Cyprus Exploration Corporation, Limited
RONKA EM-16 AND MAGNETOMETER TRAVERSE SS
IN AREAS A, B, AND D, HIGHLAND VALLEY
C. Carew McFall

C. CAREW MCFALL

GEOLOGIST

1327 SARATOGA AVENUE SAN JOSE, CALIFORNIA 95129

TEL. 408252 -7411

November 5, 1969

Mr. J. B. P. Sawyer
Manager, Canadian Exploration
Cyprus Exploration Corporation, Ltd.
510 West Hastings Street
Vancouver 2, British Columbia, Canada
Dear Mr. Sawyer:
As you requested, Ronka EM-16 and magnetometer traverses were run across Cyprus' three blocks of claims in the Highland Valley district, Areas A, B, and D. This work was carried out in the field with the considerable help of your Mr. Langlois, October 9-19, except that I returned to the field alone October 2l-22.

It is hoped that the accompanying report fulfills your requirements and that I shall have the opportunity to be of service to you in the future.

A REPORT

RONKA EM-16 AND MAGNETOMETER TRAVERSES IN

AREAS A, B, AND D HIGHLAND VALIEY, BRITISH COLUMBIA

FOR

CYPRUS EXPLORATION CORPORATION, LTD. By
C. Carew McFall

Consulting Geologist

November 5, 1969

SUMMARY

Traverses were made October 9-19 and 21-22, 1969 across Areas A, B, and D in Highland Valley district, British Columbia using a Ronka EM-16 device and a Scintrex magnetometer. Two prospective areas, called here Able and Baker Prospects, were found in Area B. Both areas are covered by glacial till, but bedrock near the Able Prospect shows traces of copper minerals. IP lines are suggested over both to evaluate them further.

A regional attraction on the Ronka EM-16 device by a large, low-grade, disseminated copper ore body such as Lornex was demonstrated but is so subtle as to be easily masked by terrain effects in hilly country.

INTRODUCTION

The consulting mining engineer, Ross Kidd, of Vancouver pointed out in a November 22, 1968 report to Cyprus Exploration Corporation, Ltd. that the known copper ore bodies of the Highland Valley district have essentially the same geologic-magnetic settings. Ultimately, Mr. Kidd selected three areas in this district having this same setting and ranked their prospectiveness in this order: A, B, and D. Claims were staked on any open ground near these targets in the winter of 1968-1969 under adverse conditions.

The present project was designed to explore these three blocks of claims for copper. As the claims are about 95 percent covered by glacial till, a Ronka FM-16 device and a portable Scintrex magnetometer were used. These instruments were walked over 25 traverses during the period October 9-19 and 21-22, 1969. Readings were taken at stations generally 25 yards apart, marked by flagging which is identified every

100 yards. The traverses were generally run either northeast or southwest but are plotted on the accompanying diagrams as though all were traversed from left to right.

Ronka FM-16
Reading the EM (electromagnetic) diagrams is simple. Ordinarily, the "in phase" reading is zero. As a conductor is approached, these readings become increasingly positive and reach a maximum beside the conductor. Over the conductor the readings pass through zero to a minimum and then become decreasingly negative going away from the conductor. Under ideal conditions, the vertical distance between the maximum and the minimum is proportional to the size and conductivity of the conductor and the horizontal distance is equal to the depth to the conductor. High-grade copper veins in the Highland Valley district give an amplitude of from 20° to 60°. The quadrature curve is generally just opposite of the "in phase" curve. In the Highland Valley district the quadrature curve appears to be damped by the glacial till.

Terrain effects on the Ronka EM-16 are serious; approaching or leaving a hill gives the effect of approaching or leaving a large conductor. In Area B, where the ground slopes steeply south, the zero on the "in phase" curve is shifted about 15 degrees by the attraction of the hill.

Magnetometer

The magnetometer, being affected almost entirely by what is directly beneath, helps pinpoint faults, contacts, and EM anomalies. The magnetometer readings were plotted in the field at $l^{\prime \prime}$ equals 100 gammas and replotted on the accompanying diagrams at 1 " equals 500 gammas.

LORNEX
Previous work by the writer in the Highland Valley district suggested that there was a subtle regional attraction on the Ronka FM-16 by Iarge, low-grade, disseminated copper ore bodies. A traverse October 12, 1969 confirmed this. As shown on the accompanying Lornex diagram, the traverse started at the east edge of the large, low-grade, disseminated Lornex deposit and went northeastward. A regional attraction on the Ronka by this ore body caused the "in phase" readings to be negative for over three-fourths of a mile, although the terrain was essentially flat. Rugged terrain could easily mask this effect, but otherwise, it offers, in areas like Highland Valley, an inexpensive way to reconnoiter for such deposits. This may apply to the recently developed airborne version of the Ronka EM-16 device.

ARF:A A
The Cyprus claims in Area A do not show promise according to the appended diagrams. A mildly prospective area, near the southwest end of Traverse A-1 and southward across Traverses A-2 and A-8, has been extensively examined by dozer cuts, induced polarization (IP) surveys, and drilling. It seems unlikely that anything large enough to be of interest to Cyprus was missed.

AREA B

Two prospective areas, labelled Able and Baker Prospects, are stippled on the accompanying $1^{\prime \prime}$ equals 300^{\prime} map of Area B. Able Prospect, which seems by far the more promising, is apparently at the junction of a northwest-trending fracture, an east-trending fracture, and the northeast-trending contact between the Bethlehem and the Bethsaida Phases of the "granites" making up the Guichon batholith. There are no outcrops within the prospective area but minor shows of bornite, chalcopyrite, and malachite were found in the bedrock just to the north. Selected pieces of float collected downhill from the prospect assayed 0.04 percent copper. Reportedly, a silt sample from the gulch at about B8-600 contained 1000 ppm copper.

The 500-600 feet of horizontal distance between the maximum and the minimum "in phase" readings at the Able Prospect could mean 500-600 feet depth to the conductor or a broad, somewhat disseminated conductor.

A 3200 -foot IP line is recommended to further evaluate the Able Prospect. This line should center at about B5-900 and trend N. 40° E. (essentially along B-5). A 200-foot electrode spacing would not miss something fairly narrow, but should have sufficient penetration so as not to miss a deep ore body. Given sufficient encouragement, parallel I. P. lines should be run 400 feet apart.

The Baker Prospect, which is along a WWW-trending fracture; in Area B, does have nearby outcrops of very highly fractured granite, but shows no copper mineralization at the surface. The "in phase" curve suggests a depth of 250 feet to mineralization. A 3200 -foot IP line is recommended to further evaluate the Baker Prospect, centering about B3-1450 and trending N. 40° E. Parallel lines 400 feet apart could be run given encouragement. A 200-foot electrode spacing is recommended.

The Cyprus ground at the B Area is not as extensive as its KU Claims; being overlapped essentially one claim width on the south by the BIN and SKU Claims and an undetermined portion of a claim width on the west by the BIN Claims. However, this leaves most of the Able and all of the Baker Prospects on Cyprus ground, unless there are other valid, predating claims.

During the past summer, Cominco did considerable IP work and drilled 12 holes to about 300 feet adjacent to the KU Claims on the BIN Claims to the south and west. Of course, some of the IP lines traversed the Able Prospect. Their dipole spacing was 400 feet.

AREA D

Outstanding anomalies were not found in Area D and essentially all of the ground is held by either Alwin or Noranda. The anomalies found are ranked as follows: (1) D-1 1500-1600. This is the best anomaly found along the northwest-trending shear zone shown on the accompanying map of Area D. (2) D-2 2400-2500. This anomaly, which may be on Cyprus ground, coincides essentially with a north-south stream but did not show up anomalous on nearby Traverses D-1 and D-3. It is apparently rather small in area. (3) D-5 400-500. (4) D-1 1900-1950, and (5) D-1 2100.

Noranda is winding up a program involving considerable IP work and some drilling in the areas west and south of the Alwin Claims. Noranda's Dan Pegg said they got only "teasers".

The plotting of the Alwin Claim Block on the accompanying map of Area D is of questionable accuracy. A corner post for their RM 3, 4,
6.

5 , and 6 Claims was found 200 feet south of D-1 1800. The block as it appears on the recorder's map was then shifted onto this point.

RECOMMENDATIONS

(1) Run IP lines over the Able and the Baker Prospects in Area B.
(2) Record work done on all claims but do not invest further in keeping the claims in Areas A and D.
(3) Explore widely in Highland Valley and similar areas with ground and airborne Ronka devices looking for the regional attraction of a large, disseminated deposit.

HIGFILAND VALLEY DISTRICT, BRITISH COLUMBIA
Scale: 1:50,000
Showing Ronka, anomalies as
small dots (up to 17°)
larger dots (17° or more)

IN AREAS A AND B

1 IOHLAID VALLEY DISTRICT, BRITISH COLUMBIA

Scale: 1:50,000

Showing Ronke anomalies as
small dots (up to 17°)
larger dots (17° or more)

zmali tots (up to 17 ${ }^{\circ}$) lather dota (17° or mori:)

Area D

Area A and the Eastern Part of Area B

Area B

A. 4 Profile

Magnetometer
+1000 gammas

Ronta EM-16
$+10^{\circ}$

-10°

Scale: $1 " 100$ yd's.
$+10^{\circ}$

$+10^{\circ}$
Ronka EM-16

Scale $1 "=100 y d s$.

Profile

small creek
big marsh

+500 genmas
Magnetometer

$+10^{\circ}$
Rontea EM-16

-10°

Scale: $1=100$ yds

Ponta EM-16

Profile

Magnetometer

+5009 ammas

Ronka EM-16

-100 gammas

$D-3$

Magnetometer

+500 qammas

Ronka EM-16
$+10^{\circ}$

$$
-10^{\circ}
$$

隹

November 8, 1969
Mr . J. B. P. Sawyer
Manager, Canadian Exploration
Cyprus Exploration Corporation, Ltd.
510 West Hastings Street
Vancouver 2, British Columbia
Dear Mr. Sawyer:
Thank you for sending the results of the soil sampling I did recently in Highland Valley, British Columbia. These results are plotted on the accompanying map of Area B.

The anomalous samples are dark, wet, clayey loam, rich in organic material, whereas, almost all of the samples taken were light-colored granitic silt and sand. I suggest that these geochem anomalies are valid but that the lack of anomalous samples over most of the prospective areas of Area B is due to the lack of clay in those samples to adsorb copper.

Most of the soil samples taken near the end of line 2 in Area D were accidentally destroyed. One of the two survivors, D-2 2500, showed 174 ppm . This is probably about background considering that this sample was a clay-rich loam from a creek bed. It was taken, however, essentially over a fairly good Ronka EM-16 anomaly. I believe this anomaly is too small in area to be of interest to Cyprus, but if you decide to put an IP line across it, it should be east-west, center at the main road about 2625 along line $D-2$, and have 200 -foot electrode spacings.

Geochemical

Cyprus Exploration Co. Ltd., 822-510 West Hastings St.,
VANCOUVER 1, B.C.
ATT: P. Sawyer.
laboratory
Rapport

DATE November 4, 1969.

REPORT NUMBER
365

