093m/IW Morrison Project

822120

Hearne Hill - Morrison Project Report on Recent Exploration (Draft for the Prospectus)

ų,

Omineca Mining Division Babine Lake Area, B.C.

Prepared for Booker Gold Explorations Limited 10th Floor - 609 West Hastings Street, Vancouver, BC V6B 4W4

By Gordon Weary, M.Sc. - Project Manager/Geologist Erin O'Brien, M.Sc. - Geologist Vancouver, BC

February, 1998

TABLE OF CONTENTS

1. SUMMARY AND CONCLUSION 1.1 Recommendations and Cost Estimates	
3. PROPERTY, LOCATION AND ACCESS	8
4. EXPLORATION HISTORY	11
4.1 Morrison Deposit	11
4.2 Hearne Hill Deposit	14
5. REGIONAL GEOLOGY	
6. PROPERTY GEOLOGY, MINERALIZATION AND ALTERATION	16
6.1 Geological Setting:	16
6.2 Porphyry Copper Mineralization	16
6.3 Breccia Mineralization - Hearne Hill	17
7. RECENT EXPLORATION PROGRAMMES January 1997 to January 1998	
7.1 Geochemistry and Surficial Geology	
7.1.1 Methodology	
7.1.2. Geochemical Surveys	
7.2 Geophysical Surveys - Hearne Hill	
7.3 Trenching and Bedrock Mapping - Hearne Hill	
7.4 Diamond Drilling - Hearne Hill	
7.5 Diamond Drilling - Morrison	29
8. REFERENCES AND BIBLIOGRAPHY	

1. SUMMARY AND CONCLUSIONS

- 1. The Hearne Hill and Morrison claims are located adjacent to each other and are situated 65 km northeast of Smithers, in the Babine Lake district of British Columbia.
- 2. The Hearne Hill property is underlain by volcanic rocks belonging to the Lower to Middle Jurassic Hazelton group, which consists principally of water lain grey lapilli crystal tuffs and grey andesites, with some associated sedimentary rocks. The Morrison property is underlain by Middle to Upper Jurassic sediments of the Ashman Formation from the Bowser Lake group. The country rocks have been intruded by Biotite Feldspar Porphyry (BFP) bodies which belong to the Tertiary (Eocene) Babine Igneous Intrusive Suite.
- 3. Copper and gold mineral deposits in the Babine Lake district are associated with the BFP intrusions.
- 4. The Hearne Hill and Morrison deposits are porphyry copper + gold ± molybdenum ± silver deposits of the general Babine type. At Hearne Hill breccia bodies containing enriched copper-gold mineralization (>0.5% Cu, >0.5 g/t Au) are situated within the porphyry deposit. The Chapman and Bland zones are two distinct areas of the Hearne Hill property known to contain mineralized breccias. At Morrison the porphyry system is disrupted by a 330 m dextral offset along a north-south shear zone. Enriched copper grades (>0.5% Cu) exist near the centres of both the North and South zones.
- 5. In the BFP intrusives and surrounding country rock, mineralization occurs as fracture fillings, as disseminations and within stockwork quartz veinlets. The host rocks contain biotite and quartz sericite alteration. Alteration zoning from fresh unaltered porphyry through propylytic, phyllic and potassic is present within both porphyry deposits.
- 6. The approximate surface dimensions of the Hearne Hill mineralized porphyry deposit (>0.1% Cu) is 700 m by 400 m with a depth of over 300 m. The dimensions of the mineralized Morrison porphyry are approximately 1000 m by 400 m by 300 m. Ogryzlo et al. (1994) reported a resource estimate for the Morrison deposit of 190 million tons of 0.40% Cu and 0.20 g/t Au.
- 7. The breccia bodies at Hearne Hill are situated within and adjacent to the porphyry -copper stockwork. The Chapman and Bland zones are separated by approximately 300 m, have a N 10-30E strike, and appear to dip steeply (70-80°) to the east. The breccias consist of angular clasts of BFP and Hazelton group volcanics with chalcopyrite, pyrite and carbonate infilling the space between the angular clasts.
- 8. Drilling of the Chapman breccia by Noranda Mining and Exploration Inc. in 1989 and 1990, intersected 22.9 m of 2.75% Cu, but Noranda concluded that the breccia was cutout at 70 to 80 m depth by an intrusion of bleached, massive quartz-biotite-feldsparporphyry (QBFP).
- 9. Subsequent drilling of the breccia by David Chapman (1991) indicated that the area of mineralized breccia was more extensive than that indicated by the Noranda drilling. Of the

seven holes drilled by Chapman all intersected mineralized breccia, however core from only one hole was assayed. This hole contained a 50 m section of 2.3% Cu, and several 3 m sections with 0.4 - 2.0 g/t Au, including one section with 14 g/t Au.

- 10. Booker Gold's 1994 and 1995 diamond drilling programmes led to the discovery of the Bland zone, a second breccia body of enriched grade (>0.5% Cu, >0.5 g/t Au) coppergold mineralization. The Bland zone was situated 300 m northeast of areas investigated by previous exploration programmes.
- 11. In 1996 and 1997, Booker Gold was successful in extending the Bland and Chapman zones. Trenching of a copper gold till geochemical anomaly 50 100 m west of the Bland zone revealed over 75 m of mineralized (>0.8% Cu) breccia. Drilling proved that this breccia occurrence was part of the Bland zone and extended the zone to the southwest. Drilling in the vicinity of the Chapman zone produced the highest copper and gold grades to date on the Hearne Hill property (17.75% Cu over 1 m, 11.14g/t Au over 3 m), and extended the zone both at depth and to the southeast. The surface expression of the Bland zone is determined to be approximately 100 m by 75m by a depth of 300 m. The Chapman zone has a surface expression of 75m by 50 m by a depth of 100 m. The source of a large copper-gold geochemical anomaly 100 m 300 m west of the Bland zone remains to be found. Trenching in this area uncovered mineralized boulders within deep overburden. Further exploration drilling in this area is recommended.
- 12. As of January 31, 1998, Booker Gold had drilled 143 diamond drill holes on the Hearne Hill property. In addition, extensive surface trenching, geological mapping, geochemical sampling and geophysical surveys have been performed.
- 13. Booker Gold entered into an agreement with Noranda Mining and Exploration Inc. in October 1997 to conduct exploration on the Morrison property. In order to obtain a 50% option in the Morrison property Booker Gold has agreed to advance the Morrison property towards a bankable feasibility study, with work commitments of \$2,600,000 over a five year period
- 14. Booker Gold's approach to exploration on Hearne Hill, since its acquisition in 1993, has been to explore for further breccia zones and associated high grade mineralization. Booker Gold has been successful in expanding the high grade core of the Hearne Hill deposit and surrounding porphyry stockwork. Booker Gold is using a similar strategy in exploring the Morrison deposit. Higher grade areas within the Morrison deposit will be defined as will potential extensions to the porphyry system.
- 15. Between 1963 and 1973 Noranda drilled 95 diamond drill holes totalling 13,890 m. Sixty-five of the holes were drilled with AEX diameter core and 30 with BQ core. Most holes were directed at 45 degree angles east or west along section lines 60 m apart and were drilled to a maximum of 250 m. Indicated and inferred resources for the Morrison deposit, using a 0.30% Cu cut-off grade, are estimated to total 190 million tonnes of 0.40% Cu and 0.20 g/t Au to a depth of 300 m. An open pit resource developed on the basis of a 0.75:1 waste to ore stripping ratio and a cut-off grade of 0.30% Cu is estimated at 58 million tonnes of 0.41% Cu and 0.21 g/t Au. Gold grades were estimated using a gold-copper

regression equation developed on the basis of 477 pulp composite samples assayed in 1988. The 1988 composite gold grades were significantly lower than composite gold grades obtained in 1967 (.21 g/t Au versus 0.35 g/t Au; Ogryzlo et al. 1994). Booker Gold's objectives for the drill program on the Morrison property is to explore and define high grade (>0.8% Cu) zones, determine gold, silver, and molybdenum grades, and increase potential mineable reserves.

- 16. As of January 31, 1998 Booker Gold drilled 3 diamond drill holes and conducted a till geochemical survey on the Morrison property. In addition, Booker Gold begun a detailed examination and review of all Noranda's data from the Morrison property. Road access to the property was re-established and existing trenches and drill collars were re-located.
- 17. The initial phase of Booker Gold's Morrison drill program was in the Northern Zone of the Morrison deposit. Higher grade mineralization was concentrated in the upper 96.6 m of drill core in hole 98-MO-1. From 3.1 m to 96.6 m 98-MO-1 averaged 0.72% Cu, 0.53 g/t Au, and included an 8.1 m intersection of 1.03% Cu, 0.96 g/t Au and 3.47 g/t Ag. Drill Hole 98-MO-2 included 45.9 m of 0.81% Cu and 0.48 g/t Au. Results to date from the first phase of drilling on the Morrison property are very encouraging for the Hearne Hill Morrison project.

1.1 Recommendations and Cost Estimates

Recommendations for future exploration and work on the Hearne Hill property are as follows:

- 1) Exploration drilling of trench targets excavated 300 m west of the Bland Zone.
- 2) Drilling of selected holes near high-grade zones to provide complete coverage for a geostatistical block model.
- 3) Development of a geological block model taking into consideration varying specific gravities of different rock types.
- 4) Complete data base management and quality control review of all assay data for a bankable resource estimate.

Recommendations for future exploration and work on the **Morrison property** are as follows:

- 1) Drill a select number of holes on the Southern Zone to assess accuracy of Noranda's data, and potential for additional high-grade mineralization.
- 2) Produce a geological map and commence a detailed trenching program
- 3) Use information from the first phase of Booker Gold's drilling program and Noranda's data, to implement a strategic drill program to delineate potential highgrade areas within the deposit.
- 4) Statistically compare new data with old data and if comparable develop a geological block model. From the model, locate areas where additional drilling is necessary. If the results from the drilling are favourable but not statistically comparable to older data, implement plans for re-drilling of the deposit.

5) Examine geochemical anomalies from Booker Gold's fall 1997 geochemical survey of the Morrison property to determine potential new drill and trench targets.

Cost estimates are as follows:

*** ****11

Hearne Hill		
Drilling (5000 m, NQ)	, camp costs etc.,	\$750,000
Block modelling, data	base management, etc.,	<u>50,000</u>
Total Hearne Hill		\$800,000
Morrison		
Drilling (15,000 m, N	thin-wall), camp costs, etc.,	2,000,000
Trenching, geological	etc.,	<u>200,000</u>
Total Morrison		\$2,200,000
Total Both Properties		\$3,000,000
Unallocated Working	Capital	\$1,500,000
Total Budget \$4,5	500,000	

2. INTRODUCTION

This report describes the Hearne Hill and Morrison properties. Results from exploration in 1996 and 1997 on the Hearne Hill property extended the core of the Hearne Hill copper-gold porphyry deposit and identified new copper-gold occurrences. Exploration in 1996 and 1997 included drilling of 109 diamond drill holes, extensive geochemical and geophysical surveys, and surface trenching. Drilling of geochemical and geophysical targets suggest that sulphide mineralization extends along a northeast trend with a partial pyrite halo surrounding a chalcopyrite enriched core. Results from the till geochemical sampling survey revealed strong copper and gold anomalies in the area of the high grade core (Chapman and Bland Zones) and separate anomalies to the west. Drilling and trenching will continue to the west to determine the source of the geochemistry anomalies.

Results from drilling and exploration by Booker Gold on Hearne Hill in 1994 and 1995 are described by Sampson (1996). Results from drilling in the 1960's and 1970's and exploration by Noranda on the Morrison deposit, prior to Booker Gold's acquisition in October 1997, are described by Niosi (1988).

:

3. PROPERTY, LOCATION AND ACCESS

The properties are situated as follows:

Hearne Hill Latitude 55° 11' N	Longitude 126 ⁰ 16' W	Average Elevation 3600 ft. (1100 m)	NTS 93-M-1W
Morrison Latitude 55° 11' N	t Longitude 126º 18' W	Average Elevation 2800 ft. (850 m)	NTS 93-M-1W

The Hearne Hill property consists of the following claims:

Claim	Tenure No.	Units	Expire Date (All claims expire in 1999, unless indicated)
CUB 200	341509	20	October 13 (2002)
Copper 100	341512	20	October 13
Copper 200	341511	20	October 13
Hearne 1	242812	15	October 7
Hearne 2	242813	15	October 7
Hearne 3	347037	20	June 20
Hearne 4	347038	12	June 20
Hearne 5	347039	18	June 18
Hearne 6	347040	12	June 20
Hearne 7	347041	18	June 20
Hearne 8	347042	9	June 19
Hearne 9	347043	15	June 19
Hearne 10	347046	1	June 20
Hearne 11	347047	1	June 20
Hearne 12	348735	1	July 25
Hearne 13	348736	1	July 25
CUB 100	341513	10	October 13
BB 1	341551	20	October 19
BB 2	341552	20	October 24
BB 3	341553	20	October 19
BB 4	341554	20	October 24
CUB 300	341510	20	October 13

Hearne Hill - Morrison: Report on Recent Exploration

÷,

÷

The Morrison property consists of the following claims:

Claim	Tenure No.	Units	Expire Date (All claims expire in July 1998, unless indicated)
ALVA 1	243863	1	
ALVA 2	243864	1	
DULL AXE 1	244266	1	
DULL AXE 2	244267	1	
DYKE 1	244314	1	
DYKE 2	244315	1	
DYKE 3	244316	1	
DYKE 4	244317	1	
DYKE 5	244318	1	
DYKE 6	244319	1	
DYKE 7	244320	1	
ELLEN 1	243847	1	
ELLEN 2	243848	1	
ELLEN 3	243849	1	
ELLEN 3 FR	243879	1	
ELLEN 4	243850	1	
ELLEN 5	243851	1	
ELLEN 6	243852	1	
ELLEN 7	243853	1	
ELLEN 8	243854	1	
ELLEN 9	243855	1	
ELLEN 10	243856	1	
ELLEN 11	243857	1	
ELLEN 12	243858	1	
ELLEN 13	243859	1	
ELLEN 14	243860	1	
ELLEN 15	243861	1	
ELLEN 16	243862	1	
FRANCES 25	244011	1	

FRANCES 27	244012	1	
PATCH	244326	1	·
SHE 13	244278	1	
SHE 14	244279	1	

The Hearne Hill property consists of 308 metric claim units and Morrison consists of 33 claim units. The properties are located along the flank of Hearne Hill, east of Morrison Lake, approximately 65 km northeast of Smithers in central British Columbia.

Access to the properties is by a series of main haulage logging roads. The main access route is from Smithers to Topley Landing, then by Northwood barge across Babine Lake and via the Jinx and Hagan Forest Service roads to within 4 km of the properties. A four-wheel drive exploration road to the Hearne Hill property and a forestry road to the Morrison property intersect the Hagan road at Kilometre 40, approximately 20 km north of the Bell Mine site.

The properties vary in elevation from a low of 734 m (2405 ft.) on Morrison Creek on the west side to a high point of 1350 m (4430 ft.) on Hearne Hill. Hearne Hill forms part of a ridge trending southeast caused by block faulting in the area. The western slope of Hearne Hill is quite steep and is drained by several small creeks westward into Morrison Lake.

١

4. **EXPLORATION HISTORY**

The Babine Lake area has been actively explored since the 1920's. In the 1950's and 1960's, British Columbia experienced an exploration boom for porphyry-copper deposits. The Babine Lake area was intensely explored by programmes of prospecting, geophysics and geochemistry which resulted in the discovery of many porphyry-copper deposits, two of which - Granisle and Bell - were subsequently placed into production. The Granisle Mine was discovered by Granby (later Zapata-Granby, and eventually sold to Noranda as part of the Bell Copper Division) and started production in 1955 at 5000 TPD. Before closure in 1982, production was at 14,000 TPD. The Bell Mine of Noranda Minerals was commissioned between 1972 and 1992. Production began at 10,000 TPD and was increased to 17,000 TPD by 1980. Granisle and Bell produced 130,000,000 tonnes with average recovered grades of 0.40% Cu, 0.15 g/t Au and 0.75 g/t Ag (Carter et al., 1995).

4.1 Morrison Deposit

The Morrison deposit was discovered in 1962 from a regional geochemical stream sediment survey. The deposit was delineated between 1963 and 1973 when Noranda drilled 95 diamond drill holes totalling 13,890 m. Sixty-five of the holes were drilled with AEX core and 30 with BQ. Most holes were directed at 45 degree angles east or west along section lines 60 m apart and were drilled to a maximum of 250 m. Indicated and inferred resources for the Morrison deposit, using a 0.30% Cu cutoff grade, are estimated to total 190 million tonnes of 0.40% Cu and 0.20 g/t Au to a depth of 300 m. An open pit resource developed on the basis of a 0.75:1 waste to ore stripping ratio and a cutoff grade of 0.30% Cu is estimated at 58 million tonnes of 0.41% Cu and 0.21 g/t Au. It is noteworthy that gold grades were estimated using a gold-copper regression equation developed on the basis of 477 pulp composite samples assayed in 1988. The 1988 composite gold grades were significantly lower than composite gold grades obtained in 1967 (0.21 g/t Au versus 0.35 g/t Au; Ogryzlo et al. 1994).

Hole	Ft	Cu above 0.5%	Aprx. grade	Au Assay	Additional notes
1	336	330'	0.50%	no	Ends in 0.6%
2	409	170'	0.35	no	Spotty mineralization, ends in .43%
3	150	no	0.15	no	
4	256	10'	0.1	no	improves at depth
5	461	25'	0.15	no	assays are mainly tr. to 280', 280-350' is much better grades.
6	602	25'	0.075	no	mainly tr. as above, spotty mineralization
7	202	no	0.1	no	very poor recovery, hole stopped early b/c of recovery problems.
8	178	no	0	no	only 3 sample intervals taken. Barren or no assays taken??
9	92	no	0.05	no	Few sample intervals. First interval likely not assayed?
10	400	no	0.03	no	Low grade
11	401	no	0.07	no	
12	400	no	0.07	no	
13	77	no	0.01	no	
14	404	20'	0.25	yes	Grade best b/w 60-160
15	204	10'	0.25	yes	finishes well

Morrison Drill Hole Summary

Hearne Hill - Morrison: Report on Recent Exploration

Hole	Ft	Cu above 0.5%	Aprx. grade	Au Assav	Additional notes
16	204	no	0.1	no	
17	300	no	0.15	no	•
18	654	240'	0.5+	yes	Up to 1.5%
19	300	80'	0.4	yes	80-250' best grade. EOH in .38%
20	321	270'	0.65%	yes	excellent hole, ends in 0.6%
21	745	250'	0.45%	partially	good hole, high grade ends at 450'
22	798	40'	.152	no	grade begins at 500'
23	502	60'	0.3	yes	spotty up to 380', good grade to 500'
24	149	no	0.37	yes	short hole ends in .33%
25	750	100'	0.35	partial	best b/w 310-450 and spotty thereafter. EOH is in .41%
26	698	70'	.4% until 600	partial	top 87 feet is C/I (o/b?) mod to very good grades to 580'
27	172	70'	0.50%	yes	good hole, ends in 0.6%
28	808	300'	0.50%	yes	very good hole, ends in .56%
29	700	450	.2% to 260,	yes	top of hole was low grade but last 450' are high grade. Ends in 0.62%
30	407	40'	0.33	yes	best interval b/w 100-180'
31	402	no	0.11	no	consistently low
32	405	10'	0.28	yes	
33	407	100'	0.37	yes	spotty
34	400	20	0.25	partial	
35	390	no	0.13	yes	top 70' are the best
36	395	60'	0.4	yes	ends in .31
37	798	420'	0.55	yes	good grades up to 700'
38	678	40'	0.3	yes	
39	347	no	0.15	?	low grade
40	218	no	0.11	no	
41	514	no	0.07	no	
42	620	50'	0.39	no	last 70' averages 0.5%.
43	400	no	0.035	no	barren
44	400	no	0.05	no	barren
45	507	no	0.075	no	large sample intervals
46	500	360'	0.55	no	EOH in .55%, VERTICAL
47	798	150'	0.33	no	grade begins at 430'. Low grade above.
48	400	90'	0.36	no	best grade 170-350'
49	137	no	0.22	no	
50	417	no	0.2	no	grade crudely inc. w/ depth
51	402	10'	0.3	?	better grades at depth
52	400	30'	0.42	?	best grades at top and bottom
53	800	60'	0.35	no	spotty
54	605	10' at 590'	0.25	no	One sample above 0.4%
55	600	80'	0.37	no	mineralization is geology-controlled
56	598	250'	0.45	no	very good intercepts from 320 on. EOH in .5%

. . .

÷,

÷

Hole	Ft	Cu above 0.5%	Aprx. grade	Au Assav	Additional notes
57	790	150'	0.45	no	several mineralized intervals
58	800	140'	0.35	no	top 320' avg .15. EOH 0.51%
59	785	50'	0.33	no	spotty min.
60	789	50'	0.3	no	higher grades 50-220'
61	800	30'	0.3	no	low grade (0.051) to 320', thereafter, 0.4+
62	500	10'	0.06	no	low grade throughout
63	793	20'	0.3	no	slightly better grades at 500-700'.
64	817	280'	0.5	yes	barren until 400', thereafter high grades to 0.97%, EOH in .55%. First BQ core size
65	786	160'	0.4	yes	very good b/w 340-510'; low grade at 600' (0.15%)
66	327	no	0.01	no	low grade but few sample intervals.
67	573	120'	0.35	yes	good grades b/w 360 to end. 0.15% 45' to 360'.
68	877	150'	0.4	yes	spotty mineralization
69	813	30'	0.3	yes	barren b/w 22-330', spotty mineralization.
70	735	170'	0.45	yes	rel. low grade to 240' (.12). Up to .95%.EOH in .42%
71	151	no	0.07	no	low grade
72	564	20'	0.18	yes	consistently low
73	417	no	0.14	no	same
74	505	no	0.1	no	same
75	400	400'	0.4	yes	High grade intercept of 1.15% 50-60'. Good grades from 220-EOH (.5%)
76	327	70'	0.4	yes	good grades 50-180'.
77	342	140'	0.45	yes	good grades throughout although grade fails at 290'
78	246	no	0.18	yes	consistently low
79	494	no	0.1	yes	same
80	902	210'	0.35	yes	spotty mineralization. Grades up to 1.04%.
81	347	10	0.33	no	
82	295	0	0.05	no	barren
83	550	40'	0.38	no	consistent
84	600	70'	0.3	no	marginal increase of grade w/ depth
85	603	130'	0.27	no	very good intercept b/w 250-360'
86	606	70'	0.33	no	good intercept 520-580'. Up to .95%
87	402	30'	0.35	no	good b/w 320-390'.
88	401	120'	0.4	no	good b/w 140-320'.
89	240	0	0.02	no	barren
90	109	N/A	N/A	N/A	all overburden?
91	476	30'	0.15	no	heavy o/b to 76', spotty, inconsistent min.
92	700	50'	0.3	no	spotty mineralization
93	397	0	0.07	no	barren
94	394	0	0.12	no	consistently low
95	346	0	0.15	no	same

4.2 Hearne Hill Deposit

Copper mineralization on Hearne Hill was first discovered by Trojan Consolidated Mines and Buttle Lake Mining in 1967. Trenching of magnetic and geochemical highs unveiled mineralized boulders of volcanic breccia near the present day location of the Chapman zone.

The Hearne Hill property was optioned by Texas Gulf Sulphur Company whose exploration programmes included induced polarisation (I.P.), magnetometer and diamond drilling (12 holes totalling approx. 6,000 ft. (1942 m.) in 1968. The drill programme indicated presence of a Babine style porphyry-copper deposit on the Hearne Hill property, similar to the Bell and Granisle deposits. Texas Gulf calculated the overall grade of the porphyry deposit at 0.2% copper, however drilling apparently failed to intersect the mineralized breccia.

In 1968 Hearne Hill was optioned by Canadian Superior Exploration, who completed geological mapping, induced polarisation, magnetometer and geochemical sampling surveys, followed by some preliminary diamond drilling (Kahlert and Fawley, 1968). Canadian Superior followed this with a programme of percussion drilling in 1969 (Kahlert, 1969).

The property then lay dormant until 1989 when it was acquired by Dave Chapman. Chapman rekindled interest in the property by carrying out a limited programme of trenching on the old showings with a skidder mounted backhoe.

In July 1989 Noranda Minerals and Bell Mine (a Noranda Mines subsidiary) optioned the property. A diamond drill hole program consisting of 6 holes totalling 1537 ft. (468 m.) was completed. The drilling established that the overall trend of the breccia deposit is 010° to 020° with a 70-80[°] dip to the east.

In 1990 Noranda drilled a further 5 NQ size holes, totalling 2,807 ft. (856 m). As reported by Ogryzlo (January 1991) hole H90-3 was the only hole to intersect the full width of the breccia. Mineralization was intersected over a width of 80' (24.4 m) with an average grade of 0.67% Cu, 0.05% Mo and 0.16 g/t Au. Holes H90-1 and H90-5 also intersected sections of the mineralized breccia. Much of the target area, however, was largely occupied by post-mineral intrusions of biotite-feldspar-porphyry (BFP) including a massive unit of bleached white BFP, similar to the post-mineral quartz-feldspar-porphyry (QFP) body that has replaced approximately one third of the Bell ore body.

In 1991, David Chapman drilled 7 diamond holes, totalling approximately 550 m in the breccia zone. All holes intersected intensely mineralized volcanic breccia but only hole 91-2 was assayed. Hole 91-2 intersected 50.0 m assaying 2.3% Cu, which included a 10 foot section that assayed 14 g/t gold.

Booker Gold optioned the property in late 1992 to explore for other mineralized breccia bodies. Booker Gold's initial exploration involved trenching and percussion drilling, followed in 1994, 1995 and 1996 by diamond drilling programmes. Extensive geochemical and geophysical surveys were also carried out in 1995 and 1996 (Sampson, 1996; Sampson and Weary 1997).

5. **REGIONAL GEOLOGY**

The Hearne Hill and Morrison deposits are situated on the northern edge of the Skeena Arch in a region which is underlain by volcanic and epiclastic rocks ranging in age from Lower Jurassic (Telkwa) formation to Lower Cretaceous (Skeena) Group. This sequence of rocks has been cut by a northwest trending series of faults that have created a long linear sequence of horsts and grabens. The rocks have been intruded by a variety of intermediate to felsic stocks, plugs and dykes of Eocene age (Richards, 1990).

During the Tertiary-Eocene period, BFP plugs and stocks of the Babine Igneous Suite were emplaced along major faults in a continental magmatic arc. Two ore bodies (Bell and Granisle) and numerous sub-economic deposits occur as porphyry-copper deposits which are temporally and spatially associated with the Babine Igneous Suite intrusions (Carson and Jambour, 1973). The Babine Igneous Suite is a high potassium, calcalkaline suite which shows some trace elements normally associated with alkaline porphyry copper deposits rather than calcalkaline.

An updated and modified regional geology map has been compiled by Booker Gold based on outcrop information and recent mapping by the British Columbia Geological Survey (c.f. MacIntyre et al., 1997).

6. PROPERTY GEOLOGY, MINERALIZATION AND ALTERATION

The following description of geological setting, mineralization and alteration is based on Ogryzlo (1991) and field work done by Booker Gold from 1993 to 1997.

6.1 Geological Setting:

Hearne Hill is underlain by volcanic rocks of the lower to Middle Jurassic Hazelton Group (Richards, 1990). The volcanic rocks on the property belong to the submarine Kotsine facies of the Sinemurian Telkwa formation (Tipper and Richards, 1976). The volcanic rocks are characterised by waterlain grey lapilli-crystal tuffs and grey andesite. Morrison is underlain by sediments and meta-sediments of the Middle to Upper -Jurassic Bowser Lake Group, consisting mostly of siltstone, argillite and minor conglomerate (Ogryzlo et al., 1994).

The country rocks at both properties have been intruded by porphyritic rocks of the Eocene Babine igneous suite. Mapping by Booker Gold on the Hearne Hill property indicates that the Eocene biotite-feldspar porphyry intrusives form a series of north-easterly trending dykes. Ogryzlo (1990) concluded that the intrusions on Hearne Hill are multiphase, with more than one post mineral intrusion of BFP. The intrusives are diorite or quartz diorite composition. The Morrison deposit has a well defined intrusive centre of BFP (Carson and Jambour, 1976), similar to the centre noted at the Bell Mine (Carson et al., 1976). Porphyry copper related mineralization with in the BFP consists primarily of disseminated chalcopyrite with minor chalcocite and bornite filling fractures.

6.2 • Porphyry Copper Mineralization

Chalcopyrite, bornite and molybdenite occur as fracture fillings and disseminations in the biotite feldspar porphyry and surrounding wallrocks of the Hearne Hill and Morrison deposits. Mineralization is due to large porphyry systems of the Cu-Mo type.

At Hearne Hill, many of the biotite feldspar porphyry units are intermineral or post mineral in age. The erratic nature of the copper distribution is caused by these late stage intrusions. The volcanic rocks, in contrast with late stage BFP, are invariably higher in grade. The Hazleton volcanics were deposited before any mineralizing event, and have been subjected to all stages of mineralization. When the distribution of copper in the volcanics alone is examined, it appears that grades are increasing to the south and west of the Chapman breccia zone.

Morrison is a strongly zoned classic porphyry copper-gold deposit (Ogryzlo et al., 1994), similar to the Bell Mine deposit. Mineralization of the Morrison porphyry has been well described by Carson and Jambor (1974, 1976). Zoning is symmetrical, with shells of copper sulphides and pyrite distributed concentrically within and around a zone of intense hydrothermal biotite alteration. The symmetry of the deposit has been

disrupted by a dextral transcurrent shear of unknown vertical displacement and a 330 m horizontal translation, dividing the deposit into north and south zones.

6.3 Breccia Mineralization - Hearne Hill

At present, there are two known bodies of mineralized breccia. The southern body (the Chapman zone) has been known for several years and was extensively studied by Ogryzlo. The northern body (the Bland zone) was discovered by Booker Gold during the 1995 drill programme.

The Chapman and Bland breccia zones are elongated along a principal fracture system striking 010° to 020°. These are dilational zones of brecciation which are surrounded by areas of fracturing which carry enriched copper and gold mineralization. The breccia clasts are lithologically identical to the enclosing wallrocks. Sericitized and bleached biotite feldspar porphyry clasts with grey andesite and tuffaceous felsic clasts form the bulk of both breccia zones. Many clasts reveal pre-breccia mineralization consisting of sulphide and quartz sulphide veinlets.

The porosity of the Chapman breccia before sulphide and carbonate cementation would have been close to the theoretical maximum of around 25%. Chalcopyrite, pyrite and marcasite fill angular interstices between the breccia clasts with later cementation provided by calcite, dolomite and minor chalcedony. Porosity remains between 5% and 8%. There is little evidence of milling or attrition of clasts. Rock flour is present between clasts but is a minor constituent. Fluids associated with the breccia mineralization were dilute epithermal chloride brines. In the breccia, fluid inclusions that are trapped in the dolomite cement homogenize at a mean temperature of 172.5°C (in a range of between 83°C and 240°C) with salinities ranging from 2% to 10% NaCl equivalent (Ogryzlo et al., 1995). Copper and gold grades are enriched in the breccias relative to the stockwork mineralization and average 0.7% Cu and 0.5g/t Au. However, values up to 9.5% Cu and 11.1 g/t Au (over 3 m) have been obtained. Such values are rare in the stockwork deposits of the Babine region.

The breccia zones appear to have gradational contacts with their host rocks; the brecciation grades into strongly fractured host rock on both foot and hanging wall sides of each of the Chapman and Bland Zones. These areas of intense fracturing contain grades of copper and gold similar to those in the breccia zones themselves which gradually diminish over a distance of 10-50 m laterally away from each breccia zone. The surface expression of the Bland Zone is determined to be approximately 100 m by 75 m by a depth of 300 m. The Chapman Zone has a surface expression of 75 m by 50 m by a depth of 100 m.

7. **RECENT EXPLORATION PROGRAMMES** January 1997 to January 1998

7.1 Geochemistry and Surficial Geology

7.1.1 Methodology

At each site, deep C-horizon samples were obtained by shovel and placed in plastic bags. Samples were sent to ACME laboratories in Vancouver to be split and sieved for thirty-two element ICP (plus gold) analysis of the -230 mesh fraction. Geochemical results for each sample and sample attributes are published in O'Brien and Weary (1998). Terrain morphology of the sample location and sedimentological characteristics of the sample medium were used to identify the surficial geology at each sample site as either a blanket (> 1 m thick) or veneer (< 1 m thick) of basal till, remobilized till or colluvium. Basal till is a matrix supported diamicton that is transported and deposited directly from glacier ice. Ice flow on the Hearne Hill and Morrison properties during the glacial maximum was towards the south - south-east (150-160°). Colluvium appears as weathered, broken-up bedrock transported down slope. The slope gradient on Hearne Hill is between 10 and 25 degrees, toward the west - south-west (250-260°).

7.1.2. Geochemical Surveys

A surficial geochemical program was commenced in 1996 on Hearne Hill and in 1997 on Morrison in order to obtain property and detailed- scale geochemical coverage. Results are still pending for the Morrison survey. The 1996 property-scale Hearne Hill survey was carried-out between 8500 S - 9500 W and 12000 S - 11000 W lines (1 sample per 100 m). The program was very successful at delineating the porphyry system. A second survey 9800 S - 10000 W and 10200 S - 10400 W was undertaken on a detailed level (one sample per 25 m) to delineate areas with potential for hosting high-grade mineralization. Three zones were delineated with multi-element, multi-site geochemistry: the area near the Bland zone, the area near the Chapman zone and a third area, down-slope and up-ice of the Bland zone. The first two geochemical anomalies resulted in trenching and drilling of these anomalies and expanding and defining the Bland and Chapman zones. The third zone was trenched and partially drilled and was successful in uncovering mineralization. However, high-grade mineralization, similar to the other breccia bodies has not been identified. This area will continue to be explored in 1998.

7.1.2.1 Property-scale geochemistry - Hearne Hill

In 1997, 404 samples were collected in the property-scale geochemical program (one sample per 100 m). The program consisted of expanding the 1996 grid to the west from 11100 W to 11600 W and 11000 S to 8500 S. The grid was also expanded to the east from 9600 W to 9000 W and 10500 S to 9000 S. Detailed follow-up sampling was also completed over two additional property scale geochemical anomalies. The property-scale plots of Cu and Au are published in O'Brien and Weary (1998). Several new geochemical anomalies were identified by

this geochemical survey. The first anomaly is between 11800 – 11950 W and centered near 9475 S. Sample 97-R-49 assayed 1166 ppm Cu with 5 ppb Au. This is a significant Cu value, but the Au value is background level. Follow-up sampling in the same pit was aimed to reproduce the Cu value. Sample 97-R-146, collected in the same pit assayed 974 ppm Cu and 4 ppb Au. However, sample 97-R-147 was sampled one metre to the north of the anomalous samples. This sample assayed only 83 ppm Cu and 2 ppb Au. These results suggest the first two anomalies are likely not till geochemical anomalies but rather the result of a local Cu-enrichment, possibly due to mineralized rock in the pit. Follow-up sampling in the area uncovered more Cu geochemical anomalies without Au (samples 97-R-148 to 156 and 166 to 172). Prospecting and mapping in the area of the Cu anomaly uncovered a BFP intrusive dyke. Copper anomalies can be attributed to porphyry-style mineralization associated with this dyke. The amount of mineralization is not known, but based on the outcrop and geochemical information, it is thought to be relatively small.

The second significant geochemical anomaly occurs on the western margin of the Booker Gold claims. Copper and gold geochemical anomalies occur south of the 9300 line and on the 11500 and 11600 west lines. The most likely source for these anomalies is the Morrison property. The Morrison deposit lies 300-1000 m up-ice (north-west) of these geochemical anomalies.

A third, small anomaly occurs on the 11200 W line between 10800 and 11000 S. From north to south, the samples are 97-R-9 to 11 with Cu values of 200, 645 and 340 and Au values of 7,15 and 2 ppb, respectively. The most northern sample is classified as basal till occurring on slightly sloping ground in a well-drained area. The second sample is located on flat land, but in well-drained sediments and the third sample occurs in wet, flat topography in organic-rich glacio-lacustrine sediments. Since the sample medium was not consistent, it would be difficult to speculate on the origin of this geochemical anomaly, but it would warrant detailed follow-up sampling in 1998.

The fourth anomalous area occurs sporadically on the eastern edge of the claims and can be attributed to down-ice dispersion from the porphyry and Bland and Chapman zones.

7.1.2.2 - Detailed-scale geochemistry - Hearne Hill

Also in 1997, 89 detailed samples (one per 100 m) were collected on an expanded grid from the 1996 survey. The purpose was to better define the 1996 geochemical anomalies by infilling sites that were not previously sampled. The detailed-scale plots for copper and gold are published in O'Brien and Weary (1998). The copper plot has very anomalous samples on the centre of the grid between the 10275 –9975 N and 10400 W to 10000 W. Values in this area are up to 5621 ppm Cu and average about 1000 ppm Cu. Values to the east and west of the central anomaly are much less anomalous, on the order of 150 ppm. The gold values have coincident anomalies as the copper plot. However, gold values are not

as anomalous as Cu values, relative to the 1996 database. Values in the central anomaly range from background levels (2 ppb) to moderately anomalous values (maximum 122 ppb).

7.2 Geophysical Surveys - Hearne Hill

In 1997, Geotronics Inc. surveyed 8 km of IP lines on the Hearne Hill property. The lines extended and expanded the grid to west. Plan maps of the apparent chargeability (I.P.) and apparent resisitivity are included in the back pocket (Map 3 and Map 4). Instrumentation included an IRIS (BRGM) IP-6 receiver and a PHOENIX MODEL IPT-1, 2.5 kWatt Transmitter/Generator. The I.P. survey parameters included a time domain survey mode, a dipole-dipole array, a dipole length of 30 m, a dipole separation of n=1 to n=6, a delay time of 240 milliseconds, an integration time of 1600 milliseconds, and a 8 second square wave charge cycle.

The north-south geophysical survey indicates a strong north-east trend in the chargeability consistent with the strike direction of local faults in the area. A low resistivity response outlines the area of the porphyry system's pyrite halo. The pyrite halo is a near-circular feature with a diameter of approximately 750 m.

The Bland zone is located over a chargeability high - resistivity low. Drilling of a large chargeability high - resistivity low target to the south revealed massive pyrite. Interpretation of the geophysics suggests that the north-east oriented chargeability highs both to the south and north of the Bland zone reflect a pyrite halo surrounding the porphyry system. Chargeability highs located along strike of the Chapman - Bland zones and within the pyrite halo may represent areas of enriched chalcopyrite mineralization.

In addition to the property-based survey, a detailed east-west IP/ resistivity survey was completed over the breccia bodies. Terrain-adjusted pseudosections and self potential maps were created. This detailed IP work is currently being interpreted and inverted IP sections will be used to provide a geophysical fingerprint of the breccia bodies. This can then be used to explore for other breccia bodies on the Hearne Hill property.

7.3 Trenching and Bedrock Mapping - Hearne Hill

A major trenching program, using an excavator was undertaken in 1997. Trench locations and sample sites are published in O'Brien and Weary (1998). Trenches 97-8 to 97-69 were completed for a total length of 6000 m, of which 4300 m reached bedrock. Due to the nature of the bedrock, the excavator was often able to dig up to two meters in fractured or oxidised bedrock. This facilitated mapping and sampling programs. The bedrock geology of the trenches were mapped and sampled, typically every 5 to 10 m. The geology and assays were entered into a spreadsheet format, and are now in digital format (O'Brien and Weary, 1998). Approximately 450 grab (rock) samples were collected, shipped to Vancouver and analysed for 30 element ICP (plus Au) by Acme Analytical Laboratories.

The trenching program was concentrated in areas with the highest potential for uncovering mineralization. In addition, access roads were also trenched to better define the geology of the porphyry system and its relationship with the country rocks.

The porphyritic system is composed of a series of dykes of BFP from the Eocene age Babine intrusions. A massive swarm of these dykes is centred on the 10250 W line and 10 000 S line. The main central dyke swarm is approximately 350 x 300 m. Numerous offsets and isolated dykes occur as a halo around the east and south portions of the central body. Limited outcrop was available for the western margin. The high-grade breccia bodies occur on the eastern edge and south-eastern edges of the porphyry. Since the porphyry system is locally discontinuous, sections of andesite and quartz diorite also outcrop in the dyke swarm. The country rock, which hosts most of the BFP intrusions, consists of Hazleton Group andesite with minor sediments. North of the porphyry system, Cretaceous-Tertiary quartz diorite occurs. Finally, the only marker unit on the property is a porphyritic mafic dyke, which strikes roughly northeast and has an inferred thickness of several metres.

7.4 Diamond Drilling - Hearne Hill

Drilling from January 1996 through to January 1998, resulted in a total of 110 diamond drill holes numbered DDH 96-33 - DDH 97-143. Detailed logs and assay results for these holes are available upon request at Booker Gold Explorations Ltd., Vancouver office. Drill hole logs for holes drilled in 1994 and 1995 are included in the report by Sampson (1996).

Drill Hole	Coordinates		Azimuth	Dip	Hole	Notable	ntercepts				
	West	South		Angle	Length	Interval(r	n)	Length		Cu	Au
	(m)	(m)	(deg.)	(deg.)	(m)	From	То	(m)	(ft)	(%)	(g/t)
94-01	10077	10114	350	-45	96.3	6.4	50.6	44.2	145	0.22	
	10077					68.8	70.4	1.7	6	0.34	2.06
94-02	10097	10074		-90	96.9	5.5	58.8	39.6	130	0.32	
94-03	10146	9999	30	-62	96.9						
94-04	10183	9982		-90	75.6						
94-05	10030	10092	332	-47	217.6	92.9	106.8	13.9	46	0.33	0.17
						101.1	102.7	1.6	5	0.92	0.41
	•					128.0	136.2	8.2	27	0.41	0.27
94-06	10013	10142	335	-46	214.6						
94-07	10004	10063	340	-50	215.4	125.3	214.0	88.7	291	0.49	0.21
						170.4	187.1	16.7	55	0.93	0.28

Summary of Booker Gold Drilling on Hearne Hill

Drill Hole	Coordina	68	Azimuth	Dip	Hole	Notable Intercepts					
	Weet	South		Angle	Length	interval(n	n)	Lenath		Cu	Au
	(m)	(m)	(deg)	(deg)	(m)	From	To	(m)	(ff)	(%)	(a/t)
94.09	0005	0063	340		198.4	•				(//)	
34-00	3990	3300		~~~	130.4						
94-09	10085	10034	342	-50	197.5	111.2	128.9	17.7	58	0.28	0.12
94-10	10101	10021	50	-50	110.0	47.5	71.9	24.4	80	0.28	0.10
04 44	40020	10061	255	-52	214.0	0.0	214.0	214.0	702	0.28	0.08
34-11	10039	10001	555	~~~	214.0	188.4	214.0	25.6	84	0.65	0.00
						100.4	214.0	20.0	••	0.00	0.10
94-12	10026	9999	340	-62	209.4	0.0	209.4	209.4	687	0.40	0.14
						126.5	209.4	82.9	272	0.64	0.23
94-13	10022	10009		-90	240.2	208.2	224.9	16.8	55	0.47	0.24
						235.6	240.2	4.6	15	0.37	0.17
											• • •
95-14	10041	9966		-90	301.1	0.0	304.2	304.2	998	0.49	0.18
						121.3	212.0	91.4	300	1.07	0.30
						167.0	197.5	30.5 10.8	65	2.32	1 12
						107	100.0	10.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	v	1.12
95-15	10041	9966	340	-60	179.2	0.0	179.2	179.2	588	0.47	0.17
			• • •			63.4	93.9	30.5	100	1.17	0.38
95-16	10054	9921		-90	304.2	0.0	304.2	304.2	998	0.75	0.32
						0.0	156.4	156.4	513	1.02	0.43
						0.0	61.0	61.0	200	1.36	0.56
						101.5	132.0	30.5	100	1.93	0.83
						303.9	304.2	0.3	. 1	0.73	0.23
95-17	10054	9921	340	-60	32.9	0.0	32.9	32.9	108	0.19	0.07
95-18	10054	9921	340	-70	304.2	0.0	304.2	304.2	998	0.16	0.06
95-19	10054	9921	110	-60	303.9					N/A	N/A
95-20	10061	9874		-90	306.9	0.0	306.9	306.9	1007	0.18	0.09
95-21	10054	9921	200	-70	303.9	3.6	24.0	20.4	67	0.71	0.35
						11.3	26.5	15.2	50	0.58	0.21
						93.5	133.1	39.6	130	0.57	0.24
						192.6	201.7	9.1	30	0.69	0.28
						108.8	117.0	9.1	30	1.07	0.29
						95.0	101.1	6.1	20	0.99	0.50
95-22	10067	9818		-90	242.9					N/A	N/A
95-23	9975	10053	330	-60	348 1	105 7	314.5	208.8	685	0.44	0.22
		,0000	~~~~		U T U , I	189.6	341.9	152.3	500	0.55	0.23
						227.6	250.5	22.9	75	0.90	0.15
						262.7	270.8	8.1	27	2.51	0.68
						299 .2	311.4	12.2	40	0.93	0.31
95-24	9964	10104		-90	305.4						
L											

.

÷,

.

Drill Hole	Coordina	tes	Azimuth	Din	Hole	Notable I	ntercents			<u></u>	
	West	South	· ·	Angle	Length	Interval(r	n)	Length		Cu	Au
	(m)	(m)	(deg.)	(deg.)	(m)	From	То	(m)	(ft)	(%)	(g/t)
95-25	10061	9874	200	-60	349.3	0.0	349.3	349.3	1146	0.25	0.10
						85.9	92.0	6.1	20	0.74	0.21
						85.9	108.8	22.9	75	0.59	0.22
						346.5	348.0	1.5	5	0.70	0.38
						323.6	349.2	25.6	84	0.41	0.22
					007 4	400 E	444.9	~~~~	79	0 97	0.40
95-26	10067	9818	200	-00	337.4	122.5	144.0	22.3	/3	U.37	0.19
ł						122.5	124.1	1.5	5	U.68	0.20
						136.2	137.8	1.5	5	0.55	0.23
						139.3	140.8	1.5	5	0.61	0.25
						247.5	265.9	18.4	61	0.30	0.17
						264.6	266.1	1.5	5	0.79	0.48
						280.1	303.3	23.2	76	0.35	0.21
						280.1	281.6	1.5	5	0.48	0.34
95-27	10073	9764		-90	216.7						
	10044	0000		60	205 P	e 7	795 P	279 0	015	A 19	0.08
90-28	10041	9900	200	-00	200.0	404.2	105.4	210.9	315	1 40	0.00
						104.2	105.4	1.2	-	1. 13	0.47
95-29	10140	10129	0	-60	297.8	3.7	297.8	297.8	977	0.20	0.14
						175.8	191.7	15.9	52	0.40	0.22
									005		0.00
95-30	10104	10187	340	-70	303.9	3.7	303.9	300.2	985	0.20	0.09
						157.5	255.1	97.6	320	0.32	0.15
95-31	10094	10048	335	-60	23.5					N/A	N/A
						. ••					
95-32	10094	10048	335	-70	467.9	3.7	467.9	464.2	1523	0.21	0.12
						102.7	104.2	1.5	5	0.48	0.29
						124.1	128.6	4.5	15	0.54	0.19
						125.6	127.1	1.5	5	0.72	0.23
						159.1	160.6	1.5	5	0.41	0.15
						167.6	171.3	3.7	12	0.54	0.28
1						196.0	197.2	1.2	4	0.49	0.18
						206.4	210.9	4.6	15	0.51	0.25
						206.4	207.9	1.5	5	0.62	0.34
						212.5	215.5	3.0	10	0.53	0.30
96-33	10209	10100	330	-60	370.3	242.0	244.9	2.9	10	0.40	0.33
96-34	10305	10410	90	-70	318.2						
96-35	. 10375	10300	180	-55	307.8						
00.70	10250	10300	10	_55	322.2	10 4	275.2	264.9	869	0.22	0.11
0~00	10230	10000		-~~	~~~~	157 A	160 P	30	10	0 42	0 12
						160.6	175.8	15.2	50	0.42	0.72
						100.0	175.0	13.2		V.VZ	J.20
96-37	10250	10300	180	-55	349.0	10.7	50.9	40.2	132	0.19	0.07
						44.8	47.9	3.0	10	0.41	0.17
96-38	10200	10400	270	-55	276.5						
			- ···								
96-39	9952	9721	340	-55	334.4						

Hearne Hill - Morrison: Report on Recent Exploration

Booker Gold Explorations Limited

:

West (m)South (m)Ange (seg.)Langth (m)Langth FonLangth (m)CuAu (u)94.4096629721160-55255.1	Drill Hole	Coordina	tes	Azimuth	Dip	Hole	Notable I	ntercepts	<u> </u>			
(m)(m)(deg.)(deg.)(m)FromTo(m)(t) <th></th> <th>West</th> <th>South</th> <th></th> <th>Angle</th> <th>Length</th> <th>intervai(r</th> <th>n) .</th> <th>Length</th> <th></th> <th>Cu</th> <th>Au</th>		West	South		Angle	Length	intervai (r	n) .	Length		Cu	Au
86.40 9852 9721 160 -55 255.1 96.41 9867 9852 -00 227.7 96.42 9867 9852 340 -55 189.8 69.2 81.4 12.2 40 9.23 0.11 96.43 9712 9858 180 -55 189.8 69.2 81.4 12.2 40 9.23 0.11 96.44 9986 9867 290 -70 321.3 296.3 297.8 1.5 5 0.79 0.41 96.44 10300 10500 290 -50 212.4 296.3 297.8 1.5 5 0.79 0.41 96.44 10300 10600 290 -50 1132.1 292.5 293.1 10 0.446 0.15 96.441 10220 10165 290 -70 197.2 293.5 200 0.07 96.451 10020 10165 290 -70 306.9		(m)	(m)	(deg.)	(deg.)	(m)	From	То	(m)	(ft)	(%)	(g/t)
94-40 9652 9721 160 -55 255.1 94-41 9667 9652 -40 227.7 94-42 9667 9652 340 -55 169.8 69.2 91.4 12.2 40 9.33 0.11 94-43 9712 9653 180 -55 199.0 297.8 1.5 5 0.79 0.41 94-44 9996 9897 290 -70 321.3 296.3 297.8 1.5 5 0.79 0.41 94-44 10300 10500 290 -50 175.9 2 2 2 2 2 2 31.1 10 0.44 96-46 10300 10600 290 -70 197.2 2 25.1 249.9 620 0.20 0.07 96-451 10220 10165 290 -70 305.9 8.2 239.9 222.5 730 0.23 0.11 96-451 <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>•</th><th></th><th></th><th></th><th></th><th></th></th<>							•					
98-41 9857 9652 -90 227.7 98-42 9857 9652 340 -55 169.8 69.2 81.4 12.2 40 9.23 0.11 96-43 9712 9658 160 -55 199.0 201.3 296.3 297.8 1.5 5 0.79 0.41 96-44 5996 9687 290 -70 321.3 296.3 297.8 1.5 5 0.79 0.41 96-44 10309 10500 290 -50 212.4 -	96-40	9952	9721	160	-55	255.1						
94-1 3607 3602 400 22.7.7 96-42 9807 9852 340 -55 168.8 68.2 81.4 12.2 40 0.23 0.11 96-43 9712 9658 160 -55 198.0 23.3 298.3 297.8 1.5 5 0.79 0.41 96-46 10257 10460 270 -60 419.7 - - - - - - 0.41 96-46 10250 10500 250 153.1 -	~ ~ ~	0007	0650		00	2027 7						
96-42 9687 9652 340 -55 169.8 69.2 81.4 12.2 40 9.23 0.11 96-44 9966 9867 200 -70 321.3 296.3 297.8 1.5 5 0.79 0.41 96-44 10309 10500 200 -50 212.4 - 1040 - - - - - - - - - - 10.0	96-41	9007	9032		-90	221.1						
96-43 9712 9658 160 -55 1920 96-44 9996 9997 290 -70 321.3 298.3 297.8 1.5 5 9.79 0.41 96-44 10297 10460 270 -60 419.7 - 5 9.79 0.41 86-46 10297 10460 270 -50 212.4 -	96-42	9887	9652	340	-55	169.8	69.2	81.4	12.2	40	0.23	0.11
98-43 9712 9658 160 -55 198.0 96-44 9996 9687 290 -70 321.3 296.3 297.8 1.5 5 0.79 0.41 96-44 10297 10460 270 -60 449.7 - - - - - - 0.41 96-46 10297 10460 270 -60 449.7 - 104 - - - - - - - - - - - - - - - - - -												
98-44 9996 9877 290 -70 321.3 298.3 297.8 1.5 5 0.79 0.41 98-46 10297 10460 270 -50 419.7 -	96-43	9712	9658	160	-55	199.0						
9844 9856 6867 220 -10 321.3 280.5 291.6 1.3 5 0.19 0.41 9844 10297 10460 270 -60 419.7 -	00.44	0008	0997	200	70	224.2	206.3	207.8	1 5	E	0 70	0.41
98-48 10297 10460 270 -60 419.7 98-48 10309 10500 290 -50 212.4 96-47 10300 10548 290 -50 158.1 96-48 10295 10650 290 -50 158.1 96-60 10430 10600 290 -50 213.4 96-61 10430 10600 290 -70 197.2 96-61 10430 10600 290 -75 345.3 5.2 255.1 249.9 820 0.20 0.07 96-51 10220 10185 290 -75 345.3 5.2 255.1 249.9 820 0.20 0.07 96-51 10220 10150 290 -70 306.9 8.2 290.9 222.5 70 0.447 0.15 96-52 10200 10150 290 -50 56.3 205.3 100 0.47 0.16 96-47	30-44	3390	9007	250	-70	JZ1.J	290.3	291.0	1.5	5	V./ J	0.41
98-46 10309 10500 290 -50 212.4 96-47 10300 10548 290 -50 175.9 96-48 10295 10650 290 -50 158.1 96-49 10300 10600 290 -50 213.4 96-50 10430 10600 290 -70 197.2 96-51 10135 290 -70 197.2 3.1 10 0.46 0.15 96-52 10200 10185 290 -70 306.9 8.2 239.9 222.5 730 0.23 0.11 96-52 10200 10150 290 -70 306.9 8.2 239.9 222.5 730 0.23 0.11 96-54 10200 10150 290 -50 56.3	96-45	10297	10460	270	-60	419.7						
se-48 10309 10500 290 -50 212.4 se-47 10300 10548 290 -50 175.9 se-48 10225 10650 290 -50 159.1 se-49 10300 10600 290 -50 213.4 se-49 10300 10600 290 -70 197.2 se-41 10220 10185 290 -75 345.3 5.2 255.1 249.9 820 0.20 0.07 se-42 10200 10150 290 -70 306.9 8.2 29.9 222.5 730 0.23 0.11 se-45 10200 10150 290 -70 306.9 8.2 29.9 222.5 730 0.23 0.11 se-44 10400 10650 290 -50 56.3												
96-47 10300 10548 290 -50 175.9 96-48 10295 10650 290 -50 159.1 96-48 10300 10600 290 -50 213.4 96-50 10430 10600 290 -70 197.2 96-61 10220 10185 290 -75 345.3 5.2 255.1 249.9 820 0.20 0.07 96-51 10220 10185 290 -75 345.3 5.2 255.1 249.9 820 0.20 0.07 0.15 96-52 10150 290 -70 306.9 8.2 239.9 222.5 730 0.23 0.11 96-53 10510 10495 310 -45 320.6 1 22.5 730 0.23 0.11 96-54 10900 11560 -50 56.3 2 2 2 7 0.0 0.23 0.09 0.39 96-5	96-46	10309	10500	290	-50	212.4						
se-47 10360 10560 280 17.53 96-48 10235 10650 290 -50 153.1 96-49 10300 10600 290 -50 213.4 96-50 10430 10600 290 -70 197.2 96-51 10220 10185 290 -75 345.3 5.2 255.1 249.9 820 0.20 0.07 96-51 10220 10185 290 -75 345.3 5.2 255.1 249.9 820 0.20 0.07 96-52 10200 10150 290 -70 306.9 8.2 239.9 222.5 730 0.23 0.11 96-53 10510 10495 310 -45 320.6 9 22 5 730 0.23 0.11 96-54 10900 11550 -90 133.5 9 306.3 121.3 398 0.23 0.09 96-55 10200	00 47	10300	10549	200	50	175.0						
98-48 10295 10650 290 -50 158.1 98-49 10300 10600 290 -50 213.4 98-40 10430 10600 290 -70 197.2 98-51 10220 10185 280 -75 345.3 5.2 255.1 240.9 820 0.20 0.07 98-51 10220 10185 290 -75 345.3 5.2 255.1 240.9 820 0.20 0.07 286-52 10200 10150 290 -70 306.9 8.2 239.9 222.5 730 0.23 0.11 96-53 10510 10495 310 -45 320.6 - <th>90-41</th> <th>10500</th> <th>10040</th> <th>290</th> <th>~~~</th> <th>175.9</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	90-41	10500	10040	290	~~~	175.9						
98-49 10300 10600 290 -50 213.4 96-50 10430 10600 290 -70 197.2 96-61 10220 10185 290 -75 345.3 5.2 255.1 249.9 820 0.20 0.07 96-61 10220 10185 290 -75 345.3 5.2 255.1 249.9 820 0.20 0.07 96-62 10200 10185 290 -70 306.9 8.2 239.9 222.5 730 0.23 0.11 96-63 10510 10495 310 -45 320.6 -	96-48	10295	10650	290	-50	159.1						
98-49 10300 10600 290 -50 213.4 96-60 10430 10600 290 -70 197.2 96-61 10220 10185 290 -75 345.3 5.2 255.1 249.9 820 0.20 0.07 215.4 216.4 216.5 3.1 10 0.44 0.15 322.2 325.2 3.0 10 0.47 0.15 96-62 10200 10150 290 -70 306.9 8.2 239.9 222.5 730 0.23 0.11 96-63 10510 10495 310 -45 320.6		•										
96-50 10430 10600 290 -70 197.2 96-51 10220 10185 290 -75 345.3 5.2 255.1 249.9 820 0.20 0.07 96-51 10200 10185 290 -75 345.3 5.2 255.1 249.9 820 0.20 0.07 96-52 10200 10150 290 -70 306.9 8.2 239.9 222.5 730 0.23 0.11 96-53 10510 10495 310 -45 320.6	96-49	10300	10600	290	-50	213.4						
38-50 1030 250 -70 197.2 96-51 10220 10185 290 -75 345.3 5.2 255.1 249.9 820 0.28 0.07 215.4 218.5 3.1 10 0.44 0.15 322.2 325.2 3.0 10 0.47 0.15 96-52 10200 10150 290 -70 306.9 8.2 239.9 222.5 730 0.23 0.11 96-53 10510 10495 310 -45 320.6	00 50	10420	10600	200	70	107.2						
98-51 10220 10185 290 -75 345.3 5.2 215.4 225.1 218.5 249.9 3.1 620 10 0.46 0.46 0.15 96-52 10200 10150 290 -70 306.9 8.2 194.2 239.9 222.5 730 0.23 0.11 96-53 10510 10495 310 -45 320.6	30-00	10450	10000	290	-70	197.2						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	96-51	10220	10185	290	-75	345.3	5.2	255.1	249.9	820	0.20	0.07
322.2 325.2 3.0 10 0.47 0.15 96-52 10200 10150 290 -70 306.9 8.2 239.9 222.5 730 0.23 0.11 96-53 10510 10495 310 -45 320.6							215.4	218.5	3.1	10	0.46	0.15
96-82 10200 10150 290 -70 308.9 8.2 239.9 222.5 730 0.23 0.11 96-83 10510 10495 310 -45 320.6							322.2	325.2	3.0	10	0.47	0.15
96-52 1000 1010 250 100 300.5 022 235.5 222.5 100 0.11 0.11 96-53 10510 10495 310 -45 320.6 300 10 0.81 0.20 96-54 10440 10950 290 -50 56.3 -	06 52	10200	10150	200	-70	306.0	80	230.0	222 5	730	0.23	0.11
96-53 10510 10495 310 -45 320.6 96-54 10440 10950 290 -50 56.3 96-55 10900 11560 -90 133.5 96-56 10950 11225 -90 164.0 96-57 10375 10300 360 -50 306.3 121.3 398 0.23 0.09 96-57 10375 10300 360 -50 306.3 185.0 306.3 121.3 398 0.23 0.09 0.39 96-58 10200 10150 165 -70 139.6 5.5 32.9 27.4 90 0.22 0.06 96-59 10200 10150 165 -77 139.6 5.5 32.9 27.4 90 0.22 0.06 96-59 10200 10150 165 -57 127.1 63.0 93.5 30.5 100 0.88 0.12 96-60 10200 10185	90-0Z	10200	10150	290	-70	500.9	0.2 194.2	239.9 197.2	3.0	10	0.23	0.11
96-53 10510 10495 310 -45 320.6 96-54 10440 10950 290 -50 56.3 96-65 10900 11560 -90 133.5 96-66 10950 11225 -90 164.0 96-67 10375 10300 360 -50 306.3 185.0 306.3 121.3 398 0.23 0.09 96-68 10200 10150 165 -70 139.6 5.5 32.9 27.4 90 0.22 0.06 96-68 10200 10150 165 -70 139.6 5.5 32.9 27.4 90 0.22 0.06 96-69 10200 10150 165 -70 139.6 5.5 32.9 27.4 90 0.22 0.06 96-59 10200 10150 165 -57 127.1 63.0 93.5 30.5 100 0.68 0.12 96-60 10200									••••			0.20
96-54 10440 10950 290 -50 56.3 96-56 10900 11560 -90 133.5 96-56 10950 11225 -90 164.0 96-57 10375 10300 360 -50 306.3 185.0 306.3 121.3 398 0.23 0.09 96-57 10375 10300 360 -50 306.3 185.0 306.3 121.3 398 0.23 0.09 0.39 96-58 10200 10150 165 -70 139.6 5.5 32.9 27.4 90 0.22 0.06 60.4 63.4 3.0 10 0.80 0.11 96-59 10200 10150 165 -57 127.1 63.0 93.5 30.5 100 0.68 0.12 96-69 10200 10150 165 -57 127.1 63.0 93.5 30.5 100 0.68 0.27 63.0	96-53	10510	10495	310	-45	320.6						
96-54 10440 10950 290 -50 56.3 96-55 10900 11560 -90 133.5 96-56 10950 11225 -90 164.0 96-57 10375 10300 360 -50 306.3 185.0 306.3 121.3 398 0.23 0.09 96-58 10200 10150 165 -70 139.6 5.5 32.9 27.4 90 0.22 0.08 96-58 10200 10150 165 -70 139.6 5.5 32.9 27.4 90 0.22 0.08 96-58 10200 10150 165 -70 139.6 5.5 32.9 27.4 90 0.22 0.08 96-59 10200 10150 165 -57 127.1 63.0 93.5 30.5 100 0.88 0.12 96-69 10200 10185 -57 127.1 63.0 93.5 30.5 100												
96-55 10900 11560 -90 133.5 96-56 10950 11225 -90 164.0 96-57 10375 10300 360 -50 306.3 185.0 306.3 121.3 398 0.23 0.09 96-57 10375 10300 360 -50 306.3 185.0 306.3 121.3 398 0.23 0.09 0.39 96-58 10200 10150 165 -70 139.6 5.5 32.9 27.4 90 0.22 0.08 96-58 10200 10150 165 -70 139.6 5.5 32.9 27.4 90 0.22 0.08 96-59 10200 10150 165 -70 139.6 5.5 32.9 27.4 90 0.22 0.08 96-59 10200 10150 165 -57 127.1 63.0 93.5 30.5 100 0.88 0.12 96-50 10200	96-54	10440	10950	290	-50	56.3						
96-56 10950 11225 -90 164.0 96-57 10375 10300 360 -50 306.3 185.0 306.3 121.3 398 0.23 0.09 0.39 96-57 10375 10300 360 -50 306.3 185.0 306.3 121.3 398 0.23 0.09 0.39 96-58 10200 10150 165 -70 139.6 5.5 32.9 27.4 90 0.22 0.06 0.68 0.11 96-58 10200 10150 165 -70 139.6 5.5 32.9 27.4 90 0.22 0.06 0.68 0.12 0.66 0.64 63.4 3.0 10 0.80 0.11 90 0.22 0.06 0.66 0.12 0.66 0.12 0.66 0.12 0.66 0.64 63.4 3.0 10 0.88 0.12 0.66 0.12 0.23 0.61 0.27 0.53.0 63.0 69.1 6.	96-55	10900	11560		-90	133.5						
96-56 10950 11225 -90 164.0 96-57 10375 10300 360 -50 306.3 185.0 306.3 121.3 398 0.23 0.09 96-58 10200 10150 165 -70 139.6 5.5 32.9 27.4 90 0.22 0.06 57.3 118.3 61.0 200 0.28 0.06 60.4 63.4 3.0 10 0.80 0.11 96-59 10200 10150 165 -57 127.1 63.0 93.5 30.5 100 0.68 0.12 96-59 10200 10150 165 -57 127.1 63.0 93.5 30.5 100 0.68 0.12 96-59 10200 10150 165 -57 127.1 63.0 93.5 30.5 100 0.68 0.12 63.0 69.1 6.1 20 2.51 0.28 0.27 63.0 69.1												
96-57 10375 10300 360 -50 306.3 185.0 306.3 121.3 398 0.23 0.09 0.33 96-58 10200 10150 165 -70 139.6 5.5 32.9 27.4 90 0.22 0.06 57.3 118.3 61.0 200 0.25 0.06 0.11 96-59 10200 10150 165 -57 127.1 63.0 93.5 30.5 100 0.68 0.12 96-59 10200 10150 165 -57 127.1 63.0 93.5 30.5 100 0.68 0.12 63.0 72.2 9.2 30 1.96 0.27 63.0 69.1 6.1 20 2.51 0.28 96-60 10200 10185 -90 96.9 4.0 84.7 80.7 265 0.96 0.22 5.4 20.7 15.3 50 1.40 0.24 26.8<	96-56	10950	11225		-90	164.0						
96-67 10375 10300 360 -50 306.3 185.0 306.3 121.3 398 0.23 0.09 96-68 10200 10150 165 -70 139.6 5.5 32.9 27.4 90 0.22 0.08 96-68 10200 10150 165 -70 139.6 5.5 32.9 27.4 90 0.22 0.08 96-69 10200 10150 165 -70 139.6 5.5 32.9 27.4 90 0.22 0.08 96-59 10200 10150 165 -57 127.1 63.0 93.5 30.5 100 0.68 0.12 63.0 69.1 6.1 20 2.61 0.28 0.27 63.0 69.1 6.1 20 2.61 0.28 96-60 10200 10185 -90 96.9 4.0 84.7 80.7 265 0.95 0.22 96-60 10200	_											
96-58 10200 10150 165 -70 139.6 5.5 32.9 27.4 90 0.22 0.06 57.3 118.3 61.0 200 0.25 0.06 60.4 63.4 3.0 10 0.80 0.11 96-59 10200 10150 165 -57 127.1 63.0 93.5 30.5 100 0.68 0.12 96-59 10200 10150 165 -57 127.1 63.0 93.5 30.5 100 0.68 0.12 96-60 10200 10185 -590 96.9 4.0 84.7 80.7 265 0.95 0.22 96-60 10200 10185 -90 96.9 4.0 84.7 80.7 265 0.95 0.22 96-60 10200 10185 -90 96.9 4.0 84.7 80.7 265 0.95 0.22 93.4 20.7 15.3 50 1.40 0	96-57	10375	10300	360	-50	306.3	185.0	306.3	121.3	398	0.23	0.09
96-58 10200 10150 165 -70 139.6 5.5 32.9 27.4 90 0.22 0.06 57.3 118.3 61.0 200 0.25 0.06 0.06 0.4 63.4 3.0 10 0.80 0.11 96-59 10200 10150 165 -57 127.1 63.0 93.5 30.5 100 0.68 0.12 63.0 72.2 9.2 30 1.95 0.27 63.0 69.1 6.1 20 2.51 0.28 96-60 10200 10185 -90 96.9 4.0 84.7 80.7 265 0.95 0.22 96-60 10200 10185 -90 96.9 4.0 84.7 80.7 265 0.95 0.22 5.4 20.7 15.3 50 1.40 0.24 26.8 29.8 3.0 10 1.44 0.40 32.9 35.9 3.0 10 1.72							200.5	209.4	5.1	10	0.30	0.09
57.3 118.3 61.0 200 0.25 0.06 60.4 63.4 3.0 10 0.80 0.11 96-59 10200 10150 165 -57 127.1 63.0 93.5 30.5 100 0.68 0.12 63.0 72.2 9.2 30 1.96 0.27 63.0 69.1 6.1 20 2.51 0.28 96-60 10200 10185 -90 96.9 4.0 84.7 80.7 265 0.95 0.22 96-60 10200 10185 -90 96.9 4.0 84.7 80.7 265 0.95 0.22 9.4.0 60.3 56.3 185 1.25 0.29 5.4 20.7 15.3 50 1.40 0.24 26.8 29.8 3.0 10 1.72 0.25 54.2 60.3 6.1 20 2.76 1.14 69.4 75.5 6.1 20 0.44 0.07	96-68	10200	10150	165	-70	139.6	5.5	32.9	27.4	90	0.22	0.06
60.4 63.4 3.0 10 0.80 0.11 96-59 10200 10150 165 -57 127.1 63.0 93.5 30.5 100 0.68 0.12 63.0 72.2 9.2 30 1.95 0.27 63.0 69.1 6.1 20 2.51 0.28 96-60 10200 10185 -90 96.9 4.0 84.7 80.7 265 0.95 0.22 4.0 60.3 56.3 185 1.25 0.29 5.4 20.7 15.3 50 1.40 0.24 26.8 29.8 3.0 10 1.44 0.40 32.9 35.9 3.0 10 1.72 0.25 54.2 60.3 6.1 20 2.76 1.14 69.4 75.5 6.1 20 0.44 0.07							57.3	118.3	61.0	200	0.25	0.06
96-59 10200 10150 165 -57 127.1 63.0 93.5 30.5 100 0.68 0.12 63.0 72.2 9.2 30 1.96 0.27 63.0 69.1 6.1 20 2.51 0.28 96-60 10200 10185 -90 96.9 4.0 84.7 80.7 265 0.95 0.22 4.0 60.3 56.3 185 1.26 0.29 5.4 20.7 15.3 50 1.40 0.24 26.8 29.8 3.0 10 1.44 0.40 32.9 35.9 3.0 10 1.44 0.40 32.9 35.9 3.0 10 1.72 0.25 54.2 60.3 6.1 20 2.76 1.14 69.4 75.5 6.1 20 0.44 0.07							60.4	63.4	3.0	10	0.80	0.11
96-59 10200 10130 103 1	06 50	10200	10150	165	-57	127.1	63.0	03.5	20.5	100	0.69	0 12
96-80 10200 10185 -90 96.9 4.0 84.7 80.7 265 0.95 0.22 96-80 10200 10185 -90 96.9 4.0 84.7 80.7 265 0.95 0.22 4.0 60.3 56.3 185 1.25 0.29 5.4 20.7 15.3 50 1.40 0.24 26.8 29.8 3.0 10 1.44 0.40 32.9 35.9 3.0 10 1.72 0.25 54.2 60.3 6.1 20 2.76 1.14 69.4 75.5 6.1 20 0.44 0.07	30-03	10200	10150	100	-07	127.1	63.0	72.2	<u>9</u> 2	30	1.95	0.12
96-60 10200 10185 -90 96.9 4.0 84.7 80.7 265 0.95 0.22 4.0 60.3 56.3 185 1.25 0.29 5.4 20.7 15.3 50 1.40 0.24 26.8 29.8 3.0 10 1.44 0.40 32.9 35.9 3.0 10 1.72 0.25 54.2 60.3 6.1 20 2.76 1.14 69.4 75.5 6.1 20 0.44 0.07							63.0	69.1	6.1	20	2.51	0.28
96-60 10200 10185 -90 96.9 4.0 84.7 80.7 265 0.95 0.22 4.0 60.3 56.3 185 1.25 0.29 5.4 20.7 15.3 50 1.40 0.24 26.8 29.8 3.0 10 1.44 0.40 32.9 35.9 3.0 10 1.72 0.25 54.2 60.3 6.1 20 2.76 1.14 69.4 75.5 6.1 20 0.44 0.07												
4.0 60.3 56.3 185 1.26 0.29 5.4 20.7 15.3 50 1.40 0.24 26.8 29.8 3.0 10 1.44 0.40 32.9 35.9 3.0 10 1.72 0.25 54.2 60.3 6.1 20 2.76 1.14 69.4 75.5 6.1 20 0.44 0.07	96-60	10200	10185		-90	96.9	4.0	84.7	80.7	265	0.95	0.22
5.4 20.7 15.3 50 1.40 0.24 26.8 29.8 3.0 10 1.44 0.40 32.9 35.9 3.0 10 1.72 0.25 54.2 60.3 6.1 20 2.76 1.14 69.4 75.5 6.1 20 0.44 0.07	ļ						4.0	60.3	56.3	185	1.25	0.29
26.8 29.8 3.0 10 1.44 0.40 32.9 35.9 3.0 10 1.72 0.25 54.2 60.3 6.1 20 2.76 1.14 69.4 75.5 6.1 20 0.44 0.07							5.4	20.7	15.3	50	1.40	0.24
32.9 35.9 3.0 10 1.72 0.25 54.2 60.3 6.1 20 2.76 1.14 69.4 75.5 6.1 20 0.44 0.07	l						26.8	29.8	3.0	10	1.44	0.40
54.2 60.3 6.1 20 2.76 1.14 69.4 75.5 6.1 20 0.44 0.07	I						32.9	35.9	3.0	10	1.72	0.25
69.4 75.5 6.1 20 0.44 0.07	1						54.2	60.3	6.1	20	2.76	1.14
							69.4	75.5	6.1	20	0.44	0.07

Hearne Hill - Morrison: Report on Recent Exploration

. . .

÷

Drill Hole	Coordinates		Azimuth	Dip	Hole	Notable	ntercepts		<u></u>	•	
	West	South		Angle	Length	interval(r	n)	Length		Cu	Au
	(m)	(m)	(deg.)	(deg.)	(m)	From	То	(m)	(ft)	(%)	(g/t)
00.04	10225	10175	340	-50	215 5	143	35 7	21 4	70	0.28	0.05
90-01	10235	10175	340	-50	213.3	41.8	78.3	36.5	120	0.25	0.05
						32.6	35.7	3.1	10	0.47	0.08
00.00	40000	0090		00	739 7	200.6	203.6	30	10	1.40	0 37
96-62	10020	9900		-90	230.1	133.5	205.0 142.6	9.0 9.1	30	0.88	0.57
						115.2	151.8	36.6	120	0.48	0.27
96-63	10020	9980	270	-59	118.9	26.5	38.7	12.2	40	0.39	0.06
						9.8	110.9	109.1	330	0.21	0.04
96-64	10085	9965	0	-90	506.0	3.0	5.1	2.1	7	1.10	0.19
						168.2	370.9	167.6	550	0.36	0.15
						3.0	508.1	505.1	1657	0.26	0.11
96-65	10085	9912	110	-75	320.0	221.6	227.7	6.1	20	4.70	0.98
						139.3	236.2	97.5	320	0.87	0.21
						21.0	236.2	216.4	710	0.62	0.16
						4.2	320.6	317.0	1040	0.49	0.13
96-66	10075	9885	110	-50	103.6	63.1	64.6	1.5	5	1.23	0.47
						29.5	66.1	24.4	80	0.57	0.15
	40075	0995	110	75	225.2	121.0	407.4	61	20	E 20	4 52
30-01	10075	9000	110	-/5	333.3	00.7	127.1	20.5	100	0.30 2.90	1.55
						96.6	261.2	164.6	540	1.34	0.32
						4.6	300.8	295.7	970	0.79	0.27
	40000	0005	400		000 7	405.0	400.0	20	40		0.40
96-68	10092	9935	100	-/5	362.7	105.8	108.8	3.0	10	3.04	0.43
						52	252.1	246 Q	810	0.60	0.25
						0,2	202.1	240.0	010	0.00	0.10
96-69	10092	9935	100	-48	149.4	66.1	69.2	3.0	10	2.35	1.31
						55.8	75.3	19.5	64	0.71	0.42
96-70	10095	9965	95	-48	120.4	23.5	26.5	3.0	10	0.80	3.35
						57.0	75.3	18.3	60	0.43	0.22
ļ						11.3	14.3	3.0	10	1.20	0.09
						3.7	120.4	116.7	383	0.30	0.18
96-71	10095	9965	95	-75	335.3	206.3	209.4	3.0	10	3.38	1.77
						194.2	209.4	15.2	50	3.28	0.91
						118.0	246.9	128.0	420	0.98	0.28
						0.0	246.9	246.9	810	0.74	0.20
96-72	10095	9960	272	-60	350.5	47.9	72.2	24.3	80	0.30	0.08
						69.1	72.2	3.1	10	0.54	0.12
						117.9	121.0	3.1	10	0.23	0.41
00 79	40000	0005	30E	75	222 E	719 F	224 P	30	10	N 60	0.20
30-13	10090	3380	305	-/3	444. J	∡10.0 2∩⊿	142 2	3.U 121 0	400	V.76 A 74	0.29/ ∩11
						20.7	172.0	121.0	-00	v.23	0.11
96-74	10150	9995		-90	289.6	281.3	284.4	3.0	10	0.51	0.51
						272.5	284.4	11.9	39	0.45	0.37
L						205.4	288.6	83.2	273	0.32	0.23

Hearne Hill - Morrison: Report on Recent Exploration

Drill Hole	e Coordinates		Azimuth	Dip	Hole	Notable I	ntercepts			<u></u>	
	West	South		Angle	Length	Interval(n	n) .	Length		Cu	Au
	(m)	(m)	(deg.)	(deg.)	(m)	From	То	(m)	(ft)	(%)	(g/t)
96-75	10150	9995	124	-75	219.5	142.3	145.4	3.0	10	0.64	0.05
						26.5	111.8	85.3	280	0.24	0.14
96-76	10195	9970		-90	214.9	191.1	194.2	3.0	10	0.33	0.37
						182.0	197.2	15.2	50	0.28	0.23
96-77	10195	9970	264	-50	218.5	105.5	127.1	21.6	71	0.21	0.15
96-78	10195	9970	315	-50	250.5	127.1	142.3	15.2	50	0.20	0.05
96-79	10195	9970	45	-50	246.9	182.0	191.1	9.1	30	0.38	0.09
						139.3	191.1	51.8	170	0.25	0.08
96-80	10200	9900		-90	200.3						
				50	404.4						
96-81	10200	9900	324	-50	131.4						
	40000	0000	400	76	250 F	072 4	070 E	84	~		0.24
30-82	10200	9900	132	-15	330.5	213.4 272 A	219.J 225 B	12.2	20	0.00	0.34
						213.4	200.0	12.2	40	V.92 A 36	0.30
						123.1	200.0	155 A	510	0.30	0.25
						135.2	200.0	100.4	510	U.Z I	0.15
06.93	10255	0805		-90	249 9	23.5	26.5	30	10	0.30	0.05
30-00	10200	3030		-00	2.10.0	242.9	246.0	31	10	0.08	3 10
						2 12.0	210.0	0.1		0.00	0.10
96-84	10255	9895	314	-75	237.1						
96-85	10255	9895	234	-75	231.6	108.8	111.8	3.0	10	0.64	0.28
						60.0	63.1	3.1	10	0.56	0.52
						105.7	111.8	6.1	20	0.42	0.14
						96.6	133.1	36.5	120	0.28	0.16
96-86	10255	9895	132	-75	133.2						
96-87	10240	9950	223	-65	213.4	57.0	75.3	18.3	60	0.41	0.30
						35.7	78.3	42.6	140	0.28	0.1 9
						69.2	72.2	3.0	10	0.46	0.40
96-88	10248	9950	270	-60	290.5	203.3	206.3	3.0	10	0.49	0.26
						197.2	221.6	24.4	80	0.30	0.18
00 00	40040	0050	150	70	77e A	457 P	16e 7	04	20	A 45	0.34
90-09	10240	9900	150	-70	230.0	157.0	163.7	9.1 2.4	30	0.40	0.54
						157 A	175.0	9.1 19.2	60	V.01 A 76	0.00
						157.6	188.1	20.5	100	0.00	0.20
						107.0	100.1	00.0	100	V.2V	0.21
97-90	10248	9950		-90	242 3	32.6	35 7	31	10.2	0.73	0.26
	10270			-00	₽ 76.4	32.6	38 7	61	20.0	0.55	0.18
						215.4	242.3	26.9	88.2	0.31	0.10
						181.9	242.3	60.4	198.1	0.25	0.22
						3.0	242.3	239.3	784.7	0.20	0.15
97-91	10248	9950	314	-60	235.9						
	-										
97-92	10255	9849		-90	304.8						

Hearne Hill - Morrison: Report on Recent Exploration

. .

٠.

.

Drill Hole Coordinates		Azimuth Dip		Hole	Notable						
	West	South		Anale	Lenath	Interval(r	n)	Lenath		Cu	Au
	(m)	(m)	(deg.)	(deg.)	(m)	From	То	(m)	(ft)	(%)	(g/t)
				,	.,					•••	
97-93	10255	9849	345	-75	285.6						
97- 94	10255	9849	345	-50	293.5						
97-95	10255	9849	45	-60	266.1						
97-96	10255	9849	300	-75	297.8						
97-97	10255	9849	60	-60	240.5	87.2	90.5	3.3	10.8	0.37	0.28
97-98	10125	10015	90	-75	335.3	138.4	141.4	3.0	9.8	0.74	0.45
						127.1	144.4	17.3	56.7	0.52	0.19
						182.0	188.1	6.1	20.0	0.41	0.17
						96.6	144.4	47.8	156.7	0.38	0.12
						1.2	335.3	334.1	1095.5	0.23	0.09
97-99	10062	9871	104	-75	317.6	285.5	288.6	3.1	10.2	0.55	0.50
97-100	10035	9845	112	-60	291.7						
97-101	10035	9845	112	-75	302.7	139.3	148.4	9.1	29.8	0.37	0.10
97-102	10035	9845	180	-65	358.7	256.9	259.9	3.0	9.8	4.60	1.40
						249.0	261.2	12.2	40.0	2.90	0.63
						209.4	212.4	3.0	9.8	1.34	0.30
						181.9	185.0	3.1	10.2	1.00	0.26
						157.5	163.6	6.1	20.0	0.96	0.25
						145.3	148.4	3.1	10.2	0.92	0.10
						200.3	212.4	12.1	39.7	0.95	0.27
						145.3	270.4	125.1	410.2	0.82	0.23
						124.0	352.7	228.7	749.9	0.57	0.17
97-103	9997	9955	110	-60	235.2						
97-104	9576	9560	155	-60	205.4						
97-105	10085	10105	292	-70	384.7	84.0	86.6	2.6	8.5	0.55	0.15
						322.2	355.7	33.5	109.9	0.39	0.28
						340.5	343.5	3.0	9.8	0.62	0.44
97-106	10035	10072	300	-75	369.1	231.9	364.8	132.9	436.0	0.33	0.15
						231.9	255.1	23.2	76.0	0.48	0.22
						239.8	242.9	3.0	10.0	0.92	0.37
97-107	10139	10124	300	-75	319.1	105.7	124.0	18.3	60.0	0.30	0.17
						226.8	236.2	9.4	30.0	0.38	0.25
97-108	10119	9930		-90	319.1	72.0	319.1	247.1	810.2	0.23	0.13
						102.7	105.8	3.1	10.2	0.53	1.38
97-109	10120	9930	100	-75	227 6	108.8	124.0	15.2	49.8	0.41	0.25
JI - 100						157.5	227.6	70.1	229.9	0.35	0.16
97-110	10120	9933	236	-75	264.2	3.5	29.5	26.0	85.3	0.25	0.05
						44.8	203.3	158.5	519.7	0.22	0.09

Hearne Hill - Morrison: Report on Recent Exploration

Drill Hole	Coordina	les	Azimuth	Dip	Hole	Notable I	ntercepts				
	West	South		Anale	Length	interval(n	n)	Lenath		Cu	Au
-	(m)	(m)	(deg.)	(deg.)	(m)	From	То	(m)	(ft)	(%)	(g/t)
		<u> </u>	(. ,			
97-111	10220	10000	225	-75	263.6	117.9	124.0	6.1	20.0	0.38	0.50
						221.5	266.7	45.2	148.0	0.24	0.36
						242.9	245.9	3.0	10.0	0.50	1.91
97-112	10220	10000	128	-75	255.1	127.1	244.1	117.0	384.0	0.40	0.32
						139.2	175.8	36.6	120.0	0.67	0.51
						145.3	157.5	12.2	40.0	0.88	0.79
						151.4	157.5	0.1	20.0	1.00	0.91
97.443	10275	10026	220	-70	285 5	62	117 0	111 7	366 3	A 19	0.11
8/-113	10275	10020	220	-70	205.5	139.3	151.4	12.1	397	0.10	0.11
						100.0	101.4			V.2/	0.20
97-114	10350	10020	135	-70	275.0	47.8	60.0	12.2	40.0	0.31	0.20
						72.2	148.3	76.1	249.5	0.21	0.10
97-115	10410	10140	135	-70	249.0	145.3	178.9	33.6	110.2	0.30	0.12
97-116	10194	10036		-90	288.6	5.7	200.2	194.5	638.1	0.22	0.12
						142.3	172.8	30.5	100.0	0.37	0.15
					070 4				100.0		• • •
97-117	10194	10036	35	-60	273.4	145.3	2/3.4	128.1	420.0	0.20	0.11
07 440	10009	10210	200	65	246.2	121 2	145.6	24.3	90.0	0 22	0.22
3/-110	10090	10210	290	-00	240.2	121.3	130 4	24.5	10.0	0.3Z 0.70	0.23
						127.4	100.4	5.0	10.0	V./ Ø	1.50
97-119	10098	10210	105	-50	282.2						
97-120	10088	10232	292	-65	249.3	96.9	185.3	88.4	290.0	0.22	0.06
97-121	10340	10180	110	-50	310.2	90.8	310.2	219.4	720.0	0.19	0.06
97-122	10250	10300	110	-50	240.1	48.1	63.3	15.2	48.9	0.23	0.09
	40475	40405				50	70.0			4.00	
97-123	10175	10195	-	-90	220.2	5.0 54 B	12.0 57.0	07.0	220.0	1.08	0.25
						04.0 54.6	57.0 57.6	3.0	10.0	9.39 / 447	1.15
						04.0	57.0	5.0	10.0	(.177 %Mo)	
97-124	10175	10195	200	-65	288.3	1.8	44.5	42.7	140.0	1.07	0.24
						29.2	32.3	3.1	10.0	1.14	1.48
						35.3	38.4	3.1	10.0	2.48	0.88
07 405	10460	10042	200	ee	63.0	14.0		28 4	100.0	9 EA	0.44
3/-120	10100	10213	290	-00	3 3.2	14.0	30.3 20.1	30.4	120.0	2.0U 2 79	0.41
						26.2	29.2	3.0	10.0	3.51	0.38
							20.2	0.0	10.0	0.01	0.00
97-126	10168	10213	25	-45	120.3	13.7	53.3	39.6	129.8	0.46	0.10
97-127	10191	10186	110	-75	87.4	2.1	20.4	18.3	60.0	1.00	0.10
97-128	10253	10244	290	-60	220.9						
					=						
97-129	10179	10206	110	-70	282.5	5.2	78.3	73.1	240.0	1.65	0.46
						11.2	60.1	48.9	456.0	2.10	0.63
						41./	50.9	9.2	30.0	3.73	2.23

Hearne Hill - Morrison: Report on Recent Exploration

į.

Drill Hole	Coordinates West South		Azimuth	Dip	Hole	Notable	Intercepts	· · · · · · · · · · · · · · · · · · ·			
				Angle		Interval (r	n) .	Length		Cu	Au
	(m)	(m)	(deg.)	(deg.)	(m)	From	То	(m)	(ft)	(%)	(g/t)
97-130	10169	10212	110	-75	142.3	8.3	17.3	9.0	29.5	3.23	1.31
		·				8.3	11.2	2.9	9.5	6.88	1.49
						8.3	9.3	1.0	3.3	17.75	4.11
						8.3	72.2	63.9	209.6	1.70	0.80
}						8.3	38.7	30.4	99.7	2.70	1.28
						23.4	38.7	15.3	50.2	3.39	1.76
						23.4	26.5	3.1	10.2	7.29	3.36
97-131	10164	10226	110	-75	132.5						
97-132	10187	10184	110	-70	175.8	44.8	72.2	27.4	89.9	3.29	0.38
						53.9	72.2	18.3	60.0	4.08	0.56
						57.0	72.2	15.2	49.9	4.23	0.65
						44.8	105.8	61.0	200.1	1.70	0.22
						72.2	105.7	33.5	109.9	0.40	0.08
97-133	10190	10158	110	-65	142.3	63.0	81.3	18.3	60.0	0.51	0.15
97-134	10196	10146	110	-50	132.6	1.5	74.6	73.1	239.8	0.24	
97-135	10177	10198	290	-70	75.5	2.4	17.6	15.2	49.9	1.10	0.20
						2.4	54.2	51.8	169.9	0.68	0.08
97-136	10137	10300	290	-63	93.8						
97-137	10173	10201	110	-50	86.2						
97-138	10191	10158	55	-75	52.9	8.5	52.9	44.4	145.6	2.15	0.32
						8.5	10.5	2.0	6.6	9,49	1.47
						51.2	52.9	1.7	5.6	1.16	0.24
97-139	10169	10212	20	-70	103.0	11.5	75.6	64.1	210.2	2.74	0.95
97-140	10169	10212	155	-75	133.1	8.2	56.9	48.7	159.7	1.79	1.20
	an a					26.5	41.7	15.2	49.9	3.00	3.14
						38.7	41.7	3.0	9.8	2.58	11.14
97-141 97-142,143	10082 N/A	10112	142	-60	115.0						
				Total	33336						

7.5 Diamond Drilling - Morrison

Drilling by Booker Gold on the Morrison property commenced early in January 1998. As of January 31, 1998, three NQ diamond drill holes were completed on the Northern Zone of the Morrison. Results from the initial phase of drilling indicate the potential for a significant high grade resource within the Morrison porphyry. Drilling on the Morrison will continue throughout 1998.

4

Drill Hole	Coordinates		Azimuth	Dip	Hole	Notable I	ntercepts					
	Est	North		Angle	Length	interval(n	n)	Length		Cu	Au	Ag
	(m)	(m)	(deg.)	(deg.)	(m)	From	То	(m)	(ft)	(%)	(g/t)	(g/t)
98-MO-1	2990	3695	090	-70	239.8	3.1	239.8	236.7	780	0.41	0.29	1.40
						3.1	96.6	93.5	310	0.72	0.53	2.25
						26.5	34.6	8.1	30	1.03	0.96	3.47
98-MO-2	2945	3830	090	-50	388.7	3.9	378.4	374.5	1230	0.50	0.24	1.62
						86.9	285.1	198.2	650	0.61	0.29	1.91
						239.2	285.1	45.9	150	0.81	0.48	2.27
98-MO-3	3005	3825	090	-50	101.8	3.0	101.8	98.8	325	0.60	0.27	1.73
						96.0	101.8	5.8	20	0.70	0.36	2.16

Summary of Booker Gold Drilling on Morrison (January 1998)

.

8. **REFERENCES AND BIBLIOGRAPHY**

- Carson, D.J.T. and Jambour, J.L. Mineralogy, Zonal Relationships and Economic Significance of Hydrothermal Alteration at Porphyry Copper Deposits, Babine Lake Area, B.C., C.I.M. Bulletin, February 1974.
- Carson, D.J.T., Jambour, J.L., Ogryzlo, P.L., and Richards, T. (1976). Bell Copper: Geology, Geochemistry and Genesis of a Supergene-Enriched Biotitized Porphyry copper Deposit with a Superimposed Phyllic Zone in Porphyry Deposits of the Canadian Cordillera. Canadian Institute of Mining and Metallurgy Special Volume 15.
- Carson, D.J.T. and Jambour, J.L. (1976). Morrison: Geology and Evolution of a Bisected Annular Porphyry Copper Deposit <u>in</u> Porphyry Deposits of the Canadian Cordillera. Canadian Institute of Mining and Metallurgy Special Volume 15.
- Carter, N.C., Dirom, G.E., and Ogryzlo, P.L. (1995) Porphyry copper-gold deposits, Babine Lake area, west-central B.C., Paper 13 in Porphyry Deposits of the Northwestern Cordillera of North America, CIM Special Volume 46.
- Dirom, G.E., Dittrick, M.P., McArthur, D.R., Ogryzlo, P.L., Pardade, A.J., and Stothart, P.G. (1995). Bell and Granilse porphyry copper-gold mines, Babine region, west-central B.C., Paper 14 in Porphyry Deposits of the Northwestern Cordillera of North America, CIM Special Volume 46.
- Dirom, G.A. (1967). Geochemical and Magnetometer Report [K] Group of Mineral Claims Morrison Lake. British Columbia Ministry of Mines Assessment Report 1102.
- Huntley, D.H., Levson, V.M. and Weary, G.W. 1996, Surficial Geology and Quaternary Sratigraphy of the Old Fort Mountain Area (93-M-1) B.C. BCMEMPR Open File 1996-09 (1:50,000 map).
- Kahlert, B.H., and Fawley, A.P., 1968, Report on geological, geophysical and geochemical surveys and preliminary diamond drilling on the Trobuttle Mines Limited property, Morrison Lake.
 B.C. Min. of Energy, Mines and Petroleum Resources, Assessment Report 1854, 11 pp. plus appendices.
- Kahlert, B.H., 1969, Morrison Lake area drilling results: Map prepared for Canadian Superior Exploration Ltd.
- Kirkham, R.V. (1971). Intermineral intrusions and their bearing on the origin of porphyry copper and molybdenum deposits. Economic Geology Volume 66, pp. 1244-1249.
- MacIntyre, D.G., Webster, I.C.L. and Villeneuve, M (1997): Babine Porphyry Belt Project: Bedrock geology of the Old Fort Mountain area (93M/1), British Columbia. BCMEMP Fieldwork, 1996, paper 1997-1.
- MacIntyre, D.G., Webster, I.C.L. and Desjardins, P. (1997): Bedrock geology of the Old Fort Mountain area (93M/1), British Columbia. Open File 1997-10.

- Newell, J.M., 1968, 1967 exploration report, Hearne Hill properties, Omineca Mining Division, B.C.: Report for Texas Gulf Sulphur Co.
- O.Brien, E. K., and Weary, G.F. 1988, Assessment Report October 1996 October 1997 for Diamond Drilling, Geochemistry and Geophysics on the Hearne Hill Property
- Ogryzlo, P.L., 1991, 1990 diamond drilling program of the Hearne Hill breccia pipe: Report for Noranda Minerals Inc., 13 pp. plus appendices.
- Ogryzlo, P.L., 1990, Geochemical and diamond drilling assessment of the Hearne Hill breccia pipe: Report for Noranda Minerals Inc., 17 pp. plus appendices.
- Ogryzlo, P.L., 15 January 1993. Letter to Chapman and Bland and Summary for talk at Cordilleran Round Up (Jan. 1993).
- Ogryzlo, P.L., Dirom, G.E. and Stothart, P.G., Morrison-Hearne Hill Copper Gold deposit, Babine Region West Central B.C. in Porphyry Deposits of the N.W. Cordillera Special Volume 46 C.I.M.M. 1995.
- Richards, T.A., 1990, Geology of Hazelton map area (93M): Geological Survey of Canada, OF 2322 map, two sheets.
- Sampson, C.J., 1993 (a), Report on Geology, Exploration Results and Potential of the Hearne Hill Property, 20 February 1993, for Booker Gold Explorations Ltd.
- Sampson, C.J., 1993 (b), Report on 1993 Exploration Programmes and potential Hearne Hill Property, 20 November 1993 for Booker Gold Explorations Ltd.
- Sampson, C.J., 1996, Report on 1994, 1995 Exploration Programmes, 28 February 1996 for Booker Gold Explorations Ltd.
- Sampson, C.J. and Weary G.W., 1997, Highlights of 1996 Exploration Programmes, January 1996 for Booker Gold Explorations Ltd.
- Smith, H., 1991, Diamond drill core log of hole 91-2: Log for David Chapman, 4 pp.
- Stumpf A.J., Huntley D.H., and Levson, V.M. 1996, Babine Porphyry Belt Project: Detailed Drift Exploration Studies in the Old Fort Mountain (93-M-1) and Fulton Lake Map areas B.C. BCMEMPR Geological Fieldwork 1995 Paper 1996-1.
- Tipper, H.W., and Richards, T.A., 1976, Jurassic stratigraphy and history of north-central British Columbia: Geological Survey of Canada, Bull. 270, 73 pp.
- Weary, G.F., Levson, V.L., and Broster, B.E. 1997, Till Geochemistry of the Chedakuz Creek Map Area (93 F/7), British Columbia, BCMEMPR Open File 1997-11.