930702

811229

REPORT

ON WORK PERFORMED

ON

"AREA J-2"

CYPRUS EXPLORATION CORPORATION LTD.

BUSTER LAKE BOSS MOUNTAIN AREA BRITISH COLUMBIA CANADA

BY

R. P. SINHA, M.Sc.

WILLIAM P. MCGILL & ASSOCIATES LTD.

OCTOBER 1969

INDEX

	Page
Introduction	1
Claim Staking	1
Geological Mapping	2
Geochemical Silt Sampling	2
Appendix 1 - Claims Staked - Southwest Buster Lake Area	5
- Claims Re-Staked - Northeast Corner Buster Lake	6
Figure 1 - Geochemical Laboratory Report	7
In Pocket: Map - Area J - Geology - Sheet A - Sheet B	
Scale 500' = 1"	

INTRODUCTION

Project J-2 was an extension of Project J to: (1) stake claims southwest and northeast of Buster Lake; (11) carry out geological traverses on the claims staked southwest of Buster Lake; and (111) take silt samples from the creeks in the southeast corner of the property.

CLAIM STAKING

Twelve claims were staked southwest of Buster Lake and thirteen claims were staked northeast of Buster Lake. The claim names and numbers are given in Appendix 1. The claims southwest of Buster Lake were staked to cover a northeast-southwest running ridge. The area northeast of Buster Lake, covered by GUS claims, was initially not held by Cyprus Exploration Corporation Ltd. The ground was restaked for Cyprus by us after it became open in the first week of October, 1969.

- 2 -

GEOLOGICAL MAPPING

Traverses at 500 foot intervals were made on the twelve claims (J 260 - J 271) staked southwest of Buster Lake. All outcrops along the traverses were recorded and the rock types studied.

The rocks consist essentially of quartz-diorite and granodiorite. These rock types were observed as two different ridges running almost parallel in a northeastsouthwest direction. The geological boundary between quartzdiorite and granodiorite shown on the map is based on the mineralogical composition of the rocks. Further detail work is necessary to delineate the boundary more accurately.

GEOCHEMICAL SILT SAMPLING

Silt samples were collected from all the creeks flowing in and out of Buster Lake and from the creeks in the southeast part of Area J. While collecting the silt samples attempts were always made to collect the finest silt samples free of weed, grass, and moss. However, because of the nature of the terrain some samples were not

true silt samples. Samples #50, 51, 52, 53, 3, 4, 5, and 6 are essentially sand samples. This could not be avoided as the creek bed was rocky.

The silt samples were analysed by Barringer Research Limited. The results of the analysis are shown in Figure 1. Their locations are already shown on the map accompanying the Geological Report of Area J. Figure 1 shows that the values obtained from all the samples are unusually low. Even the contaminated samples (#301, 302, 306, 307, 308, 309, and 310) taken from the immediate vicinity of the dump of Noranda Mines Ltd. show very low values. The reason for this abnormality is not known. However, if the values from the contaminated samples are taken as the upper index we find that samples #20, 21, 22, 40, 41, 11, 12, 15, 17, 64, 66, 68, 101, and 102 are relatively high in copper and/or molybdenum. Samples #303, 304, and 305 were taken from the creek which drains part of "Telephone Hill" in the southeast corner of the property. These samples returned moderate molybdenum values, possibly warranting further investigation.

The samples from the creek which lies on claim J 232 are not true silt samples. The area is rocky and the samples consisted essentially of sand, however the concentration shown by these samples would appear to warrant

- 3 -

some investigation, especially in that the area is geologically favourable.

> Respectfully submitted, WILLIAM P. MCGILL & ASSOCIATES LTD.

Rehity R. P. Sinha, M.Sc.

Toronto, Ontario October, 1969

APPENDIX 1

CLAIMS STAKED - SOUTHWEST BUSTER LAKE AREA

Claim Name	Tag Number
J 260	6638 M
J 261	6639 M
J 262	6640 M
J 263	66 41 M
J 264	6643 M
J 265	6644 M
J 266	6645 M
J 267	6646 M
J 268	6647 M
J 269	6648 M
J 270	6649 M
J 271	6650 M

<u>Claim</u>	Name	Tag	Numb	er
J 2	19	81	856	М
J 2	20	81	854	M
J 2	21	81	857	M
J 2	22	81	855	М
J 2	23	81	859	M
J 2	24	81	858	Μ
J 2	25	81	1860	М
J 2	26	8	861	М
J 4	0	8	1853	Μ
J 4	2	8	1850	M
J 4	4	8	1849	М
J 9	6	8	1852	М
J 9	8	8	1851	М

FIGURE 1

AREA J

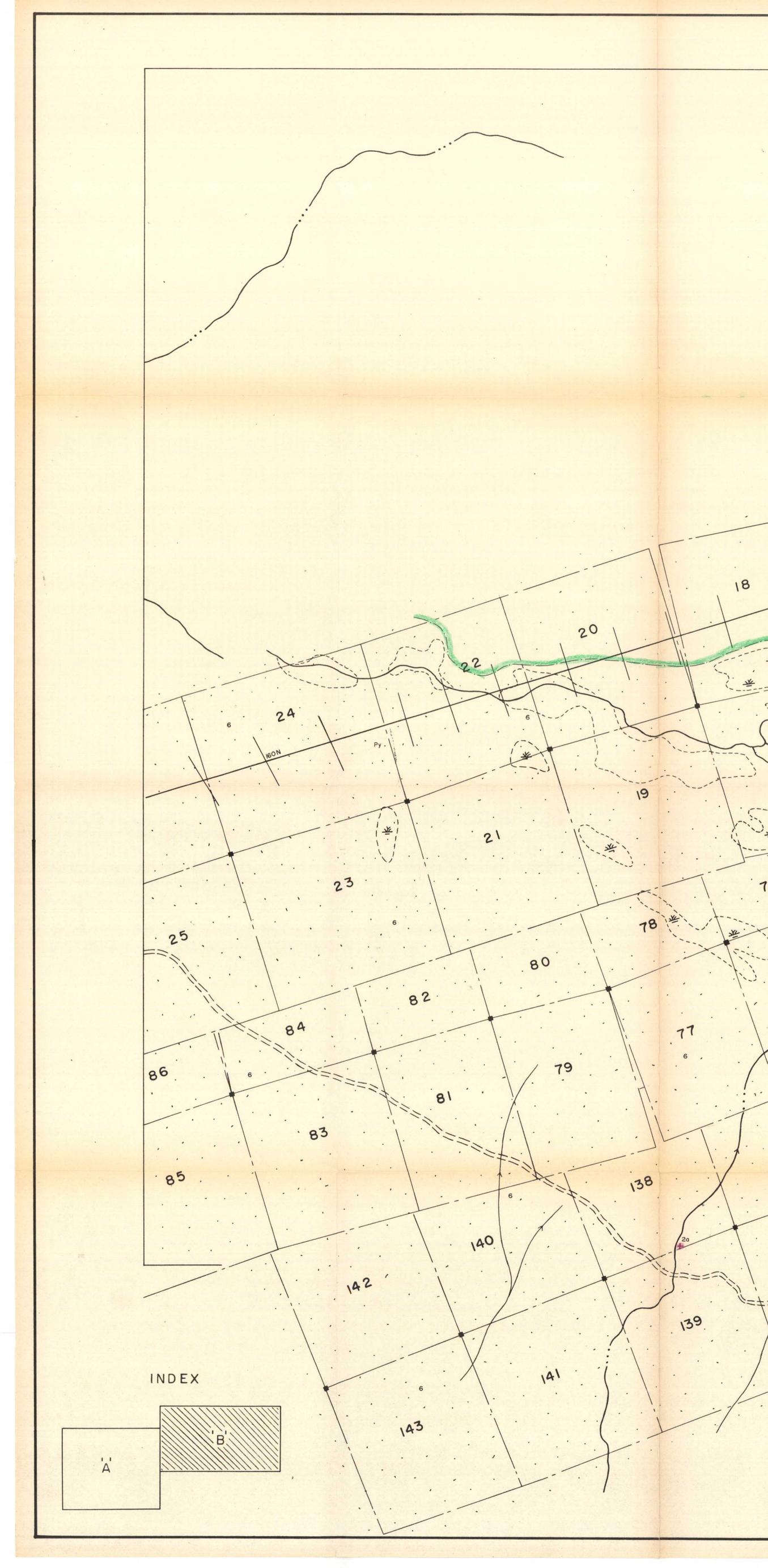
BUSTER LAKE - BOSS MOUNTAIN AREA, B. C.

GEOCHEMICAL LABORATORY REPORT

Sample No.	HC1 Cu (<u>ppm</u>)	Bis Mo (ppm)
3	15	1
4	21	1
5	19	1
6	25	1
7	29	2
10	12	1
11	67	1
12	58	6
13	37	1
14	22	1
15	90	1
17	58	١
18	18	١
19	16	2
20	7	1
21	63	8
22	132	1

40 75 5 41 80 6 50 11 4 51 58 1 52 54 5 53 34 1 60 11 5 61 11 1 62 14 1 63 36 6 64 63 7 65 37 1 66 90 1 67 37 2 68 54 1 69 39 1 91 48 2 92 50 1 93 42 2 94 40 2 101 100 1 102 75 1 103 63 4	<u>Sample No.</u>	HC1 Cu (ppm)	Bis Mo (<u>ppm</u>)
50 11 4 51 58 1 52 54 5 53 34 1 60 11 5 61 11 1 62 14 1 63 36 6 64 63 7 65 37 1 66 90 1 67 37 2 68 54 1 69 39 1 91 48 2 92 50 1 93 42 2 94 40 2 101 100 1 102 75 1	40	75	5
51 58 1 52 54 5 53 34 1 60 11 5 61 11 1 62 14 1 63 36 6 64 63 7 65 37 1 66 90 1 67 37 2 68 54 1 69 39 1 91 48 2 92 50 1 93 42 2 94 40 2 101 100 1 102 75 1	41	80	6
52 54 5 53 34 1 60 11 5 61 11 1 62 14 1 63 36 6 64 63 7 65 37 1 66 90 1 67 37 2 68 54 1 69 39 1 91 48 2 92 50 1 93 42 2 94 40 2 101 100 1 102 75 1	50	11	4
53 34 1 60 11 5 61 11 1 62 14 1 63 36 6 64 63 7 65 37 1 66 90 1 67 37 2 68 54 1 69 39 1 91 48 2 92 50 1 93 42 2 94 40 2 101 100 1 102 75 1	51	58	1
60 11 5 61 11 1 62 14 1 63 36 6 64 63 7 65 37 1 66 90 1 67 37 2 68 54 1 69 39 1 91 48 2 92 50 1 93 42 2 94 40 2 101 100 1 102 75 1	52	54	5
61 11 1 62 14 1 63 36 6 64 63 7 65 37 1 66 90 1 67 37 2 68 54 1 69 39 1 91 48 2 92 50 1 93 42 2 94 40 2 101 100 1 102 75 1	53	34	1
62141 63 36 6 64 63 7 65 37 1 66 90 1 67 37 2 68 54 1 69 39 1 91 48 2 92 50 1 93 42 2 94 40 2 101 100 1 102 75 1	60	11	5
	61	11	1
646376537166901673726854169391914829250193422944021011001102751	62	14	1
646376537166901673726854169391914829250193422944021011001102751		36	6
66 90 1 67 37 2 68 54 1 69 39 1 91 48 2 92 50 1 93 42 2 94 40 2 101 100 1 102 75 1	64	63	7
67 37 2 68 54 1 69 39 1 91 48 2 92 50 1 93 42 2 94 40 2 101 100 1 102 75 1	65	37	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	66	90	1
69391914829250193422944021011001102751	67	37	2
914829250193422944021011001102751	68	54	1
9250193422944021011001102751	69	39	1
93422944021011001102751	91	48	2
944021011001102751	92	50	1
1011001102751	93	42	2
102 75 1	94	40	2
	101	100	1
103 63 4	102	75	1
	103	63	4

- 8 -


. ___

	HC1 Cu	Bis Mo	
Sample No.	(ppm)	(<u>ppm</u>)	
301	45	80	Contaminated
302	11	12	Contaminated
303	36	10	
304	22	16	
305	29	16	
306	185	96	Contaminated
307	26	88	Contaminated
308	85	56	Contaminated
309	23	16	Contaminated
31 0	27	24	Contaminated

Analyst: Barringer Research Limited

- 9 -

GEOLOGY

6	GLACIAL DEPOSITS, TILL, GRAVE
5.	HORNBLENDE LAMPROPHYRE
4	QUARTZ ORTHOCLASE PORPHYR
3	GRANITE
261	GRANODIORITE
20	DIORITE, QUARTZ-DIORITE

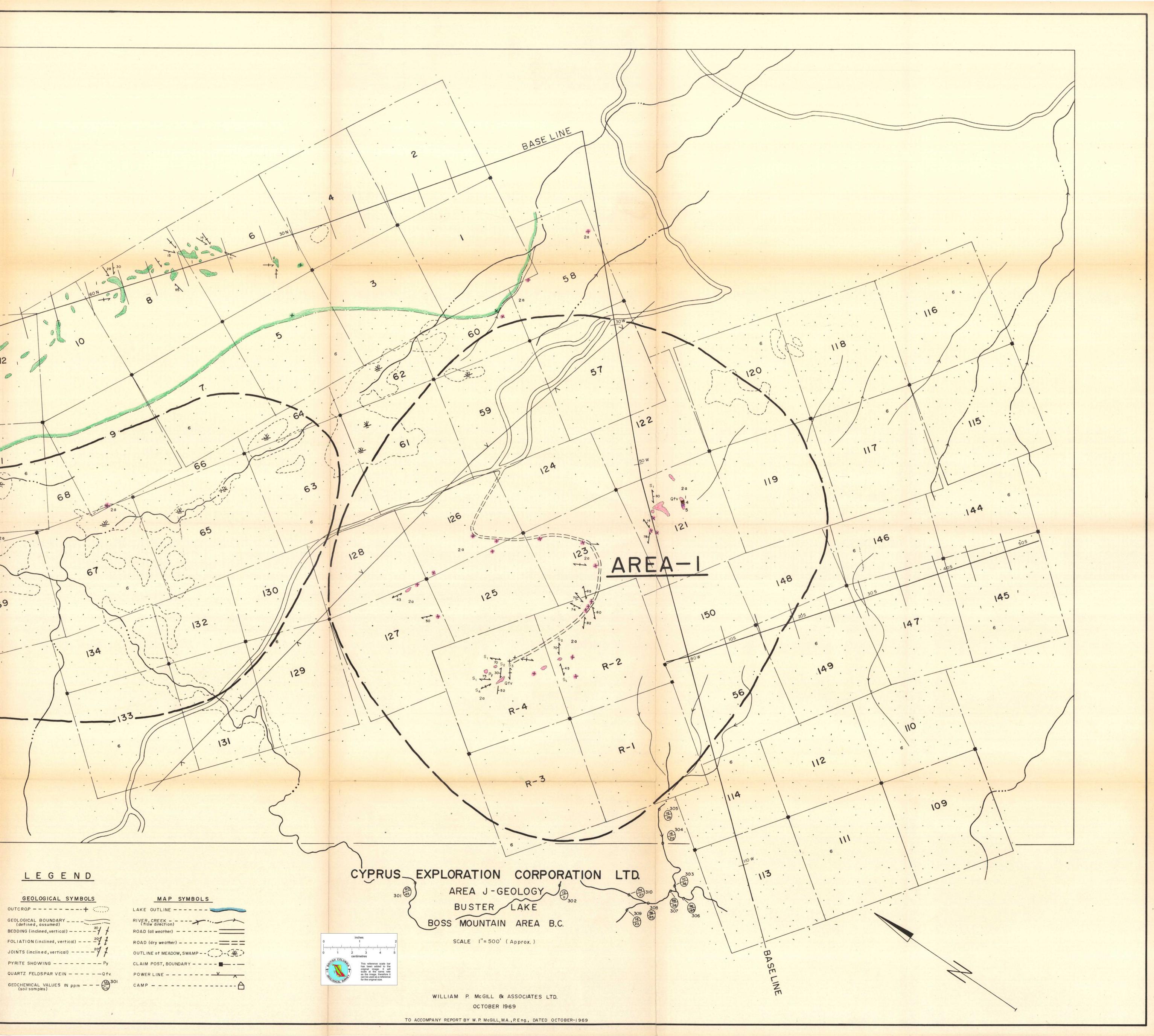
AREA-3

136

.

LEGEND

GEOLOGICAL SYMBOLS OUTCROP -----+ CARE OUTLINE -----FOLIATION (inclined, vertical) - - - - 207 7 JOINTS (inclined, vertical) $- - - - \frac{20}{4}$


MAP SYMBOLS

OUTLINE of MEADOW, SWAMP -- (二)-(至)

1

-133-

ANDESITIC VOLCANICS

