

REPORT ON

AN INDUCED POLARIZATION SURVEY

NEAR

KAMLOOPS, BRITISH COLUMBIA

$$
\left(50^{\circ}, 120^{\circ}, \mathrm{N} \cdot \mathrm{E} .\right)
$$

FOR

PAGE

INTRODUCTION 1
SURVEY SPECIFICATIONS 3
INTERPRETATION 5
SUMMARY AND RECOMMENDATIONS 7
APPENDIX I
Miles Surveyed(i)
Personnel Employed on Survay (i)
APPENDIX II
Detail Profiles
Line $8+00 \mathrm{~N}$ Scale l inch to 100 feet
Line $12+00 \mathrm{~N}$ Scale 1 inch to 100 feet
ACCOMPANYING MAPS MAP POCKETReconnaissance Profiles of Apparent Chargeabilityand Apparent Resistivity
Scale 1 inch to 200 feet (East-West)
Scale 1 inch to 100 feet (North-South)

INTRODUCTION

Between November lst and November 13th, 1965, an Induced Polarization (I. P.) survey was carried out by Huntec Limited for Accle Mineral Claims. The survey area was located on the Kamloops to Merritt Highway, approximately 8 miles south of Kamloops.

The geophysical crew was managed by Mr. A. R. Dodds, assisted by Mr. B. T. Howes, both of Huntec Limited. Survey decisions were made in consultation with Mr. A. Poole, representing Accle Mineral Claims who provided two field helpers. Drafting and typing were done at the Toronto office of Huntec Limited.

The I. P. survey consisted of 4.70 miles of readings taken at 200-foot intervals on lines 400 feet apart, using the electrode configuration known as the "three-electrode array". Fill-in readings at 100-foot intervals were taken in anomalous areas. Al. electrode separation of 200 feet was used. Parts of two lines were also detailed with electrode separations of 50 feet and 100 feet. Resistivity readings were taken concurrently on all lines.

The data are presented in the form of profiles, using distance scales of 1 inch to 200 feet and 1 inch to 100 feet for reconnaissance and detail respectively. The distance between lines on the reconnaissance
map has been doubled in order to separate the different profiles. Vertical scales are 1 inch to 5 milliseconds and 2 inches per logarithmic cycle for chargeability and resistivity respectively on both reconnaissance and detail survey maps:

SUR VEY SPECIFICATIONS

The equipment used was a 7.5 kilowatt pulse type induced polarization instrument designed and manufactured by Huntec Limited. Power is obtained from a gasoline motor coupled to a 400 cycle three phase generator. This powers a transmitting unit which provides a maximum of 7.5 kw d. c. to the ground. The cycling rate is 1.5 seconds "current on' and 0.5 seconds 'current off', the pulses reversing continuously in polarity.

The data recorded in the field consist of careful measurements of the current (I) in amperes flowing through electrodes C_{1} and C_{2}, the primary voltage $\left(V_{p}\right)$ appearing between P_{1} and P_{2} during the "current on" part of the cycle, and the secondary voltage (V_{s}) appearing between P_{1} and P_{2} during the "current off' part of the cycle. The apparent chargeability (M_{a}) in milliseconds, is calculated by dividing the secondary voltage by the primary voltage and multiplying by 400 , which is the sampling time in milliseconds of the receiver unit. The apparent resistivity, in ohm-meters, is proportional to the ratio of the primary voltage to the measured current, the proportionality constant depending on the geometry of the electrode array used. The resistivity and chargeability obtained are called "apparent" as they are values which that part of the earth sampled would have if it were homogeneous. As the earth sampled is usually inhomogeneous, the calculated apparent resistivity and
apparent chargeability are functions of the actalal resistivity and chargeability and of the geometry of the rocks.

The alectrode configuration used for this survey was the
"three-electrode array". For this array one current electrode, C_{1}, and the two potential electrodes, P_{1} and P_{2}, are moved in unison along the survey lines. The spacing of these electrodes determines the depth penetrated. The second current electrode, C_{2}, is placed ari 'infinite' distance away which, in practice, is about ten times the distance between C_{1} and $P_{1 .}$ The I. P. measurement is plotted halfway between C_{1} and P_{1}.

The background chargeability readings in this area are generally flat and low, varying slightly with thickness of ovarburden as indicated by the resistivity measuraments. Two strong and two weak anomalous trends show above this background. These are identified by the letters A, B, C, and D on the a'cicompanying map of reconnaissance profiles.

Anomaly A is strong and extensive, crossing four lines for a strike length of at least 800 feet. It could extend further to both north and south, but was not traced because of shortage of time. The strongest readings occur on the end lines, $8+00 \mathrm{~N}$ and $16+00 \mathrm{~N}$. Detailed readings at closer electrode separations wara taken on Lines $8+00 \mathrm{~N}$ and $12+00 \mathrm{~N}$ giving a closer horizontal control on the location of the causative body, and some idea of its depth. On Line $8+00 \mathrm{~N}$, the source is expected to be 80 to 120 feet below ground surface, centerirg on $21+75 \mathrm{~W}$. The top of the body could come rather closer to surface.

Anomaly B is also strong and quite extensive, appearing on three lines with what is probably an end effect on the next line south, $8+00 \mathrm{~N}$. The anomaly appears to be curved, or could be offset by a fault, and is probably shallower than Anomaly A. It could extend further to the north,
but is closad off at the south end. Detailing on Line $12+00 \mathrm{~N}$ indicates that the top of the body approaches to within 30 to 60 feet of surface, and that the body may widen at depth. Calculations for resistivity data give an overburden thickness of approximately 35 to 40 feet, the bedrock being only slightly less conductive than the overburden. It would therefore seem most probable that the chargeable body reaches bedrock surface under some 40 feet of overburden.

Anomaly C is very much weaker than A or B, being only just discernible abova background. However, its strike length makes it significant. No detailing was done because of lack of available time, If the sourca of this anomaly is shallow, i.e. less than 50 feet below surface, it could wall be caused by a fault zone, a basic dike, or any change in rocktype. However, if the source is of the order of 100 feat below surface, the significance of the anomaly is markedly increased and considerable sulphide percentages are possible.

Anomalous Area D is somewhat erratic, and no directional trends can be ascertained. The only high readings occur on Line $20+00 \mathrm{~N}$ in the region of the Merritt-Kamloops Highway, where some readings had to be omitted. Other readings in the zone, on Lines $16+00 \mathrm{~N}$ and $12+00 \mathrm{~N}$ are only marginally anomalous.

The I. P. survey indicated two strong and two weak anomalies in this area.

It is recommended that Anomaly A be drilled initially on Line $8+00 \mathrm{~N}$ to intersect 100 feet below $21+75 \mathrm{~W}$. '

Anomaly B should be drillad initially on Line $12+00 \mathrm{~N}$, to inter sect 100 feat below $14+20 \mathrm{~W}$.

Furthar detail work would have to be done before any drill locations could be spotted on Anomaly C. A comparison between the I. P. results and known geology may indicate the cause of this anomaly.

Anomaly D is not outlined or detailed sufficiently to enable any elaborate interpretation to be dona. An extension to the north of the survey grid is necessary before the anomalous readings can be properly assessed. Fill-in lines at 200-foot intervals would also assist this investigation.

Since ultrabasic rocks ara known in this general area, and these can hava high chargeability values, a magnetometer survey over this grid would assist in outling the geology, and might account for some of the anomalies.

If the results of these investigations prove encouraging, further
I. P. work might be done to fully outline the various anomalies.

HUNTED LIMITED
\dot{c}_{0} Eater en tors.
Andrew R. Dodds, B. Sc. Geophysicist

Toronto, Ontario

February, 1966

APPENDIX 1

Miles Surveyed

	Electrode Separation	Miles		Readings
Reconnaissance	200^{\prime}		4.70	180
Detail	100^{\prime}	0.28	14	
	\ddots	50^{\prime}	0.06	8

Personnel Employed on Survey
Name Occupation
Address
Dates
A. R. Dodds Geophysicist 1450 O'Connor $^{\prime} \mathrm{Dr}$. Nov. 1-13, 1965 Toronto 16, Ont. Nov. 22, 1965 Jan. 4-5, 1966
B. T. Howes Geophysical "
Operator
Geophysical Helper
Kamloops, B.C. Nov. 1-13, 1965 R. McLaren
" ${ }^{\prime}$ Nov. 1-13, 1965
A. Fehrmann Drafting $1450 O^{\prime}$ Connor Dr. Feb. 7-9, 1966
Mrs. L. Brunton Typing "
Feb. 14, 1966

