94G

812709 MINERAL EXPLORATION DIVISION

A.F.E. NO. <u>4-73</u> 1973 Budget

TITLE:

REDFERN LAKE ROBB LAKE AREA, B.C.

ESTIMATED COST:

		Proposed <u> </u>
Acquisition Salaries and Wages Surveying and Mapping Geophysics Geochemistry Drilling Assaying and Sampling Travel Air Charter Equipment Miscellaneous		\$15,500 6,000 1,000 2,000 25,000 1,000 6,000 9,000 1,000 500
	Total	\$68,000

PROJECT DESCRIPTION:

The Redfern Lake property is wholly owned by Vestor Explorations Limited, an Edmonton based Canadian company, and comprises 107 claims situated in the Robb Lake zinc belt in northern British Columbia, some 30 miles along strike to the north of the Texas Gulf - Barrier Reef discoveries. Access at present is by float plane from Fort Nelson (110 mi.) or Ft. St. John (130 mi.) to Redfern Lake, with good local availability of helicopters in the summer months. A winter road from the gas field some 30 miles to the east could be used to move heavy equipment during the winter months.

A geochemical soil survey carried out by Vestor in 1972 has outlined a major anomaly of greater than 1,000 p.p.m. Zn peaking to over 2,700 p.p.m., some 7,000 feet long by 500 feet wide over a plateau underlain by Middle Devonian carbonates and carbonate breccias, which form the host rocks for known zinc lead deposits in the Robb Lake belt. The close spatial relationship of high lead and cadmium values with the zinc anomaly, and the low percentage of cold extractable zinc to the total zinc content in the soils verify the anomaly as a truly residual feature similar in values and intensity, but larger than the Mount Mye anomaly which returned good mineralized sections in recent drilling. Although bedrock exposures are rare in the immediate vicinity of the anomaly the overburden is considered to be thin and occurrences of float with from 3.8% to 14.2% Zn have been collected from the area. The presence of two large deposits of good quality baryte in the vicinity of the main anomaly enhance the possibility of an economic deposit due to the well documented association of barytes and lead/zinc bodies both in the Robb Lake belt and elsewhere.

Cyprus may enter a joint venture agreement with Vestor and earn a 70% interest in the property by expenditures of \$250,000 and payments of \$65,000 over a three year period as follows:

	Payment	Accumulative Work Commitment
On signing joint venture agreement	\$15,000	-
On or before 12 month anniversary	15,000	\$ 40,000
On or before 24 month anniversary	35,000	100,000
On or before 36 month anniversary		250,000

Cyprus would then be responsible for 80% of expenditures to production and Vestor 20%. If Vestor cannot or do not wish to take up their 20% of the costs they would revert to a 10% carried interest. In either event Cyprus would retain the right to recoup all their pre-production costs from net profits, provided Vestor received at least 30% of their share of the profits in any given year.

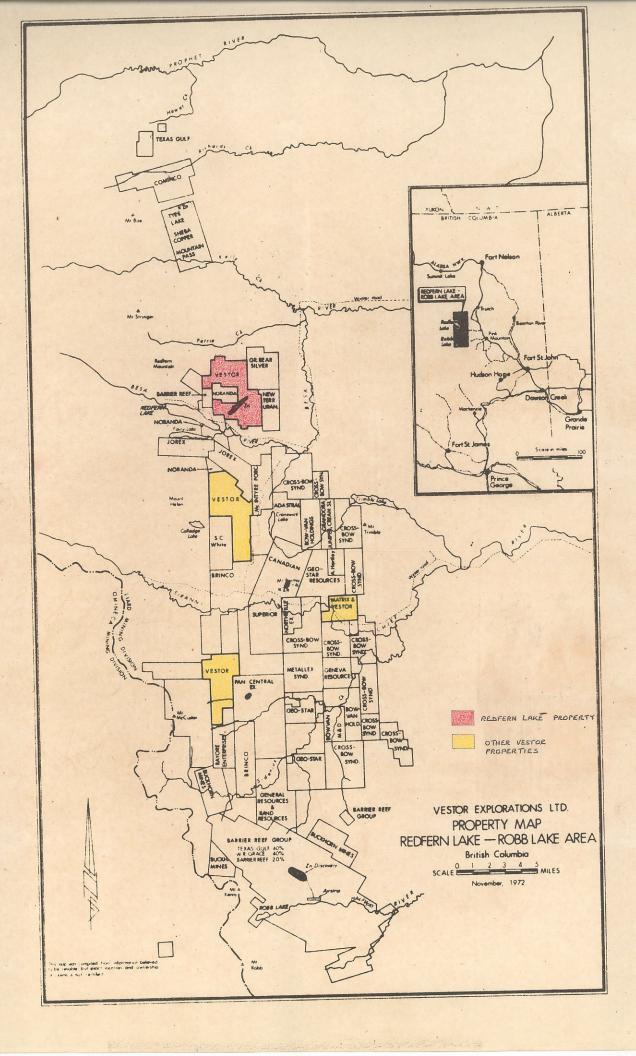
The initial down payment represents costs to date on the Redfern Lake property and would also allow Cyprus first refusal of at least two of the other three properties Vestor hold in the general area and on which they intend to carry out initial geological and geochemical studies during 1973.

WORK PROGRAM:

The work done so far by Vestor has clearly outlined a major soil geochemical anomaly, which will require detailed geochemical and geological follow up. Because the mineralization in the belt is largely sphalerite, geophysical work is not likely to be too helpful although some susceptibility tests might be carried out. It is considered that in the carbonate environment soil sampling will sufficiently delineate the main target area for preliminary diamond drill testing for which 2-3,000 feet of from 5 to 8 short B.Q. holes are anticipated. Some of the less intense anomalies extending northeast from the major anomaly will also require further clarification by detailed sampling and mapping.

JUSTIFICATION:

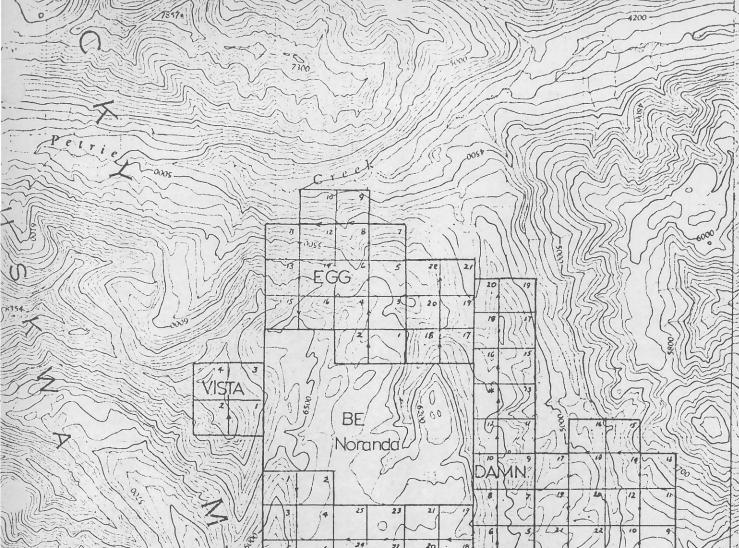
The Redfern Lake anomaly would appear to provide an excellent target in a well established environment in which at least three mineral deposits of economic interest, but as yet unproven viability, have so far been located. Initial acquisition costs are less than actual cost of locating claims and establishing the presently known anomalies. There is an excellent chance that the zinc values in the soil reflect moderate to high-grade zinc mineralization for which thickness and grade could be established by the proposed work program for 1973, and an "order of magnitude" estimate made with the expenditure limits set for the first two years. The zinc futures and good possibility for the opening up of the Robb Lake area to improved access by development of other deposits in the area enhance the justification of the requested funds. In my opinion the property must have a high possibility rating when compared with other submissions at a similar stage of development.


APPROVAL:

G. Hansen Τ.

Date 1972.

18.12.72


K. Lieber

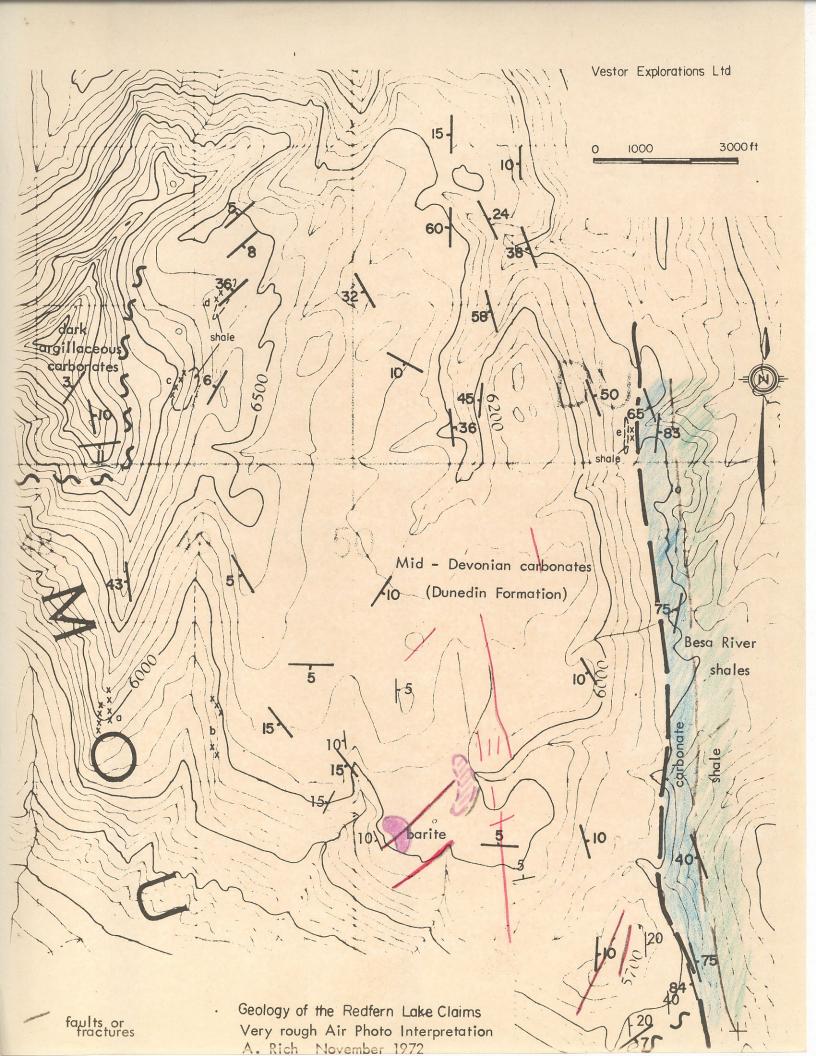
Map 2 Claims Held by Vestor Explorations Ltd. North of Redfern Lake, B.C.

Scale 1 : 50,000 September 1972

N

DFERN

ry


Lake

10001

0005

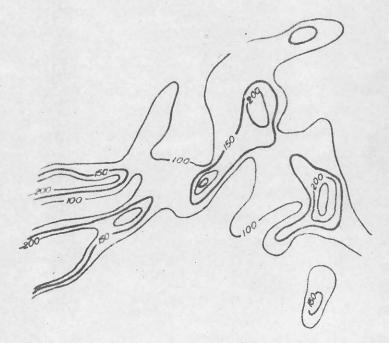
10

3

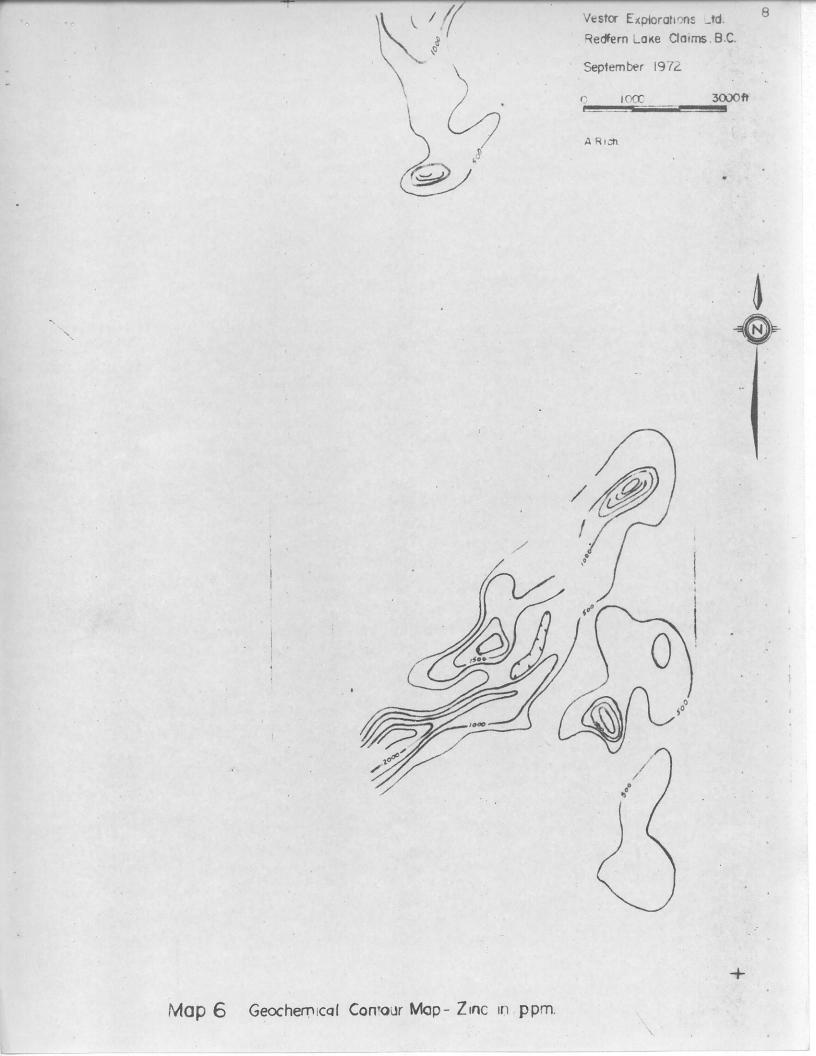
Vestor Explorations Ltd. 80 Redfern Lake Claims B.C

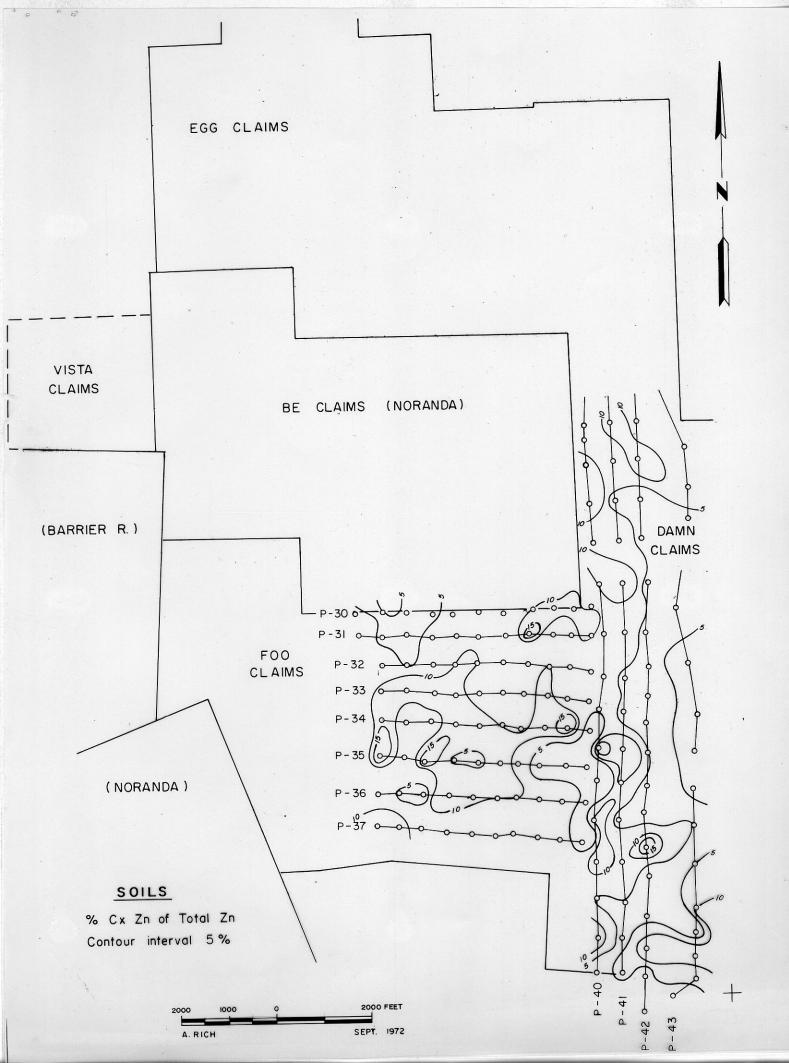
October - 1972

ARich


0 1,000 3,0004

Only those soils in the southeast


+


segment were analysed for lead

Map 7. Geochemical Contour Map-Lead in ppm.

BARRINGER RESEARCH LIMITED

304 CARLINGVIEW DRIVE REXDALE, ONTARIO, CANADA PHONE: 416-677-2491 CABLE. BARESEARCH

Geochemical

Laboratory Report

DATE December 12, 1972

Cyprus Exploration Corp., 1101 -510 W. Hastings St., Vancouver, B.C.

AUTHORITY: G. Simpson

R

£.,

REPORT NUMBER 1	95 - B								ist.	. A	
SAMPLE NUMBER	Vestor Tot Zn ppm		% Cx Zn	Sample No.	Vestor Tot Zn ppm	Cx Zn ppm	% Cx Zn	Sample No.	Vestor Tot Zn ppm	Cx Zn ppm	% Cx Zn
P - 30 - 1	62	3	5.0	P-31- 9	625	48	8.3	P-33-7	400	43	10.7
2	113	10	9.0	10	335	19	5.6	8	1325	175	1 3. 2
3	73	2	< 1.0	11	700	73	9.8	9	850	93	10.9
4	66	3	1.5	P-32-1	605	52	8.5	10	136	13	10.0
5	303	38	10.2	2	309	19	5.7	P-34-1	400	56	14.0
6	1385	125	9.0	3	700	· 67	10.2	· 2	34	2	3.0
7	825	64	7.8	4	356	25	7.0	3	277	25	9.0
8	1060	92	10.1	5	675	53	7.8	4	1780	260	14.4
9	925	87	10.6	6	2590	265	10.3	5	1385	195	14.0
10	850	120	14.0	7	15 4 5	165	10.0	6	1450	150	10.3
11	536	16	3.0	8	66	6	9.0	7	259	23	9.0
P - 31 - 1	66	4	6.0	9	103	5	4.9	8	140	15	10.5
2	88	3	3.5	10	34	3	9.0	9	700	160	23.0
3	57	2	3.8	P-33-1	378	34	9.0	10	2500	94	3.2
4	106	7	6.0	2	303	20	6.6	P-35-1	2770	585	21.0
5	67	6	9.0	3	136	18	10.3	2	2500	215	8.6
6	1475	98	6.0	4	1610	81	5.0	3	850	200	23.4
7	725	58	8.0	5	28 3	20	7.0	4	371	17	4.6
8	315	54	17.0	6	548	44	8.0	5	364	12	3.:

Geochemical Laboratory Report / 195-B

Sample No.	Vestor Tot Zn ppm	Cx Zn ppm	% Cx Zn	Sample No.	Vestor Tot Zn ppm	Cx Zn ppm	% Cx Zn	Sample No.	Vestor Tot Zn ppm	Cx Zn ppm	~
											_
P - 35 - 6	224	42	15.0	P-37-6	322.	22	5.8	P-40-14	a 86	8	
7	247	21	8.4	7	218	15	7.4	15	303	25	
8	400	5	1.2	8	515	48	9.0	P-41-1	500	35	
9	252	6	1.6	9	175	19	10.8	2	322	10	
10	252	12	5.0	10	52	9	17.8	3	5 4 5	25	
P - 36 - 1	190	7	3.6	P-40-1	364	15	4.0	4	675	47	
2	290	24	8.0	2	14	2	14.0	5	605	12	
3	329	23	7.0	3	507	27	5.3	6	81	8	h
4	259	27	10.4	4	303	35	11.5	7	259	34	1
5	150	15	10.0	5	290	33	11.5	8	364	- 7	
6	195	15	7.7	6	350	9	2.7	9	585	22	
7	170	20	11.7	7	2325	385	16.0.	10	64	5	
8	212	8	3.2	8	825	50	6.0	· 11	12	2]
9	117	6	5.0	9	560	40	7.0	12	500	44	
10	1295	74	5.6	10	650	60	9.2	13	3430	64	
P - 37 - 1	295	5	1.4	11	500	51	10.0	14	625	51	
3	155	15	10.0	12	950	82	8.6	15	81	9	ի
4	212	13	6.0	13	875	115	13.0	P-42-00	1780	62];
5	117	6	5.0	14	79	10	12.6	00A	28	6	2
							· ·				

2

Geochemical Laboratory Report / 195-B Sample Vestor Cx Vestor Sample Сх Tot Zn Zn No. Tot Zn Zn No. % Cx % Cx ppmZn ppm Zn ppm ppm 2.4 P-43-2 35 . P - 42 - 114.3 13.0 0.5 3.1 10.0 **4**8 1.8 5.0 20.0 4.8 2.6 8.1 6.6 3.0 5.3 7.0 3.4 9.0 3.0 2.3 2.1 2.9 4.0 7.3 3.3 5.5 3.0 2.7 11.2 4.8 P - 43 - 003.0 7.0

Geochemical Laboratory Report / 195-B HC104 нс104 HC104 Vestor Vestor Сx Vestor HC1 Sample Tot Zn Pb % Cx Pb % HC1 Cd Cđ No. Zn Zn Zn ppm ppm ppmppm ppm ppmppm ppm P30 - 10 P31 - 8 P32 - 7 6.2 P33 - 6 2.1 P34 - 6 P35 - 5 5 P36 - 5 P**37** - 5 . P40 - 5 P40 - 14 5.3 P41 - 8 P42 - 00A < 2 P42 - 10 P43 - 1 P43 - 11 2.3 .