TABLE OF CONTENTS

93-M-13414

1968

812847

. REPORT OF EXPLORATION PROGRAMME

CARRIED OUT BY

CANADIAN SUPERIOR EXPLORATION LIMITED

ON

SICINTINE MINES LIMITED PROPERTY

ATNA RANGE, B.C.

B.H. Kahlert

TABLE OF CONTENTS

•		Page
Summary of	Conclusions and Recommendations	1
	A. Conclusions B. Recommendations	1 2
I II IV V VI VII VIII	Introduction Claims and Ownership Location and Access Climate and Physiography Property History Summary of the 1968 Work Programme Regional Geology Property Geology and Mineralization	3 3 3,4 4 5 6 7
	A. Graham Peak Area	7
	 Geology Mineralization 	7 7, 8, 9
	B. Utah Showing C. Horne Showing D. Mad Showing	10 10,11 11
IX	Geochemistry	11
	A. Sample Collection B. Discussion of Results	11 12
	 Graham Peak Area Utah Showing Horne Showing 	12 12 13
Appendix	 A Claims Data B Detailed Geology, Graham Peak Area C Detailed Diamond Drill Logs D Details of Trenching Programme 	
Maps	Figure 1 Project Location Map Figure 2 Claims Map Figure 3 Outline of Claims Block showing Mineralized z Figure 4 Geological Plan Figure 5 Geological Map Figure 6 East West Section showing Geology Figure 7 North South Section showing Geology Figure 8 Section Through Diamond Drill Holes Figure 9 Utah Showing, Geology-Geochemistry Figure 10 Horne Showing, Geology-Geochemistry Figure 11 Geological Map - Mad Claims Figure 12 Geochemistry, Rocks and Soils - Molybdenum Figure 13 Geochemistry, Rocks and Soils - Copper	<pre>1" = 8 miles 1" = 500 feet ones 1" = ½ mile 1" - 500 feet 1" = 100 feet 1" = 100 feet 1" = 100 feet 1" = 100 feet 1" = 200 feet 1" = 200 feet 1" = 200 feet 1" = 500 feet</pre>

SUMMARY OF CONCLUSIONS AND RECOMMENDATIONS

A. Conclusions

- The diamond drilling on Graham Peak showed that molybdenite mineralization is widespread but very low grade except over narrow widths. The best intersection more than 50 feet in length was obtained in hole A-1-68 from 70 to 130 feet (60 feet) where the average grade was 0.125% MoS₂.
- 2. The drilling failed to show any increase in grade with depth, thus negating the premise on which the drilling was based, i.e., that the low surface values obtained in the 1967 trenching programme were not an indication of the true grade at depth due to the effect of leaching. Leaching and oxydation do occur, but affect the molybdenite very little due to its occurrence in tight hairline fractures in an intimate mixture with quartz.
- 3. Geochemical rock chip sampling of the Graham Peak area indicated a large zone of anomalous molybdenum values greater than 10 ppm Mo. Within this anomaly, on the east slope, is a zone with values greater than 400 ppm Mo. This zone, measuring approximately 500 feet by 1,200 feet elongated northward, is presently the most encouraging untested zone on the property.
- 4. Samples from trenches on the Mad, Utah and Horne showings gave assays well below ore grade. The trench on the Mad showing was for assessment purposes and was not on the showing from which the well mineralized float is derived access to this showing has not yet been achieved.

The trenches on the Horne showing were sited on visual evidence prior to receipt of the assays of geochemical rock chip samples. The geochemical data now suggests that the trenches were off the zone of best values.

The Utah trenches were randomly distributed across the width of the main zone and indicate that the showing is no better than the Graham Peak zone - in fact the two are closely comparable and possibly interconnected beneath the intervening valley. Soil sampling in the Utah area did indicate other sources of molybdenum apart from the known showings.

-] -

B. Recommendations

- 1. A minimum of 2,000 feet of diamond drilling should be carried out on the high molybdenum geochemical anomaly on the eastern slope of Graham Peak. Two holes are proposed, both sited at the same location but directed northwards and southwards respectively.
- 2. The soil anomalies on the Utah Ridge should be followed up to determine the type and extent of the source.
- 3. A determined effort should be made to find the source of the well mineralized float on the Mad claims. This work could only be done by experienced mountain climbers.
- 4. The geochemical anomaly on the Horne showings should be explored further by means of rock trenching near the peak values.

The estimated cost involved in carrying out the above recommendations is \$60,000.00.

.. 2 -

I. INTRODUCTION

As a sequel to four weeks of trenching, sampling, mapping and reconnaissance work completed in late 1967, a drilling programme was carried out in the summer of 1968 on Graham Peak. Detailed mapping and rock-chip sampling were also completed on the east and west slopes of the ridge north of the peak. Other work consisted of soil and/or rock chip sampling of the Utah and Horne showings, trenching and sampling the Horne, Utah and Mad showings, and prospecting several ridges in the vicinity of Graham Peak. The claims situation was carefully checked and slightly reorganized to ensure adequate protection.

II. CLAIMS AND OWNERSHIP (See App. A)

Canadian Superior currently owns or controls 120 claims and fractions in the vicinity of Graham Peak, (See Fig's. II and III). The claims were staked by both Sicintine Mines and Canadian Superior personnel, but all fall under the terms of the agreement between the two companies. Any claims staked within 2 miles of the original group by either party are covered by the agreement and will be returned to Sicintine Mines should the option be terminated.

III. LOCATION AND ACCESS (See Fig. I)

The property is located near the northeast edge of the Atna Range Lat. 55°, 57'N, Long. 127° 18'W. It extends west of Sicintine Lake, which is 80 air miles north of Smithers, B.C. Access to the property is usually by helicopter, but float planes can land supplied on Sicintine Lake. Helicopter can then be used to ferry supplies to a camp 2 miles west and 1,200 feet above the lake.

In 1968, heavy drilling equipment was trucked to Kisgegas on a poor 50 mile dirt road north of Hazelton, a Sikorsky S-58 helicopter was used to carry the drill directly to the drill site on top of the ridge. A Hiller 12-E helicopter was based at the Sicintine camp for two months to move personnel, equipment and supplies as necessary.

IV. CLIMATE AND PHYSIOGRAPHY

The high Atna Range seems to mark the eastern fringe of the wet west coast marine climate. Summers are typically mild with moderate rain while winters are cold with a very heavy snowfall. Work above 4,000 feet elevation is difficult to commence before July as over two feet of snow is still lying in protected and slide areas. Permanent glaciers cover the central part of the range and tongue laterally into the valleys.

VI. SUMMARY OF THE 1968 WORK PROGRAMME

- A. Move in to the property began on July 9th, and, due to helicopter breakdowns and very poor weather conditions, required four days to complete. Camp was set up and the first drill site prepared during this time. Between 11 and 13 men occupied the camp from July 9th to August 31st.
- Availability of water for drilling was a major problem. Β. The nearest source was a small lake 1,100 vertical feet below the first drill site. Run-off water from snow was considered, but freezing at night time stopped the flow for the night shift drilling. A 2,400 feet long, 2 inch diameter steel pipe was laid up the steep eastern slope and secured to either large trees or steel rods set in bedrock. Power to lift the water from the lake to the lower drill site was supplied by a diesel pump. Drill Holes A-1-68 and A-2-68 were drilled from this site, holes A-3-68 and A-4-68 were drilled 1.000 feet south along the ridge, 400 vertical feet higher. A total of 3,319 feet BQW core was drilled. (See Appendix C for detailed drill logs). Sludge was collected where possible, but frequent loss of water made cementing costs prohibitive.
- C. Detailed mapping was completed over most of Graham Peak. Due to very rough topography, control for mapping was entirely from government air photos and oblique angle colour photographs taken from helicopter in 1967. A limited amount of mapping was also carried out over other parts of the claims.
- D. Geochemical rock chip samples were taken on both sides of Graham Peak at 200 foot intervals. Sampling traverses were governed by access and outcrop. Rock chip samples were also collected from the Utah and Horne showings. Thirty-three soil samples were collected at 100 and 200 foot intervals along contour across the Utah showing.
- E. Trenches were drilled, blasted, mucked and sampled on the Utah, Horne, and Mad showings. A total of 287 cubic yards of rock was moved from 10 trenches.
- F. The claims situation was thoroughly checked in the showings area and more generally in other parts of the property. As a result of this check, several claims were abandoned and others staked to provide more adequate protection of the showings. (See claims map, Fig. 2).
- G. Prospecting was carried out on a small scale within a six mile radius of camp but no new staking resulted.

- 5 -

VII. REGIONAL GEOLOGY

The Atna Range is one of several small but extremely rugged mountain ranges north of the Babine River. These ranges parallel the regional northwesterly folding trend and are separated by long, linear valleys. Permanent glaciers cover the central parts of the ranges, but large morainal deposits, scoured areas and hanging valleys indicate that the glaciers are receding.

The Atna Range is situated near the southeastern edge of the Bowser Basin. Rocks of the Bowser Group are mainly clastic sediments, argillite and graywacke being most common. In the Atna Range, these sediments were intruded by a granitic batholith. The intrusive underlies most of the range and has pushed through the sediments to form several peaks in the core of the range. Thrusting and faulting of the intrusive has further complicated the intricate relationship between them and the sediments. A similar and probably related batholith has intruded the Sicintine Range to the east.

Coarse grained porphyritic granodiorite is found throughout the Atna Range. Phenocrysts of Potash feldspar, ranging in size from 1/4 inch to 2 inches, comprise from 5 to 20% of the rock. Small bodies of medium grained diorite are commonly found near the contacts of the major intrusive and the sediments. The diorite may be a contact phase of the granodiorite, but present evidence indicates it was intruded later along the contact. Strong metamorphism of the sediments is common along contact zones, but occurs invariably along diorite contacts. The hornfels zone is usually quite extensive and may continue for up to 1,500 feet or more from the contact. Late, crowded porphyry dykes and sills up to 50 feet or more wide cut all rock units.

Pyrite and/or pyrrhotite are commonly found in all rock types in the contact areas. Weathering of these sulfides produced large gossan areas which are visible in the Atna and Sicintine Mountains. Numerous molybdenite showings are scattered throughout the Atna Range, several more have been found in the Sicintine Range. All known showings are located within 1,000 feet of an hornfels contact. Most are located within the granitic rocks but quartz veining may carry molybdenite up to 100 feet or more into the hornfels. Varying amounts of chalcopyrite are associated with the molybdenite and may be important in one or two prospects.

- 6 -

VIII. PROPERTY GEOLOGY AND MINERALIZATION

A. Graham Peak Area

1. Geology. (See Figs. 4-8) (For Detailed Description of Geology see Appendix B).

Porphyritic granodiorite and diorite have intruded argillaceous sediments on Graham Peak. The granodiorite forms the bulk of the intrusives, the diorite is a small, lenslike body lying between the southern contact of the granodiorite and the sediments. Indications from mapping and drilling show that the diorite is probably later, squeezing up along the granodiorite sediment contact. Strong metamorphism of the sediments at the periphery of the diorite has resulted in the formation of a wide zone of hornfels, mainly south of the contact. Two small hornfels pendants lie wholly within the crystalline rocks.

An intensely silicified and fractured capping lies within the porphyritic granodiorite, straddling the ridge between 700 and 1,500 feet north of the peak. The Graham Peak molybdenite zone underlies and surrounds this capping, which is completely barren.

Late porphyry dykes are aligned along bedding planes in the sediments and cut generally east west and dip gently to the south, except at intrusive contacts, where bedding trends have been shifted and steepened. Strong easterly trending faults have produced a series of grabens to the east of Graham Peak. Jointing and fracturing is intense, but only one joint set is consistent in the area. This set trends east-west and dips 10 to 15 degrees northward. Mineralized fractures are randomly oriented with no predominant trends.

2. Mineralization.

Molybdenite mineralization is found mainly in the diorite and granodiorite, but may extend for a short distance into the hornfels zones. (See Fig. 5). Mineralization consists mainly of very fine molybdenite accompanying quartz in hairline fractures. Occasionally, veinlets may be up to 1/4 inch wide carrying significant molybdenite and several quartz veins 2 to 10 inches wide carry massive molybdenite. Small rosettes of molybdenite are sparsely disseminated through aplitic dykes, but these are of no economic significance.

The mapping in 1967 had suggested the presence of two or three individual mineralized zones separated from each other by the barren, silicified zone. Work in 1968 now shows that the individual zones are interconnected and that the barren zone is merely a central capping. The mineralized zone spreads further east and west in the diorite along the hornfels contact. Vertical extent of the molybdenite mineralization has not yet been determined, but inference from drilling indicates that it is well over 1,000 feet below the ridge.

2. Mineralization. (Cont.)

No ore grade mineralization was intersected by the drilling. Assay results show that only one section over 50 feet in length averaged greater than 0.1% MoS₂ i.e., in hole A-1-68 which averaged 0.125% MoS₂ from 70 to 130 feet. All other sections assayed well below 0.1% MoS₂. Several visually impressive sections in hole A-3-68 between 400 and 600 feet carrying massive molybdenite in fault zones averaged only 0.03 to 0.07% MoS₂. The extent and continuity of mineralization were demonstrated best² in hole A-1-68, in which molybdenite bearing fractures were separated by a maximum, of only 2 to 3 feet. Density of the fractures averaged over 5 per foot throughout the hole. The fracture density was determined by counting mineralized fractures and weighting heavier mineralization. A table summarizing assay results and fracture densities is given below:

SUMMARY OF RESULTS OF SPLIT CORE

Hole #	Interval	Length	%Mo (Assay)	%MoS ₂ (Equiv.)	Fractures/ Foot
A-1-68	0-350 350-430 430-500 500-850 850-950 0-500 Incl	350 80(Dyke) 70 350 100	0.037 0.013 0.041 0.024 0.14	0.062 0.022 0.068 0.040 0.023	5.5 3.1 6.6 5.2 5.3
	Dyke	·	0.034	0.057	
	Dyke 0-800		0.038 0.030	0.063 0.050	

The best section over 60 feet was from 70 to 130 feet which averaged 0.075% Mo or 0.125% MoS_{2} (equiv.).

A-2-6 8	0-230 230-330 350-459 0-459	230 100 129	0.018 0.024 0.015 0.018	0.030 0.040 0.025 0.030	4.1 3.4 1.4
A-3 -68	0-170 170-320 320-400 400-570 570-750 750-963	170 150 80(Dyke) 170 180 213	0.013 0.020 N.A. 0.025 N.A. 0.009	0.022 0.033 N.A. 0.042 N.A. 0.015	0.8 3.3 Ni1 3.5 Ni1 0.6
	Dyke Dyke		0. 017	0.028	
	Dyke		0.020	0.033	

- 8 -

SUMMARY OF RESULTS OF SPLIT CORE (Cont.)

Hole #	Interval	Length	%Mo (Assay)	%MoS ₂ (Equiv.)	Fractures/ Foot
A-4-68	0-760	760	0.008	0.013	0.7 (610-760)
	760-830	70	0.016	0.026	1.2
	830-890	60	0.020	0.033	2.6
	890-948	58	0.027	0.045	2.3
	760-948	188	0.021	0.035	2.0

Drill logs are detailed in Appendix C. Core recovery averaged better than 95%, but was very low over several fault and fracture zones. Sludges were collected where possible in holes A-1, A-2, and A-3, but this sampling method was found to be very time consuming and costly as water was lost in successive fractures and holes had to be cemented. Sludge assay results varied only slightly from core assays, so it can be assumed that little molybdenite was ground and washed away during the drilling.

By comparing assay results with fracture densities, it can be seen that they correspond fairly well, but a correlating constant cannot be determined. Two major variables affecting the correlation are thickness of fractures and geochemical background of the host rock. As fractures have been calculated to be equivalent of 1/800 inch of molybdenite, doubling or tripling of this width could not visibly be noticed. From rock chip sampling it was determined that the mineralized host rock had a geochemical background varying from 70 to over 400 ppm Mo. Any change in these two factors could easily influence the low assay results.

Most samples from DDH A-1-68 were assayed for copper, with very discouraging results. Assays ranged from 0.01 to 0.04% Cu, which is only slightly higher than values obtained from assaying barren rock chip samples in the mineralized zone. Occasional flecks of chalcopyrite were visible in quartz veins, but no concentration was found. Some minor native copper was found in a wide quartz vein in trench S-3, opened in the 1967 season.

A section of dyke rock in hole A-3-68, carrying several veins of quartz was assayed for gold and silver. The section from 670' to 680' gave 0.02 oz/T Au and 0.3 oz/T Ag. Five composite samples of sections having highest molybdenum content were assayed for gold and returned only trace values. Semi Quantitative Spectrographic Analyses of all metals were also carried out on these composites. Results indicated that no trace elements of economic significance were present. Molybdenum and copper values obtained correspond quite well with assay results.

- 9 -

B. Utah Showing (See Fig. 9)

The Utah showing is located in a steep crevasse on the west side of Silt Creek, one mile west of Graham Peak. Rapidly flowing water and loose rock make access to the showings area extremely difficult and dangerous.

Host rock of the showing is the porphyritic granodiorite, which is finer grained than in the Graham Peak area. K-spar phenocrysts range to a maximum of only 1/4 inch diameter. Small areas of intensely kaolinized rock give the zone the appearance of having been cut by a series of dykes. Molybdenite mineralization accompanies narrow, quartz filled fractures similar to those found in the Graham Peak showings. Fracture density, however, is somewhat lower. Mineralization does not perceptively change in the strongly altered zones.

Three trenches were drilled and blasted across the upper part of the zone. Use of ropes was necessary to aid in access to trench locations. Details of the trenching, sampling, and assay results are described in Appendix D. Assay results of bulk samples averaged only 0.02% MoS₂ and 0.015% Cu over all trenches.

Widespread copper and molybdenum anomalous values found in the soil sampling traverse indicates that the mineralization is not confined to the showings area. Follow-up prospecting and additional soil sampling should be carried out to determine the origin and extent of the anomalies.

C. Horne Showing (See Fig. 10)

The Horne Showing, southernmost of the property showings, is located two miles southwest of Graham Peak. It is situated on a steep southern face several hundred feet below a 6,000 foot high east-west ridge. A helipad was constructed on the sidehill to facilitate access.

The showings are located mainly within a medium grained, dark diorite similar to the diorite found on Graham Peak. Mineralization extends out of the diorite for 100 feet or more into a well shattered, dark hornfels. The diorite forms a small plug between the hornfels to the north and east and the coarse grained, porphyritic granodiorite to the west. A wide, strong fault forms the contact zone between the porphyry and the diorite. This fault is easily visible, as the diorite and hornfels are strongly stained by iron oxides whereas the granodiorite is very light coloured and unstained.

Mineralization consists of molybdenite and chalcopyrite contained within quartz veinlets up to 1/2 inch or more wide. Molybdenite usually occurs in finer fractures, similar to the Graham Peak showing, while the chalcopyrite occurs as massive blebs scattered along the larger quartz veins.

C. Horne Showing (See Fig. 10) (Cont.)

Six trenches, numbers A to F, were drilled, blasted and sampled. All details of trenches are stated in Appendix D. Results of the assays indicate that only very low-grade copper and molybdenum values were found in the trenching area. Molybdenum averaged 0.02% Mo and copper ranged from 0.09% to 0.18% Cu. Minor argillic alteration is noticed near the larger quartz veins in the hornfels near diorite contacts, but no increase in mineralization was noticed in these areas.

D. Mad Showing (See Fig. 11)

Prospecting was carried out over a steep, high ridge to try to determine the source of the highly mineralized float found at the head of Fal Creek in late 1967. The float consisted of both diorite and hornfels well mineralized with molybdenite. The area covered by this float is probably several acres. Only minor mineralization of very limited extent was found in place in accessible areas. A steep, loose face between the high ridge and glacier could not be examined without proper mountain climbing equipment.

Set 1440

(した)の「おけた」」。
 「もくてい」で、
 (するくてい」で、
 (た)の「うけん」」。

A trench was drilled and blasted across a mineralized dioritic dyke cutting strongly metamorphosed sediments about 2,000 feet above the float. Molybdenite mineralization was confined to they dyke within this trench and was of very low grade. Results of the trenching are listed in Appendix D. The source of the Mad float has still not been determined, but must have come from either the steep, unexplored face or from under the glacier.

IX. GEOCHEMISTRY

A. Sample Collection

Geochemical samples were collected from all showings except the Mad area. Rock chip samples were collected on the east and west slopes of Graham Peak at 200 foot intervals on traverses spotted on air photos. On the west slope, narrow creek beds with abundant outcrop were followed to the Silt Creek valley. On the east slope, rock chip samples were collected on accessible lines which averaged about 400 feet apart. Samples were taken of intrusive rocks only.

On the Utah showing, five rock chip samples were taken at 100 foot intervals starting at the first outcrop above Silt Creek and continuing to the base of the cliffs through which the showings continue. Soil samples were taken along topographic contour across the Utah showing. Sample interval was 100 feet between 1,000 feet north and south of the showings. Samples were collected at 200 foot intervals for a further 2,000 feet northward.

Rock chip samples were collected at 100 foot intervals, where possible, along the base line on the Horne Showing. (See Fig. 10). A total of 31 samples were collected over a 3,200 foot base line. The samples were analysed by Barringer Research Ltd.

B. Discussion of Results

1. Graham Peak Area.

Results of the rock chip sampling compared favourably with the previous year's work. Anomalous molybdenum zones outlined along the ridge were extended laterally east and west of the ridge. (See Fig. 12) A large area of anomalous values straddling the ridge was outlined. This area corresponds closely to the area of known molybdenite mineralization as outlined by geological mapping. Within this large zone of high background, an area approximately 500 by 1,200 feet of plus 400 ppm Mo was delineated. This zone lies on the east side of the ridge and is elongate northward. It lies partly within the zone of strong faulting in the diorite and partly within the porphyritic granodiorite to the north. To the south and east the zone is in contact with hornfels and sediments, to the north and west the high values slowly decrease. The silicified, barren zone of the porphyritic granodiorite is clearly outlined as a geochemical low. Several scattered high values are recorded near the base of the western slope. Copper values, plotted on Fig. 13, generally correspond to the molybdenum values.

2. Utah Showing (See Figs. 12 and 13)

The five rock chip samples collected in the creek bed below the trenches were anomalous for both copper and molybdenum. Values ranged from 30 to 90 ppm Mo and 71-165 ppm Cu.

Soil samples taken across the Utah showing revealed two areas anomalous in molybdenum. Samples from the 1,100 foot traverse south of Utah Creek gave values ranging from 40 to 480 ppm Mo. Another 800 foot wide zone averaging over 35 ppm Mo begins 1,000 feet north of the showings. Several high values are scattered further north of this zone.

The wide anomalous zone south of the Utah showing is due mainly to molybdenite in quartz veins associated with acidic dykes intruding hornfels immediately above the anomalous zone. Further prospecting and trenching should be carried out to test the grade and extent of mineralization. Work in this area will be severely hindered by the steep, high cliffs. The 800 foot wide zone north of the Utah showings should be followed up further to determine the type and extent of the source. It is located along an accessible, timbered sidehill and should be fairly simple to follow up.

Copper values are high only south of the Utah showing along the wide molybdenum anomaly. North of the showings only several scattered anomalous readings were found. Indications are that copper is associated with the molybdenum in the acid dykes to the south, but not with the source north of the showings.

3. Horne Showing

43

111

Copper-molybdenum analyses of the rock chips collected along the base line show that the diorite contains anomalous values of both metals. Dioritic dykes and sills cutting the hornfels to the east are probably the cause of the scattered high values in this area. The very low values in the porphyry indicates that the northeasterly fault formed a barrier to mineralization.

The trenching of the showings was not carried out on the geochemically highest part of the zones. Trenching sites were picked on evidence of surface mineralization and access on the extremely rugged and steep sidehill.

B.H. Kahlert.

APPENDIX "A"

.

ATNA PROJECT

CLAIMS DATA

	· · · · · · ·	· · · · · ·	· · · · · · · · · · · · · · · · · · ·			• ···
Claim Name	Recording Date	Record Number	Tag Number	Expiry Year	Staker & FMC	Owner & FMC
Atna 1	4/7/67	48634	810485	1974	J. Graham	Sicintine
- 2		35	86	11	#54056	Mines Ltd.
3		36	87	. 11	10/20/66	73652
4		37	88	11	Powell	6/11/68
5.		• 38	89	1972	River	Vancouver
- 6		39	90	11		
· _ 7		40	91	11		
- 8	•	41	92			
- 9	•	42	.93			
· 10		43	94	".		
- 11		. 44	95	1974	•	
12		40	90	n		
14		8/6/7	97	H		
14		04047	90			
Sic 1	4/7/67	48603	810451	1975		
2	a	04	52			
		÷ 05	53	· ·		
	2 / 1 - X	00	Se S- 54	**		
5	C 5.7	U/ (5) 00	55	· #	4	<u>.</u>
· · · · · · · · · · · · · · · · · · ·	به مراض	50-08 00	5	1072		n na sea an s Sea an sea an
R		18610	57	1972		en el en el construction en en entre
. Q		-10010 11	50	44		· · · ·
10		12	60	11		m. 14
11		13	61	1975		
12		14	62	"		
- 13		15	EE 63	11		$\sqrt{1 + t}$
14		16	64	11		5.75
15		17	65	ti -		
16		18	66	11		
· 17		19	67	1972		
18		48620	68	1974		· · · · · · · · · · · · · · · · · · ·
19		21	69	1972		
20		22	810470	1074		
23		23	13	1974		
20		24	/5 76	51		
20		20	70 77			
. 28		20 27	ו / ג פל	н		
20		28	70	68		
31		30	81	1972		
33		32	71	1 <i></i>		
34		33	72			ş
35	8/13/69		493328	58	B.H. Kahlert	B.H. Kahlert
36	8/13/68		493329	1972	67506 Victoria 5/6/68	67506 Victoria 5/6/68

ATNA PROJECT

	, ,	CLAII	MS DATA (Cont.)	i -	•	
· ·Claim Name	Recording Date	Record Number	Tag Number	Expiry Year	Staker & FMC	Owner & FMC
Cob 1	8/15/67	53386	834193	1975	J. Graham #58472	Sicintine Mines 1 td
3		88	··· 95	1976	5/19/67	7 3652
4		89	96		Vancouver	6/11/68
5		90	97	1974		
6		. 91	· 98	1070		•
		. 92	99	1972		,
<u> </u>		93	034200	· 0		
10	· .	-95				_
11	•	96	03	11		
12		97	04	88		
13		98	05	п.		
14		99	06	11		
-15		53400	. 07			
10		• UI 02	08			
17	• •	02	834/10			
19		04	11	н		
20	9/6/67	54506	12	· 1 979		• •
Cob. Fr.	9/6/67	07	593407	1973		•
JM.]	9/12/66	43474	625337	1973	M. Martin	Sicintine
2		75	38		#35028	Mines Ltd.
3 -1		/6 77	39	 U	1966	65620 0/22/67
. የ 5		78	40	11		9/22/07
6		79	42	ំ ្នំ 🔐		•
CM En	0/5/60		F02224	1071	D. Kablant	
LM. Fr.	9/5/68		593334	1971	B. Kanlert #67506	Canadian
	. .				5/6/68 Victoria	Exploration Ltd 67501
•	· · · · · ·					5/6 /68
. •				• • • • •		Victoria
Jan 1	9/20/67	53726	593408	1974	B. Kahlert	Canadian
2		21	÷ 10	1075	51447	Superior
3 4	•	20	10	1975	J/1/0/ Victoria	51//3
5		30	12	11	VICCOLIA	5/1/67
6	<i>,</i>	31	13	1970		Victoria
7		32	14	1969		
. 8		33	15	1 970		
9		34	16	1969		
10		35	1/	"	н. — С. —	
11		30 27	18 10	107/		
14		37	19	13/4		

--2

ATNA	PROJECT

•		CLAI	MS DATA (Cont.)	-	•	
• Claim Name	Recording Date	Record Number	Tag Number	Expiry Year	Staker & FMC	Owner & FMC
Jan 13	9/20/67	537 38	593420	1974		
14		39	21	н	÷.	
15		40	593437	1970		
16		41	38	0		
17		42	39	. 11		
18		43	40	11		•
· 19.		44	41			
20		• 45	42	n		
21		46	43	1969	1	
· 22		47	44	11		
23		48	45			
24		49	46			
25		50	593422			
26		51	23			
21		52	24			
28		53/53	25			
31	11/29/67	56813	853 844	1969	J.M. Graham	Sicintine
32		14	45	11	#58472	Mines
33		15	46	n	5 /1 9/67	Limited
35	-	17	48	11	Vancouver	# 7 3652
. 36	•	18	49	11		6/11/ 68
ad 1	÷ •	55075	593457	1970	B.H. Kahlert	Canadian
2		76	58	п	51447	Superior
. 3		77	59	11	5/1/67	Exploration
4	• •	78	60	,u	Victoria	Limited
5	÷	79	61	8		51 443
6	• •	80	62	1969		5/1/67
7		81	63	1970		Victoria
8		82	64	1969		
12	11/29/67	56824	827152	1969	J.M. Graham	Sicintine
					58472	Mines Limited
	• · ·					73 652
1/1	11/20/67	56826	827154	1060	R U Vahlant	Canadian
14	9/5/62	00020	502320	1909		Canau I dii
- 16	9/5/68		232220	11	5/6/68	Exploration
17	9/5/68		32	н	Victoria	limitod
18	9/5/68	i.	593333	1969	VICTOFIA	67501 5/6/68
•••	-, -, -, -, -, -, -, -, -, -, -, -, -, -			1000		Victoria

.

--3

DETAILED GEOLOGY, GRAHAM PEAK AREA

Intrusive rocks of granitic to intermediate composition underlie much of the ridge sloping north from Graham Peak. They are part of a large apophysis which extends eastward from the main Atna Batholith. Porphyritic granodiorite similar to the main batholith forms the bulk of this intrusive mass. K-spar phenocrysts are set in a coarse, lightblue gray groundmass of quartz, feldspars, biotite and minor hornblende.

The granodiorite abuts against sediments partway down the steep eastern slope. This eastern contact strikes N $10-20^{\circ}$ E, dipping 65 to 70° W, into the hill, but the surface trace trends due north down the side of the mountain. Northward the contact curves across the ridge to the west, cutting across Silt Creek and Utah Ridge. West of the Utah Ridge the intrusive disappears under sediments, likely connecting to the main batholith. To the south, the granodiorite ends against a narrow body of diorite.

A bowl shaped zone of strong alteration dips gently to the west across the ridge between 7 + 50 N and 15 N along the ridge. Intense silicification, accompanied by bleaching and minor epidote has altered the rock to a light grey mass with obliterated grain boundaries. Except for some minor pyrite, this zone is completely barren and averages only 2 to 18 ppm Mo., whereas the surrounding rocks average over 50 ppm Mo. This seems to indicate that the silica filled existing fractures before mineralizing fluids reached this zone. A smaller, similarly silicified zone is found near the diorite contact on the western slope.

A long, narrow body of diorite lies between the southern contact of the granodiorite and the sediments to the south. It is a dark, medium grained rock of average dioritic composition. Two to four percent of combined pyrrhotite and pyrite are disseminated throughout this body. Near the granodiorite contact to the north, it may carry up to 5% of K-spar phenocrysts.

Diorite dykes cutting the granodiorite below 750 feet in hole A-3-68 seem to indicate that this rock unit was intruded later along the granodiorite-sediment contact. Strong block faulting on the steep eastern slope has formed several grabens within the diorite and hornfels to the south.

Sediments surrounding the granitic plug to the south and east trend generally east-west to northeast and dip gently southward. Near the intrusive contacts, however, bedding has been steepened. The sediments have been upwarped along the southern contact by drag of the diorite intrusion and, along the eastern edge, bedding parallels the steeply dipping contact.

The formation of the hornfels zone extending up to 1,500 feet south of the contact was influenced mainly by the diorite. Sediments contacting the diorite have been strongly metamorphosed, whereas alteration along granodiorite contacts is generally very minor. However, a small roof pendant wholly within the altered zone of the granodiorite has been strongly metamorphosed. Another pendant, lying within the diorite on the west slope, has also been hornfelsed. Late dykes up to 50 feet or more wide cut all rock units. The dyke rock is a crowded feldspar porphyry with a dark, fine grained matrix. In drill core, the dyke rock is noticeably fresh and dark near contacts, becoming bleached over most of the central parts of the dyke. Where contacts are not obliterated by faulting, they were noted to be approximately 30° to the core axis. On surface, dykes measured north of main hornfels contact trend northerly and usually dip steeply to the west. Within the hornfels and sediments, most dykes have intruded along bedding planes, but several cut across bedding at varying trends. No dykes have been noted on surface within the intrusive. However, intersections of dyke rock were made in all diamond drill holes. Wide intersections of dykes near surface in DD Holes A-3 and A-4 indicate that the dykes are trending northerly and dip steeply, probably to the west.

--2

Several structural features are of interest in the Graham Peak area. The general easterly trend of both the sediments and intrusives are most prominent. This easterly trend extends for several miles on both sides of Graham Peak, cutting across the regional northwesterly folding trend. It seems to be of major economic interest, as four known showings, namely the Mad, Utah, Graham and Pat, are aligned along it. Several divides of major valleys also lie along this trend, which is probably the axis of a major anticline along which granitic rocks have intruded.

Strong faulting and jointing in an easterly direction is also prominent. The faults produced several grabens on the eastern side of the ridge but could not be traced definitely to the west side. Strong jointing, which on air photos appear to be northerly trending lineaments along the eastern side of Graham Peak, was found to be ledges paralleling the ridge but trending directly across it and dipping north at 10 to 15 degrees. Many other jointing directions were measured but only one was found to be significant. A joint set striking northeast and dipping 40 to 50 degrees northwest was thought from surface showings to be a dominant mineralized trend north of the intensely altered zone. Diamond drilling indicated that no dominant mineralized trend exists.

APPENDIX "D"

DETAILS OF TRENCHING PROGRAMME

TRENCH	ASSAY NO.	WEIGHT	DIMENSION AND	ASSAY	<u>S %</u>
A B C C D E F F	2960 2961 2966 2957 2956 2957 2958 2959 2962 2963 2964 2965	LBS. 22# 26# 38# 25# 27# 44# 35# 24# 22# 19# 32#	<u>TYPE</u> 20' chips 20' chips muck 30' chips 20' chips muck muck 25' chips 15' chips muck muck 25' chips	<u>Mo.</u> 0.01 0.04 0.02 0.015 0.02 0.02 0.02 0.01 0.01 0.01	Cu. 0.10 0.09 0.10 0.18 0.07 0.06 0.12 0.10 0.10 0.10 0.14
		MAD	SHOWING		
Α	2968	26#	25' selected muck	0.015	0.08
		UTAI	H SHOWING		
A A B C C	2951 2952 2953 2954 2955	30# 27.5#	25' chips 25' chips 15' chips 30' chips 30' chips 30' chips	0.025 0.02 0.02 0.02 0.02	0.02 0.02 0.01 0.01

LOCATION:	B.L. 20	+ 50 N. DIAMOND	DRILL RE	CORD				HO	LE NO:	4-1-68	
AZIMUTH:	S 3 ⁰ E.	APPE	NDIX "C"		`		PROPERTY	Sicintin	e Mines		
DIP	- 56 ⁰	LENGTH: 950'	ELEVATI	on: 54	60 '		CLAIM NO:	Cob #3			
STARTED:	July 15	CORE SIZE: BQ	DATE LO	ogged: Ju	1y 20-25		SECTION	N, Cob G	roup		
COMPLETED	July 27	DIP TESTS: 450 -	950-		-		LOGGED BY:	B.H. Kah	lert		
PURPOSE:											
				······		· · · · · · · · · · · · · · · · · · ·					
FOOT from	AGE to	DESCRIPTION	SAMPLE Nº: ·	FOO from	to	LENGTH	(Equiv.)				
0	5	Unconsolidated Overburden		.5	10	5	.067				
5	950	Granodiorite		10	20	10	.066	·			
				20	30		.050				
		Core Recovery		30	40		.05				
		Average recovery is approximately 97-98%. Many 10		40	50		.05				
		sections are 100% recovered, but loss in several fractured, faulted and altered zones bring the		50 60.	60 70		.025 .033				
		recovery down.		70	80		.134				:
		Rock Description		80	90		.092				
		Most of the rock is light grey coarse grained		90	100		.092 (Slude	ae).			
		porphyritic granodiorite. Mineral constituents are	2	100	110		.25				
		as follows: Quartz 10-15%, Feldspars 75-80%,		110	120		.067	- 14 - 14			
		Biotite 10%, Accessories minor, / Disseminated pyrr		120	130		.092				
	- 	and py may constitute 2-4% in several sections.		130	140		.075				
		Phenocrysts of euhedral orthoclase varying in size		140	100150		.058				
		from $\frac{1}{4}$ "-2" may constitute up to 10-15% of the rock.		150	.1.,160		.05				
		They are usually poikiolitic, enclosing small		160	, 170		.067				
		biotite and quartz grains, usually along zonal		170			,033				
		boundaries.		180	190		.067				
		Oxidation		190	1.1.1 200		.033				
		Oxidation is relatively weak but can be noticed to	5.	200	210		.033				
		the bottom of the hole. Strong oxidation usually		(1) 210	<i></i> , 220		.067				
		occurs over only 2'-3' in fractured zones. Near		/() 220	: 230		.033				
		surface, oxidation may extend only up to 4" from	: 1	1230	240		.083				
		narrow fractures.		240	ator 250		.033				
			1	250	10260		.033				
			1	260	270	· ·	067				T

.

6--

CANADIAN SUPERIOR EXPLORATION LIMITED

DIAMOND DRILL RECORD

.

12

HOLE Nº:

A-1-68

									PAGE Nº: 2				
FOOT	TAGE		SAMPLE	FOO	TAGE	T	MoSo%		k		<u> </u>	-	
from	to	DESCRIPTION	N2:	from	to	LENGTH	(Equiv.						
		Alteration		270	280	10	.033						
		Hydrothermal alteration is weak throughout.		280	290		.042			1			
		Late quartz veins are accompanied by bleached and		290	300		.033						
		chloritized zones up to 2" wide. Strongly		300	310		.083						
		kaolinized and sericitized sections up to 4' wide		310	320		092						
		occur intermittently below 100'. Except for		320	330		.042						
		occasional blurring of grain boundaries by sericiti-		330	340		.067						
		zation, the rest of the core is fresh.		340	350		.05						
		Structural Features		350	360		.033						
		A post-mineral dyke cuts the core from 389' to 434'.		360	370		.033						
	1	The upper contact is 75° , the lower is 50° to the		370	380		.033		-				
		core axis. The dyke is a barren post-mineral.		380	390		.025				1		
		crowded porphyry, dark green in color. A strong		390	400		.017						
		fault cuts the dyke from 420-432'.		400	410		.017					•	
		Mineralization		410	420		.008						
		Molybdenite occurs as very fine grains disseminated		420	430		.008						
	· · ·	in, or at the edges of narrow blue quartz yeinlets,		430	440		.05		•		a second	1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 -	
		and to a lesser extent, in dry fractures. Three		440	450		.092						
		major sets of veinlets carry moly: 10-20°, 40-50°		450	460		.067						
		and 70-80 ⁰ to the axis. A minor set, roughly		460	470	a definis a	.067	n ga dhan ta					
		paralleling the core, occurs below 70 ⁰ . Average		470	480		.05						
		density of veinlets is 5 per foot throughout, but		480	490		.05			terre de la compa		-	
· · · ·		varies from 3.5 to 10+. Minor cpy, py and pyrr may		490	500		0.10						
		accompany the moly veinlets. Later quartz veinlets		500	510		.042						
		carrying py and minor cpy cut the core at 45 ⁰ ,		510	520		.033	ang Sang				•	
. A. 1		offsetting moly veinlets.		520	530		05					en en service La service de la service	
				530	540		.042						
	A			540	550		.017					1	
				550	560		.042						
			2	560	570		.033						
				570	580		.067						
				580	590		.058						
			······································	590	600		.033			1		1	
				600	610		.033					1	
				610	620	1	.025					1.1	

CANADIAN SUPERIOR EXPLORATION LIMITED

DIAMOND DRILL RECORD

.

HOLE NO: A-1-68

PAGE Nº: 3

FOO	TAGE	DESCRIPTION	SAMPLE	F00	TAGE	LENGTH	MoS2%				
from	to to		N ⊇:	from	to	LENGIA	(Equiv.)				•
				620	630	10	.05				
				630	640		.033				
				640	650		.033				
				650	660		.042				
				660	670		.033			Ψ.	-
				670	680		.017				
				·680	690		.033		-		
				690	700		.033				
				700	710	1	.042				
				710	720		.042				, A
				720	730		.033				
				730	740		.05				
				740	750		.058				-
				750	760		.058				
				760	770		.042				
			-	770	780		.05				
				790	800		.033				
•				800	810		.033				
				810	820		.033				
er ska stal				820	830		.067	*			
and the second	y in the second			830	840		.033				
tata ¹ Saj	ele su regiones.			840	850		.033		*#: 		
				850	860		.017				
				860	870		.025				
				870	880		.05				
				880	890		.025				
			· .	890	900		.025				
an an tara an				900	910		.017				
				910	920	-	.017				
				920	930		.017				
				930	940		.017	· · ·			
				940	950	-	.025				
	·			· .							1
					-						
											1.

LOCATION:	B.L.	20 + 50 N. CANADIAN SUPERIOR DIAMOND	EXPLOF	CORD	LIMIT	ED		HOLE	E NIQ:	A-2-68
AZIMUTH:	N 10 ⁻	W			`		PROPERTY: Si	<u>cintine</u> N	lines	
DIP :	-600	LENGTH: 459'	ELEVATIO	N: 54	60'		CLAIM Nº: CO	b 3		
STARTED:	July	28 CORE SIZE: BQ	DATE LO	gged: Ju	ly 29-Au	ıg. 1	SECTION: N.	Cob Grou	р	
COMPLETE	^{d:} Augus	t] DIP TESTS:					LOGGED BY:B.	H. Kahler	٠t	
PURPOSE:	Test	the Grade and Northern Extent of the North Mineralized	Zøne.		· · · · · · · · · · · · · · · · · · ·					
F00' from	TAGE to	DESCRIPTION	SAMPLE .	F00 [°] from	TAGE to	LENGTH	MoS ₂ % (Equiv.)			
0	7	Overburden		7	10	31	033			
7	459	Granodiorite		10	20	10'	.033			
				20	30		.025			
		Core Recovery		30	40		.033			
		Averages over 95%, is low only in strong fault zones	•	40	50		.033			
		Rock Description		50	60		.033			
·	54	Coarse grained, light, blue gray granodiorite,		60	70		.033		· · ·	
		porphyritic, same as in DDH A-1-68.		70	80		.025			
·	.4	Weathering		80	90	· · · ·	.033			
		Moderately strong to 85' then occurs on fractured		90	100		.025			
		zones to 412', or mottled at 185-198, 262-277,	-	100	110	-	.033			
	De f	315-325, 424-432.	ture -	110	120		.033			
		Alteration		120	130		.033			
		Chloritization and sericitization accompanies		130	140		.025			
		narrow quartz veins, similar to A-1-68. Several		140	150		.033			
		strongly kaolinized and sericitized sections 2-10'		150	160		.05		e e se	
		wide carry good moly above 350', very little below.		160	170		.033			
		Mineralization		170	180		.017			
		Moly occurs as fine disseminations with narrow		180	190		.017			
		quartz veinlets and on dry fractures, seems to be		190	200		.017			
		slightly heavier than in DDH A-1-68. Major		200	210		.025			
		directions are 10-20°, 40-50° and 70-80° to core		210	220		.033			
		axis. Below 250', major direction (+50%) is 30° to		220	230		.033			
		core axis, scheelite in quartz vein at 353'.		230	240		.067			
		Structures		240	250		.033			
		Strongly fractured sections, up to 30' wide near		250	260		.033			
		surface, narrow to less than 10' below 300'. Two		260	270		025			

CANADIAN SUPERIOR EXPLORATION LIMITED

DIAMOND DRILL RECORD

.

HOLE NO: A-2-68

					••		× .					
-				1		· · ·					1	
F00 from	TAGE to	DESCRIPTION	SAMPLE Nº:	F00 from	TAGE to	LENGTH	MoS ₂ % (Equiv.)					
		strong faults occur at 237-249' 358-364' a		270	280	10'	.042					
		weaker one at 227-229. A post-mineral, crowded		280	290		.033					
		porphyry dyke cuts the core from 355 to 385.		290	300		.058					-
				300	310		.025					
				310	320		.033		•			
				320	330		.05					
		ta a ta		· 330	340		.025					
				340	350		.017					
				350	360		.025					
	-			360	370		.017					
				370	380		.025					
	4			380	390		.025					
				390	400		.042					
				400	410		.017					
				410	420		.052					
			-	420	430		.017					
e e				430	440		.025		5 .			
				440	450		.025					
				450	459	9'	.033					
				5.	1. 2. s F							1997 - 1997 -
	-			· · · · ·					-			
•				· · · ·								•
		· · · · · ·					- ·					•
									1 9-019-01-01-01-0		en generalis	
			Ì						-			
								A				

	LOCATION	B.L. 9	+ 00N		DIAMOND	DRILL RE	CORD	<u> </u>				HOLE Nº	A-3-68	
	AZIMUTH:	S 50 E		•			•		· · · · ·	PROPERTY	Sicint	ine Mines	5	
	DIP :	-45		LENGTH:	963	ELEVATIO	N: 5	825		CLAIM NO:	Cob 3,	Cob 5		
	STARTED:	August	4, 1967	CORE SIZE:	BQW	DATE LO	gged: A	ugust 7.	-17	SECTION:	S. Cob	Group		
	COMPLETED): August	17, 1967	DIP TESTS:	48 ⁰ @ 500', 52	2 ⁰ @ 950'				LOGGED BY	:B.H. K	lahlert		
	DUPPOSE													
	PURPUSE.					••••••••••••••••••••••••••••••••••••••								
•	FOOT	TAGE	DE	SCRIPTION		SAMPLE.	FOO	TAGE	LENGTH	MoS ₂ %		-		
	0	9	Unconsolidated Overbur	den			7	20	121	025				
	9	307	Granodiorite. porphyri	tic, stronal	v silicified and		20	30	10'	.025				
			sericitized over most	of section.	Fresh rock is		30	40	10'	.033				
			light blue-grey, alter	ed is dull q	rey-brown.		40	50		.017				
			Surface weathering to	bottom of se	ction. Bleaching		50	60		.017				
			extends for up to 2" f	rom several	a" quartz veins		60	70		.017				
	$ \frac{\partial f}{\partial t} = \frac{\partial f}{\partial t} \frac{\partial f}{\partial t} + \frac{\partial f}{\partial t} + \frac{\partial f}{\partial t} + \frac{\partial f}{\partial t} \frac{\partial f}{\partial $		cutting core at 45 ⁰ .	Mineralizati	on is very poor		70	80		.025				
			to 160' averages 40 fr	acts/section	, increases to		80	90		.017				
			average 25-30/section	to 310'.			90	100	1	.025	,			
							100	110		.017				
	307	405	Dyke, barren post mine	ral crowded	feldspar porphyry		110	120		.017				
			Contact zone is fresh	and dark, ro	<u>ck becomes *</u>		120	130		.017				
ngenta an air an an a' an An t-airte an			Dieached and sericitiz	ed to centre	and Dottom of		130	140		.012				-
			dyke. Minor K-spar al	$\frac{1}{2}$	onenocrysts.		140	150		.017				
				at 370. VI	ery blocky 350-		150	100		.025				
			+05 .				160	1/0		.033	že je		£	
	405	569	Granodiorite porphyri	tic section	very blocky		170	180	-	.033				
	405	309	strongly altered by so	nicito and c	olonito minor		100	200		.033				
			tale on clickonsides.	covered and cl	t costions and		200	210		.035				
			fresh Molybdenite ve	several showing and the several showing the se	rt sections are		210	220		017				
			A-1-68, but moly is in	definite sm	ears and solid		220	230		042				
•			veinlets The best vi	sible moly to	o date Fresher		230	240		042				
			sections increase belo	w 500'. verv	little		240	250		.042				
			alteration below 530'.				250	260		.033				
							260	270		025				
					ar an an the second and the second		270	280		.075				
A start					,	the second s								

CANADIAN SUPERIOR EXPLORATION LIMITED

HOLE NO:

Same?

1. J. S. S. S.

		DIAMOND	DRILL RE	CORD						A-3-	-68	
					•		•		PAGE	^{№2:} 2		
FOOT	AGE		SAMPLE	F00'	TAGE	LENGTH	MoS2%	Au	Ag	Cu		
from	to	DESCRIPTION	NQ:	from	to	LENGIA	(Equiv.)Oz	z./T (Oz./T	%		
569	747-5	Dyke, barren post mineral crowded porphyry; contact		280	290	10'	.017					
		at 569 @ 25-30°, dyke is very dark, becomes light		290	300		.033					
		towards centre, similar to section 307-405. Lighter		300	310		.025					
		color due to sericitization. Becomes dark again		310	370	60'	N.A.				1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
		near lower contact, which is 30 ⁰ . Some of pheno-	•	380	390		.008		2 - 1 2			
		crysts in central part altered by K-Spar. Minor $\frac{1}{4}$ "		390	400		.008					
		quartz veins carry pyrite. Strong quartz veining		400	410		.017					
		690-700. Assayed for Au, Ag, Cu, and Mo.		410	420		.05		· · ·			
				420	430	1	.017					
747.5	838	Granodiorite, medium-coarse grained, phenocrysts		430	440	2	.058					
		minor. Moderate to strong sericitization, kaoli-		440	450		.083					
		nization and chloritization. Below 790 rock		450	460		.017					
		becomes fresher, more acidic and finer grained, is		460	470		.075					
		cut by 1-3' wide sections of fine grained diorite.		470	480		.033					
		Moly is weak to 790, increases below, occurs as		480	490		.050		1			-
		heavier smears. Sericitization and bleaching	-	490	500		.05					
		increase below 805.		500	510	· · · · ·	.05		•	:		
				510	520		.017					
838	928	Diorite, fine grained, dark, with only occasional		520	530		.025					
		phenocrysts of orthoclase. Some shearing is		530	540		.042			9 - ¹ - 1		
		accompanied by chlorite. Pyrite averages 2-4%		540	550		.050					
	2 	throughout as fracture fillings. Moly occurs as		550	560		.05					
		thick smears in narrow fractured and altered		560	570		.033					
		sections. Rods dropped 4' at 903, then 7' sand to		570	690	120'	N.A.	-				n an the star
		914' - no recovery.		690	700	10'	0.017	0.02	0.3	0.03		
				700	740	40'	N.A.					
-				740	750	10'	.008				A	
				750	760		.008					
				760	770		.017					
				770	780		.025	đ.				
				780	790		.017				a series a series de la companya de	
	· ·			790	800		.017					
				800	810		.017					
				810	820		.017					
				820	830		017					

CANADIAN SUPERIOR EXPLORATION LIMITED

DIAMOND DRILL RECORD

.

t,

1.83

HOLE NO: A-3-68 PAGE NO: 3

FOOTAGE		DESCRIPTION	SAMPLE	F001	TAGE	LENGTH	MoS2%					1
from	to	*	Nº:	from	to	LENGTH	(Eqū́iv.)				
928	963	Quartzite (?) strongly silicified section, fine		830	840	10'	.008	, in the second s	-			
		grained, probably is hornfels contact. Section is		840	850		.067					
		cut by several 3"-2' wide post mineral dykes. Dyke		850	860		.008					
		rock is generally dark and finer grained than in		860	870		.008					
		other drill holes. Very minor moly in narrow quartz		870	880		.008					-
		stringers in quartzite. Strong fault zone 928-939'		880	890		.025					
	. •	immediately past quartz contact, recovery 5% over		890	900		.008	•			6.00	
	ago de serverte	foot section. Recovery averaged +95% over hole		900	910		.008					
	**	except for fault zones. Hole was lost at 963',		910	920		.008					
		couldn't get rods through fault zones, even after		920	930	-	.008					i
		cementing.		930	940		.008					
				940	950		.008					
				950	960		.008					
				960	963	3'	.008					
					-							
								2 5 2				
	·								·			
				÷ .				i.				
									1. Sec. 19			
and the second				· .				•				
								5				e trade de la
							-					
												а.
										$(1,1) \in \mathbb{R}^d$		
				*** ** *******************************								

LUCATION.	D.L.	DIAM	OND DRILL RE	CORD			•		HOLE	A-4-
AZIMUTH:	N 20 ⁶	° E			•		PROPERTY	Sici	ntine M	1ines
DIP :	- 65 ⁰	LENGTH: 948'	ELEVATIC	о»: 5	825'		CLAIM NO:	Cob i	#3	
STARTED:	Augus	st 23, 1968 CORE SIZE: BQW	DATE LO	gged: A	ug. 25-3	1	SECTION:	N. Co	ob Grou	,p
COMPLETE	o: Augus	st 30, 1968 DIP TESTS: 500', 948	1				LOGGED BY	': B.H.	Kahler	rt
PURPOSE:	Test	thickness of barren capping; intersect better m	ineralized son	e exami	ned on s	urface.				
FOOT	TAGE	DESCRIPTION	SAMPLE	FO	OTAGE	LENGTH	MoS2%			
0	2	Quarbundan		2	20	171	000			
3	$\frac{3}{151}$	Granodiorite, porphyritic, coarse grained light	t	20	30	1/	000			
		brown arey when fresh Rock is intensely silici	fied	30	40		008			
		with accompanying strong sericitization and kao	lini-	90	100		.008			
		zation, and minor pink K-spar alteration of feld	dspar	140	150		.008			
		phenocrysts. Minor epidote also accompanies the		260	270		008			
		section. Only 3 veinlets of molybdenite seen.		270	280		008			
		Sections 3'-40', 90'-100', and 140'-150' split	and	280	290		.017			
		assayed. Recovery 95%.		290	300		.008			
				300	310		.008			
151	252	Post mineral crowded porphyry dyke barren lin)er	310	320		008			
		contact is obscured by fracturing and quartz ve	ining	320	330		017	i ne i com		
		lower contact is 30° to core axis. Contact is		330	340		017			
		typically very dark, the central part of the dy	(P	340	350		.017			
		is light grev. Recover 99%.		350	360		.008			
	te t			360	370		.025			
252	370	Granodiorite, porphyritic, very similar to sect	ion	370	380	-	.008			
		3'-151'. Alteration completely obliterates rock		380	390		.008			
		texture in several 5'-10' sections. Several 2'-1	3'	390	400		.017			
		sections are fresh and unaltered, these increase	e to	400	410		.008			
		the bottom of the section. Pyrite averages 2-4%,		410	420	+	.017			
		occurs in fractures to 1/8" wide with milky quar	•t7.	420	430		.017			
		or nearly disseminated in short. altered section	IS.	430	440		.017			
		Only very minor molybdenite visible.		440	450		.008			
				450	460	· ·	.017			
				460	470		.008			
			1 1							

3.6

c ·

X

CANADIAN SUPERIOR EXPLORATION LIMITED

DIAMOND DRILL RECORD

6

11

A-4-68

HOLE NO:

	TACE		CANDIC	E 00	TACE	M=C at			
F00 from	to to	DESCRIPTION	NQ:	from	to	LENGTH (Equiv.)			7
0	610	Granodiorite, porphyritic, mainly fresh, blue grey.		480	490	10' .008	1997		
		Short sections of altered rock similar to section		490	500	.017			
		252'-370', amount to 30% of section. Pyrite		500	510	.017			
		decreases slightly, while moly remains very minor.		510	520	.017			
			•	520	530	.025			
0	948	Granodiorite, porphyritic, very fresh and unaltered,		530	540	.017			
		medium to coarse grained. Molybdenite mineralization		· 540	550	.008			
		increases steadily from 610' downward, is similar		550	560	.017		Ç.	
		to DDH A-1 from 700' to bottom. Major directions		560	570	.017		· · ·	
		of veinlets are sub-parallel and 40-600 to core		570	580	.017			
		axis. Pyrite is minor in late milky quartz veinlets	•	580	590	.008			
		Recovery is plus 98%.		590	600	.017			
				600	610	.017			
1 ·				610	620	.017			
				620	630	.017			
				630	640	.017			
1				640	650	.017			
				650	660	.017			
				660	670	.017			
				670	680	.017			
		•		680	690	.017			
			-1	690	700	.017			
				700	710	.017			
				710	720	.017			
				720	730	.05			
				730	740	.017			
				740	750	.017			
				750	760	.017			
				760	770	.068			
				770	780	.017			
	1			780	790	.033			
	1			790	800	.025			
· · · · · · · · · · · · · · · · · · ·				800	810	.017			
				810	820	.017			
	1			820	830	008			

CANADIAN SUDEPIOR EVELOPATION LIMITED

	DIAMONE	DIAMOND DRILL RECORD								
••••••••••••••••••••••••••••••••••••••		•	•	. •		•	PAGE	^N ^Ω : 3		
FOOTAGE from to	DESCRIPTION	SAMPLE Nº:	FOO ^r from	TAGE to	LENGTH	MoS ₂ % (Equiv.)				
			830	840	10'	.042				
			840	850		.050				
			850	860		.025				
			860	870		.033				
		·	870	880		017				
		.4 2	880	890		.033				
			890	900		.05				
			900	910		• .058				
			910	920		.025				تەر.
			920	930		.068				
			930	940		.025				
			940	948	8'	.042				
								, united and the second se		
								`		
and a second								¥.		
								8 ₁ 7		
								\$3°		
										-
•								-		
		17 - Ma	-							