (1 au/tt=12u; 1 au/sp=6u; 1 au/gn(qz)=14u).

(5)





(3) <u>RG-97-19</u> (Zone I): Chalcopyrite (yellow). Fine (typical) galena inclusions in pyrite (ga/py=5). Minor sphalerite (dark grey).





(4) RG-97-19.7 (Zone I): Sphalerite with chalcopyrite inclusions (cp/sp=6). Tetrahedrite intergrown with chalcopyrite (typical association). Pyrite crystal with chalcopyrite inclusions (lower-right). Gangue (dark grey-black). PHOTOMICROGRAPHS

(PM-1 to PM-8 are from Zone I, PM-9 to PM-34 from Zones II and III)



200 184 MESH

 <u>TR-3a</u> (Zone I<sub>o</sub>): Covellite veinlets (blue, upper center to upper-left) in sphalerite (grey) and galena (silver-white). Sphalerite in lower-right has network veinlets of oxidation product (smithsonite?). Black spots are pits in the polished surface.





(2) <u>RG-97-17</u> (Zone I): Coarse sphalerite with "chalcopyrite disease" (cp/sp=6). Coarse tetrahedrite grain (light grey) with associated electrum grains (l au/tt-sp-ga-gn=l2u; l au/tt=3u). Minor silvery-white galena on left side of tetrahedrite grain. Dark grey gangue. Black pits.