Geology and Drill logs kel-glen option RIO TANTO

To: H.I. Hall —, Date August 5, 1970
From: M.B. Mehrtens
Subject: Kel-Glen Option-Stealagy

Copy: R.V. Longe

Brian Abraham was in the office today and in a brief discussion of the property made two observations which I consider to be especially significant:

1. The ore appears to be concentrated in boudins.
2. On surface, and over a large area, the overburden is cemented with secondary Fe oxides.

Taking the second point first:
Oxidation and weathering of massive sulphide ore liberates a large amount of Ferric ion (Fe^{3+}). Ferric ion is stable in solutions within the pH range $1-3.0$. When the pH increases above 3.0 the Fe is precipitated to form limonite/ gothite deposits. The range of pH in which Fe^{3+} is soluble is very restricted and therefore ensures that the element is transported in the zone of oxidation and weathering for only a short distance, to give rise to a transported gossan.

A massive sulphide body contains $60 \% \mathrm{Fe}$ and it is obvious that such a body must yield a lot of Fe on oxidation. similar large transported gossans (ie., similar to that at Kel-Glen) are common in the vicinity of massive sulphide bodies in Norway and elsewhere.

Turning to Brian's first point that the ore appears to occur in boudins; one of the salient characteristics of massive sulphide orebodies is that on strong tectonism they deform plastically (in many cases). Plastic deformation gives rise to swells, pods and other often extremely puzzling geometric shapes which would on surface (and with poor exposure) look like boudins.

Brian's observations (mentioned previously) suggest very strongly that we are dealing with a "volcano-exhalativesedimentary" type massive sulphide possibility. The large transported gossan together with the so-called boudin habit of the ore indicate that we are very near to a massive sulphide body and not dealing merely with a part of the mineralize horizon with which these bodies are generally associated.

These observations highlight the need to fly E.M. over the area to determine the presence and strike of such a mineralize horizon. It should be noted that whereas the so-called mineralize horizon (often 3 ft . or so thick) is normally concordant with the enclosing formation - the massive sulphide deposits along it are controlled by the structure and will often show discordant relationships with the wall rocks because of a tendency to deform plastically under strong tectonism (as previously mentioned).

A final point: E.M. (ground) should be carried out over Kel-Glen to help site the drill holes.

Airbourne E.M. should be considered to follow up the larger area where a potential for massive sulphide ore and their related (uneconomic) mineralize horizons are indicated.

Mike.
MEM : 1 md
M.B. Mehrtens.
,
$92 \cdot P \cdot 8$
REPORT
ON

Newhykulston (Coal) Creek Copper Prospect
Kamloops Mining Division, B.C.

Vancouver, B.C.
May 25, 19.70

CONTENTS

Page
INTRODUCTION 1
LOCATION \& ACCESS 1
PROPERTY 1
HISTORY 2
GEOLOGY 2
MINERALIZATION 3
ORE 3
CONCLUSIONS 4
RECOMMENDATIONS 4
APPENDICES

1. Chip Sample Assays
2. Geochemical Analysis
3. Plan of Claim Group
4. Plan Showing Geochemical Soil Samples
5. Plan Showing Trenches \& Assays
6. Notice to Group
7. Work Done.

INTRODUCTION

On April 15, 1970, I examined the trenches of Warner Holdings Ltd., Newhykulston (Coal) Creek Copper prospect, and saw sufficient merit in the copper mineralization to warrant recommending to my associates that something further should be done to expose the immediate areas of the mineralization more fully. A working option was secured from Mr. J. Aceman of Warner Holdings and I again visited the property and supervised the work of a D. 8 Caterpillar bulldozer on May $12,13,14$ and 15, 1970 further opering up the showings.

Mr. P. Connell, field manager for Warner Holdings assisted by Mr. F. Savinkoff conducted me on the first examination and.Mr. Connell, assisted by Mr. Jeff Sluggett directed the bulldozing and carried out a soil sampling program, on the second visit. I took five chip samples on the showings on my first visit, and twenty chip samples during the bulldozing on my second visit and made a chain and compass survey of the trenches.

No examination of the claim staking and property ownership was made other than to visit the nearest claim post to the trenches and ascertain that the showings were well within the property boundaries.

LOCATION AND ACCESS

The property is reached by black top highway from Kamloops to Barriere, B.C. and thence by gravel road up the east side of North Thompson river 10.5 miles to the junction of a logging road at an elevation of 1300 feet above sea-level. A logging road passable for four wheel drive vehicles leads easterly and then southerly for 3 miles from the junction up the valley of Newhykulston (Coal) Creek to the trenches which lie between elevations of 3200 to 3350 feet above sea-level.

PROPERTY

The property is shown by a claim plan given to me by Mr. Connell to consist of a contiguous block of 32 mineral claims numbers $G W 5 I$ to 70 and $A C E 6 I$ to 80 inclusive located in the Kamloops Mining Division, B.C. The trenches are on
claims GW 5l (987081) and GW 52 (987082). Tags on the nearest staking post were dated April 7, 1969. Assessment work in the form of bulldozed trenches 1 to 5 done before my examination are said to put the assessment work on the property in good standing until April ll, 1971.

I got the impression that the directions on the staking plan were diagramatic and do not accurately represent the direction of staking on the ground in the vicinity of the trenches. I would suggest that the staking line be reblazed.

HISTORY

I do not know the history of the property other than indicated by old blazes and posts. These indicate it had been staked before around 1966 and possibly also at some time prior to that. Evidence of 6 drill holes were uncovered. Four of them were in trench 1 and I was told by Mr. Connell that he had them put in with a pack sack drill; that they were 10 feet or less in length and little core recovery was obtained.
Two holes of somewhat larger diameter were uncovered on trench 3, but their lengths are unknown; no cores if any are in evidence, and no results are known. At some time in the past an option was reported taken and a blast set off on a showing on the west side of Newhykulston creek, west of mile post 2. The option was evidently dropped.

GEOLOGY

Geological Survey of Canada Summary Report 1921 Part A, pages 72 to 106 by W. Uglow gives a description of the geology and a small map of the general area but no reference is made to the property. This map indicates the rocks in the vicinity of the property are probably Permean in age and hence formations of the Cache Creek series. This series embraces sedimentary and volcanic. formations. These rocks lie between the Baldybiotite granodiorite stock lying to the east and the Darlington granodiorite stock to the west of North Thompson river. The little government map indicates that somewhere in the vicinity of the Newhykulston Creek property there is a westerly dipping sill. This is described as consisting of pyroxenite in the basal part with micropegmatite in the upper part.

Major strike faulting is believed to follow the North Thompson River and a cross fault following Barriere river is shown on the government map.

The rocks at the trenches examined are interbedded argillites, siltstone and amphibolite: The amphibolite is thought to have been originally a greywacke or basic tuff. At trench 3 it has streaks of fine grained magnetite, but these were not seen or detected with magnet in the amphibolite in trench l. Here a partly cemented fawn coloured regolith dips gently easterly and overlies the steeply dipping siltstone and argillite with marked unconformity. It is only a few feet thick. It is probably tertiary in age.

Gouge reaches 9 feet in width along strike faults. Fracturing is extensive in trenches \#l and \#2. The rocks are relatively unfractured in trench 0 , the west side of trench 1 , and south and west sides of trench 3 . The fracturing may be related to folding and changes in strike of the faults.

MINERALIZATION

Mineralization is fine grained pyrite and light coloured chalcopyrite. There is some azurite and malachite and possibly some native copper. Grab samples taken prior to my examination yielded a little gold and silver.

ORE

The highest assays were obtained in black siliceous argillite in trench 1 where two chip samples each across 2 feet assayed 12.37% copper and 11.21% copper respectively. Fractured siltstone assayed around 1.3\% copper and interbedded argillite,siltstone and amphibolite gave intermediate values. Grade in trench \#l is 2 to 2.5\% copper over a length of 75 feet and width of 20 feet and this could be lengthened by further work.

Mineralization is variable in the magnetiteamphibolite of trench 3 , but suggests some tonnage of similar grade to that exposed in trench. \#l.

The ore in the trenches just described is around mile post 3 on the road. Another "showing" is reported on the west side of the canyon of Newhykulston creek west Of mile post 2 or 1 mile north of those described above It would appear to be rolughly on the strike of the showings sampled. An attempt to reach it was made, climbing down the canyon from the road, over glacial morraine and andesite. A rope or ladder would be required to reach it, and these were not available on the occasion of our examination. It is said to have had a blast put in it and contain copper and gold.

CONCLUSIONS

It is concluded that there is some copper mineralization of ore grade in the trenches examined, and that the property warrants further investigation. Outcrops are rare to non existent in the part of the property around the trenches. Drilling is required to ascertain if further ore is present. Iine cutting with, a soil sampling survey and, magnetometer and I.P. or E.M. surveys are required to better guide the , expensive drilling.

RECOMMENDATIONS

It is recommended that $\$ 100,000$ be raised to carry out the line cutting, geochemical, geophysical surveys and drilling, and to afford sufficient funds for office, overhead supervision and travelling.

Respectfully submitted

E. J. Lees, Ph.D., P. Eng.

Ongumphtukuton (Bac) Sreali
-Cabien Progibact.
 - an tupberich

RIO TI. O CANADIAN EXPLORATION LIMITED DIAMOND DRILL RECORD

[^0]| FOOTAGE | | DESCRIPTION | SAMPLE | FOOTAGE | | LENGTH | | \% Cu | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| from | to | | № | from | to | | | | |
| | | The most common joint C / A is 45°. I | | | | | | | |
| | | suspect the mineralized zone is a silt- | | | | | | | |
| | | stone - minor pyrite and cpy is noted in | | | | | | | |
| | | FP's (irregular) in the rock - the rock | | | | | | | |
| | | may even be a chert! ' | | | | | | | |
| | | The siltstone (?) has finely dissolved | | | 0 | 324 | 16.6 | | |
| | | pyrite in it and pyrite along FP's. The | | | | | 7 | | |
| | | fractures are irregular but 45 is the | | | | , 20 | F + | | |
| | | most common one. | (| | | 6.10 | m | | |
| | | 210-220 0.5 feet core lost | | | | | | | |
| | | 224.5 Pyrite in a gouge zone 5 cm wide. | | | | | 1 | | |
| 222 | | The fractures irregular and regular con- | C22651 | 210.0 | 220.0 | 10.0 | 1 | . 02 | |
| | | tains fine grained pyrite up to lmm wide | C22668 | 220.0 | 224.0 | 4.0 | 1 | . 04 | |
| | | with occ'l blebs - the rock appears to be | C22652 | 224.0 | 230.0 | 6.0 | - | . 30 | |
| | | more silicious than before although it | C22653 | 230.0 | 234.0 | 4.0 | - | . 52 | |
| | | retains its fine grained appearance. | C22654 | 234.0 | 244.0 | 10.0 | | . 26 | |
| | | | C22655 | 244.0 | 246.0 | 2.0 | | . 03 | |
| | | 225 - Remnants of what might have been . | C22656 | 300.0 | 310.0 | 10.0 | | . 01 | |
| | | chert beds 2 cm thick noted - these are | C22657 | 310.0 | 320.0 | 10.0 | 1 | . 02 | |
| | | contorted but have $C / A^{\prime} \mathrm{s}=45^{\circ}$ | C22658 | 340.0 | 343.0 | 3.0 | . | . 01 | |
| | | | C22659 | 348.1 | 348.3 | 0.2 | : | TR. | |
| | | 227 cpy and Py blebs to 2cm are common | C22660 | 348.3 | 349.3 | 1.0 | \square | . 01 | |
| | | and they appear to be banded. | C22661 | 350.0 | 360.0 | 10.0 | | . 01 | |
| | | \therefore a \quad, | C22663 | 380.0 | 390.0 | 10.0 | | . 01 | |
| | | 220-230 0.5 feet core lost | C22663 | 410.0 | 420.0 | 10.0 | | . 01 | |
| | | \because | C22664 | 420.5 | 422.0 | 1.5 | | . 01 | |
| \cdots | | 231 Good blebs of Cpy up to 2cm accross | C22665 | 425.0 | 426.0 | 1.0 | | . 01 | |
| . | | noted closely associated with pyrite. | C22666 | 430.0 | 440.0 | 10.0 | | . 01 | |
| | | | C22667 | 469.0 | 470.0 | 1.0 | | .01 | |
| 231.5 | | Quartzite (?) bed - highly fractured and | C22669 | 330.0 | 340.0 | 10.0 | | . 01 | , |
| | | sheared into small breccia - like pieces. | C22670 | 340.0 | 348.1 | 8.1 | | . 01 | |
| , | | 0.5 cm pyrite blebs are common as is | C22671 | 360.0 | 369:0 | 9.0 | | . 01 | |
| , | | finer grained dissociated pyrite. | | \% | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |

FOotage		DESCRIPTION	$\begin{aligned} & \text { SAMPLE } \\ & \text { No } \end{aligned}$	FOOtAGE		LENGTH			
from	to			from	to				
		246-248.5-Faultgouge - intensely							
		sheared							
248.5		Siliceous fractured rock - extremely							
		fine grained appears to have a C / A							
		contact - 45° - has finely disseminated							
		pyrite - possibly a chert.							
		-249-250.5-fault zone							
		240-250 0.5 ft. core lost							
		C/A's still mostly 450 especially small							
		shears and prominent joints.							
		250-260 2.8 ft . core lost							
		- siliceous rock has tiny black							
		irregular stringers 1 mm . thick in it.							
		260-270 2.8 ft . core lost	1						
		273' strip 1 cm . wide $\mathrm{C} / \mathrm{A} 15^{\circ}$							
		$277^{\prime} 1 \mathrm{~cm}$. white quartz band $\mathrm{c} / \mathrm{A} 45^{\circ}$							
		281' Excellent banding - black and white							
		bands C(A 45°							
		- some of the quartz is a pale pink							
		284.5-285 fault zone							
		280-290 2.0 ft . core lost							
		298.5 fault zone $6^{\prime \prime}$							
		$300.56^{\prime \prime}$ fault zone C/A 45°							
		290-300 3.5 ft. core lost							
300.5		pale green heavily altered sediment							
		with 1 mm . grain size. The mafics appear							
		to be completely chloritized has							
		black carbonaceous bands 3 mm . C/A 45°							

R.A.M.L. 269

RIO TI O CANADIAN EXPLORATION LIMITED DIAMOND DRILL RECORD

Footage		DESCRIPTION	SAMPLE №	FOOTAGE		LENGTH			
from	to			from	to				
		306' - Fault zone with carbonates							
		The rock contains very fragmented							
		disseminated pyrite and probably chalco							
		pyrite too							
		Pyrite also occurs in irregular quartz							
		grains in the rock. The rock appears to							
		be extremely heavily altered and probably							
		re-chrystalized to a moderate degree							
		300-310 0.5 ft. core lost							
		310-312 - heavily altered and sheared							
		gouge - possibly a big fault.							
		310-320 0.2 ft. core lost							
319.6	320.6	319.6-320.6 1" quartz band C/A 45°							
		- contains black 2 mm . bands							
320.6		as before and contains disseminated							
		pyrite							
323.5	326.0	Heavily altered and gouged zone							
		327 4" quartz band							
		$3281^{\prime \prime}$ Fault zone with pyrite							
		320-330 0.2 ft. core lost							
		331 thin 1 mm . pyrite bands noted C/A 35°							
338		Rock is bleached version of one before							
		it with larger feldspar grains and tiny							
		lmm. thick chloritic veins							
		330-340 0.3 ft. core lost							
		343-344 I^{\prime} I' quartz band - very heavily							
		gractured							
		341 - possibly lmm. band of chalco pyrite							

[^1]

RIO Ti O CANADIAN EXPLORATION LIMITED diamond drill record

R.A.M.L. 269

RIO TI $)$ CANADIAN EXPLORATDIAMOND DRILL RECOR							
FOOTAGE		DESCRIPTION	SAMPLE No	FOOTAGE		LENGTH	\% Cu
from.	to			from	to		
		74^{\prime} Quartzy areas are very irregular but	,				
		a rough $C / A=45$ prominent.					
		75' The rock is essentially chlorite with					
		a Bright green color. It is very heavily					
		sheared with most of the orientations being					
		45 . Lots of disseminated pyrite.					
		70-80 7^{\prime} Of core recovered					
		80-907.5' of core recovered					
		90-100 8' of core recovered					
		100-110 9' of core recovered					
		86-87.5' Fault gouge chloritic with					
		pyritonedrons of pyrite disseminated through	-				
		out.	(c 22676	95	100	5^{\prime}	TR
			C 22677	100	102.5	2.5^{1}	3.80
89.5	92.0	Bleached siliceous area with quartz bands					
\cdots - ..		up to 2 cm . writh an $C / A=45^{\circ}$	C 22678	102.5	110	7.5^{\prime}	. 16
		-					
92.0		Fine grained chloritic rgck with numerous					
		slips . Average $C / A=45$					
98.0		$C / A=90^{\circ}$ on a fault slip					
	-	\square					
98.0	100.0	Siliceous band with disseminated pyrite					
100.0	102.5	Massive sulfides - appears to be $\frac{1}{2}$ chalco-					
		pyrite and $\frac{1}{2}$ pyrite. The $C / A=45^{\circ}$					
		103.0-103.5 is massive pyrite.					
102.5		Siliceous pyritic rock extrememly fine					
		grained. The siliceous stuff appears to					
		be on either side of the mineralization.					
,		Minor chalcopyrite					

[^2]

| LOCATION: $2 \mathrm{~S} \quad 2+50 \mathrm{~W}$ | |
| :--- | :--- | :--- |
| | $90^{\text {® }}$ |
| AZIMUTH: | |

R TINTO CANADIAN EXPLORATION LIMITED DIAMOND DRILL RECORD
DIP: 50 E
STARTED: September 4, 1970 CORE SIZE: NQ \quad DATE LOGGED: Sept. 4-1 $1 / 70$ SECTION:
COMPLETED: September 11, 1970 DIP TESTS: - BY:

PURPOSE

[^3]

[^0]: R.A.M.L. 288

[^1]: R.A.M.L. 289

[^2]: R.A.M.L. 269

[^3]: R.A.M.L. 268

