1. IP Viciat Cls?

Lines 8200'kng
\# Ane to corver cls. - 11 lines. (Lim spacin, $1000^{\prime \prime}$)
hive miles $\therefore=\frac{20,200}{5280}=17$ hiver mils. Est. evser (6) \$500/hine mi. $=8500$

2 I.P. Crescent Cls.

- hivelengit -6,600'
\# lines $=5 \times 500 \mathrm{~m}=2500 \mathrm{~m} \times 3.28=\frac{8200^{\prime}}{1000}=\frac{8.2}{\text { hnes }}$
Hine mile $=8.2 \times 1.25=10.25$ him nile

$$
\text { Est. Cart \$ } 500 / \operatorname{lin} M i=\$ 5000
$$

aiboune work.
Veron area - 10 mile $\times 4$ miles bic opacin y $1 / 4 \mathrm{mi}$ $=160$ hive mils.

$$
\text { Tinue }=\frac{160}{70}=2 \cdot 3 h_{0} \text { say }-3-4 h_{0}
$$

Cast the (a) $320={ }^{\$ 1280}$ for Nelecapts, phes RAB. for 3 men © $30 / \mathrm{man}$ for 2 dayp.

$$
=\$ 180^{\circ}
$$

$$
\text { Plus aprators Solaries - } 300
$$

FFOM: TATS TAKEDA

RE: DRILC HOLE MY-6., KNGHT PROPERTY, KELOWNA, B.C.

1. PERIOD OF FIELD WORK: FROM. MARCH 26 TO HARCH 28,1977
2. GEOLOGICAL FEATURES: In the hole, no coal is roted, but mose abundant occurzonce of pebble- quarel berring askosie. Sandstone with slight ly highro sadioactine backgrond than basabts and lewnocratic basement instrusire is scein. Sespentinite fills some of the issegulan craches in olivine bovalto. The tapmost lager of bastite lara flow is charactesiged with white jrolite coaled gas pores.

Bacement inluesive is gradually becoming higher in elcmation towards east with decreasing thicknass of sedimerts between brasabtre caffing and the intemeely altered bowement.
3. Comments:
(i) Known aromalows features along. Líne $21+60 \mathrm{~N}$ has bean urell chackid with ${ }^{2}$ holes of which throee reached to the basement inturive.
(ifit) Protectire, busalt capping theory for uranium containing sedinents roquineo serision, becaise at least on the lhright Groups, pre-Miocane sedemients is not indieating original high baskground in radasactírity.
(iii) Apparently, sub-aesial envizunment as well as lopagraphir coatral in recent age moy be one of the ken fuctas for imanuin concuntration in permable lages such as peblubstone or conglomerate.
(iv) Krigght group is seperated boy the Dones Creck from The exitirn block which chows higher radioactive bockground, especially in preblble-small quarel buasing lagess in eskass and mosaines. Potential somerce
area muct be located in furthereast, more lifuly to be outrite of the Knight Group.
(v) Interse shatteing and alteration in the buccosatie feliec inturine suggost the similaitly to the ferture seen in the alteration halo sussounding provfingry molybiderite mineraligation. Sfosener, no malyblederite occursence has been confirmed in the cursent holes, except pyite hainlines.

Iriterse. argillic alteration tagither vish chloriti stockworks and lesser sticification also suggesto a passiblility of gold russeialigation.
4. Summany and Recommexdutions.

No sispificant usamsiom owineralyation has been encountered in the cursent six hales.

Softisticated, ugqonal gealogial mapking is urgently zecosmomended to study eiviroment on the urasium concentration in the axea of $10 \mathrm{~km} \times 10 \mathrm{~km}$ approximately:
fisst stage: photogedologual study.
(Apzil, 19ンク)
secondstage: Ground surnay for geologriab maffring. (Aprib-jues, 19M,
Then the tangets will be selected for further detailed exploration in the adwanced stage, such ao geophysical worke and diamond drilling.

Respect fully submilted,
yot Sohola

Mr. W.M. Sirola

March 4, 1977

OKANAGAN PROJECT - KNIGHT CLAIMS COMPOSITE GEOPHYSICAL MAP AND PROFILES

Accompanying this memorandum is a compilation of geophysical material and an attempt at a structural profile. We also enclose logs of $77-1$ and 77 - 2 plus a very detailed cross section of these drill holes by Tats Takeda.

The magnetic profile seems to delineate the lava cover quite accurately and the P.F.E. high on the west side of line $21+60 \mathrm{~N}$ probably depicts the emergence of the underlying pyritized siltstone at or near surface. The resistivity profile at $4+00 \mathrm{E}$ on line $21+60 \mathrm{~N}$ indicates a low at the site of drill hole $77-3$ and may well be indicative of the channel encountered. in that drill hole. As you know, that drill hole went through lavas into sandy gravels and conglomerates at approximately 87.5 meters.

Under the circumstances, rather than move the drill to the north east corner of the property near the monashee outcrop, we will drill another hole east of $77-3$ to get another intercept on the channel. The distance east will be a function of whether or not any radioactivity is encountered in $77-3$. If significant radioactivity is encountered, we will start a grid drilling pattern after the eastern limit of the channel has been defined. Otherwise we will probably move about 300 meters to the east.

W.M. Sirola

Encls.

