MINNÓVA

 DATE:
 July 10, 1990

 A
 A. J. Davidson, D. H. Watkins

 COPIES A
 COPIES TO:

 DE
 √I. D. Pirie

 SUBJECT:
 Fireweed Property Acquisition

GENERAL

The **Fireweed** property is located on the southwest side of Babine Lake near the village of Smithers Landing, 54 km northeast of Smithers, B.C. It has been brought to us by Canadian-United Minerals who own a 100% interest subject to a 2% NSR capped at \$5 million.

Mineralization was first discovered on the property in 1987. It consisted of mineralized float in an area of recent logging. Subsequent prospecting turned up a manganiferous sandstone exposure in a creek bank which returned up to 9.5 opt Ag over 9.5 metres.

Since that time approximately \$1.7 million dollars have been spent on the property and at least eight mineralized targets have been identified. One of these, the West zone, has drillindicated reserves of 640,000 tons grading 10 opt Ag, 2.2% Zn and 1.34% Pb. It is the only target that has seen extensive drilling.

THE TARGET

The property is underlain mainly by sediments (mudstones, sandstones, and conglomerates) of the Lower Cretaceous Skeena Group. These are cut by Tertiary plugs and dykes of intermediate to felsic composition.

Mineralization takes the form of massive sulphide pipes which have forcefully intruded and brecciated the host rocks. Adjacent to these pipes are stratabound zones of disseminated mineralization developed in permeable coarse sandstone units. Within the pipes the principle minerals are pyrrhotite, sphalerite and chalcopyrite. Both pyrrhotite and sphalerite can occur as massive zones while the chalcopyrite is only in minor amounts. Within the stratiform zones principle minerals are pyrite, sphalerite, galena and silver sulphosalts. Concentrations rarely exceed 25% by volume of the rock, but because of the relative abundance of Ag bearing minerals, grades can be quite spectacular.

The tonnage outlined to date consists solely of a single zone of disseminated mineralization which has been defined over a strike length of 250 m and down dip for almost 200 m. It is open in all directions. Not included is an adjacent zone of massive sulphides which has produced intersections of up to 19% Zn, 5.4% Pb, 0.5% Cu, 4.5 opt Ag and 0.055 opt Au over 4 m. The orientation of this pipelike zone has so far defeated attempts to drill it.

Other zones that have seen limited drill testing are the 1600 Zone and East Zone. These have several interesting intersections which are summarized on the attached sheets.

DISCUSSIONS

Mineralization hosted within Mesozoic (particularly Jura-Cretaceous) volcano-sedimentary belts has largely been ignored by Minnova thus far, not for any lack of potential, but because of the lack of Mesozoic stratigraphy in Southern B.C. The exception to this is the Jurassic Harrison Lake Belt where we have long recognized the VMS potential but have only recently been able to tie up the property we wanted (Seneca).

However, the area of north-central B.C. centred around Bowser Basin (Figure 2) has vast areas of Mesozoic the stratigraphy. The southern part of this stratigraphy, in which lies Fireweed, is readily accessible by road. It is its less accessible northwestern margin, the Iskut, that has been making all the headlines recently, but there is no reason why areas further south should not be equally well mineralized. TONNAGE POTENTIAL IN THESE AREAS IS LARGE BECAUSE THE HYDROTHERMAL SYSTEMS ARE LARGE. Table 1 lists some of the known deposits of the area. They range

from porphyries to volcanogenic massive sulphides to epithermal and from low grade Cu-Au to very high grade Ag and Au. We have recently initiated a study and compilation of these deposits and will have a more detailed report in due course.

Fireweed stands up very well in this company. The hydrothermal system is large having been confirmed over at least a four km strike length. This includes three centres of activity (pipes) at the West Zone, 32 Zone and East Zone. Of these, the West Zone with its drill indicated reserves, appears to be the smallest. Thus the tonnage potential is certainly in the several millions of tonnes. Although Ag is the main pay element in the established reserves, there is good evidence of the presence of high grade Zn areas and local values in Au have been reported (e.g. 0.111 opt/4 m in East Zone). This is a polymetallic system.

Optioning the property would not only give Minnova near term potential to establish mineable reserves, but also a head start in an area that will become very active as companies seek accessible Iskut equivalents. An added bonus is a link with an excellent idea/concept oriented group (Leask/Eldridge) that have several years of experience in the area.

I feel strongly that this is a situation that suits Minnova's strengths and style and consequently highly recommend that a suitable deal be sought and signed.

Deposit	Size	Grades	Status
<i>Equity</i> mesothermal	30 M tonnes	0.025 opt Au, 3 opt Ag, 0.35% Cu	producer
Silver Queen	800,000 tonnes	0.108 opt Au, 7.5 Ag, 0.49% Cu, 1.49% Pb, 6.53% Zn	minor past producer
<i>Eskay Creek</i> (Exhalitive?)	+4 M tonnes	0.7 opt Au, 24 opt Ag and BM's	exploration
<i>Granduc</i> VMS	27.4 M tonnes	1.79% Cu, 0.23 opt Ag, 0.004 opt Au	past producer
<i>Anyox</i> VMS	42 M tonnes	0.5% Cu, 0.1 opt Ag, 0.025 opt Au	past producer
<i>Bell</i> porphyry	65.5 M tonnes	0.51% Cu, 0.005 opt Au	producer
<i>Granisle</i> porphyry	57.5 M tonnes	0.5% Cu, 0.003 opt Au	past producer
Silver Standard mesothermal	235,000	0.083 opt Au, 37.2 opt Ag, 4.5% Pb, 8% Zn	past producer
Premier–Silbak epithermal	9.7 M tonnes	0.22 opt Au, 5.6 opt Ag	producer
Kutcho Creek	18.7 M tonnes	1.6% Cu, 2.3% Zn, 0.85 opt Ag, 0.01 opt Au	reserve dormant
Sustut	54.4 M tonnes	1.25% Cu	dormant

TABLE 2

.

.

.

CANADIAN-UNITED MINERALS INC. SUMMARY OF FIREWEED PROPERTY DRILLING RESULTS

WEST ZONE

HOLE	DEPTH (m)	WIDTH (m)	Ag (oz/ton)	Pb (%)	Zn (%)	Cu (%)	Au (oz/ton)
FW88-1	123.0-128.8	5.8	1.36	_	_	-	_
	166.5-171.1	4.6	1.01		-	-	-
	193.8-199.0	5.2	1.13	-	-	-	-
	263.3-266.3	3.0	D.96	-	-	-	-
FW88-3	045.1-048.1	3.0	0.46	_	2.15	0.14	_
	058.6-060.1	1.5	0.37	-	0.37	0.17	0.061
	061.6-066.1	4.5	0.34	1.26	2.27	-	
	081.1-082.6	1.5	_	-	2.49	-	-
FW88-4	019.8-021.3	+1.5	0.92	_	_	0.42	_
	110.2-112.2	2.0	0.41	1.60	2.63	-	-
	141.8-144.8	3.0	-	-	-	-	0.019
F''88-5	065.0-068.0	3.0	-	_	2.70	0.09	_
Ú,	071.2-073.0	1.8	-	_	1.18		· _
	078.3-080.3	2.0	0.75	-	0.70	0.31	-
	110.4-112.4	2.0	-	-	1.93		_
	128.0-129.5	1.5	_	-	3.21	-	-
FW88-7	070.0-076.0	6.0	1.06	-	-	-	-
FW88-8	066.7-080.3	13.6	-	1.22	1.94	_	
	084.2-088.8	4.6	0.49	1.58	3.85	-	-
	094.0-098.0	4.0	18.89	1.01	2.11	-	
	112.1-114.1	2.0	0.25	-	1.38	-	0.021
FW88-22	050.5-075.5	25.0	9.57	1.28	1.94	_	_
i	nc156.0-068.5	13.0	17.2	1.79	3.07	_	_
	120.0-121.2	1.2	2.9	0.45	0.25	-	-
	163.0-164.0	1.0	5.53	1.25	1.53	-	-
FW88-24	06 6 .7-078.4	11.7	12-95	0.97	1.82	-	-
FW88-25	026.6-045.4	19.0	6.04	0.52	0.77	-	-
FW88-26	124.0-129.0	5.0	1.69	4.02	3.83	-	-
FW88-28	070.1-071.1	1.0	3.76	4.24	10.15 [`]		_
	119.3-121.3	2.0	9.26	0.40	1.75	-	<u> </u>
	193.8-198.8	5.0	1.09	1.51	2.89	-	. –

HOLE	DEPTH (m)	WIDTH (m)	Ag (oz/ton)	. Pb (%)	Zn (%)	Cu (%)	Au (oz/ton)
FW88-29	020.1-023.1	3.0	1.18	-	_	0.76	-
	024.1-029.1	5.0	1.96	1.17	11.13	0.27	0.009
	033.2-036.5	3.3	4.41	4.72	15.50	0.39	0.032
	040.5-041.5	1.0	4.40	4.36	21.78	0.18	0.024
	044.4-046.4	2.0	1.55	1.24	5.05	0.40	0.030
	056.5-060.5	4.0	4.53	5.37	18.82	0.50	0.055
	064.3-065.3	1.0	; 1.48	3.26	2.75	0.06	0.004
FW88-31	113.2-123.2	10.0	3.75	-	-	-	
	132.2-135.2	3.0	4.30	0.46	1.36	-	-
	139.2-150.2	11.0	6.00	-	-	-	-
incl	139.2-141.2	2.0	15.79	2.07	1.87	-	-
	146.2-148.2	2.0	8.81	-	D.6 6	-	-
FW88-33	107.0-118.0	11.0	0.67	1.23	3.75	-	-
	125.0-128.0	3.0	0.68	1.48	2.15	-	-
FW88-34	068.8-073.4	4.6	4.26	0.40	D.8 4	-	-
FW88-35	143.0-146.0	3.0	0.74	1.03	1.33	-	-
FW88-36	098.0-100.8	2.8	11.55	1.39	3.61	-	-
	106.0-116.6	9.6	5.42	0.56	1.08	-	-
F 38-37	145.0-148.0	3.0	8.27	1.80	2.25	_	-
\sim	153.0-154.0	1.0	,11.46	2.65	3.73		-
FW88-38	124.0-140.0	16.0	5.27	1.09	1.75	-	-
FW88-39	086.3-090.4	4.1	12.4	0.81	0.28	-	-
FW88-41	110.8-118.7	7.9	18.5	2.26	3.02	-	-
FW88-42	126.4-137.2	10.8	11.3	1.35	2.14	-	-
FW88-48	096.5-098.2	1.7	1.03		3.06	U.16	0.042
	100.6-102.2	1.6	1.16	0.31	2.44	0.24	0.038
	105.6-107.2	1.6	0.71	0.38	2.39	-	0.049
FW88-49	050.1-051.8	1.7	1.71	0.91	7.18	0.10	0.026
	053.3-067.3	14.0	2.0	1.73	3.94	0.08	0.018
FW88-50	024.0-034.5	11.5	0.18	0.94	3.46	0.08	0.033
	072.3-079.7	7.4	0.69	0.18	4.26	0.20	0.015
	082.6-089.0	6.4	0.35	-	8.70	-	-
FW88-51	043.0-044.0	1.0	D.17	-	3.51	-	0.005
	049.0-050.0	1.0	0.64	0.17	3.28 🗸	-	-
	062.8-000000 64	2070 3.6r	4.24	D.68	1.56	-	0.013*
	150.7-151.9	1.2	1.87	3.05	2.74	-	0.011

,

16

HOLE	DEPTH (m)	WIDTH (m)	Ag (oz/ton)	.Pb (≉)	Zn (%)	Cu (%)	Au (oz/ton)
FW89-52	113.5-115.5	2.0	D.83	1.73	1.63	·	_
	143.8-146.2	2.4	1.22		-	· _	0.008
	221.3-222.2	0.9	1.52	2.73	1.62	-	-
-M89-53	073.0-076.2	3.2	0.38	0.20	3.17	-	0.054
-W89-54	193.6-194.7	1.1	1.78	1.40	1.99	-	-
-W89-55	173.2-182.2	9.9	3.30	0.37	0.36	-	-
FW89-56	183.8-187.8	4.0	0.48	0.90	1.23	-	-
W89-57	139.3-148.3	9.0	3.20	0.26	0.39	-	-
-W89-58 (Mn Zone	017.0-020.4 :)	3.4	3.11	0.32	0.46	-	-
- W89-76	18.2-19.2	1.0	2.16	2.30	6.62	0.18	U.040
	115.5-121.2	5.7	2.19	3.49	4.63	-	
ind	01115.5-116.5	1.0	7,70	12.30	5.01	0.08	
and	118.5-120.5	2.0	2.02	3.14	8.66	0.07	-
- W89-77	189.5-193.5	4.0	5.86	0.42	0.73	-	_
ind	21190.5-192.5	2.0	8.71	0.61	1.05	-	-
-W89-78	97.6-101.6	4.0	0.35	D.39	0.67	-	-
	109.4-111.4	2.0	0.48	0.74	0.90		-
	114.5-115.5	1.0	0.41	0.88	0.82	-	-
- W89-79	47.1-48.3	1.2	0.27	1.11	0.22	_	_
	64.5-65.8	1.3	0.82	1.16	1.73	-	-
	71.3-74.5	3.2	1.62	2.31	2.55	-	0.009

.

•

.

!

\cup		
HOLE	DEPTH	WIDT

•

1600 ZONE

HOLE	DEPTH (m)	WIDTH (m)	Ag (oz/ton)	РЬ (%)	Zn (٦)	Cu (%)	Au (oz/ton)
-M89-6D	082.6-083.3	0.7	7.85	11.10	10.90	0.11	0.065
	099.3-102.3	3.0	0.39	0.13	2.37		-
	150.0-153.0	3.0	0.19	-	2.14		0.006
	154.7-156.7	2.0	0.91	0.30	4.63	0.15	0.095
	166.8-167.8	1.0	. —	-	1.52		
FW89-61	028.9-029.4	0.5	0.74	0.20	8.60	0.05	-
	130.5-132.5	2.0	0.44	-	4.32	0.05	-
· in	01130.5-131.5	1.0	0.69	-	7.40	0.05	-
- - - - - - - - - - 62	074.5-075.5	1.0	0.30	-	3.30	0.03	-
	123.5-128.5	5.0	1.14	2.05	4.00	0.04	0.030
in	01123.5-124.5	1.0	0.88	0.59	10.50	0.07	0.043
an	d 126.5-128.5	2.0	2.01	4.07	3.13	0.05	0.043
	160.2-168.2	8.0	0.19	-	2.69	0.03	0.010
in	cl160.2-164.2	4.0	0.37	-	3.99	0.06	0.020
in	01161.2-163.2	2.0	0.47	-	5.77	0.08	0.033

1	E	A	S	T	Z	0	N	E
---	---	---	---	---	---	---	---	---

¥1

HOLE	DEPTH (m)	WIDTH (m)	Ag (oz/ton)	РЬ (%)	Zn (%)	Cu (%)	Au (oz/ton)
FW88-12	039.6-042.6	3.0	0.63	-	-	0.62	0.003
FW88-19	063.8-080.8	17.0	0.57		_	0.31	0.020
•	084.8-087.8	3.0	0.11	_	-	0.10	0.045
	093.8-097.8	4.0	0.47	- '		0.41	0.111 -
	102.8-108.8	.6.0	0.65	-	-	0.35	0.027
FW88-21	051.4-055.4	4.0	0.92	-	8.87 -	0.09	-
	081.4-082.4	1.0	-	-	1.88	-	-
	109.4-110.4	1.0	0.22	-	1.29	-	-
FW89-66	077.6-080.2	2.6	0.41	-	-	0.23	0.010
	091.4-112.8	21.4	0.27	-	-	0.17	-
ir	nc193.4-096.4	3.0	0.49	_	1.63	0.36	-
ar	nd101.4-103.5	2.1	0.30	-	-	0.33	0.054
FW89-67	072.5-075.5	3.0	0.22	-	0.41	0.09	-
FW89-68	110.5-120.5	10.0	0.32	-	0.31	0.26	-
ind ind	01114.5-117.5	3.0	0.55	-	0.55	0.57	-
·	156.1-157.1	1.0	0.98	·	7.60 🛩	0.19	-
FW89-69	118.0-121.0	3.0	0.29	-	D.19	0.16	0.005
FW89-70	127.0-140.0	13.0	0.33	_	0.79	0.17	0.005
ind	21131.0-134.0	3.0	0.66		2.97	0.27	0.014
	181.0-183.0	2.0	0.40	-	-	0.27	-
FW89-71	74.3-76.3	2.0	0.44	-	- 、	0.22	0.013
	137.5-142.3	4.8	0.48		-	0.34	-
ind	21140.5-141.5	1.0	1.11	-	-	0.75	· _
FW89-72	72.3-74.3	2.0	0.80	-	5.26	0.41	0.033
	124.0-132.2	8.2	0.21	-	-	0.16	0.004
FW89-73	91.2-96.2	5.0	0.28	-	-	0.20	-
	99.5-102.1	2.6	0.25	-	-	0.25	-
	116.5-117.5	1.0	0.64	-		0.51	-
	119.5-125.1	5.6	0.34	-	-	0.30	0.005
ind	01122.0-124.1	2.1	0.31		-	0.50	0.015

.

•

1

(

