Azimuth Grid W (True = 295°)
Dip -60°

Page 1 of 14

NOTE

North	0+20		LOMITA MINING CORPORA
East	3+40	•	
Elevation	n_3010 ft.		

812754

Hole No	166-71	-1
Commenced_	Aug.	18, 1971 - a.m.
		22, 1971 - p.m.
		Test Geology, I.P.

	ed B <u>y M</u>	I. R. Swanson	DI	AMON	D DRILI	RECOR	RD				Purpos	se ur no	re <u>Tes</u>	t Geology	', I.P.	
				CORE	LENGTH			ŀ	ASSAYS				ACCUMULA	ATIVE AV	ERAGES	
FROM	T0	DESCRIPTION	FROM	ТО	ACC WIDTH	SAMPLE NO.	AU OZ.	AG OZ.	% CU	%Мо		AU W	AG W	CU W		
0	21	Overburden and weathered cap														
21	24	Well fractured, dark green, coarse grained	21	30	9	1326			0.06	0.026						
		hornblende - diorite, propylitic type alteration.			-											
		Pyrite is present along hairline joints, in														
		small quartz veins and as a replacement of the														
		mafics. Minor MoS2 occurs along edges of														
		the quartz veins. These veins are about		ļ												
		1/8 to 1/4 inches wide and have up to 50%														
		pyrite. Slight epidote in vicinity of quartz/						ļ								
		pyrite veins. Veins are 20° to core axis and														
		cut by smaller vein (joint) with quartz-pyrite-														
		MoS2 parallel to core axis. Small joints with														
		quartz, pyrite and no MoS ₂ vein 20° to axis.														ļ
		Also, 1/4" quartz vein with pyrite, MoS2 at														
		70° to axis cuts joints with pyrite/quartz/														
		MoS_2 at 70° to axis = both joint systems have														ļ
		contemporaneous deposition.			ļ											<u> </u>
24.5	24.6	Slickenside with MoS2 and pyrite (smeared).														
24.6	32	Fractured, silicified coarse grained quartz-	30	40	10	1327			0.06	0.031						
		feldspar dike with minor chlorite and pyrite														
		as discrete euhedral and subhedral grains and														
		in quartz-pyrite-MoS2 veins and quartz-														
		pyrite veins. Quartz = 25%, Feld. = 75%,			-											
		pyrite = 3%.														
32	56	Fractured, dark green coarse grained, horn-	40	50	10	1328			0.05	0.017						

				CORE	LENGTH				ASSAYS			ACCUMULA	ATIVE AV	ERAGES	
FROM	то	DESCRIPTION	FROM	ТО	ACC WIDTH	SAMPLE NO.	AU OZ.	AG OZ.	% CU	%Мо	AU W	AG W	CU W		
		blende-diorite with propylitic type alteration		ļ				ļ		-					
		with pyrite as replacement mineral and as		ļ	ļ			ļ							
		vein filling with quartz and minor MoS2 in			ļ										
		joints and open fractures.													
56	60	Post mineralization fault.	50	60	10	1329			0.05	0.011		-			-
60	76	Rock same above (32 ⁹ –56 ⁹)	60	70	10	1330			0.06	0.016					
76	77	Small quartz -Kspar vein (dike) parallel to core axis with pyrite and MoS2.	70	80	10	1331			0.05	0.008					
77	83	Diorite darkens as plag. became a waxy green color as alteration approaches montmorillonite													
		type (increases).													
83	90	Coarse-grained, fractured hornblende diorite	80	90	10	1332			0.05	0.004					
		with propylitic alteration and veins of quartz-													
		pyrite-MoS2.													
		NOTE: 21°-91°													
		Modal Est:													
		Quartz 10-15%			1										
		Feldspars 35%-40%			ļ							-			
		Mafics 40%-45%			ļ					ļ					
		Pyrite 2-3%			ļ										
		Fracture Density:			-										
		1/8 to 1/4 in qtz-pyr-MoS2=1 per 2'										-			
		Joints with pyr.qtz and MoS2= 1 per 4"		-											
		Est. Grade: $Cu = 0\% - MoS_2 = .005\%$			1										
90	91	Post mineral fault.	90	100	10	1333			0.05	0.020					<u> </u>

				CORE	LENGTH			P	ASSAYS				ACCUMULA	ATIVE AV	ERAGES	
FROM	T0	DESCRIPTION	FROM	ТО	ACC WIDTH	SAMPLE NO.	AU OZ.	AG OZ.	% CU	%Мс	AU	W	AG W	CU W		
91	113	Hornblende diorite, fractured, coarse grained	100	110	10	1334			0.07	0.031						
		with montmorillonite type alteration with an	11 0	120	10	1335			0.08	0.023						
		increase in pyrite content to 5%. Rare														
		specks of chalcopyrite occur along the							<u> </u>							
		pyrite filled joints and appear to be an												-		
		exsoin. from the pyrite. Also rare specks of														
		MoS2 as replacement on edge of mafics.														
		Slight increase in MoS2.														
		NOTE:														
		91° - 113														
		Modal Est.														
		Quartz (sericite) = 10-15%														
		Feldspars (clays) = 45%														
		Chlorite-epidote = 35%														
		Pyrite = 5%														
		Fracture density											A			
		1/8 to $1/4$ in qtz-pyrMoS ₂ = 1 per 6 in.														
		Joints with qtz-pyr. and MoS2 = 1 per 3 in.														
		Grade Est. Cu = .05 or less														
		$MoS_2 = .0102$														
113	120	Coarse grained, fractured diorite, texture														
		is being destroyed due to intense kaolin-														
		ization.														
120	135	Medium coarse grained, fairly fresh, qtz.	120	130	10	1336			0.04	0.018						
		feldspar-mica-alaskite. Sulfides drop off.														

						L KLCO	,								
				CORE	LENGTH			1	ASSAYS			ACCUMUL	ATIVE AV	ERAGES	
FROM	ТО	DESCRIPTION	FROM	ТО	ACC WIDTH	SAMPLE NO.	AU OZ.	AG OZ.	% CU	%Мо	AU W	AG W	CU W		
		Pyrite appears as minor, small grain replace-		ļ <u>-</u>					ļ						
		ment and as vein filling with quartz-pyrite													
		and MoS2.													
127	149	Post mineralization shear zone. Very coarse	130	140	10	1337			0.06	0.025					
		grained diorite, fractured with propylitic	140	150	10	1338			0.05	0.008					
		alteration. Joints run in a crisscross pattern													
		and appear to be of the same age.													
		NOTE:													
		113-120 and 135-154													
		Modal Est.													
		Qtz. = $10-15\%$													
		Feldspars = 40%													
		Dark minerals = 40%-45%													
		Pyrites = 2-3%													
		Fracture density:													
		1/8 to 1/4 in quartz-pyrite-MoS2 veins = 1													
		per 3 feet. Joints with quartz-pyrite-MoS ₂													
		= 1 per 3 inches.													
154	161	Porphyritic andesite dike with plagioclase and	150	160	10	1339			0.04	0.031					
		pyroxene lathes. Pre. fractures, alteration													<u> </u>
		and mineralization. Pyrite occurs as minor													
		replacement and pyroxenes and along joints													
		as very thin veins with quartz and minor MoS2.													
161	175	Coarse grained diorite, fractured in a criss-	160	170	10	1340			0.06	0.014					
		cross pattern, propylitic alteration with minor													

	,			CORE	LENGTH			ŀ	SSAYS			ACCUMULA	ATIVE AV	ERAGES	
FROM	ТО	DESCRIPTION	FROM	ТО	ACC WIDTH	SAMPLE NO.	AU 02.	AG OZ.	% CU	%Мо	AU W	AG W	CU W		
		K-spar veins 1/2 inch wide cut by qtzpyr-													
		MoS2 veins and joints.													<u> </u>
		NOTE: 161-175													
		Modal Est.													
		Mafics (chlorite) = 40%									 				
		Feldspars (waxy) = 40%													
		Qtz. = 15%													
		Sulfides = 3-5%													
		Fracture density													
		Veins with MoS ₂ = 1 per 3 feet													
		Joints with MoS ₂ = 1 per 3 inches													
		Grade Est:							l					j	
		Cu =0%.													
		MoS ₂ = trace													
175	180	Fine grained andesite porphyry with	170	180	10	1341			0.03	0.016					
		plagioclase laths. Propylitic alteration with													
		p yrite MoS $_2$ and qtz. in veins and joints													
		$MoS_2 = .05$ est.													
		Cu = .0%													
180	197	Well fractured, coarse grained, propylitic	180	190	10	1342			0.03	0.017					
		alteration, diorite, with slight increase in													
		quartz veining and sulfides. $MoS_2 = .0205\%$		-											
		Veining every 1 1/2 feet and joints every 1-2													
		inches.													
197	198		190	200	10	1343			0.03	0.018					

						- KECOI								
				CORE	LENGTH			Α	SSAYS			ACCUMULA	ATIVE AV	ERAGES
FROM	ТО	DESCRIPTION	FROM	T0	ACC WIDTH	SAMPLE NO.	AU OZ. AG	G 0Z.	% CU	%Mo	AU W	AG W	CU W	
198	224	Coarse grained, fractured quartz-diorite with	200	210	10	1344			0.06	0.012		-		
		quartz-pyrite MoS ₂ veins and joint filling.	210	220	10	1345			0.07	0.009				
224	225	Medium grained quartz-K-spar mica dike	220	230	10	1346		(0.06	0.016				
	<u></u>	(alaskite) fractures with sulfides and quartz												
		veining.			-							ļ		
225	229	Quartz-diorite coarse grained frac. with												
		quartz-pyrite-MoS2 veins and joints mont-												
		morillonite alteration.												
229	235	Alaskite dikes with quartz-pyrite-MoS2 veins	[∥]	240	10	1347		(0.05	0.014				
		and small blebs of MoS2 in matrix.												
235	260	Montmorillonite type alteration of fractured	240	250	10	1348		(0.06	0.014				
		coarse grained quartz-diorite with quartz-	250	260	10	1349		(0.06	0.037				
		pyrite-MoS2 veins and joints.												
260	262	Heavy pyrite-epidote zone with increase in	260	270	10	1350		(0.07	0.020				
		MoS2 - same rock as above.										<u> </u>		
262	267	Fine grained, porphyritic andesite dike,												
		epidote alteration with pyrite-MoS2-quartz												
		veining.												
267	294	Coarse grained, fractured, propylitic altered	270	280	10	1301			0.07	0.010				
		quartz diorite with quartz pyrite MoS2 veins	280	290	10	1302			0.08	0.016				
		and joints.	290	300	10	1303			0.05	0.014				
		NOTE: 180-294 : Quartz Diorite												
		Modal Est:												
		Quartz = 10%												
		Chlorite-Mica = 40%												

				CORE	LENGTH			,	ASSAYS			ACCUMUL	ATIVE AV	ERAGES	
FROM	ТО	DESCRIPTION	FROM	ТО	ACC WIDTH	SAMPLE NO.	AU OZ.	AG OZ.	% CU	%Mö	AU W	AG W	CU W		
		Feldspars = 50%													
		Pyrites = 3-5%			ļ										
		Fracture Density:													
		Veins with MoS ₂ = 1 per 2 feet													
		Joints with MoS ₂ = 1 per inch													
		Grade Est:								-					
	-	Cu = trace													
		$MoS_2 = .05\%$													
294	297.	Kaolinite type alteration of Alaskite dike with													
		joints of pyrite quartz MoS2.						ļ							
288	300	Post mineralization shear zone.													
297	326	Coarse grained diorite with fracturing filled	300	310	10	1304			0.06	0.008					
		with quartz-pyrite-MoS2. Montmorillonite	310	320	10	1305			0.08	0.013					
		type alteration. Decrease in quartz.	3 2 0	330	10	1306			0.11	0.018					
326	340	Well altered zone: rock same as above. Kaolin	330	340	10	1307			0.06	0.017					· · · · · · · · · · · · · · · · · · ·
		type alteration along a shear zone. Alteration	340	350	10	1308			0.06	0.020					
		too intense to determine age, but appears to						·							
		be pre-mineralization.													
340	400	Diorite, coarse grained, fractured, low grade	350	360	10	1309			0.09	0.052					
		propylitic alteration, some increase in pyrite	360	370	10	1310	<u> </u>		0.06	0.026					
		replacement of mafics with some epidote	370	380	10	1311		-	0.06	0.015			}		
	_	associated with the pyrite.	380	390	10	1312		-	0.07	0.026					
		NOTE:	390	400	10	1313			0.06	0.029					
		297.5 - 400 : diorite													
		Modal Est:													

				CORE	LENGTH			A	ASSAYS			ACCUMUL	ATIVE AVE	RAGES
FROM	ТО	DESCRIPTION	FROM	ТО	ACC WIDTH	SAMPLE NO.	AU OZ.	AG OZ.	% CU	%Мо	AU W	AG W	CU W	
		Quartz = 0.5%		-										
		Mafics = 35-40%												
		Feldspars = 55%												
		Pyrites = 2-3%			-									
		Fracture density:			1									
		Veins (quartz-pyrite-MoS2) = 1 per 2 1/2 feet			<u> </u>									
		Joints with MoS ₂ = 1 per inch Grade Est:												
		Cu = trace												
		$MoS_2 = .0205$												
400	426	_	400	410	10	1314			0.03	0.053				
		and kaolinite type alteration of alaskite	410	420	10	1315				0.043				
		diorite material. Rock has a greenish waxy	420	430	10	1316				0.042				
		color with small sections of more whitish												
		coloration. Pyrites has dropped off and MoS2 has increased and occurs as blebs in rock												
		matrix as well as in quartz-pyrite-MoS2 veins						-						
		and joints.												
426	473	Alaskite/granite, medium equigranular. Quite	430	440	10	1317			0.04	0.081				
		fresh with minor alteration along joints. Small	440	450	10	1318			0.04	0.072				
		MoS ₂ blebs seen along quartz grains. MoS ₂	450	460	10	1319			0.05	0.078				
		and pyrite occur along quartz veins and small	460	470	10	1320			0.03	0.060				
		joints. K-spar veins appear as subtle pinkish						-						
		zones 1/2 inch wide along fractures. Some of												
		the quartz veins are subtle in that they blend												

				CORE	LENGTH			P	ASSAYS			ACCUMU	JLATIVE AV	ERAGES	
FROM	ТО	DESCRIPTION	FROM	ТО	ACC WIDTH	SAMPLE NO.	AU OZ.	AG OZ.	% cu	%Мо	AU W	AG W	cu w		
		in with the texture of the rock = silicification.	470	480	10	1321			0.03	0.110					
473	492	Same rock: More fractured with some shearing	480	490	10	1322			0.03	0.110					
		which appears to be post mineralization.													
		Increase in alteration to low grade montmor-													
		illonite type with increase in MoS2 and													
		pyrite. MoS2 joints at 700-900 to core axis													
		contains more Mo than joints at 10°-30° to													
		axis, which are possibly later, grade est. =													
		$MoS_2 = .01$										_			
		NOTE:													
		426-492 ⁰													
		Fracture density													
		Veins with MoS2 = 1 per 5 ft.													
		Joints with MoS2 = 1 per 6 inches													
492	554	Medium coarse grained alaskite/granite:	500	510	10	1323			0.03	0.100					
		fractured and montmorillonite-sericitic	510	520	10	1324			0.04	0.095					
		alteration with increase in MoS2 and increase	5 2 0	530	10	735			0.04	0.180					
		in joints. Rock is crumbly in sections.	530	540	10	736			0.03	0.081		_			
		Calcite veins are widely spread and contain	540	550	10	737			0.03	0.060					
		MoS2. The large quartz veins have fractures	550	560	10	738			0.02	0.084					
		with MoS ₂ filling.													
		NOTE:													
		492-554													
		Fracture density													
		Veins with MoS2 = 1 per 1 foot													<u></u>

				AMOIN		L KECOR					
				CORE	LENGTH			ASSAYS		ACCUMUL	ATIVE AVERAGES
FROM	ТО	DESCRIPTION	FROM	ТО	ACC WIDTH	SAMPLE NO.	AU OZ. AG OZ	. % CU %Mo	AU W	AG W	cu w
		Joints with MoS2 - 1 per 6 inches							-		
		Grade Est.			 				-		
		$MoS_2 = .15\%20\%$									
554	600	Same rock - more intense alteration same	560_	570	10	739		0.03 0.110	-		
		fracture density with slightly lower MoS2 =	570	580	10	740		0.04 0.100			
		.10%.	580	590	10	741		0.04 0.084			
		NOTE: 400-600	590	600	10	742		0.03 0.110			
		Modal Est.									
		Quartz = 25%-30%			ļ	ļ					
	-	Feldspars = 55%-60%									
		Mafics = 10-15%			ļ	ļ			-	ļ	
		Pyrite = 2%									
600	660	Alaskite/Grandite, medium-coarse grained	600	610	10	743		0.03 0.110			
		fractured with slight propylitic type alteration	610	620	10	744		0.03 0.040			
		along fractures. Pyrite present as minor	620	630	10	745		0.03 0.047			
		replacement of biotite and as vein filling with	630	640	10	746		0.03 0.045			
		quartz and MoS2. MoS2 has dropped off with	640	650	10	1601		0.03 0.059			
		the decrease in alteration and fracture density	650	660	10	1602		0.03 0.043			
		= 1 per 10 feet for quartz veins. MoS2 = trace.									
660	693	Same rock as above: but increase in fracture	660	670	10	1603		0.03 0.025	-		
		density. Alteration to montmorillonite type	670	680	10	1604		0.03 0.038			
		with increase in replacement of biotite by	680	690	10	1605		0.03 0.044			
		pyrite and some epidote forming along edges.	690	700	10	1606		0.03 0.055			
693	788	Same rock as above: increase in alteration to	700	710	10	1607		0.02 0.038			
		montmorillonite-sericite type with small zone	710	720	10	1608		0.03 0.060			

				CORE	LENGTH			ASSAYS			ACCUMULA	ATIVE AVI	ERAGES	
FROM	ТО	DESCRIPTION	FROM	ТО	ACC WIDTH	SAMPLE NO.	AU OZ. AG OZ	. % cu	%Мо	AU W	AG W	CU W		
		5-10 wide of unaltered rock. Alteration most	720	730	10	1609		0.03	0.040					
		intense along zones of fractures, although rock	730	740	10	1610		0.03	0.041					
		is generally fractured throughout. Slight in-	740	750	10	1611		0.03	0.032					
	<u> </u>	crease in density and $MoS_2 = .05\%$.	750	760	10	1612		0.03	0.055					
		NOTE:	760	770	10	1613		0.03	0.044					
		600-788 ⁰	770	780	10	1614		0.03	0.052	<u> </u>				
		Modal Est.	780	790	10	1615		0.03	0.078					····
		Qtz (sericite) = 20-25%												
		Feldspars (clays) = 65%												
		Mafics = 10-15%												
		Pyrite = 1-2%						ļ						
		Fracture density												
		Veins with quartz-pyrite-MoS ₂ = 1 per 2-3 ft.												
		Joints with quartz-pyrite-MoS2 = 1 per 6 in												
		l foot												
		Grade Est.												
		Cu = trace												
		$MoS_2 = .0103\%$												
788	790	Post mineral fault and breccia zone with												
		calcite filling. 30° to core axis.								 				
790	826	Dike, cryplocrystalline, brown silica rich												
		material. Later than mineralization, but								-				
		earlier than above fault.												
826	827	Fault-breccia zone.												
827	840	Medium-coarse grained alaskite, fractured	827	830	3	1616		0.02	0.018					

				CORE	LENGTH			,	ASSAYS			ACCUMUL	ATIVE AV	ERAGES	
FROM	T0	DESCRIPTION	FROM	ТО	ACC WIDTH	SAMPLE NO.	AU OZ.	AG OZ.	% CU	%Мо	AU W	AG W	CU W		
		with quartz-pyrite-MoS2 veins and joints.	830	840	10	1617			0.03	0.061					
		Montmorillonite-kaolinite type alteration.													
840	860	Same rock as above - alteration is propylitic	840	850	10	1618			0.04	0.041					
		with a fairly fresh texture.	850	860	10	1619			0.03	0.091					
860	872	Same rock as above with increase in alter-	860	870	10	1620			0.04	0.049					
		ation and increase in MoS2.	870	880	10	1621			0.03	0.049					
870	872	Same rock as above - appears to be intense													
		silicification of a shear zone no MoS2													
		associated with the quartz.													
		NOTE:													
		788-872 ^o													
		Modal Est:													_
		Quartz = 20-25%													
		Feldspar = 50-60%				_									
		Mafics = 15%													
		Pyrite = 1%													
		Fracture density													
		Veins with MoS ₂ = 1 per 2 to 3 feet													
		Joints with MoS2 = 1 per 2 & 3 feet													
872	898	Medium, coarse grained Alaskite, fractured	880	890	10	1622			0.03	0.068					
		with quartz-pyrite-MoS2 veins and joints l	890	900	100	1623			0.04	0.049					
		per 3 feet with drop off in MoS2 content.													
		Intense alteration of kaolinite - sericite type.													
898	900	Fault zone - gouge zone.													
898	930	Contact: coarse grained diorite, fractured,	900	910	10	1624			0.08	0.068					

				CORE	LENGTH				ASSAYS			ACCUMULA	ATIVE AV	ERAGES
FROM	ТО	DESCRIPTION	FROM	ТО	ACC WIDTH	SAMPLE NO.	AU OZ.	AG OZ.	. % CU	%Мо	AU W	AG W	CU W	
		propylitic alteration with pyrite, replacing	910	920	10	1625			0.08	0.024				
		up to 50% of mafics. Feldspars waxy. MoS2	920	930	_10	1626			0.06	0.041				
		pyrite-quartz joints and veins have dropped off												
		to 1 per 10 to 15 feet. Quartz veining is barren												
		of pyrite and MoS2 calcite veins cut quartz												
		veins. K-spar-quartz with bleb of MoS2 is												
0.00	000	cut by 1/8" quartz-MoS2 vein.												
930	993	Same rock as above - change in texture to a	930	940	10	1627				0.024				
		more mottled green with less alteration, a	940	950	10	1628			1	0.044				
		little finer grained. Pyrite forms small equi-	950	960	10	1629			_	0.053				
		dimensional grains and drops to 1% overall	960	970	10	1630	-		1	0.024				
		content. Non magnetic. Some shearing along	970	980	10	1631				0.060				
		section.	980	990	10	1632		-	0.07	0.046				
993	1000	Coarse grained diorite. Fairly fresh, with	990	1000	10	1633			0.06	0.035				
		minor propylitic alteration fractured with minor						ļ	-					
		pyrites as joint filling and minor replacement		ļ										
		of mafics.												
		END												
		NOTE:												
		#898-1000		ļ <u> </u>										
		Modal Est.												
		Quartz = 0.5%												
		Feldspars = 45%												
		Mafics = 55%												
		Pyrite = less than 1%												

				CORE	LENGTH			F	ASSAYS				ACCUMULA	ATIVE AV	ERAGES	
FROM 1	Т0	DESCRIPTION 10 to 15	FROM	ТО	ACC WIDTH	SAMPLE NO.	AU OZ.	AG OZ.	% CU	%Mo		AU W	AG W	CU W		
		Fractures with MoS ₂ = 1 per 1075 feet	And the state of t													
		Grade Est:												_		
		Cu = 0%														
		MoS_2 = trace to 0%														
		100% core recovery, Acid test = -640														
						-					i					
								-								

ULLAK				
North	7+00		_	
East	7+00			
Elevation	on30	085 ft.		
Azimuth	295 ⁰	(grid we	st)	_
Din	-50°			

Logged By M. R. Swanson

LOMITA MINING CORPORATION

Hole No. 166-71-2
Commenced Aug,24.1971 a.m.
Finished Aug 27. 1971 p.m.
Purpose Of Hole Test I.PGeochem High

		1. N. DWUMDOM		, (i) (i)		L KLCOK									
		050001071011		CORE	LENGTH			А	SSAYS			ACCUMULA	ATIVE AV	ERAGES	
FROM	ТО	DESCRIPTION	FROM	ТО	ACC WIDTH	SAMPLE NO.	AU OZ.	AG OZ.	% CU	%Мо	AU W	AG W	CU W		
0	15	Overburden and weathered cap rock.													
			15	20	5	1634			.02	.003					
15	27	Coarse grained, hornblende diorite, mildly	20	30	10	1635			.05	.011					
		fractured with pyrite along the joints. Very													
		mild propylitic alteration adjacent to joints													
		for an inch or so. No replacement of mafics													· · · · · · · · · · · · · · · · · · ·
		by pyrite. Small (1/8 in or less) quartz veins													
		with pyrite and very minor MoS2. Very minor													
		chalcopyrite in with the pyrite.													
27	33	Same rock as above. Kaolinite type alteration	30	40	10	1636			.04	.002					
		with slight more MoS2 in joints.													
33	58	Same rock increase in quartz grains to about	40	50	10	1637			.04	.002					
		10% still diorite, hornblende to chlorite and	50	60	10	1638			.05	.001					
		biotite with some replacement by pyrite.													
		Propylitic alteration.													
58	105	Same rock as above with increased propylitic	60	70	10	1639			.04	.002					
		alteration, chalcopyrite = about 1-2% of	70	80	10	1640			.04	.002					
		pyrite content equals = 3%. Increase in pyrite	80	90	10	1641			.03	.004					
		and MoS2 content. MoS2 occurs along joints	90	100	10	1642			.03	.002					
		and interstially. Feldspars are quite large	100	110	10	1643			.04	.026					
		size.	100			10.10			, , ,	1020					
		NOTE:													
		150 - 1050													
		Modal Est:													
		Plagioclase = 45%													

•

North	
East	
Elevation	
Azimuth	
Dip	

Hole No	166-71-2	
Commenced		
Finished		
Purposo Of	Hala	

Logg			DI	AMON	D DRILI	RECOR	RD								
				CORE	LENGTH			P	SSAYS			ACCUMU	LATIVE A	/ERAGES	
FROM	ТО	DESCRIPTION	FROM	T0	ACC WIDTH	SAMPLE NO.	AU OZ.	AG OZ.	% CU	%Мо	AU	W AG W	cu w		
		Hornblende (biotite) = 50-55%													
		Quartz = 0-5%													
		Pyrite = 1%													
		Fracture frequency:													
		Joints with pyrite = 1 per 1-2 inch	•												
		no amount of MoS2 or Cu to est.													
105	119	Coarse grained hornblende diorite-sheared	110	120	10	1644			.04	.019					
		and well altered to montmorillonite type,													
		small quartz veins with pyrite-MoS2 offset													1
		by shears at 20° to core axis. This zone													
		has an increased MoS2 content est at MoS2 =													
		.0205%											7-1-1		
119	141	Same as above rock - grain size smaller 5	120	130	10	1645			.05	.005					1
		-8 mm: slight propylitic alteration with pyrite													
		vein as replacement of mafics especially													
		adjacent to joints and pyrite in joints. Slight													
		increase in chalcopyrite in pyrite ve i n													
		joints MoS2 drops to near zero.													
141	147	Coarse grained diorite (hornblende) = sheared													
		an d montmorillonite type alteration. Increase													
		in MoS2 in fractures which have been offset													
		by shears. Mo S 2 still low grade = .01%													
		-005% Pyrite occurs in joints and as													
		replacement of mafics.													
147	164	Same rock as above only fresher with slight													

_	\cap	Λ	D

North	· ·
East	
Elevation	
Azimuth	
Dip	
Logged By	

Hole No	166-71-2	
Commenced_		
Finished		
Purpose Of	Hole	

	деа в <u>у</u>		וט	AMON	DKILL	L RECOR	(D								
	propylitic alteration; an increase in			CORE	LENGTH			Д	SSAYS				ACCUMUL	ATIVE AV	ERAGES
FROM	ТО	DESCRIPTION	FROM	ТО	ACC WIDTH	SAMPLE NO.	AU OZ.	AG OZ.	% CU	%Мо		AU W	AG W	CU W	
		chalcopyrite especially along the hairline													
		fractures and not the larger open pyrite filled													
		joints. Some rare occurrance of MoS2 only													
		along the random quartz vein 1/8 to 1/4 in													
		wide.													
164	168	Same rock with some K-metasomatism in the													
		form of K-spar rich zones along fractures.									-				
168	180	Same rock as above with slight propylitic													
		alteration, but generally equite fresh with													
		pyrite as fracture filling with quartz and a													
		replacement of mafics: pyrite = 1-2%													
180	182	Feldspathic diorite appears to be an alteration				i									
		zone a couple of shears are present.													
182	236	Hornblende diorite coarse grained slight													
		propylitic alteration with pyrite along joints						-							,
		and as replacement of mafics. Very minor													
		chalcopyrite occurs in the pyrite, and odd													
		quartz vein with pyrite and MoS2 along edges	<u> </u>												
236	237	Same rock - sheared-altered-with MoS2 in	1	ļ	-					-					
		quartz.													
		NOTE:													
		105 - 347													
		Modal Est.													
		Quartz = 0.5%													

\sim	ı	1	Λ	D	

North
East
Elevation
Azimuth
Dip
Logged By

Hole No	166-71-2	
Commenced		
Finished		
Purpose Of H	Hole	

				CORE	LENGTH		ASSAYS					ACCUMULATIVE AVERAGES			
FROM	TO	DESCRIPTION	FROM	ТО	ACC WIDTH	SAMPLE NO.	AU OZ.	AG OZ.	% CU	%Мо	AU W	AG W	CU W		
		Feldspars = 40%													
		Hornblende (biotite-													
		chlorite) = 55%-60%													
		Pyrite = 1-2%													
		Fracture Frequency													
		Quartz veins with pyrite only = 1 per 1-2 feet													
		Joints with MoS2 = 1 per 25 feet													
237	299	Coarse grained, hornblende diorite, mildly													
		fractured with slight propylitic alteration.											ļ		
		Pyrite drops off as a replacement mineral but												,	
		is present as fracture fillings.every few inche	s.												
		Chalcopyrite is rare in the pyrite MoS2 is also													
		rare.													
299	301	Same rock as above: altered by silicification													
		and K-metsomatism forming large (2 inches)													
		eyes of qua r tz K-spars.						-							
301	303	Same rock with propylitic alteration													
303	303.5	Same rock - sheared and kaolin alteration													
303.5	305.5	Same rock: propylitic alteration.													
303.5	307.5	Same rock sheared with kaolin alteration													
		quartz vein with MoS2													
307.5	310	Same rock = propylitic alteration													
310	312	Same rock: sheared, kaolin alteration with													
		quartz and MoS2.													
312	31.8	Sa me rock: propylitic alteration													

\sim	Λ	1	Δ	D	

Hole No	166-71-2	
Commenced		
Finished		
Purpose Of	Hole	

					LENGTH	L KLCO			ASSAYS			ACCUMULATIVE AVERAGES			
FROM	DESCRIPTION M TO		FROM	TO	ACC	SAMPLE	AU 07	AG OZ.		T	 AU W	AG W	CU W	LINGES	
318	321	Same rock = heavy quartz veining-barren.			WIDTH	NO.	710 02.	714 021	70 00	701010	 7.0 W	/ / W	- CO W		
321	347	Same rock = propylitic alteration													
347	348	Post mineralization fault zone									-2233				
348	351	Coarse grained hornblende diorite, kaolin													
340	331	type alteration, fractured, with pyrite present													
		as replacement of mafics and as filling along													
		hairline joints. Quartz-pyrite veins MoS2													
351.5	352	Same rock - post mineral fault zone.													
352	360	Same rock - same sulfide occurrance less													
	300	altered to propylitic type.			<u> </u>					+					
36 0	382	Same rock - kaolin altered and breccia zone									 				
	-	and fault gouge. Post mineral.													
382	395	Hornblende diorite, coarse grained, with									 				
302	333	slight alteration, some biotite and pyrite													
		along edges of hornblende - quit fresh.													
		Pyrite = less 1% total.													
395	403	Silicified breccia zone - well altered diorite						<u> </u>							
	100	original brecciation with post pyrite MoS2						 						-	
		and silicification with pre 2nd pyrite which													
		forms with quartz veins in silcified zone.									 				
403	530	Coarse grained hornblende diorite with slight													
		propylitic alteration fractured with pyrite as											-		
		joint filling and as replacement of mafics.													
		Small quartz veins 1/8-1/4 inch occur one													
		every few feet and contain small amounts of													
		1 3.3.7 10 W 1001 died Contain Small amounts of			1.		<u> </u>			1	 	1	l	1	

ΛI		

North	 	
East	 	
Elevation_		
Azimuth		
Dip		
Logged By		

Hole	No.	166-71-2

Commenced

Finished______Purpose Of Hole_____

<u>_</u>	еа в <u>у</u>		וט	AMON	U UKILI	L RECOR	(υ							
				CORE	LENGTH			ASSAY				ACCUMULA	ATIVE AVERAGES	
FROM	ТО	DESCRIPTION	FROM	ТО	ACC WIDTH	SAMPLE NO.	AU OZ.	AG OZ.	% CU	%Мо	AU W	AG W	CU W	
		pyrite and MoS2. Increase in MoS2 content												
		is seen through this section related to												
		zones of kaolin type alteration over a few												
		inches MoS2 also related to quartz in									1			
		relatively unaltered rock.							i					
		NOTE:											,	
		347 - 530												
		Modal Est.						_						
		Quartz = 0-5%												
		Feldspars = 40-45%												
		Mafics = 55%												
		Pyrite = 1% or less						,						
		Fracture frequency												
		Quartz-pyrite-MoS2 veins = 1 per 5-10 feet												
		Pyrite joints = 1 per 2 inch												
530	530.5	Alaskite dike, altered, propylitic type.												
530.5	539	Mafic diorite dark green in , medium			-									_
		grained, mottled texture, fractured with												
		pyrite as joint filling and replacement of												
		mafics, pyrite less 1%. Calcite veins												
		beginning to occur along fractures later than												
		quartz veins.												
539	554	Hornblende diorite coarse grained. Mildly												
		fractured with pyrite in joints and minor												
		replacement of mafics. Minor propylitic												
		alteration.	***************************************											

166-71-2

Hole No.___

C	Λ		LA	D
·	u	L	ᄱ	П

North	
East	
Elevation	
Azimuth	
Dip	
Logged By	

	Commenced
	Finished
	Purpose Of Hole
DECODE	

DIAMOND	DRILL	RECORD
---------	-------	--------

	јеи <u>ву</u>			AMOIN	DIVILL	. KECOK										
				CORE	LENGTH			P	ASSAYS			ACCUMULATIVE AVERAGES				
FROM	ТО	DESCRIPTION	FROM	ТО	ACC WIDTH	SAMPLE NO.	AU OZ.	AG OZ.	% CU	%Мо	AU W	AG W	CU W			
554	554.6	Same rock: quartz-K-spar vein with pyrite.														
		No MoS2.														
554.6	561	Mafic diorite, very dark, medium grained,														
		coarse spots of plagioclase giving a slight														
		porpyritic texture.														
561	649	Hornblende diorite, coarse grain mild														
		fracturing propylitic alteration with pyrite as														
		joint filling and as minor replacement of														
		mafics. Small widely spaced quartz veins														
		with pyrite very minor chalcopyrite and MoS2.														
649	654	Shear zone, appears to be post														
		mineralization. Silicified														
654	670	Hornblende, diorite, coarse grained,														
		moderately fractured, propylitic alteration														
-		wide spaced barren and fractured quartz							-							
		veins. Pyrite as joint filling and minor														
		replacement of mafics.														
670	673	Same rock as above? heavy alteration -														
		silicification and K-spar with increase in														
		pyrite and MoS2 pyrite = 3% MoS2 = $.0510\%$														
673	694	Hornblende diorite, coarse grained mildly														
		fractured, propylitic alteration with pyrite as														
		joint filling and very minor replacement of maf	cs.													
694	725	Same rock with minor shearing and increase in														
		alteration to montmorillonite type and increase														

COLLAR							
	٥	Λ	1	1	\sim	r	

North_	_	
East		
Elevation_		
Azimuth		
Dip		
Logged By		

Hole	No.	166-71-2

Commenced_

Finished_

Purpose Of Hole____

Logo	ged B <u>y</u>		וט	AMON	D DKILL	L RECOF	ΚD								
				CORE	LENGTH	_		A	SSAYS			ACCUMUL	ATIVE AVE	RAGES	
FROM	ТО	DESCRIPTION	FROM	ТО	ACC WIDTH	SAMPLE NO.	AU OZ.	AG OZ.	% CU	%Мо	AU W	AG W	CU W		
		in pyrite as a replacement of mafics.					-								\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
725	748	Post mineralization-siliceous crypto crystalline-brown dike, intense fracturing.													
748	812	Hornblende diorite, coarse grained, propylitic alteration with pyrite as minor joint													
		fillings with quartz and calcite and very minor													
		replacement of mafics along joints. Mildly fractured.													
812	812.5	Same rock - silicified zone no increased sulfides.													
812.5	815.5	Same rock - diorite alteration to montmorill- onite type, increase in sulfides - (pyrite and													
		MoS2). Sheared.													
315.5	833.5	Dike-cryptocrystalline, siliceous brown dike well fractured, but unaltered along fresh													
		breaks. Rock slightly altered - it appears this dike came up along the earlier sheared						-							
		altered (weak) zone.													
833.5	835	Sheared-altered contact zone between brown siliceous dike and hornblende diorite below.													
835	857	Hornblende diorite, coarse grained,													
		propylitic alteration with pyrite and minor epidote in joints and very minor as replace-													
		ment of mafics. Chalcopyrite is present as													
		rare specks in pyrite joints. Mildly fractured													

_	\sim			Λ	D
С	U	ᆫ	┙	н	n

North	
East	
Elevation	
Azimuth	
Dip	
Logged By	

Hole No	_166-71-2	
Commenced_		
Finished		
Purpose Of	Hole	

Logg	ed By		וט	AMON	D DRILI	L RECOR	RD .								
				CORE	LENGTH			P	SSAYS			ACCUMUL	ÀTIVE AVI	ERAGES	
FROM	T0	DESCRIPTION	FROM	TO	ACC WIDTH	SAMPLE NO.	AU OZ.	AG OZ.	% CU	%Мо	AU W	AG W	CU W		
857	858	Alaskite dike; propylitic altered, unmineral.													
		medium grained.												<u> </u>	
858	874	Hornblende diorite - propyl. alteration, coarse)												
		grained with pyrite.													ļ
874	877	Alaskite dike - medium grained, propylitic													
		alteration with pyrite-MoS2 and quartz veining													
		with pyrite-MoS2 and later calcit e													
		veins.													
877	886	Intense kaolin alteration - pyrite only along													
		joints.												1	
886	906	Mica-chlorite diorite medium-fine grained													
		propylitic alteration fractures,													
		pyrite only along joints. Dark green with													
		mottled texture, with calcite veining.													
906	946	Hornblende diorite, coarse grained moderate													
		fracturing, propylitic alteration with pyrite as													
		joint filling and as minor replacement of mafic	s.												
946	953	Same rock type, montmorillonite type													
		alteration.													
953	960	Same rock type more intense kaoling type													
		alteration and shearing and brecciation.													
		stage, no inc. in pyrite													
960	972	Same rock - intense propylitic alteration but													
		very low pyrite content, mildly fractured.													
972	972.5	Same rock - brecciation (late stage) of													
		calcite and pyrite vein.									,				

COLLAR	
North	
East	
Elevation	
Azimuth	
Din	

DIAMOND	DRILL	RECORD

Hole No	166-71-2	
Commenced		
Finished		
Purpose Of	Hole	

Dip_ Logg	ed By	Purpose Of Hole DIAMOND DRILL RECORD														
					LENGTH			F	ASSAYS			ACCUMULATIVE AVERAGES				
FROM	ТО	DESCRIPTION	FROM	ТО	ACC WIDTH		AU OZ.	AG OZ.	% CU	%Мо		AU W	AG W	CU W		
972.5	1,000	Hornblende diorite, coarse grained,														
		moderately fractured with later calcite														-
		veining and earlier quartz with K-spar veins												_		
		spaced about every 2 feet. Propylitic														
		alteration with pyrite in quartz veins and as														
		a minor replacement of mafics. Some														
		increase in pyrite over previous 50 feet.														
		NOTE: 5301,000														
		Modal Est:														
		Quartz = 0 - 5%														
		Feldspars = 50-55%														
		Mafics = 40-45%														
		Pyrite = 0-1%														
		Grade Est:														
		Cu = 0 - trace) over														
		MoS2 = 0 - trace) random sections														
		Sperry-Sun test:														
		Az. dir. = Mag S88W (Grid W)														
		$dip = 52^{O}$			ļ											
				-												
					-					-						

LOMITA MINING CORPORATION

North	1+50
East	
Elevation	2975 ft.
Azimuth	2950
Dip	-520
Logged By_	M. R. Swanson

Hole No	166-71-3	
Commenced	Aug. 29, 1971 a.m.	
	Sept. 2, 1971	
Purpose Of	Hole Test IP and Geochem	_

		ivi. R. Swanson		AMOIN	DONIL	L KECON	\U							
	DESCRIPTION			CORE	LENGTH			A	SSAYS			ACCUMUL	ATIVE AVE	RAGES
FROM	ТО	DESCRIPTION	FROM	ТО	ACC WIDTH	SAMPLE NO.	AU OZ.	AG OZ.	% CU	%Мо	AU W	AG W	CU W	
0	20	Overburden and cap rock.			<u> </u>									
20	21	Diorite well kaolin type alteration.												
21	45	Well altered dike post sulfides, appears to	.=2											
	ļ	have been a feldspathic dike.	***											
45	46	Breccia zone.				-								
46	56	Coarse grained diorite? montmorillonite												
		alteration, fractured with minor pyrite, MoS2,												
		with quartz veins widely spaced.												
56	57	Breccia fault zone.												
57	65	Fine feldspar porphyry dike with minor sulfides												
		in joints. Well altered, montmorillonite type.	-											
65	168	Quartz diorite coarse grained, propylitic	153	160	4	1646			.04	. 019				
		alteration, well fractured, pyrite as minor												
		replacement of mafics and as fracture filling												
		by itself and with quartz and minor epidote,												
		MoS2, chalcopyrite forms as little blebs in												
		veins of pyrite widely spaced l - several feet.												
168	170	Shear-zone post mineralization with	160	170	10	1647			.06	.050				
		montmorillonite type alteration of quartzose												
		diorite.					<u> </u>							
170	183	Quartz-hornblende-diorite, propylitic alteration	170	180	10	1648			.06	.100				
		well fractured with small 1/2" quartz veining	180	190	10	1649			.05	.032				
		with pyrite and MoS2 along edges. Pyrite												
		occurs as fracturing and joint filling and as												
		partial replacement of hornblende with epidote												

					LENGTH		ļ.	ASSAYS			ACCUMULATIVE AVERAGES					
FROM	ТО	DESCRIPTION	FROM	ТО	ACC WIDTH	SAMPLE NO.	AU OZ. AG OZ.	% CU	%Мо	AU W	AG W	CU W				
		occasionally seen around edge of pyrite.														
		Slight increase in MoS_2 -quartz veins = 1 per		ļ												
		4-5 feet.														
183	202	Same rock as above - shear and breccia zone	190	200	10	1650		.07	.025							
		post 1st stage quartz (barren) and post pyrite. Alteration is montmorillonite type.														
202	202.5	Brecciated calcite vein with pyrite, same rock as above.	200	210	10	1651		.08	.058							
202.5	208	Same rock as above - sheared.														
208	221	Same rock - well fractured with pyrite in	210	220	10	1652		.07	.012							
		joints. Propylitic alteration.														
221	224	Hornblende diorite, montmorillonite type	220	230_	10	1653		.06	022							
		alteration, rock has a pale green waxy texture.														
224	229	Same diorite, propylitic alteration, well														
		jointed with pyrite filling. Small widely									,					
		spaced quartz veins with MoS2 and pyrite.														
		Chalcopyrite occurs as small blebs a joint														
		filling pyrite and pyrite as partial replacement														
		of mafics.														
229	234	Same diorite - montmorillonite type alteration	230	240	10	1654		.06	.028							
		with waxy texture, jointed with pyrite filling.														
234	268	Same rock - diorite, propylitic alteration with	240	250	10	1655		.07	. 011							
		widely spaced (1 per 3 feet) quartz - MoS2	250	260	10	1656		.07	.012							
		veins.	260	270	10	1657		.07	. 016							
268	271	Same rock - montmorillonite alteration.	270	280	10	1658		.08	019							

							1			1			
		DESCRIPTION		CORE	LENGTH		-	ASSAYS			ACCUMULA	ATIVE AVERAGE	S
FROM	ТО	DESCRIPTION	FROM	ТО	ACC WIDTH	SAMPLE NO.	AU OZ. AG OZ.	% CU	%Мо	AU W	AG W	CU W	
271	283	Same rock - propylitic alteration fractured.	280	290	10	1659		.06	010				
		with pyrite MoS ₂ .											
283	287	Alaskite dike - medium grain quartz rich											
		C.I. = 5%, fractured and pre-mineral.											
287	306	Hornblende diorite: course grain, well	290	300	10	1660		.10	010				
		fractured with pyrite and quartz-pyrite-MoS2	300	310	10	1661_		.10	.028				
		joint filling. Mild propylitic alteration											
		MoS2 - still about .005%. Pyrite = 3%.											
306	308	Alaskite dike.											
		Note: 20° - 306°											
		Modal Estimate											
		Quartz = 0%											
		Feldspars = 50%											
		Hornblende (chlorite) = 45%											
		Pyrite = 3%											
		Fracture Frequency											
		1/8 - 1/2 in quartz pyrite MoS ₂											
		= 1 per 5-6 feet											
		Joints with pyrite = 1 per 1 inch											
308	330	Hornblende diorite: coarse grain well	310	320	10	1662		.10	019				
		fractured with pyrite as joint filling and as	320	330	10	1663		.09	.014				
		partial replacement of mafics. Propylitic											
		alteration.											
330	334	Diorite - hornblende; texture has changed to	330	340	10	1664		.08	.045				
		mottled green, probably caused by alteration											

				CORE	LENGTH			F	SSAYS			ACCUMULA	ATIVE AVE	ERAGES	
FROM	ТО	DESCRIPTION	FROM	ТО	ACC WIDTH	SAMPLE NO.	AU OZ.	AG OZ.	% CU	%Мо	AU W	AG W	CU W		
		propylitic type with shearing - more micaeous.										-			
		Less jointing than lighter colored diorite.													
334	342	Very coarse grain felsic diorite, well	340	350	10	1665			.09	.022					
		fractured, propylitic alteration, pyrite and													
		quartz pyrite with some MoS2 on fractures.													
342	357	Coarse grain micaeous green diorite same	350	360	10	1666			.08	.009					
		alteration and mineralization as above.													
357	383	Very coarse grain feldspathic hornblende	360	370	10	1667			.06	.160					***
		diorite, mild propylitic alteration with some	370	380	10	1668			.07	.005					-
		K-spar introduction. Well fractured with	380	390	10	1669			.12	.025					
		pyrite and quartz-pyrite-MoS2 fracture filling.							-						
		Some quartz is vuggy, pyrite occurs as re-													
		placement of hornblende. Biotite comes in as													
		a partial replacement of hornblende.													
383	386	Dark chloritic diorite appears to be sheared													
		and altered.													
386	387	Heavy quartz vein with pyrite.											-		
387	393	Very close grain feldspathic hornblende diorite	390	400	10	1670			.08	.020					
		with biotite and pyrite replacing hornblende,													
		well fractured with pyrite and quartz-phyrite-													
		MoS ₂ fracture fitting, mild propylitic alter-							- · · · · · · · · · · · · · · · · · · ·						
		ation.													
393	395	Quartz K-spar dike - very fine grain mineral-													
	<u> </u>	ization.													
395	462	Very coarse grain, altered, fractured, felds-	400	410	10	1671			.08	.032					

				CORE	LENGTH				ASSAYS			ACCUMULA	ATIVE AV	ERAGES	
FROM	ТО	DESCRIPTION	FROM	ТО	ACC WIDTH	SAMPLE NO.	AU OZ.	AG OZ.	% CU	%Мо	AU W	AG W	CU W		
		pathic hornblende diorite with quartz-pyrite-	410	420	10	1672			.07	.032					
		MoS ₂ veins filling joints widely spaced =	420	430	10	1673			.06	.028					
		1 per 3 to 5 feet. Pyrite joints = 1 per 1 inch.	430	440	10	1674			.08	.021					
462	472	Dike: dark green andesitic plagioclase -	440	450	10	1675			.06	.008					
		hornblende porphyry. Pre quartz-pyrite-MoS2	450	460	10	1676			.09	.044					
		fractured and altered.	460	470	10	1677			.06	.022					
472	492	Very coarse grain, propylitic alteration,	470	480	10	1678			.08	. 015					
		fractured feldspathic diorite with pyrite as	480	490	10	1679			.08	.014					
		replacement of mafics. Quartz-pyrite-MoS2	490	500	10	1680			.05	.008					
		fracture filling.													
		Note: 306° - 492°													
		Modal Estimate													
		Quartz = 0.5%													
		Feldspars = 55%													
		Mafics = 30%-50%													
		Pyrite = 2-3%													
		Fracture Frequency													
		Quartz, pyrite, MoS2 = 1 per 3 feet													
		Pyrite joints = 1 per 1 inch													
492	493	Fine grain porphyritic andesite dikes pre													
		alteration.													
493	496	Diorite - montmorillonite type alteration.													
496	500	Breccia - amorphous siliceous fault zone -													
		post mineralization.													
500	574	Diorite, montmorillonite type alteration,	500	510	10	1681			.07	.008					

		250001071011		CORE	LENGTH			F	SSAYS			ACCU	MULATI	VE AVE	ERAGES	
FROM	ТО	DESCRIPTION	FROM	T0	ACC WIDTH	SAMPLE NO.	AU OZ.	AG OZ.	% CU	%Мо	AU	V AG	W	CU W		
	-	sheared post mineralization: waxy pale green,	510	520	10	1682			.08	.031						
		fractured with pyrite in joints and minor	5 2 0	530	10	1683		-	.06	.022						
	ļ	replacement, quartz, pyrite, MoS2 veins.	530	540	10	1684			.08	.041						
		This is the very coarse grain feldspathic	540	550_	10	1685		-	.09	.020						
		diorite, small sections 1-2 feet fresher texture.	550	560	10	1686			.07	.008						·
574	577	Breccia zone - with intense clay alteration.	560	570	10	1687			.07	.012						
		Note:	570	580	10	1688			.04	.039						
		Modal Estimate - 492-574 ^o														
		Quartz = 0.5%														
		Feldspars = 55%						-								
		Mafics = 30-35%														
		Pyrite = 2-3%													_	
		$MoS_2 = .001 - trace$														
577	594	Alaskite - Contact - medium coarse grain	580	590	10	1689			.03	.022						
	ļ	equigranular, mildly fractured - low grade	590	600	10	1690			.03	.019						
		propylitic to slight montmorillonite alteration.														
		Pyrite occurs as a trace in replacement of						,								
		mafics at very minor as fracture filling.														
		Small quartz, MoS2 joints occur every 2 to 3														
	-	feet. Very low grade MoS ₂ .														
594	594.5	Same rock - breccia zone.														
594.5	626	Same rock.	600	610	10	1691			.03	.034						
626	675	Contact: Siliceous - greenish brown dike,	610	620	10	1692			.03	.038						
		fractured, post mineralization.	620	630	10	1693			.02	.034						
675	676	Breccia - fault zone.														

				CORE	LENGTH			/	ASSAYS				ACCUMULA	TIVE AVI	ERAGES
FROM	ТО	DESCRIPTION	FROM	ТО	ACC WIDTH	SAMPLE NO	AU OZ.	AG OZ.	% CU	%Мо		AU W	AG W	CU W	
676	716	Contact: Alaskite, medium coarse grain, mild	680	690	10	1701			.02	078					
		to moderate fracturing with quartz MoS2	690	700	10	1702			.03	060					
		fillings. Some MoS2 as phenocrysts; pyrite	700	710	10	1703			.02	039					
		as minor replacement of mafics. Some mild	710	720	10	1704	<u> </u>		.02	054					
		K-spar alteration (?). MoS ₂ joints spaced													
		1 per 3 to 4 feet. The larger more barren													
		quartz veins (1/2 in.) are later than the small													
		(1/3-1/4 in.) more MoS ₂ rich veins and joints.												· · · · · · · · · · · · · · · · · · ·	
716	717	Same rock, later quartz vein with pyrite. No													
		MoS ₂ .													
717	730	Same rock: slight increase in pyrites.	720	730	10	1705			.02	031					
730	732	Same rock: late shears.	730	740	10	1706			.03	034					
732	775	Same rock: more altered - montmorillonite	740	750	10	1707			.02	033					
		pyrite = 1 - 2%, some mafic grains replaced.	750	760	10	1708			.02	021					
775	779	Post mineralization fault and breccia zone	760	770	10	1709			.03	022					
		with amorphous silica.	770	780	10	1710			.03	072					
779	833	Alaskite: medium coarse grain; propylitic/													
		montmorillonite type alteration, mildly													
		fractured with quartz, MoS2 veins and joint													
	 	filling widely spaced 1 per 2 to 3 feet, pyrites										-			
		as replacement of mafics. Remaining mafic								-					
		have gone to muscovite-phlogopite; feldspars													
		slightly waxy - quartz still fresh. Some K									-				
		introduction in form of biotite and minor K-spar.													
833	835	Same rock: fractured - late.						L							

				AMOI 11	DRIEL	. KLCON					
		- DECCRIPTION		CORE	LENGTH		Д	ASSAYS		ACCUMULA	ATIVE AVERAGES
FROM	ТО	DESCRIPTION	FROM	ТО	ACC WIDTH	SAMPLE NO	AU OZ. AG OZ.	% CU %Mo	AU W	AG W	cu w
835	845	Same rock.									
845	857	Breccia zone: with amorphous silica as matrix - same rock. Post mineral.									
857	893	Same rock - more altered; montmorillonite/									
		kaolinite type. Some late fracturing. Pyrite									
		has dropped off and MoS2 has become more									
	ļ	widely spaced.									
893	896	Alaskite: medium-coarse grain, propylitic/									
		montmorillonite alteration with pyrite very									
		minor as mafic replacement and ie quartz									
		veins. Small widely spaced quartz - MoS2									
		veins and joints. Shear zone.									
896	906	Same rock.						:			
		END									
	ļ	Sperry-Sun Survey:									
		Az = Mag West (true 295°)					·				
		Dip = 48°									
		Core Recovery = 100%									
	-										

Page 1 of 5

North_	7+	75			
East					
Elevati	on	297	0 ft	•	
Azimutl	n 29	950			
Dip					
			R.	Swanson	

Hole No	166-71-4
Commenced_	Sept. 4, 1971 a.m.
Finished	Sept. 5, 1971
Purpose Of	Hole Test I.P. and structural offset

Logg		IVI. R. SWallSoll	ال 	AMON	D DKILI	L KECO	ξŪ.									
				CORE	LENGTH			F	SSAYS				ACCUMULA	ATIVE AV	ERAGES	
FROM	ТО	DESCRIPTION	FROM	TO	ACC WIDTH	SAMPLE NO.	AU OZ.	AG OZ.	% CU	%Мо	AU	W	AG W	CU W		
0	24	Overburden.														
24	56	Homblende diorite, very course grain, well														
		fractured, propylitic alteration with pyrite as														
		veins with quartz and as a minor replacement														
	_	of mafics. Pyrite = 1% or less.														-
56	56 ⁵	Same rock as above: shear zone post mineral-	56	60	4'	1694			.04	.008						
		ization. Cuts across quartz - pyrite MoS2	60	70	10'	1695			.03	.005						
	ļ	vein.	70	80	10'	1696			.03	.006						-
56 ⁵	63	Same rock as above.	80	90	10'	1697			.05	.005						
63	63 ⁵	Andesite dike: pre mineralization.	90	100	10'	1698			.05	.004						
63 ⁵	101	Hornblende diorite; fractured altered, pro-			-											
		pylitic type; fracturing is moderate to mild														
		with pyrite joints 1 per 2 feet. MoS2														
		occurrences - 1 per 20 feet.														
101	110	Same rock as above: sheared with hematitic														
		stain on slickensides. Post pyrite and quartz.														
110	175	Hornblende diorite, course grain, mildly														
		fractured, low grade propylitic alteration,														
		widely spaced quartz - pyrite - chalcopyrite														
		veins, 1 per 6 to 8 feet. Chalcopyrite = 10%														
		of sulfides in veins. Pyrite occurs as minor														
		replacement of mafics. Pyrite = 0.5%.														
175	210	Same rock as above: increase in fractures and									`					
		increase in pyrite both as replacement and														
	L	along joints. Slight increase in quartz -														

				CORE	LENGTH			F	SSAYS			ACCUMUL	ATIVE AV	ERAGES	
FROM	ТО	DESCRIPTION	FROM	ТО	ACC WIDTH	SAMPLE NO.	AU OZ.	AG OZ.	% CU	%Мо	AU W	AG W	CU W		
		pyrite veins. MoS ₂ still rare. Late small													
		barren calcite veins beginning to appear.													
		Chalcopyrite = $5-10\%$ of sulfides in joints.													
210	235	Same rock as above: increase in pyrite to 2%													
		and increase in quartz - pyrite MoS2 veins to													
		about 1 per 3 feet. Grade estimate Cu = .01,													
		MoS ₂ .005 appears along pyrite joints.													
		Chalcopyrite has dropped off.													
235	256	Same rock as above, incipient shearing and													
		some offsets, post mineralization.							I						
256	268	Homblende diorite course grain, moderately													
		fractured, low grade propylitic alteration, with													
		pyrite as joint filling and as minor replacement													
		of mafics.													
268.	277	Same rock type as above; alteration increased													
		to montmorillonite type, increased shearing													
		and offsets which are post mineralization.													
277	285	Dike: fine porphyritic dike, pre mineralization													
		- andesitic composition. Propylitic/montmor-													
		illonitic alteration with pyrite in joints.													
285	291	Post mineralization fault zone.													
291	353	Hornblende - quartz - diorite, course grain,													
		moderately fractured with propylitic alteration													
		and pyrite as joint filling with guartz and													
		minor MoS ₂ and as minor replacement of minor													

				CORE	LENGTH		,	ASSAYS			ACCUMULA	ATIVE AV	ERAGES	
FROM	TO	DESCRIPTION	FROM	ТО	ACC WIDTH	SAMPLE NO.	AU OZ. AG OZ.	% CU	%Мо	AU W	AG W	CU W		
		amounts of mafics. MoS2 joints with quartz												
		is 1 per 3 feet.	-											
		Note: 24 ^Q - 291 ^Q												
		Model Estimate												
		Quartz = 0-5%												
		Feldspars = 60%												
		Mafics = 35% - 40%												
353	355	Dike: course grain, mafic diorite, appears												
		to be a segregation, pre fracturing and												
		mineralization and alteration.												
355	381	Course grain hornblende - diorite mild												
		fracturing, propylitic alteration with pyrite					-							
		along joints and very minor as replacement;												
		pyrite = less 1%, drops off. Quartz - MoS ₂												
		veins = 1 per 20 feet.												
381	383	Fine grain andesite dike; epidote - pyrite												
		alteration; pre fracturing.												
383	395	Course grain Hornblende Diorite; moderately												
		fractured propylitic alteration.												
395	400	Same rock with shearing and increased												
		alteration; shears are post mineralization.												
400	423	Hornblende diorite, course grain, moderate												
	7	fracturing, propylitic alteration with pyrite												
		as joint filling with quartz and as minor												
		replacement of mafics - pyrite = 1-2%. MoS ₂												

				CORE	LENGTH			Д	SSAYS			ACCUMULA	ATIVE AV	ERAGES	
FROM	ТО	DESCRIPTION	FROM	ТО	ACC WIDTH	SAMPLE NO.	AU OZ.	AG OZ.	% CU	%Mo	AU W	AG W	CU W		
		occurs as rare selvidges along quartz veins			ļ				 .					-	
		with pyrite.													
423	425	Shear zone - same rock as above. Appears						_							
		to be premineralization shears.													
425	443	Same rock; pyrite joints cut by pyrite - quartz													
		veins.													
443	459	Same rock; more intense alteration; to mont-													
		morillonite type, slight increase in pyrite.													
459	470	Same rock; mor e intense alteration to													
		kaolinite type: pyrite = 3%.													
470	487	Same rock; propylitic alteration; pyrite about													
		the same - quite a bit of mafic replacement.													
		No MoS2 seen for 100 feet or so.													
487	489	Alaskite dike, fresh: with biotite and pyrite,													
		no MoS2.													
489	503	Homblende diorite, course grain, moderate													
	END	fracturing, propylitic alteration with pyrite													
		as joint filling and as partial replacement of													
		mafics.													
		Note: 291° - 503°													
		Modal Estimate													
		Quartz = 0%													
		Feldspars = 55%													
		Mafics = 45%													
		Pyrite = 1-3%													

CORE LENGTH SAMPLE SASSYS SACCUMULATIVE AVERAGES FROM TO ACC MOS 2 very rare NO. NO.	 DIAMOND DRIEL RECORD														
FROM TO FROM TO WIDTH NO. AU OZ. AG OZ. % CU % Mo AU W AG W CU W MoS2 very rare	ERAGES	TIVE AV	ACCUMULA				SSAYS	F			LENGTH	CORE		DECCOLUTION.	
MoS ₂ very rare Core recovery = 100%. Sperry Sun test: -56°; Az Mag W = 298° true Az.		CU W	AG W	AU W)	%Mo	% CU	AG OZ.	AU OZ.	SAMPLE NO.	ACC WIDTH	ТО	FROM	1 TO DESCRIPTION	FROM TO
Sperry Sun test: -56°; Az Mag W = 298° true Az.											****			MoS ₂ very rare	
Sperry Sun test: -56°; Az Mag W = 298° true Az.	 				-	ļ									
Mag W = 298° true Az.	 													Core recovery = 100%.	
Mag W = 298° true Az.					<u> </u>	1	-								
			ļ												
Acid test = -63°.	 														
														Acid test = -63°.	
					-										
] 								

(1	•	Λ	Ð

North 4+95 S
East 2+65
Elevation 2960 ft.
Azimuth 2950
Dip -600
Logged By M. R. Swanson

Т	$\bigcirc 1/4$	א ידיד	VLLV.	TTNTC	$C \cap DD$	$\triangle D \lambda$	MOIT
ı	CIVI	TIM	TALLEY	TING	OORF	OIVE	11

Hole No. 166-71-5	
Commenced Sept. 7, 1971 a.m.	_
Finished Sept. 10, 1971	_
Purpose Of Hole Test geology - strike	

		WI WOULDON		AMON	DRIL	L KECO	· · · · · · · · · · · · · · · · · · ·								
				CORE	LENGTH			P	SSAYS			ACCUMULA	ATIVE AV	ERAGES	
FROM	ТО	DESCRIPTION	FROM	ТО	ACC WIDTH	SAMPLE NO.	AU OZ.	AG OZ.	% CU	%Мо	AU W	AG W	CU W		
0	1105	Overburden.													
1105	155_	Alaskite: medium coarse grain leuco rock;	153	160	7	1711			.02	.014					
		mild to moderate fracturing filled with calcite													
		and quartz veins. Propylitic alteration with pyrite and epidote replacing biotite, pyrite													
		also occurs in quartz veins widely spaced.													
		MoS2 is present as widely spaced joints and													
		with small quartz veins. Pyrite less 1%.													
155	190	Same rock: more fractured and more intense	160	170	10	1712			.02	.046					
		alteration - montmorillonite type and phyllitic	170	180	10	1713			. 01	.019					
		(K-spar) type with increase in MoS ₂ to about	180	190	10	1714			.01	.008					
		l joint per l to 2 feet - estimate grade =													
		Mo 4 005. Local shears are present with													
		chloritic slickenside; these are post mineral-													
		ization and quartz veining shears.													
190	2 70	Same equigranular alaskite: alteration varies	190	200	10	1715			.01	.011					
		from fresh to propylitic, moderate fracturing.	200	210	10	1716			. 01	.015					
		Most quartz veins barren, few carry minor													
		MoS_2 trace; minor shearing post mineralization.											*****		
		Local K-spar alteration with quartz.													
	-	Note:													
		110 ⁵ - 270°													
	-	Modal Estimate													
	-	Quartz = 20-25%													
		Feldspars = 60%					<u></u>								

				CORE	LENGTH			F	ASSAYS			ACCUMULA	ATIVE AV	ERAGES	
FROM	T0	DESCRIPTION	FROM	ТО	ACC WIDTH	SAMPLE NO.	AU OZ.	AG OZ.	% CU	%Мо	AU W	AG W	CU W		
		Mafics = 10-15%													
		(biotite (chlorite, epidote))													
		Pyrite as replacement = 3%													
		MoS ₂ joints = 1 per 15 to 20 feet					-								
270	220														
2/0	320	Alaskite: medium course grain equigranular,			 										
		moderately fractured with some minor local shearing. Fresh to propylitic alteration and													
		minor phyllitic (K-spar) alteration especially													
		along some earlier quartz veins. Pyrite													
		occurs as vein filling with quartz and as													
		replacement of mafics. Quartz has dropped													-
		off as a constituent mineral. Rock has become													
		slightly more mafic and more feldspathic.									 4				
		MoS2 occurs rarely as speckles in quartz													
		veins not along edges.													
3 20	365	Alaskite: medium course grain equigranular,													
		moderately fractured with local small shears													
		(post mineralization): Increase in alteration													
		to intense propylitic type and low grade													
		montmorillonite type. Also slight increase in													
		MoS ₂ joints to 1 per 5 feet. Quartz content													
		low forming almost a syenite-granodiorite.													
		Pyrite present along joints with quartz in veins													
		and as minor replacement of mafics.													

				CORE	LENGTH			A	ASSAYS			ACCUMULA	ATIVE AV	ERAGES	
FROM	ТО	DESCRIPTION	FROM	ТО	ACC WIDTH	SAMPLE NO.	AU OZ.	AG OZ.	% CU	%Мо	AU W	AG W	CU W		
		Note:									 				
		270° - 365°											<u></u>		
		Modal Estimate			,						 				
		Quartz = 0.5%													
		Feldspar = 75-80%											! 		
		Mafics = 15-20%													
365	377	Alaskite with increase in quartz to 20% more													
		fresh - slight propylitic alteration.													
377	892 ⁵	Same rock as above: more altered to low													
		grade montmorillonite type alteration.											i		
392 ⁵	457	Contact: dark green, course grain, horn-													
		blendediorite; propylitic alteration with													
		pyrite occurring along joints with quartz													
		veins and as minor replacement of mafics.													
		Moderate to well fractured with chlorite along													
		hairline joints, local, late shearing.													
		Numerous 1/4" to 1/2" quartz veins barren of													
		sulphide with very minor occasional MoS2						}							
		grain. Same rock as in bottom of 166-71-1.													
457	462	Massive quartz veining with very minor MoS ₂													
		along joint in quartz.													
462	463	Course grain hornblende diorite, propylitic													
		alteration, moderate to mild fracturing.													
		Numerous barren quartz veins with minor													
		pyrite and MoS ₂ grains.													

				CORE	LENGTH			P	SSAYS			ACCUMULA	ATIVE AV	ERAGES	
FROM	T0	DESCRIPTION	FROM	ТО	ACC WIDTH	SAMPLE NO	AU OZ.	AG OZ.	% CU	%Мо	AU W	AG W	CU W		
463	470	Same rock: breccia with very dark green, fine					-			-					
		grain diorite fragments in the course grain													
		h omblende d iorite matrix													
470	500	Same diorite.													
	END										 				
		Core recovery = 100%									 				
		Sperry-Sun text: -58°; Mag West,													
,															
	-										 				
	L	<u> </u>	L				<u> </u>			<u> </u>	 L	<u> </u>	L	I	1

LAK	
North9+10	
East <u>13+60W</u>	
Elevation 3080 f	t
AzimuthS60°W	· · · · · · · · · · · · · · · · · · ·
Dip450	
Logged By M. R.	Swanson

Hole No. 166-71-6 Commenced Sept. 12, 1971 p.m. Finished Sept. 14, 1971 p.m. Purpose Of Hole Test I.P.

				CORE	LENGTH			Д	ASSAYS			ACCUMUI	ATIVE AV	ERAGES	
FROM	ТО	DESCRIPTION	FROM	TO	ACC WIDTH	SAMPLE NO.	AU OZ.	AG OZ.	% CU	%Мо	AU	V AG W	CU W		
0	31	Overburden.													
31	75	Course grain Hornblende Diorite; propylitic					*								
		alteration with hornblende to chlorite and													
		biotite replacing hornblende/chlorite implies													
		phyllitic (K) alteration. Mild to moderate													
		fracturing with joints filled with chlorite. Mino	r						<u>-</u>						
		local late shears. Pyrite occurs almost													
		exclusively with quartz veins and rarely as													
		minor joint fillings in the vicinity of quartz													
		veins. Pyrite occurs as a replacement of													
		mafics only near quartz veins. Pyrite content													
		on the whole is low less 0.5%. MoS2 is very													
		rare and occurs as <u>small</u> blebs (less than 1 mm)													
		in size in quartz veins with pyrite.													
75	126	Same rock: increase in pyrite.													
126	1263	Same rock with small alaskite dike.													
1263	202	Hornblende Diorite, course grain with pyrite =	200	209	9	1717			.04	.022					
		0.5 to 1.0% in joints and quartz veins (quartz													
		rare) and minor replacement.				:									
202	203	Brecciated zone: well altered. Post mineral-													
		ization.													
203	222	Course g r ain Hornblende Diorite: high grade	209	218	9	1718			.07	.008					
		propylitic alteration with increase in pyrite													
		quartz veins and decrease in mafic replace-	218	227	9	1719			.04	.016					
		ment by pyrite. Quartz-pyrite-veins = 1 per													

				CORE	LENGTH			ŀ	ASSAYS			ACCUMULA	ATIVE AV	ERAGES
FROM	T0	DESCRIPTION	FROM	ТО	ACC WIDTH	SAMPLE NO.	AU OZ.	AG OZ.	% CU	%Мо	AU W	AG W	CU W	
		5 feet. MoS ₂ very rare specks in quartz												
		veins.												
222	2225	Same rock: breccia altered zone. Post												
		mineralization.												
2225	325	Same Diorite. Chalcopyrite becoming present	227	236	9	1720			.03	.007				
		as exsolution in pyrite, low grade propylitic al	236	245	9	17 21			.04	.006				
		teration.	245	254	9	1722			.04	.005				
325	326	Medium grain Alaskite dike - mild propylitic	254	263	9	1723			.04	.005				
		alteration.	263	272	9	1724			.03	.005				
326	338	Course grain Hornblende Diorite: mild pro-	272	281	9	1725			.05	.005				
		pylitic alteration with biotite => phyllitic	281	290	9	1726			.03	.002				
		alteration. Moderate to mild fracturing pyrite	290	300	10	1741			.03	.002				
		as joint filling and with quartz veins.												
338	339	Fine grain pre-mineralization andesite dike.												
339	435	Course grain Hornblende Diorite, mild												
		propylitic alteration with very mild phyllite												
		alteration in form of minor biotite: pyrite												
		occurs with quartz veins and as fracture												
		fillings. Moderate fracturing with pyrite rare												
		and mafic replacement: Pyrite = .5 to 1.0%.												
435	443	Same rock: increase in shearing.												
443	447	Fault zone at 30° to core axis - same rock												
		type. Post mineralization.									, .			
447	487	Same rock type: Pyrites has dropped off in												
		joint frequency: very rare as replacement												

			54	CORE	LENGTH			F	SSAYS			ACCUMULA	ATIVE AVI	ERAGES	
FROM	ТО	DESCRIPTION	FROM	TO	ACC WIDTH	SAMPLE NO.	AU OZ.	AG OZ.	% CU	%Мо	AU W	AG W	CU W		
		of mafics. Pyrite .5% or less.													
487	534	Same rock: K-spar beginning to form and calcite													
		veins, barren and later the pyrites, beginning to													
		come in, fracturing moderate to well fractured													
		with joints of chlorite and some epidote.													
		Biotite still present as very minor constituent.													
		Alteration slightly more intense with pyrite 1% .													
534	535 ⁵	Breccia fault zone: Post-mineralization.													
535 ⁵	660	Course grain Hornblende Diorite: moderate													
		propylitic alteration, moderate fracturing with													
		pyrite filling joints and with quartz veins which													Name of the last o
		are one per several feet and carry <u>very minor</u>													
		and rare MoS2 blebs. Pyrite ≤ 1%. Phyllitic													
		alteration is present in the form of K-spar which													
		occurs in variable quantities throughout the													
		rock but is most prevalent along longer joints													
		and with quartz & pyrite Chalcopyrite occurs					,								
		rarely as blebs within a pyrite matrix.													
660	673	Same rock: intense alteration montmorillonite													
		type; pyrite is rare. Some slight brecciation													
		and shearing.													
673	782	Same Diorite - propylitic alteration. Pyrite =													
		0.5 to 1.0%: K-spar and biotite nearly absent.													
		Quartz-pyrite with minor MoS ₂ are nearly													
		absent. Late calcite veins wide spaced.													

				AMOI1	DRIL	RECOR								
		0.50001071011			P	SSAYS			ACCUMULA	ATIVE AVERAC	GES			
FROM	Т0	DESCRIPTION	FROM	TO	ACC WIDTH	SAMPLE NO.	AU OZ.	AG OZ.	% CU	%Мо	AU W	AG W	CU W	
782	7825	Medium grain Alaskite dike, mild propylitic												
		alteration.												
782 ⁵	802	Course grain Hornblende Diorite: moderately												
	END	fractured, propylitic alteration with minor												
		K-spar and biotite = phyllitic alteration.												
		Pyrite = 1% to 2% along joints & quartz veins												
		and as minor replacement of mafics in vicinity												
		of joints.												
		Sperry Sun test:41°, Mag. SW.												
		Acid test: - 47°.												
		Core recovery = 100%.												

North	2+30S:	
East	6+70E	
Elevatio	on 2935 ft.	
Azimuth_	225°	
Dip	-600	
	M. R. Swanson	

Hole No. 166-71-7
Commenced Sept. 16, 1971 a.m.
Finished Sept. 16, 1971 p.m.
Purpose Of Hole <u>Test strike of abskite</u>

Logg	ed By	M. R. Swanson	וט	AMON	ט טאונו	RECOR	(υ			-						
				CORE	LENGTH			P	SSAYS			ACCUMULATIVE AVERAGES				
FROM	T0	DESCRIPTION	FROM	ТО	ACC WIDTH	SAMPLE NO.	AU OZ.	AG OZ.	% CU	%Мо	AU W	AG W	CU W			
0	34	Overburden.														
34	74	Hornblende Diorite, coarse grain, well fractured, propylitic alteration with pyrite														
		occurring as joint filling, with quartz veins and as minor replacement of mafics. Pyrite =														
		2-3%. MoS ₂ is present with quartz veins, along the edges and as blebs. Very minor														
		chalcopyrite occurs within the pyrite masses														
		in quartz veins and along joints.	70	80	10	1727			.04	.033						
74	76	Biotite Alaskite: pre mineralization.														
76	85	Hornblende Diorite: course grain, well	80	90	10	1728			.05	.033						
		fractured, propylitic alteration with 2-3%														
		pyrite and minor $MoS_2 = .0102\%$.														
85	95	Same rock; increased alteration to montmoril-														
		lonite type.	90	100	10	1729			.05	.150						
95	100	Silicified and feldspathized zone with increased MoS ₂ to 0.10-0.20%.						-				-				
100	112	Hornblende Diorite: course grain, well	100	110	10	1730			.05	.027						
		fractured, propylitic alteration with pyrite =														
		1-2% in joints, with quartz veins and as minor			-											
		replacement of mafics. MoS ₂ joints = 1 per														
	ļ	3 feet.														
112	1135	Alaskite dike mild propylitic alteration with					-									
		pyrite along quartz veins.			-											
1135	128	Hornblende Diorite: course grain well														

				CORE LENGTH					ASSAYS		ACCUMULATIVE AVERAGES				
FROM	T0	DESCRIPTION	FROM	ТО	ACC WIDTH	SAMPLE NO.	AU OZ.	AG OZ.	% CU	%Мо	AU W	AG W	CU W		
		fractured, propylitic alteration with pyrite						ļ							
		along joints with quartz veins and as minor													
		replacements of mafics. Quartz veins are					<u> </u>	ļ							
		present 1 per - 1 foot with MoS ₂ along 1 per						ļ			 ļ				
		3 to 5 feet.											 		
128	148	Same Diorite - increased alteration to montmor-													
	·	illonite type, increase in quartz veins. Slight													700
		increase in MoS2 to .05%.													·
148	185	Same Diorite: montmorillonite type alteration,									 				
		some shearing and slight brecciation, with													
		quartz along earlier shears and predominant													
		shears = post mineralization. Pyrite = 1-2%.													
		$MoS_2 = trace.$													
185	198	Hornblende Diorite, course grain, strong to													
		moderate fracturing, propylitic alteration with													
		pyrite occurring as joint filling, with quartz													
		veins and as minor replacement with biotite													
		of hornblende.													
198	240	"Hybrid" Diorite; medium grain, magnetic,													
		very green with pyrite as replacement of									 				
		chloritic mafics with quartz grains. Propylitic													
		alteration. Increase in pyrite to 3 to 5% with													
		chalcopyrite occurring in the massive pyrites.													
		Some late local shearing is present.													
240	271	Hornblende Diorite, course grain, moderate	260	270	10	1731			.05	.040					

					1	ASSAYS			ACCUMULATIVE AVERAGES				
FROM	ТО	DESCRIPTION	FROM	ТО	ACC WIDTH	SAMPLE NO.	AU OZ.	AG OZ.	% CU	%Мо	AU W	AG W	CU W
		fracturing, propylitic alteration, with pyrite				ļ							
		occurring as joint filling, with quartz veins											
		and as very minor replacement of mafics quartz											
		veins with MoS_2 along edges = 1 per 5 feet.	-			-		ļ	Ĺ				
271	273	Biotite - Diorite; appears to be a mafic (biotite)	270	280	10	1732			.03	.005			
		equivalent of Alaskite.											
273	2.82	"ornblende Diorite, course grain propylitic											
		alteration, well fractured with quartz and	280	290	10	1733			.02	.008			
		pyrite veins some local shearing.											
282	310	Alaskite: equigranular, biotite, medium course	290	300	10	1734			.02	.015			
		grain. Varies from leuco Alaskite to	300	310	10	1735		ļ	.01	.004			
		dark biotitic Alaskite. Rock is quite fresh to											
		propylitic alteration with small quartz, pyrite			ļ								
		veins with minor MoS ₂ along random quartz				ļ <u></u>							
		veins.			-								
310	360	Alaskite: medium grain with some course	310	320	10	1736			.02	.022			
		grain feldspar phenocrysts, slight propylitic	320	330	10	1737			.01	.023			
		alteration. Moderate fracturing with local	330	340	10	1738			.01	.010			
		shears. Same as above for pyrite and quartz.	340	350	10	1739			.01	.016			
		MoS2 joints 1 per 3 feet; grade estimate =	350	360	10	1740			.01	.004			
		.01%.											
360	380	Same rock: Increase in alteration to								ļ			
		montmorillonite/kaolinite type quartz veining						-					
		destroyed and pyrite is less than 0.5%. No											
		increasing MoS2.											

			CORE LENGTH					F	ASSAYS			ACCUMULATIVE AVERAGES				
FROM	T0	DESCRIPTION	FROM	T0	ACC WIDTH	SAMPLE NO.	AU OZ.	AG OZ.	% CU	%Мо	AU I	W AG W	CU W			
380	403	Same rock: fresher to mild propylitic								1						
		alteration.														
		100% core recovery.												<u> </u>		
		Acid test -60°			-											
							ļ								<u></u>	