CASTLE MINERALS INC. WREN CLAIMS

DIAMOND DRILL RECORD

HOLE NO 89-1 PAGE 1 OF 2

820460

TOTAL DRILYNG = 230m

0921/6

LATITUD	E		DIPS - collar -70	0	AZIMUTH 228°		STAR	TED					
DEPART	URE		-	0	CORE SIZE	160 (88	СОМЕ	LETED					
ELEVAT	ION		-	0	CONTRACTOR		LENG	TH /	32.6 (10	7 feet)		
SHEET	NO.			0	CLAIM N.E. corner of W	JDEN GLATM	LOGG	ED BY					
TARGET					CLAIM N.E. corner of W	VREN CLAIM			Ralph G	onzale	Z		_
	I	Anomalous AU in	soil samples				DATE						
SECTIO			ROCK DESCRIPT	TIO	N	MINERALIZA	TION	SAMDLE		SSAY			
FROM	ТО					SUMMAR	Y	NOMBER	INTERVAL	WIDTH	AU (OZ/t)		
0	20	Casing no core		-									
								801	20-30				
20	27	Light greyish-g	reen, medium-grained andesit	te.	Core highly broken with few	-2% pyrite alor	g joint	802	30-40	1-1-			
		fragments large	er than 1cm. Some sections of	conta	ain euhedral plagioclase 15%	surfaces		803	40-50				
		of total ground	mass with crystals approxi	imate	ely 1mm long, -2% pyrite	-0.5% diss magr	etite	804	50-57				
	mostly along :		acture (joints?) surfaces			at 27'. Minor d	liss	805	72-77				
	Minor -0.5% magne	netite at 27'	21'-	27' 1 foot of core recovered	FeOx (siderite?	?)	806	77-87					
			2	27'-	30' 1.5 feet of core recovered			807	87-92				
		Fault at 19.5-2			32' 1 foot of core recovered								
					37' 0.5 feet of core recovered								
	Sie e		3	37'-	47' 0.1 feet of core recovered								
					49' 1 foot of core recovered								
					52' 2.5 feet of core recovered							N. C. C.	
					72' 0 feet of core recovered								
					75' 2 feet of core recovered								
					77' 0.6 feet of core recovered								
					80' 2.3 feet of core recovered								
			The second secon		82' 1.2 feet of core recovered								
					92' 1 5 feet of core recovered		to a family	Emilia or					
					97' 0 feet of core recovered								
	X - 1843				107' 0 feet of core recovered								

HOLE NO. 89-1

Page 2 of 2

Sect	ion	ROCK	Inte	rval	ALTERATION			VEINLETS
from m/f	to t M/Et	DESCRIPTION	from /m/ft	to Mart		Thickness mm	Angle to core	minerals in decreasing abundance
27	30	Fault zone-abundant clay gouge.	27	30	3-5% discontinous veinlets of			
		Light grey 50% clay			pyrite.Veinlets -0.5mm wide			
30		Light greyish-green lithic	30	79	Intensely altered to a mixture			-1% diss. euhedral pyrite
		andesite tuff with rounded			of light grey mica(?) (probably			
		fragments upto 4mm long			a mylonite) with minor calcite			
					along fractures			
		37-47 Fault zone with no core						
		recovered						
		47-49 Core ground to pea sized	72	75	Core fractured at 75°t.c.a. and			5% diss. pyrite
		fragments			25°t.c.aAlso most intense			
		52-72 Fault zone with no core			zone of mylonization			
		recovered						
79	83	Massive light greenish-grey						1-2% pyrite crystals
		andesite						+20% euhedral plagioclase
		81-83 Highly broken core						crystals upto 1mm long. No
83	92	Core recovery is -15% fragments						apparent sulphides
		are plate like 1-4mm thick with						
		fractures possibly at 45°t.c.a.						
		fragments seldom with surface						
		area +1cm. Medium grained, greenis	h					
		lithic andesitic tuff. fragments						
		average 3-4mm in diametre and are						
		usually rounded although some						`
		appear strained and angular						
								<u> </u>

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR MA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM.

- SAMPLE TYPE: CUTTING AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

DATE RECEIVED: MAY 29 1989 DATE REPORT MAILED: June 1/89

CASTLE MINERAL INC.

File # 89-1242

89-1 70' 9 771 22 170 1.3 50 34 592 8.05 2 5 ND 1 56 1 3 2 30 .29 .085 3 20 1.18 7 .01 12 1.91 .05 .16 488 102 89-1 90' 11 525 13 194 .2 53 27 514 6.48 6 5 ND 1 36 1 4 2 24 .22 .075 2 14 1.01 15 .01 2 1.66 .04 .15 722 140

LOCA	TION:				Dia	amond Drill Record		Н	OLE NO.	Page 1	of 3
AZIM	CTH:	260°	DIPS - colla	ır –6	0 °	CONTRACTOR:			ROPERTY:		
ELEV	ATION	:	-	m	0	LOGGED BY: Ralph Gonzalez		С	LAIM NO.		
LENC	iTH:	197 feet 60.\	m -	m	0	DATE:		SI	ECTION NO.		
CORE	SIZE		-	m	0			ST	TARTED:		
PURP	OSE:	High Au geoch	emical respose	e in roc	k and	soil		C	OMPLETED:		
Sec	tion	ROC	K	Inte	rval	ALTERATION,			VEINLETS		
from (ft)	to (ft)	DESCRIP		from (ft)	to (ft)	MINERALIZATION etc.	Thickness mm	Angle to core	minerals in d	ecreasing abun	dance
0	3	Casing - no core									
3	27	Light greyish-gree		3	18	Fractured @ 50°t.c.a. with epidot	e 1-3mm	50°	Quartz veinlets	s with pyrit	e parall
		porphyritic textur				alteration and discontinuous			to veinlet and	extending i	into wall
		crystals upto 0-5c				quartz veins perpendicular to			rock ±0.5cm Py	rite crystal	ls anhedr
		Weak to moderately				fracture. Alteration zone range		: 	to subhedral a	nd 1-2mm acr	coss
		Locally pink quart	z? amygdules			to 1.5cm.Fracture dinsity 20-25/m					
		upto 2mm				from 7.5ft to 18ft intense epidot	e 6.cm		@ 14' Quartz v	ein - no sul	lphides!
						alteration.20% of core in 1cm vei	ns 14cm		@ 14' FeOx alto	ered core	
						and -0.5mm veinlets. Approx. 1%					
						pyrite with an increase to 2-3%					
·						in more altered sections					
				18	27	Same as above except reduced -5%	1-3mm		Quartz,plag,ep	idote veins	with
						epidote alteration			-1% pyrite.Only	y trace amou	unts of
<u>. </u>	ļ 			26	26.5	10cm FeOx and muscovite altered			pyrite in the a	andesite	
			·			core					
27	31.5	Light greyish-gree	n,massive,				0.5	50°	75% pyrite as	euhedral to	subhedra
		silicified andesit	e						disseminate cry	ystals and a	s anhedr
									grains adjacent	to quartz	veinlets

Sec	tion	ROCK	Inte	rval	ALTERATION	-		VEINLETS
from (ft)	to (ft)	DESCRIPTION	from (ft)	(ft)	MINERALIZATION etc.	Thickness mm	Angle to core	minerals in decreasing abundance
			27	21.5	The lower contact is fractured			
			21	31.3				
					and altered to quartz,plag.micas and uralitized hornblende FeOx		-1	
					increases toward to lower contact			
					and pyrite decreases over the las	T.		
.5		Lower contact 30°t.c.a. fractured			foot			
1.5	141				Traces -0.5% chalcopyrite with			
	141				FeOx along the rim. Crystals			
		monzonite. Hornblende (mafics) are altered to chlorite			are usually euhedral All of the core shows moderate-to			
		41.5-43.5 Andisite with 5-8%						
					weak propylitic alteration with			
		pyrite similar to above Monzonite fractured 30°t.c.a.	57	57	local phyllic alteration 4cm of quartz vein contact 85°t.c			
			57	37	Mafics altered to chlorite and	·a.		
		averaging 5-7/m Most of the core						
		is weak to very weakly magnetic	84	89	a yellowish epidote (?)			Sulphides weathered to FeOx
			04	09	Colour change increase in pink (FeOx increase) and intense			Sulphides weathered to reox
		·			alteration of the mafics to micas			
		·			(sericite)			
			98	98	4cm quartz vein 40°t.c.a.			
			109	109	3cm quartz vein			
			106		2cm quartz vein 90°t.c.a.			
			111		Sericite alteration			
			120		3cm quartz vein			
			137		3cm quartz vein 3cm qiartz vein pyrite			
			127	i	Bleached core with slight increas	e		
1			/		• •			

					***			:	
							: - <u>-</u> -		
				Di	amond Drill Record	- -	но	E NO. 89-2	Page 3 of 3
Sec	tion	ROCK	inte	rval	ALTERATION.			VEINLETS	
from (ft)	10 (ft)	DESCRIPTION	from (ft)	to (ft)	MINERALIZATION etc.	Thickness mm	Angle to core		ecreasing abundance
	1		135		Bleached core with muscovite				
141	197	Coarse grained monzonite grey to							
		pink in colour, non-magnetic to			Chalcopyrite 0.5% with FeOx rims				
		very weakly magnetic. The grey			FeOx rims increase in the more				
		coloured sections reflect and			altered sections.				
		increase in sericite alteration.			141-148,157-172,176-180				
		Generally,however,the core is							
		weakly propylifically altered							
		with mafics + epidote. The							
		sericite development may in part		ļ					
		be due to quartz veins	143	144	28cm quartz vein 85°t.c.a.				
		141-145 Sericite altered monzonit	e 172	172	Poor core recovery (50%) between				
		with 1ft quartz vein @ 143-144			162-172 feet 3cm quartz part of				
		157-172 FeOx abundant and fractur	es						
		@ 20/m with fractures @ 75°t.c.a.							
1									
						1			
1					·				
1									
1									

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.

THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR MA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM.

- SAMPLE TYPE: CORE AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

3/89 SIGNED BY D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS DATE RECEIVED: JUN 29 1989 DATE REPORT MAILED: CASTLE MINERALS LTD. File # 89-1855 W AU* Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Ba Ti В Ni SAMPLE# Cu Pb Zn Ag PPM PPM PPM PPM PPM PPM PPM PPM % PPM PPM PPM PPM PPM 3 PPM PPM PPM PPM PPM PPM 52 92 .65 .062 3 10 1.07 254 .17 11 2.02 .05 .64 11 1055 3.60 ND 89-2 3-12 1 101 16 137 2 5 68 13 1156 2.96 4 5 ND 1 41 2 2 49 .49 .058 4 20 1.06 .07 13 1.67 .02 .12 17 169 .1 89-2 12-20 2 2 48 9 .93 74 .06 5 1.62 .02 .13 5 ND 1 49 1 .61 .063 4 89-2 20-27 13 1182 2.71 2 5 12 1.38 35 .01 3 2.26 .01 .13 2 5 ND 1 11 2 58 .49 .052 72 16 149 .1 8 14 1583 4.67 89-2 27-31.5 7 1.40 .02 .12 1 21 3 31 .20 .028 5 8 .76 91 .02 5 ND 12 101 9 853 2.53 89-2 31.5-42 .55 .041 .58 132 .03 12 1.18 .02 .13 ND 31 2 30 20 89-2 42-52 74 80 728 2.32 10 5 .18 4 .58 .02 .13 116 .01 3 89-2 52-62 35 11 40 .1 5 3 451 .90 6 5 ND 29 .45 .027 .53 .036 6 .21 137 .01 4 .62 .02 .11 12 389 5 5 ND 33 2 2 6 6 89-2 62-72 37 10 40 . 2 4 3 .88 349 .81 2 5 ND 1 35 2 2 4 .72 .034 6 5 .13 203 .01 3 .49 .02 .12 1 8 89-2 72-82 6 36 .2 4 3 .91 5 ND 27 2 5 .44 .035 8 18 .15 119 .01 6 .55 .02 .12 3 139 3 380 7 89-2 82-92 5 29 .40 .032 9 .13 168 .01 9 .54 .02 .12 89-2 92-102 37 41 3 417 .99 5 ND 9 .57 .02 .14 36 3 394 .91 5 5 ND 2 36 2 .40 .032 7 7 .14 178 .01 16 62 10 .3 89-2 102-112 .36 .036 9 7 .11 98 .01 10 .49 .02 .14 42 .3 3 528 .97 3 5 ND 2 19 2 3 3 4 89-2 112-122 1 13 1 55 3 1.31 .034 7 22 .10 104 .01 7 .44 .02 .14 30 .1 3 2 491 .83 5 ND 89-2 122-132 73 8 42 3 .90 .045 7 5 .15 87 .01 7 .51 .02 .12 1 89-2 132-142 40 . 3 3 444 .80 3 5 ND 2 2

19

15 21 60 .49 .093 39 55 .84 183 .07 38 1.96 .06 .13 12 490

7 37 50

41 22

43 132 6.9 71 31 1015 4.09

STD C/AU-R

STD C/AU-R

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. MUTE IPAGE TO REPORTAL FOR ME PE CO CA D IA CD MC DA TE R W AND LIMITED FOR NA K AND AL. AND DETECTION LIMIT BY ICP IS 3 PPM.

					SAMPLE				HN FE I* ANAL							RIG															
DATE	RECE	IVE	D:	JUL 4	1989	DA	re f	REPO	RT M	AILI	ED:	Ju	ly	7/	P9.	SI	GNED	вч	.C.	h.	.J.	. D. TO	DYE, C.	LEONG,	J.WAN	G; CER	TIFIED	B.C.	ASSAYE	RS	
										STL						ile	# 8	9-1	899		,										
SAMPLE#	Mo PPM	Cu PPM	Pb PPM	Zn PPM	Ag PPM	Ni PPM	Co PPM	Mn PPM	Fe %	As PPM	U PPM	Au PPM	Th PPM	Sr PPM	Cd PPM	Sb PPM	Bi PPM	V PPM	Ca %	P %	La PPM	Cr PPM	Mg %	Ba PPM	Ti %	B PPM	Al %	Na %	K %	PPM	Au* PPB
89-2 142-152	4	36	7	35	.1	6	2	348	.66	2	8	ND	1	26	1	3	4	3		.033	6	1	.11	84	.01	4	.44	.02	.12	3	6
89-2 152-162	3	26	11	38	.1	4	3	421	.80	4	1	ND	2	28	1	2	2	5	.22	.031	7	22	.12	106	.01	5	.64	.02	.14	4	2
89-2 162-172	5	49	12	46	.3	6	3	528	.98	28	5	ND	3	20	1	3	2	5	.51	.033	10	6	.09	112	.01	12	.57	.02	.14	3	5
89-2 172-132	4	31	13	48	.2	7	2	406	.84	7	5	ND	- 1	33	1	3	2	5	.42	.036	8	8	.15	102	.01	5	.67	.03	.16	1	2
89-2 182-187	2	23	10	40	.1	6	3	359	.70	2	5	ND	1	42	1	2	3	4	.80	.035	8	6	.15	90	.01	5	.57	.03	.13	1	2
89-3 10-16	1	42	12	70	.1	6	8	710	2.27	2	5	ND	1	52	1	2	4	42	1.07	.053	7	28	.70	92	.06	8	1.33	.05	.19	1	2
89-3 16-27	1	86	16	105	.2	5	8	1117	2.67	2	5	ND	1	51	1	2	3	64	. 62	.053	6	9	.90	288	.17	11	1.98	.09	.91	1	1
89-3 27-33	2	60	22	99	.1	7	8	945	2.11	2	5	ND	1	34	1	2	2	38	.65	.054	6	11	.81	105	.09	2	1.57	.05	.35	1	7
89-3 33-43	1	47	24	150	.1	8	10	1257	2.75	2	5	ND	1	33	1	2	2	47	.73	.058	6	11	1.19	92	.09	4	1.87	.04	.32	1	3
89-3 43-53	1	56	12	17	.4	5	9	864	2.71	2	7	ND	2	89	1	2	2	70	1.00	.061	6	22	.90	366	.16	8	1.99	.11	.59	1	2
89-3 53-63	2	53	20	108	.2	6	10	833	2.56	2	5	ND	1	55	1	2	3	62	. 82	.070	5	11	.99	211	.14	5	1.74	.07	.41	1	3
89-3 63-73	2	47	72	133	.1	5	6	638	1.97	2	5	ND	1	38	1	2	2	29	.61	.043	6	7	. 54	198	.08	2	1.02	.04	.27	1	9
89-3 73-83	2	12	8	45	.1	3	3	463	.91	2	5	ND	2	36	1	2	2	6	.36	.032	7	6	.23	80	.01	9	.78	.03	.13	2	2
89-3 83-93	2	13	5	39	.1	4	3	456	.85	3	5	ND	2	34	1	2	2	5	.59	.032	8	6	.19	82	.01	12	.73	.03	.14	1	1
89-3 93-103	2	17	8	33	.2	3	3	292	.69	2	5	ND	2	50	1	2	2	4	.31	.035	5	5	.14	156	.02	14	.61	.04	.15	3	2
89-3 103-113	3	22	1	41	.1	5	3	400	.82	2	5	ND	1	44	1	2	2	4	. 39	.031	5	6	.17	140	.02	2	.63	.04	.15	1	3
89-3 113-123	3	47	7	42	.1	5	2	453	.93	2	5	ND	1	32	1	2	3	4	. 45	.035	8	10	.16	147	.01	10	.64	.04	.15	2	46
89-3 123-133	4	74	6	38	.1	5	2	554	.94	3	5	ND	1	37	1	2	2	4	.80	.036	9	6	.13	98	.01	20	.53	.03	.15	1	41
89-3 133-143	1	68	6	34	.1	2	3	354	.73	4	5	ND	1	47	1	2	2	4	.92	.039	8	4	.15	222	.01	2	.52	.02	.11	1	10
89-3 143-153	2		6	33	.1	5	3	317	.74	2	5	ND	1	55	1	2	2	4	.92	.036	8	1	.14	253	.01	1	.57	.03	.13	1	2
89-3 153-160	1	81	6	40	.4	3	3	359	.75	2	5	ND	3	41	1	2	2	4	.53	.041	7	5		82	.01	11	.60	.03	.13	1	7
												-	27	EA	10	15	24	cn	17	001	20	22	0.2	102	0.7	25	1 02	0.6	1.4	11	520

18 59 44 132 7.2 69 31 1020 4.04 42 19 7 37 50 18 15 24 60 .47 .091 39 55 .82 182 .07 35 1.93 .06 .14 11 520

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1 CORE P2 SLUDGE AU* AWALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

DA	TE	RECE	IVE	D:		3 1989							All the same	ly		89.				z. C	. L.		D.:	FOYE, C	. LEONG	, J.WA	NG; CE	RTIFIE	D B.C.	ASSAY	ERS	
									CA	STLE	MII	VERA	LS	INC.		Fil	.e #	89-	223	7	Pa	ge 1										
SAMPLE		Mo PPN	Cu PPM	Pb PPM	Zn PPM	Ag PPM	Ni PPM	CO	Mn PPM	Fe %	As PPM	U PPM	Au PPM	Th PPM	Sr PPM	Cd PPM	Sb PPM	B1 PPM	V PPN	Ca %	P %	La PPM	Cr PPM	Mg %	Ba PPM	Ti %	B PPM	Al %	Na %	κ *	W PPM	Au PPI
89-2 192	,	13	13	12	5	.3	28	1	108	1.19	21	5	ND	1	1	1	4	2	1	.01	.004	2	33	.01	13	.01	2	.02	.01	.03	9	1
89-4 14-2		2	36	-14	104	.1	5.	8	859	7.13	117) 5	ND	3)	20	1	2	2	28	.34	.150	6	3	.74	27	.03	3	3.22	.02	.16	- 1	- 18
89-4 24-3		1	60	18	141	.2	9	13	1135	6.85	9)	5	ND	2)	18	1	4	. 2	- 52	.26	.083	4	6	1.41	33	.03	5	3.87	.01	.10	1	6
89-4 34-		1	63	37	211	.1	10	16	2226	6.84	8	5	ND	2	32	1	4	2	100	.46	.116	3	8	2.08	27	.07	4	4.82	.05	.08	1	
89-4 44-5		1	102	34	213	. 3	10	23	2290	7.08	12	5	ND	. 1	15	2	6	2	86	.33	.088	2	7	2.21	29	.08	2	4.62	.02	.09	1	
89-4 54-6	64	1	56	41	171	.1	9	17	2044	5.34	11	5	ND	1	16	1	2	2	65	.37	.093	3	5	1.94	42	.09	2	3.74	.03	.14	1	
89-4 64-7		1	86	14	123	. 1	7	14	1544	5.22	3	5	ND	2	17	1	.4	2	43	.90	.070	4	4	1.53	40	.05	2	3.24	.02	.16	1	
89-4 74-8		1	50	11	117	. 3	9	14	1427	4.66	15	5	ND	2	10	1	5	2	36	. 33	.078	3	4	1.61	34	.06	2	3.03	.02	.15	1	
89-4 84-9		1	113	11	144	.3	8	16	1690	5.28	8	5	ND	1	15	-1	2	2	48	1.33	.076	3	4	1.59	37	.06	2	3.35	.02	.17	1	
89-4 94-		1	70	11	137	.1	. 7	16	1646	5.51	- 8	5	ND	1	11	1	2	2	41	1.33	.072	2	3	1.39	30	.06	2	3.07	.02	.14	1	
89-4 104-	-114	1	49	8	142	. 2	7	21	1406	5.26	4	5	ND	1	9	1	2	2	32	.57	.078	2	3	1.47	32	.05	2	2.95	.01	.17	1	
89-4 114-		1	28	10	125	. 2	6	12	1084	3.02	5	5	ND	1	37	1	4	2	30	1.26	.074	2	- 2	1.75	30	.09	2	2.31	.03	.10	1	
89-4 124-		1	24	6	111	.1	4	12	1070	3.08	2	5	ND	1	37	1	2	2	29	1.72	.073	2	2	1.67	44	.10	2	2.25	.03	.12	2	
89-4 134		1	23	6	119	.1	5	11	1113	2.92	6	5	ND	1	35	1	2	2	25	1.22	.073	2	2	1.56	57	.07	2	2.07	.02	.11	1	
STD C/AU-		18	58	38	132	6.8	69	31	1024	3.95	42	20	7	36	48	19	14	22	61	.47	.097	38	53	.93	172	.07	35	1.98	.06	.13	11	

Length ?

N	1	5	p	
D	5	A		

LOCA	TION:		0		Dia	mond Drill Record		. [HOLE NO. 89-5 Page 1 of 2
	UTH:	260° I	DIPS - collar	45	0)	CONTRACTOR:		_	PROPERTY: WREN GROUP
	ATION		- m	1	/_	LOGGED BY: R. Gonzalez			CLAIM NO. WREN 1
LENG		7517 200	Tu - m		0	DATE: July 15,1989			SECTION NO.
	SIZE	: AQ	- m		0	041, 13,1303			STARTED:
PURP							-		COMPLETED:
Sect		Shear zone with A		1	rval	ATTEN TION			VEINLETS
from (ft)	to (ft)	ROCK DESCRIPT		from (ft)	to (ft)	ALTERATION, MINERALIZATION etc.	Thickness	Angle to cor	2
. 0	4	Casing no core							
4	10	Weathered light gre	y andesite,						
		stained rusty brown							
10	24	Light grey,f/g ande	site,+20%	10	24	+5% very fine grained sulphides			
	plagioclase crysta	s,2-4mm long			(pyrite?)				
		60% core recovery							
24	43	Lithic tuff compose	d of light	20	35	Pyrite is less than 1% and		n H	
		olive green,f/g gro	undmass and			usually poorly formed euhedral			
		dark grey to black.	10-15% f/g			crystals			
		fragments upto 6mm	long. Pyrite	41	43	Vuggy quartz vein parallel to			
		generally confined	to the mafic			core with FeOx staining			
		fragments. The core	becomes						
		"greener" with dept	h and lithic						
		fragments more roun	ded and often						
		with a core of quar	tz						
Eta alla H									
								-	
abd a							Fig.		
	-17-								
						E .			

HOLE NO. Page 2 of 2

Sect	ion	ROCK	Inte	rval	ALTERATION.			VEINLETS
from (ft)	to (ft)	DESCRIPTION	from (ft)	to (ft)	MINERALIZATION etc.	Thickness mm	Angle to core	minerals in decreasing abundance
43		Light grey,f/g massive andesite	-		Pyrite occurs as stringers and	:	·	Discontinous quartz and quartz
		slightly metamorphosed with			and clusters parallel to the		-	carbonate veinlets 1-3mm across
		plagioclase and sulphides			schistosity 30-40° to core		·	the schistosity 70 ° to core
		parallel to schistosity			Pyrite locally may be as high			5 veinlets/meter
					as 5% but usually averages about		-	
		51-60 Lithic tuff with no visible			1-2%	·		
		sulphides						
		68-70 Light green tuff with local						
		clots and stringers of chlorite			Disseminated and clusters of			
		Some of the more greenish materia	1		pyrite parallel to schistosity			
		is very talc like to the touch						
		70-75 core lost						
					·			
	-							
1								
					• .		1	-

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: COTE AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

DATE	REC	EIVE	D:	JUL :	18 1989	D.	ATE	REP	ORT C.			INER	0					B B		h	```	D.	TOYE,	C. LEON	3, J.W	ANG; CE	RTIFIE	ID B.C.	ASSAY	rers		
SAMPLE#	Mo PPM	Cu PPN	Pb PPM	Zn PPM	Ag PPM	Ni PPM	CO	Mn PPM	Fe %	As PPM	U PPM	Au PPM	Th PPM	Sr PPM	Cd PPM	Sb PPM	Bi PPM	V	Ca %	P %	La PPM	Cr PPM	Mg %	Ba PPM	Ti %	B PPM	Al %	Na %	8	PPM	Au* PPB	
89-5 5-15	1	113	20	62	.5	1	13	929	5.01	10	5	ND	1	15	1	2	2	25	.14	.090	2	3	2.13	44	.10		2.19	.03	.10	1	3	
89-5 15-25	1	134	38	61	1.7	16	16	1049	4.40	7	5	ND	1	14	1	2	2	40	.18	.075	2	42	2.64	34	.12	2	2.56	.03	.07	1	5	
89-5 25-35	1	127	15	80	.3	41	30	1150	4.92	4	5	ND	1	41	1	2	2	117	.90	.088	3	202	4.59	4	.20	THE PARTY	4.41	.01	.01	. 1	1	
89-5 35-45	1	115	32	60	.8	37	24	650	4.54	8	5	ND	1	34	1	2	2	85	.50	.090	2	147	3.23	19	.10	3	3.00	.01	.06	1	4	
89-5 45-55	3	69	20	10	2.4	11	. 17	57	4.22	17	5	ND	1	16	1	3.	2	9	.15	.077	. 2	8	.15	29	.01	2	.78	.04	.13	1	10	
89-5 55-65	1.	155	573	306	1.3	41	25	2115	5.35	3	5	ND	1	9	2	2	2	109	.32	.098	2	181	4.76	10	.05		4.64	.01	.04	1	1 37	
89-5 65-75	2	201	25	258	.8	9	15	648	4.71	16	5	ND	1	12	1	2	2	29	.15	.088	4		1.96	24	.01		2.47	.03	.14	12		
STD C/AU-R	19	62	40	133	7.4	73	31	1038	4.11	42	21	8	39	52	20	16	23	64	.45	.090	42	55	.93	181	.08	18	2.05	.06	.14	13	530	

LOCATION:]		Diar	nond Drill Record	HOLE NO. 89-3 Page 1 of 2
AZIMUTH:	255°	DIPS -	collar	-60°°	CONTRACTOR:	PROPERTY:
ELEVATION:		e	m	0	LOGGED BY: Ralph Gonzalez	CLAIM NO.
LENGTH:	201 feet 61,	3m -	m	0	DATE: June 30,1989	SECTION NO.
CORE SIZE:	AQ	_	m	0		STARTED:
PURPOSE:						COMPLETED:
Carrier			T	1		

Sect	ion	ROCK	Inte	rval	ALTERATION.			VEINLETS
from (ft)	to (ft)	DESCRIPTION	from (ft)	to (ft)	MINERALIZATION etc.	Thickness mm	Angle to core	minerals in decreasing abundance
0	10	Casing, no core recovered						
10	31	Mixture of light green, fine grained			-0.1 pyrite and local pyrrhotite,odd			
		andesite;greyish,porphyritic andesite;			grain of chalcopyrite.Most of the			
		and pink to brownish, coarse grained			andesitic is weakly to moderately			
		monzonite			magnetic-monzonite is non-magnetic			
		11ft and again at 12ft 5-6cm core of			the first of the second			
		monzonite					- 15	
		14.5-16ft Monzonite						
		16-26 Shear zone 10% core						
		26-27 Porphyry andesite						
		27-30 Shear zone with 30% recovery						
31	72	Grey,moderately grained (lapilli?) tuff			Sulphides are 1% pyrrhotite after pyrite			30° and 0° wispy veinlets and fracture
		with inclusion upto 4mm across			and very minor chalcopyrite, pyrrhotite for	ım:		filling veinlets @30°t.c.a.,epidote and
		The bottom 1ft is more silicified and			casts and along veinlets where they are			quartz are the principal material with
		contains 5-10% muscovite. At the contact wi	ith		highly altered to FeOx			minor pyrrhotite
.e. 17		the underlying unit is 7cm quartz vein		18.5	Some fragments(?) upto 3cm are			
72	201	Coarse grained, pink to grey monzonite			incorporated in the tuff and are altered			
7		fractures @ 70° with dendity of 20/m		. [51	entirely to epidote			
					Mafics are altered to chlorite and epido	te		Traces -0.1% of chalcopyrite
			1 1 11 1		Pervasive micas are common in the grey se	ctions		

Diamond Drill Record

HOLE NO. MRO 89-3 Page 2 of 2 Section Interval ROCK **VEINLETS ALTERATION** from to from to Thickness mm Angle to core **DESCRIPTION** MINERALIZATION etc. minerals in decreasing abundance 116 3cm quartz vein-increased mica for 4cm on either side of quartz vein 127 127 7cm quartz vein-contact 90°t.c.a. 128 Sericite alteration. The core is grey in color and FeOx alteration. Commonly extends 2-3cm on either side of fractures Fractures average 10/m 45-60°t.c.a. 0.1% chalcopyrite with 0.5% chalcopyrite in FeOx zones 152 Sericite alteration-the core is grey in 142 color with 8 fractures per metre. Fractures 40°t.c.a. several of which have 1-2mm thick epidote veinlets along the face

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: COTE AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

DATE RECEIVED: JUL 4 1989 DATE REPORT MAILED: SIGNED BY. ... D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS File # 89-1899 CASTLE MINERAL INC

	CASTLE MINERAL INC FILE # 09-1099																														
SAMPLE#	Mo PPM	Cu PPM	Pb PPM	Zn PPN	Ag PPM	Ni PPM	Co PPM	Mn PPM	Fe %	As PPM	U PPM	Au PPM	Th PPM	ST PPM	Cd PPM	Sb PPM	Bi PPM	V PPM	Ca %	P %	La PPM	Cr PPM	Mg ₹	Ba PPM	Ti %	B PPM	Al %	Na %	K %	W PPN	Au* PPB
89-2 142-152	4	36	7	35	.1	6	2	348	.66	2	8	ND	1	26	1	3	4	3	.26	.033	6	7	.11	84	.01	4	.44	.02	.12	3	6
89-2 152-162	3	26	11	38	.1	4	3	421	.80	4	1	ND	2	28	1	2	2	5	.22	.031	1	22	.12	106	.01	5	.64	.02	.14	4	2
89-2 162-172	5	49	12	46	.3	6	3	528	.98	28	5	ND	3	20	- 1	3	2	5	.51	.033	10	6	.09	112	.01	12	.57	.02	.14	3	5
89-2 172-132	4	31	13	48	.2	7	2	406	.84	7	5	ND	1	33	1	3	2	5	.42	.036	8	8	.15	102	.01	5	. 67	.03	.16	1	2
89-2 182-187	2	23	10	40	.1	6	3	359	.70	2	5	ND	1	42	1	2	3	4	.80	.035	8	6	.15	90	.01	5	.57	.03	.13	1	2
89-3 10-16	1	42	12	70	.1	6	8	710	2.27	2	5	ND	1	52	1	2	4	42	1.07	.053	1	28	.70	92	.06	8	1.33	.05	.19	1	2
89-3 16-27	1	86	16	105	. 2	5	8	1117	2.67	2	5	ND	1	51	1	2	3	64	. 52	.053	6	9	.90	288	.17		1.98	.09	.91	1	1
89-3 27-33	2	60	22	99	.1	7	8	945	2.11	2	5	ND	1	34	1	2	2	38	.65	.054	6	11	.81	105	.09	2	1.57	.05	.35	1	7
89-3 33-43	1	47	24	150	.1	8	10	1257	2.75	2	5	ND	1	33	1	2	2	47	.73	.058	6	11	1.19	92	.09	4	1.87	.04	.32	1	3
89-3 43-53	1	56	12	17	.4	5	9	864	2.71	2	1	ND	2	89	1	2	2	70	1.00	.061	6	22	.90	366	.16	8	1.99	.11	.59	1	2
89-3 53-63	2	53	20	108	.2	6	10	833	2.56	2	5	ND	1	55	1	2	3	62		.070	5	11	.99	211	.14		1.74	.07	.41	1	3
89-3 63-73	2	47	72	133	.1	5	6	638	1.97	2	5	ND	1	38	-1	2	2	29	.61	.043	6	-7	.54	198	.08	2	1.02	.04	.27	1	9
89-3 73-83	2	12	8	45	.1	3	3	463	.91	2	5	ND	2	36	1	2	2	6	.36	.032	7 -	6	.23	80	.01	9	.78	.03	.13	2	2
89-3 83-93	2	13	5	39	.1	4	3	456	.85	3	5	ND	2	34	1	2	2	5	.59	.032	8	6	.19	82	.01	12	.73	.03	.14	1	1
89-3 93-103	2	17	8	33	.2	3	3	292	.69	2	5	ND	2	50	1	2	2	4	.31	.035	5	5	.14	156	.02	14	.61	.04	.15	3	2
89-3 103-113	3	22	7	41	.1	5	3	400	.82	2	5	ND	1	44	1	2	2	4	.39	.031	5	6	.17	140	.02	2	.63	.04	.15	1	. 3
89-3 113-123	3	47	7	42	.1	5	2	453	.93	2	. 5	ND	1	32	1	2	- 3	4	.45	.035	8	10	.16	147	.01	10	.64	.04	.15	2	46
89-3 123-133	4	74	6	38	.1	5	2	554	.94	3	5	ND	1	37	1	2	2	4	.80	.036	9	6	.13	98	.01	20	.53	.03	.15	1	41
89-3 133-143	-1	68	6	34	.1	2	3	354	.73	4	5	ND	1	47	1	2	2	4		.039	8	4	.15	222	.01	2	.52	.02	.11	1	10
89-3 143-153	2	66	6	33	.1	5	3	317	.74	2	5	ND	1	55	1	2	2	4	.92	.036	8	7	.14	253	.01	1	.57	.03	.13	1	2
89-3 153-160	1	81	6	40	.4	3	3	359	.75	2	5	ND	3	41	1	2	2	4	.53	.041	1	5	.17	82	.01	11	.60	.03	.13	1	7
STD C/AU-R	18	59	44	132	7.2	69	31	1020	4.04	42	19	1	37	50	18	15	24	60	.47	.091	39	55	.82	182	.07	35	1.93	.06	.14	11	520

LOCA	TION:		8 4		Dia	mond Drill Record		[HOLE NO. 89-4 Page 1 of 2
AZIM	UTH:	155°	DIPS - collar	-47	0	CONTRACTOR:			PROPERTY:
ELEV	ATION	:	- m		0	LOGGED BY: R. Gonzalez			CLAIM NO. WREN 1
LENC	TH:	142' 43.3	– m		0	DATE: July 15,1989		-	SECTION NO.
CORE	SIZE		- m		0		ð		STARTED:
PURP	OSE:	High Au geoche	mistry in soils						COMPLETED:
Sec	tion	ROC	к	Inte	rval	ALTERATION,			VEINLETS
from (ft)	to (ft)	DESCRIP	1	from (ft)	to (ft)	MINERALIZATION etc.	Thickness mm	Angl to co	ninerals in decreasing abundance
0	14	Casing-No core							
14	35.2	Dark grey argillit	e:core recovery						
		40%, most of the co	re is fractures						
		and the core is ba	dly ground. 1-2m	ım					
		wide carbonate vei	ns averaging						
		1 per meter			Mag.				
35.2	57	Andesite agglomera	te:dark grey in						
		colour with elonga	te,well rounded			No. of the second secon			
		fragments upto 50m	m in length and						
		slightly lighter i	n colour,core						
		is vuggy and fract	ured at 10-15°						
		and 15/metre. Vugg	y are filled						
		with FeOx and MnOx							
57	92	Olive green to gre	y pyroclastic	57	58	Olive green colour with abundant			
		andesite with frag	ments 3-5mm	60	70	FeOx (+5% of surface) also			
		highly fractureu 3	0/metre	74	76	the core is highly altered to			
				83	85	clay esp. at 74-76'			

(%)

-64

Diamond Drill Record

HOLE NO. 89-4 Page 2 of 2 Section Interval **VEINLETS** ROCK ALTERATION. Thickness mm Angle to core from to from to DESCRIPTION MINERALIZATION etc. minerals in decreasing abundance 92 142 Light greenish-grey andesite with 115 | 117 Vuggy core with MnOx filling -2% plagioclase crystals upto 4mm the cavities long. Core is massive with fractures at 35° to core and 0,10 Stringers of quartz, carbonate and 9/metre 121 | 142 1-2 EOH upto 30 epidote The only sulohides seen: 1-3% 137 | 142 None of the core was magnetic pyrite euhedral crystals 1-2mm across. The most abundant amount is at the top 137' decreasing downward

 PROPERTY

CASTLE MINERALS INC. WREN CLAIMS

DIAMOND DRILL RECORD

HOLE NO 89-1 PAGE 1 OF 2

LATITU	DE		DIPS -	collar	o -70	AZIMU	ITH	228°			STAR	TED						
DEPART	TURE		-	-	0	CORE	SIZE	30			СОМЕ	PLETED						
ELEVAT	TION		-	-	0	CONTR	RACTOR	AQ I			LENG	TH T	32.6 (10	7 fee	a+)			
SHEET	NO.	·····	-	•	0	CLAIM		N.E. corner	of WR	PEN CLAIM	LOGG	ED BY	Ralph G	-				
TARGET	T					<u></u>				·	DATE		- Kaipii e					
SECTIO		Anomalous AU in :	soil samp						—т	MINEDALIZATI	<u> </u>	T		SSA	ve			
FROM	ТО	1		ROCK DI	ESCRIPTIO	N				MINERALIZATI SUMMARY	ON	SAMPLE		7	AU 102/ti			T
0	20	Casing no core									**							
												801	20-30					
20	27	Light grevish-g	reen.medi	um-grained	l andesite.	Core hic	ghlv bro	oken with few]_	2% pyrite along	joint	802	30-40					
		fragments large					-			urfaces		803	40-50					
		of total ground	mass wit	h crystals	approximat	ely 1mm	long.	-2% pyrite		0.5% diss magne	tite	804	50-57					
		mostly along fra	acture (j	oints?) su	ırfaces				<u> </u>	t 27'. Minor dis	ss	805	72-77					
		Minor -0.5% mag	netite at	27'	21'-	27 ' 1 fc	oot of o	core recovere	1	'eOx (siderite?)		806	77-87		·			
					27'-	30' 1.5	feet of	core recove				807	87-92					
		Fault at 19.5-20	0!		30'-	32' 1 fo	oot of a	core recovere	đ									
					32'-	37' 0.5	feet of	core recove	red									
					37 ' -	47' 0.1	feet of	core recove	red					<u> </u>				ļ
			-		47'-	49' 1 fo	oot_of_c	core recovere	a		···			<u> </u>		ļ	ļ	ļ
					49'-	52' 2.5	feet of	core recove	red									<u> </u>
					52'-	72' 0 fe	eet of o	core recovere	a			<u> </u>		<u> </u>		ļ		<u> </u>
					72'-	75! 2 fe	eet of o	core recovere	a									
					75'-	77' 0.6	feet of	core recove	red					<u> </u>				<u> </u>
				-	77'-	80' 2.3	feet of	core recove	red					<u> </u>				} -
					80'-	32' 1.2	feet of	core recove	red					ļ				<u> </u>
					82!-	92!_1.5	feet of	core recove	red -					 				├
							-	core_recovere						-				
					97'-	107' 0 f	eet of	core recovere	ed								 	
		1							ı		i		ı	1				•

HOLE NO. 89-1

Page 2 of 2

Sect	tion	ROCK	Inte	rval	ALTERATION			VEINLETS
from my f	to t <i>M</i> /Et	DESCRIPTION	from /nd/ft	to Maft	MINERALIZATION etc.	Thickness mm	Angle to core	minerals in decreasing abundance
27	30	Fault zone-abundant clay gouge.	27	30	3-5% discontinous veinlets of			
		Light grey 50% clay			pyrite.Veinlets -0.5mm wide			
30	79	Light grevish-green lithic	30	79	Intensely altered to a mixture			-1% diss. euhedral pyrite
	. :	andesite tuff with rounded			of light grey mica(?) (probably			
		fragments upto 4mm long			a mylonite) with minor calcite			
					along fractures			
ļ		37-47 Fault zone with no core						
		recovered						
		47-49 Core ground to pea sized	72	75	Core fractured at 75°t.c.a. and			5% diss. pyrite
		fragments			25°t.c.aAlso most intense			
		52-72 Fault zone with no core			zone of mylonization			
		recovered						
79	83	Massive light greenish-grey						1-2% pyrite crystals
		andesite						+20% euhedral plagioclase
		81-83 Highly broken core						crystals upto 1mm long. No
83	92	Core recovery is -15% fragments						apparent sulphides
		are plate like 1-4mm thick with						
		fractures possibly at 45°t.c.a.						
		fragments seldom with surface						
		area +1cm. Medium grained, greenis	h					
		lithic andesitic tuff. fragments						
		average 3-4mm in diametre and are						
		usually rounded although some						
		appear strained and angular						

			_			_			
LOCA	TION:				Dia	amond Drill Record		Н	OLE NO. 89-2 Page 1 of 3
AZIM	UTH:	260°	DIPS - collar	-6	0 °	CONTRACTOR:		P	ROPERTY:
ELEV	ATION		- n	n	0	LOGGED BY: Ralph Gonzalez		С	LAIM NO.
LENC	TH:	197 feet	_ n	n	0	DATE:		S	ECTION NO.
CORE	SIZE	: AQ	- n	n	0			S	TARTED:
PURP	OSE:	High Au geoch	nemical respose	in roc	k and	soil		С	OMPLETED:
Sec	tion	ROC	K	Inte	rval	ALTERATION			VEINLETS
from (ft)	to (ft)	DESCRIF		from (ft)	to (ft)	MINERALIZATION etc.	Thickness mm	Angle to core	minerals in decreasing abundance
0	3	Casing - no core							
	27	Tich and in		ļ. <u>.</u>	10	Duratural O FOR			
3	27	Light greyish-gree		3	18	Fractured @ 50°t.c.a. with epidot	[≥] 1-3mm	50°	Quartz veinlets with pyrite paral
		porphyritic textur		_		alteration and discontinuous			to veinlet and extending into wal
		crystals upto 0-50		<u> </u>		quartz veins perpendicular to			rock ±0.5cm Pyrite crystals anheo
		Weak to moderately		ļ		fracture. Alteration zone range			to subhedral and 1-2mm across
		Locally pink quart	z? amygdules			to 1.5cm.Fracture_dinsity 20-25/m		L	
		upto 2mm				from 7.5ft to 18ft intense epidot	e 6cm		@ 14' Quartz vein - no sulphides
						alteration.20% of core in 1cm vei	ns 14cm		@ 14' FeOx altered core
						and -0.5mm veinlets. Approx. 1%			
						pyrite with an increase to 2-3%			
		,				in more altered sections			
				18	27	Same as above except reduced -5%	1-3mm		Quartz,plag,epidote veins with
						epidote alteration			-1% pyrite.Only trace amounts of
				26	26.5	10cm FeOx and muscovite altered			pyrite in the andesite
					·	core			
27	31.5	Light greyish-gree	en, massive,				0.5	50°	75% pyrite as euhedral to subhedr
	_	silicified andesit	:e						disseminate crystals and as anhed
									grains adjacent to quartz veinlet
		· .	-						

.

Sec	tion	ROCK	Inte	rval	ALTERATION.			VEINLETS
rom ft)	to (ft)	DESCRIPTION	from (ft)	10 (ft)	MINERALIZATION etc.	Thickness mm	Angle to core	minerals in decreasing abundance
1			27	21.5	The lower contact is fractured			
	}		21	31.3				
					and altered to quartz,plag.micas and uralitized hornblende FeOx			
					increases toward to lower contact			
					and pyrite decreases over the las	τ		
-		2000			foot			
.5		Lower contact 30°t.c.a. fractured			Traces -0.5% chalcopyrite with			
.5	141	Coarse grained greyish pink			FeOx along the rim. Crystals			
		monzonite. Hornblende (mafics)			are usually euhedral			
		are altered to chlorite			All of the core shows moderate-to			
		41.5-43.5 Andisite with 5-8%			weak propylitic alteration with			
		pyrite similar to above			local phyllic alteration			
		Monzonite fractured 30°t.c.a.	57	57	4cm of quartz vein contact 85°t.d	.a.		
		averaging 5-7/m Most of the core			Mafics altered to chlorite and			
		is weak to very weakly magnetic			a yellowish epidote (?)			
İ			84	89	Colour change increase in pink			Sulphides weathered to FeOx
					(FeOx increase) and intense			
		·			alteration of the mafics to micas			
					(sericite)			
			98	98	4cm quartz vein 40°t.c.a.			
			109	109	3cm quartz vein			
			106	106	2cm quartz vein 90°t.c.a.			
			111	112	Sericite alteration			
			120		3cm quartz vein			
			137		3cm qiartz yean pyrite			
			127	128	Bleached core with slight increas	е		

Diamond Drill Record

HOLE NO. 89-2 Page 3 of 3 Section Interval **VEINLETS** ROCK ALTERATION. from Thickness mm Angle to core 10 from 10 DESCRIPTION MINERALIZATION etc. minerals in decreasing abundance (ft) (ft) (ft) (ft) 135 137 Bleached core with muscovite 197 141 Coarse grained monzonite grey to Chalcopyrite 0.5% with FeOx rims pink in colour, non-magnetic to very weakly magnetic. The grey FeOx rims increase in the more coloured sections reflect and altered sections. increase in sericite alteration. 141-148,157-172,176-180 Generally, however, the core is weakly propylifically altered with mafics + epidote. The sericite development may in part be due to quartz veins 28cm quartz vein 85°t.c.a. 143 144 141-145 Sericite altered monzonite 172 | 172 | Poor core recovery (50%) between with 1ft quartz vein @ 143-144 162-172 feet 3cm quartz part of 157-172 FeOx abundant and fractures @ 20/m with fractures @ 75°t.c.a.

LOCATION:	Dia	amond Drill Record	HOLE NO. 89-3	Page 1 of 2
AZIMUTH: 255°	DIPS - collar -60 °	CONTRACTOR:	PROPERTY:	
ELEVATION:	- m °	LOGGED BY: Ralph Gonzalez	CLAIM NO.	
LENGTH: 201 feet	- m °	DATE: June 30,1989	SECTION NO.	
CORE SIZE: AQ	- m °		STARTED:	
PURPOSE:			COMPLETED:	
Castina				

Sect	ion	ROCK	Inte	rval	ALTERATION.			VEINLETS
from (ft)	to (ft)	DESCRIPTION	from (ft)	to (ft)	MINERALIZATION etc.	Thickness mm	Angle to core	minerals in decreasing abundan
0	10	Casing, no core recovered						
10	31	Mixture of light green, fine grained			-0.1 pyrite and local pyrrhotite,odd			
		andesite;greyish,porphyritic andesite;			grain of chalcopyrite.Most of the			
		and pink to brownish, coarse grained			andesitic is weakly to moderately		·	
		monzonite			magnetic-monzonite is non-magnetic			
		11ft and again at 12ft 5-6cm core of						
		monzonite						
		14.5-16ft Monzonite						
		16-26 Shear zone 10% core						
		26-27 Porphyry andesite			·			
		27-30 Shear zone with 30% recovery						
31	72	Grey, moderately grained (lapilli?) tuff			Sulphides are 1% pyrrhotite after pyrite			30° and 0° wispy veinlets and frac
		with inclusion upto 4mm across			and very minor chalcopyrite,pyrrhotite for	rn:		filling veinlets @30°t.c.a.,epidot
		The bottom Ift is more silicified and			casts and along veinlets where they are			quartz are the principal material
		contains 5-10% muscovite. At the contact w	ith		highly altered to FeOx			minor pyrrhotite
		the underlying unit is 7cm quartz vein			Some fragments(?) upto 3cm are			
72	201	Coarse grained, pink to grey monzonite			incorporated in the tuff and are altered			
		fractures @ 70° with dendity of 20/m			entirely to epidote			
					Mafics are altered to chlorite and epido	te		Traces -0.1% of chalcopyrite
					Pervasive micas are common in the grey so	ctions	`	

Diamond Drill Record

HOLE NO. MRO 89-3 Page 2 Section Interval **VEINLETS** ROCK ALTERATION. from to from to Thickness mm Angle to core **DESCRIPTION** MINERALIZATION etc. minerals in decreasing abundance 116 116 3cm quartz vein-increased mica for 4cm on either side of quartz vein 127 127 7cm quartz vein-contact 90°t.c.a. 128 Sericite alteration. The core is grey in color and FeOx alteration. Commonly extends 2-3cm on either side of fractures Fractures average 10/m 45-60°t.c.a. 0.1% chalcopyrite with 0.5% chalcopyrite in FeOx zones 152 Sericite alteration-the core is grey in 142 color with 8 fractures per metre. Fractures 40°t.c.a. several of which have 1-2mm thick epidote veinlets along the face

LOCATION:			Dia	mond Drill Record	HOLE NO. 89-4 Page 1 of 2
AZIMUTH:	155°	DIPS - collar	-47 °	CONTRACTOR:	PROPERTY:
ELEVATION:		– m	. 0	LOGGED BY: R. Gonzalez	CLAIM NO. WREN 1
LENGTH:	142'	– m	0	DATE: July 15,1989	- SECTION NO.
CORE SIZE:	AQ	- m	0		STARTED:
PURPOSE:	High Au geoch	emistry in soils			COMPLETED:
Section	. ROC	¬K	Interval	ALTERATION.	VEINLETS

Sect	ion	ROCK	Inte	rval	ALTERATION,			VEINLETS
from (ft)	to (ft)	DESCRIPTION from to (ft) MINERALIZAT		MINERALIZATION etc.	Fhickness mm	Angle to core	minerals in decreasing abundance	
0	14	Casing-No core						
14	35.2	Dark grey argillite:core recovery						
		40%,most of the core is fractures						
		and the core is badly ground. 1-2m	ım					
		wide carbonate veins averaging						
		1 per meter						
35.2	57	Andesite agglomerate:dark grey in						
		colour with elongate,well rounded						
		fragments upto 50mm in length and						
		slightly lighter in colour,core			·			
		is vuggy and fractured at 10-15°						
		and 15/metre. Vuggy are filled						
		with FeOx and MnOx						
57	92	Olive green to grey pyroclastic	57	58	Olive green colour with abundant			
		andesite with fragments 3-5mm	60	70_	FeOx (+5% of surface) also			
		highly fractureu 30/metre	74	76	the core is highly altered to			
			83	85	clay esp. at 74-76'		- -	
		·		,				
			-			.,		

.

Diamond	Drill	Record
Diamond	D::::	1//

HOLE NO. 89-4 Page 2 of 2 Section Interval **VEINLETS** ROCK ALTERATION. from from Thickness mm Angle to core to to DESCRIPTION MINERALIZATION .etc. minerals in decreasing abundance 142 Light greenish-grey andesite with 115 117 Vuggy core with MnOx filling 92 -2% plagioclase crystals upto 4mm the cavities long. Core is massive with fractures at 35° to core and 0,10 Stringers of quartz, carbonate and EOH 121 | 142 1-2 9/metre upto 30 epidote The only sulohides seen: 1-3% 137 | 142 None of the core was magnetic pyrite euhedral crystals 1-2mm across. The most abundant amount is at the top 137' decreasing downward

LOCATION: AZIMUTH: 260°			Diamond Drill Record						HOLE NO. 89-5 Page 1 of 2		
			DIPS - collar 45 °			CONTRACTOR:			PROPERTY: WREN GROUP		
ELEVATION:			_ m °			LOGGED BY: R. Gonzalez			CLAIM NO. WREN 1		
LENGTH:			– m °			DATE: July 15,1989			SECTION NO.		
CORE SIZE: AQ			- m		0				STARTED:		
PURPO	SE:	Shear zone with	Au and sulphide	s					COMPLETED:		
Section		ROC	K	Interval		ALTERATION.	VEINLETS				
from (ft)	to (ft)	DESCRIP		from (ft)	to (ft)	MINERALIZATION etc.	Thickness mm	Angl to co	nngle minerals in decreasing abundan		
0	4	Casing no core	:								
4	10	Weathered light gr	ey andesite,								
		stained rusty brow	'n								
10	24	Light grey,f/g and	esite,+20%	10	24	+5% very fine grained sulphides					
	-	plagioclase crysta	ls,2-4mm long			(pyrite?)					
		60% core recovery									
24	43	Lithic tuff compos	ed of light	20	35	Pyrite is less than 1% and					
		olive green,f/g gr	oundmass and			usually poorly formed euhedral					
		dark grey to black	.10-15% f/g	ļ		crystals					
		fragments upto 6mm long. Pyrite qenerally confined to the mafic		41	43	Vuggy quartz vein parallel to					
						core with FeOx staining					
		fragments. The cor	e becomes								
	:	"greener" with dep	th and lithic								
		fragments more rou	nded and often								
		with a core of qua	rtz								
			-								

			Diamond Diff Record				но	DLE NO. Page 2 of 2	
Section		ROCK	Interval		ALTERATION	VEINLETS			
from	to (ft)	DECCRIPTION	from (ft)	lo (ft)	MINERALIZATION .etc.	Thickness mm	Angle to core	minerals in decreasing abundance	
43		Light grey,f/g massive andesite			Pyrite occurs as stringers and			Discontinous quartz and quartz	
)	slightly metamorphosed with			and clusters parallel to the			carbonate veinlets 1-3mm across	
		plagioclase and sulphides			schistosity 30-40° to core			the schistosity 70 ° to core	
		parallel to schistosity			Pyrite locally may be as high		* •	5 veinlets/meter	
					as 5% but usually averages about				
		51-60 Lithic tuff with no visible			1-2%				
•		sulphides							
		68-70 Light green tuff with local							
		clots and stringers of chlorite			Disseminated and clusters of				
		Some of the more greenish materia	<u> </u>		pyrite parallel to schistosity				
		is very talc like to the touch					i		
		70-75 core lost							
						1			
							1		
			,			1			
	ì	İ	Ī	1		ı	Ì		