A GEOPHYSICAL AND GEOCHEMICAL REPORT

 ON THESPARK AND JOY CLAIMS

OMINECA MINING DIVISION
$55^{\circ} 126^{\circ} \mathrm{SE}$
45 MILES NORTHEAST OF SMITHERS, B. C.

FOR
PALISADE EXPLORATION CORPORATION LTD.

BY

R. W. WOOLVERTON, P. ENG.

BETWEEN

AUGUST 7 AND NOVEMBER 10, 1970

APPENDICES

I GEOCHEMICAL ANALYTICAL PROCEDURE

II RADEM SPECIFICATIONS

III "SABRE" I.P. SPECIFICATIONS

IV DECLARATION OF EXPENDITURES

LIST OF ILLUSTRATIONS

PAGE
(a) IN TEXT
PROPERTY LOCATION MAP 1 a
MAP NUMBER
(b) IN POCKET
CLAIM MAP 1
SOIL SURVEY - NORTH PLATE 2

- SOUTH PLATE 3
RADEM SURVEY
SEATTLE FREQUENCY - NORTH PLATE 4
- SOUTH PLATE 5
CUTLER FREQUENCY - NORTH PLATE 6
- SOUTH PLATE 7
INDUCED POLARIZATION SURVEY - NORTH PLATE 8
- SOUTH PLATE 9

TABLE OF CONTENTS

PAGE
INTRODUCTION
LOCATION 1
GEOLOGICAL SETTING 1
1970 PROGRAM 2
GEOCHEMISTRY
SOIL SURVEY 3
SAMPLING PROCEDURE AND ANALYSIS 3
RESULTS 3
GEOPHYSICS 5
RADEM SURVEY 5
EQUIPMENT AND SURVEY 5
RESULTS 6
I. P. SURVEY 7
EQUIPMENT AND SURVEY 7
RESULTS 7
CONCLUSIONS 10

INTRODUCTION

LOCATION

The Spark and Joy claims are at the northeast corner of Morrison Lake about 45 air miles northeast of Smithers, B. C. at Latitude $55^{\circ} 16^{\prime}$ North and Longitude $126^{\circ} 23^{\prime}$ West. The area is most conveniently reached by float plane from McLure Lake, near Telkwa, or by helicopter from Smithers (Okanagan) or Houston (Alpine Helicopters). The more tedious route to the claims is by road to Smithers Landing on Babine Lake, by boat from there to the head of Hatchery Arm, by cat road from the Arm to the south end of Morrison Lake, and by boat to the north end of the lake.

Elevations on the claim group range from about $2,400 \mathrm{ft}$. at lake level to a maximum of $3,000 \mathrm{ft}$. Exposure is good on about a third of the property, but the remainder is drift covered. Scrub balsam and hemlock are widespread with birch and poplar on the drier hillsides. Several beaver-dammed swamps make travel locally difficult, although the going is about average for the Babine area.

GEOLOGICAL SETTING

The area is underlain (Carter and Kirkham, Map 69-1, B. C. Department of Mines) by two sedimentary-volcanic groups. The older assemblage contains mudstone, greywacke, conglomerate, limes tone, tuff and vesicular andesite. The clastic rocks predominate and are locally quite fossiliferous. The group is complexly folded, faulted and

intruded by a few thin sills of hornblende diorite. The younger rocks belong to the Sustut Group (Cretaceous and Tertiary) and include crossbedded arkose, conglomerate, quartzite and siliceous tuffs. The Sustut, which is confined to the western portion of the property along the shore of Morrison Lake, strikes north-northwesterly and dips steeply to the east. It appears to be locally dreg folded near its north-northwesterly striking faulted contact with the older assemblage.

1970 PROGRAM

In 1969, David Minerals Ltd. (the property vendors) surveyed the claim group with helicopter-mounted magnetic and electromagnetic equipment. Two areas of possible interest were outlined. Subsequent follow-up during 1970, which is the subject of this report, included the establishment of 35 line miles of cut grid and 42 line miles of flagged grid. This grid was soil sampled and surveyed with induced polarization and VLF-EM equipment. All survey work was done by experienced Evergreen Exploration personnel under the writer's supervision.

GEOCHEMISTRY

SOIL SURVEY

SAMPLING PROCEDURE AND ANALYSIS

Soil samples were collected at 200 ft . stations on the grid. They were taken by shovel from the "B" horizon, placed in wet strength paper bags, partially dried at room temperature, and shipped to Barringer Research Laboratory in Vancouver, where they were analyzed for total Cu and Mo. The results are plotted on Maps 2 and 3 which accompany this report. The analytical procedure used by Barringer is described in Appendix I.

RESULTS

The copper and molybdenum values are generally uniformly low and spotty. Most areas of over 40 ppm correlate with swampy areas or other topographic lows and the lower slopes of hillsides where the soils would be expected to contain more copper. Topographic highs, where bedrock outcrops are mostly very low in copper.

The copper in the soils bear out the lithologic differences between the younger arkose sequence and older greywacke volcanic mudstone sequence. The soils on the older rocks show generally slightly higher copper values. An increase in overburden thickness in the northern part of the area also shows in the copper values. The values are generally lower except in swampy areas. Over a known showing of
very sparse chalcopyrite mineralization, the copper content of the soils shows no appreciable increase above background values. In most cases, molybdenum in the soils was very low and uniform.

GEOPHYSICS

RADEM SURVEY

EQUIPMENT AND SURVEY

The Radem unit used in the survey is a l-man EM radio receiver utilizing the 12 to 24 kilocycle United States Naval Communication Broadcast Stations. It was built by Crone Geophysics Limited, 3607 Wolfedale Road, Mississauga, Ontario. The instrument utilizes higher than normal EM frequencies and is capable of detecting disseminated sulfides. However, due to the high frequency, it is affected by clay and other conductive overburden. Also, experience indicates that the numerous weak conductors usually present in a "porphyry environment" are masked by 50 ft . or more of cover even if it doesn't contain conductive layers. Some type curves and specifications are included as Appendix II of this report.

Readings were taken using the Cutler, Maine, Station (17.8 Kc) and Seattle, Washington (18.6 Kc). Both in-phase (dip angle) and out-of-phase (HF field strength) readings were recorded. The out-ofphase is a better measure of the intensity of conductivity than is the dip angle. However, the field strength response is a function of the transmitter power (which fluctuates daily) as well as the intensity of nearby conductivity. The results of the radem survey are plotted on Maps 4 to 7 which accompany this report.

A few lines on the south grid were surveyed with a Ronka EM16, also using the Cutler and Seattle Stations.

RESULTS

Optimum coupling is obtained when the bearing from the operator to the transmitter is parallel to the strike of the conductor. Therefore, strong planar conductors such as massive sulfide veins and graphitic sediments will usually give a much stronger response on only one of a pair of orthoganal (or nearly so) frequencies such as Seattle and Cutler. Where conductive fractures are multi-directional, such as in a "porphyry environment," the responses from all the VLF frequencies are similar. Although Cutler and Seattle are not quite orthoganal, an anomalous area indicated by only one of the frequencies is very likely planar.

In general, the VLF responses on the Spark and Joy claims indicate fairly shallow cover (50 ft . or less) over most of the grid area except around the three small lakes between 64 North and 96 North and at the north end of the grid. Although many crossovers were found, only one area appears conductive on both frequencies and has associated out-of-phase response. This area of interest is centered on Line 120 North at 75 West. However, the response on Seattle is very much stronger than that on the Cutler frequency. This would indicate a strong planar conductor with a strike almost perpendicular to the bearing of Cutler from the property or roughly north-northeast.

Several narrow conductors just east of and parallel to the shore of Morrison Lake responded to the Seattle frequency only. Since there are several of them. (i.e. 80 North at 109 West), they probably represent shearing in or weak conductivity within the northwest striking Sustut sediments.

I. P. SURVEY

EQUIPMENT AND SURVEY

A "Sabre" 500 watt pulse-type unit was used in the survey. This I.P. unit is manufactured by Sabre Electronics of Burnaby, B. C., and is powered by a 12 volt aircraft storage battery. Steel rods 4 ft . long by $1 / 2 \mathrm{in}$. diameter were used as current electrodes. The potential electrodes were two porous pots filled with a supersaturated copper sulfate solution. Where necessary, the current electrodes were "soaked down" with a soapy saline solution to reduce the contact resistance. Communication between the operator and electrode men was by walkie-talkie.

A 400 ft . Wenner Array was used in the survey with 200 ft . spreads used to check anomalous areas. Experience has shown that this unit is capable of penetration equal to the spread when using a Wenner array. At Newman (See Appendix III), a good response was obtained through 100 ft . (measured by several diamond drill holes along the profile) of cover on Line 25 East using a 400 ft . Wenner Array.

RESULTS

The chargeabilities and apparent resistivities recorded during the survey are plotted on Maps 8 and 9, which are enclosed in the pocket in the back of this report.

The southern part of the surveyed area does not have any areas of I.P. interest. Beginning at 42 North and about 50 West and extending northwesterly through the northern part of the property is a large zone of very low apparent resistivity which indicates a possible major geological change. Towards the northern limit of the survey, this low resistivity zone widens to about three-quarters of the length of the survey lines. An irregular area of chargeability highs from 45 West to 100 West on 120 North extends in a roughly triangular shape to 50 West on 152 North. The trend and continuity of this zone is not clear because the lines are interrupted by the swampy pond on Line 136 North.

Notably, two highs on Line 120 North (at 85 West and 95 West), within this triangular area are not repeated on either Line 116 or 124 North. Also, the extreme highs all disappeared when the 200 ft . array was used but the adjacent intermediate chargeabilities remained about the same for the shorter spread. Such erratic response is typical of graphite.

The eastern edge of this triangular area of interest has distinctly different I.P. characteristics from the highs noted above. The chargeabilities increase more smoothly and the highs can be traced from line to line suggesting a sulfide source. Also, this chargeability zone does not fall within the large formational resistivity low discussed previously. The zone has a general north-south trend from 144 North at 52 West to 116 North at 57 West. The chargeability intensity does not appreciably decrease at 200 ft. spreads indicating relatively shallow cover. The one exception to this is at. 144 North, 52 West where
the response disappears at the 200 ft . spread. However, an esker was noted on the air photos indicating a local increase in overburden depth.

CONCLUSIONS

The southern part of the surveyed area is reasonably well exposed. What little cover is present would probably not mask a geochemical expression. Since not only the soils but also the radem and I.P. were not anomalous in this area, no further work is warranted.

Both the soil sample results and the radem profiles indicate an increase in overburden thickness over the northern portion of the property. A conductive and chargeable zone centered on Line 120 North at 75 West is probably due to a north-northeasterly trending zone of graphite.

The north-south trending I.P. zone through 144 North at 52 West is possibly due to sulfides under locally shallow cover. Although the soil samples were unanomalous, the terrain slopes gently to the northwest into an area of apparently greater overburden depths so that a geochemical expression could be masked.

Respectfully submitted,

R. W. Woolverton, P. Eng.

APPENDIX I

GEOCHEMICAL ANALYTICAL PROCEDURE

December 8th, 1969

Evergreen Explorations Limited
635-789 W. Fender Street
Vancouver 1, B.C.

Attention: Mr. Woolverton
Dear Sir:

Our laboratory procedures for your samples are as follows:-
Total Copper - a portion of -80 M material is digested in concentrated (soils) perchloric acid, diluted with water and analysed by atomic absorption.

HCl copper - same as above but using a dilute solution of hydrochloric (stream sed.) acid.

Total Molybdenum -
a -80 M portion of sample is fused with a carbonate flux and the molybdenum is colorimetrically determined using zinc dithiol.

Total copper was done on the "Donna" and "Red Top" projects and both total copper and moly on the "Allie". Our reports 168-B (for total copper) and 161-B (for HEl copper) had no project no. specified on the work order form received from you.
Should you require any further information, please do not hesitate to contact me.

YH: lh

 Chief Analyst Department of Geochemistry

APPENDIX II

RADEM SPECIFICATIONS

Example of a RADEM traverse over a Banded Conductor in the Timmins area of Ontario.

SPECIFICATIONS

READOUT - Dip angle of resultant VLF magnetic field component from an inclinometer of $\pm 1 / 2$ degree sensitivity

NULL

INDICATOR - Both audio (loudspeaker) and visual by means of an averaging field strength meter

TUNING $\quad-\quad$ Preset switch tuning

BATTERIES - 2 of 9 volt Eveready \# 216, independent test indicators

STATIONS - Standard 5 stations — Cutler, Maine 17.8; Seattle, Wash. 18.6; Ft. Collins, Colorado 20.0; Annapolis, Md. 21.4; Balboa, Panama 24.0 KCs.

- Optional - N.W. Cape, Australia 15.5; Lualualei, Hawaii 23.4; Rugby, England 16.0 KCs.

Other stations as they become operational

WEIGHT $\quad-\quad$ Receiver $-4 \mathrm{lb} . \quad$ Leather Case $-2 \mathrm{lb} . \quad$ Shipping Weight -15 lb.

FIGURE 2.

THE VERY LOW FREQUENCY RADIO TRANSMITTING STATIONS
The purpose of these stations is to broadcast over large distances navigational and other information for use by ships and submarines. Numerous stations are situated around the globe and a considerable number are in the process of construction. Operational stations are located at Cutler Maine, Annapolis Maryland, Fort Collins Colorado, Seattle Washington, Balhoa Panama, Rugby England, Lualualei Hawaii, Guam and N.W. Cape Australia. The frequency range used varies between 12 and $24 \mathrm{KC's}$ and is thus 10 times higher than the normal frequencies used in mineral prospecting. This results in the RADEM method being more sensitive to lower conductivity and smaller sized bodies than normal EM equipment.

The direction of the magnetic component of the field from a VLF station is horizontal and perpendicular to the line between the operator and the transmitting station (see Figure 4). In this example

FIGURE 4.

the receiver at Timmins, Canada, is using the Panama Station that is due south of Timmins. The normal field direction in this case will be horizontal in an east-west direction. This field would couple with a northsouth striking conductor. Thus for maximum coupling and therefore best results select a transmitter station located in the same direction as the geological strike. With the Timmins, Ontario, examole Panama should be used in areas of north-south geological strike and seattle Washington in areas of east-west strike. If the geological strike is not known then it is best to read two stations that are located in directions perpendicular to each other.

The U.S. naval VLF stations are shut down for periods of 4 to 8 hours every week for routine maintenance. This shutdown schedule is puhlished by the U.S. Navy and is forwarded to RADEM users by Crone Geophysics.

OPERATION OF THE RADEM RECEIVER:

- Turn the unit $O N$ by means of the ON-OFF switch. This can be left on all day since the battery drain is very low.
- Turn the station selector switch to the station you wish to use.
- Adjust the volume control knob such that the signal can be clearly heard.

CRONE GEOPHYSICS LIMITED

979 LAKESHORE ROAD E.
PORT CREDIT, ONTARIO
TELEPHONE 274-3704

CASE HISTORY 41
March 1, 1968
Two Radem (VLF Radio EM) Traverses in the Timmins Area, Ontario.

The use of the VLF radio transmitters as an EM primary field source is not new, but rather one of the oldest and earliest (1929) EM methods. The recent revival of this method is due to the greatly increased power and reliability of the transmitter stations. The method still has, however, its original advantages and limitations. If used properly it can be very effective, if pushed beyond its basie limitations disappointing results will he obtained. The following two profiles illustrate this point.

The first profile, over the Canadian Jameson Mine near Timmins, illustrates the ability of the method to detect the three in echelon ore bodies. This is rather remarkable from three aspects: 1) no other EM method (horizontal loop, vertical loop - fixed and broadside, or JEM) .was capable of detecting even one of these ore lenses; 2) the traverse crossed the yard of a producing mine, thus operating in an area of high hydro noise; 3) the dip angles obtained were very large, $+30^{\circ}$ to -30°.

The ore lenses are excellent conductors, but were not detected by previous EM surveys, due to their being discontinuous and of limiter size.

The second profile, also from the Timmins area, is a traverse over a strong conductor buried below 75 ft . of clay and sand overburden. The RADEM profile falls to detect the conductor which is clearly outlined by the dual frequency vertical loop survey. (Note: The ratio of low frequency, 480 cps , to high frequency, 1800 cps , is unity.) This illustrates the inability of the VIF - EM method to penetrate the overburden. The VLF - EM method will produce large tilt angles from the clay bed itself. These large angles will occur towards the edge of the clay bed and thus complicate interpretation in these areas.

Conclusion: The VLF - EM method is a highly effective and rapid reconnaisance tool. It is limited by its high frequency and the inability to interpret from the results the conductivity and shape of the conductor. Until more experience is gained, this method should be used in shallow (less than 30 ft .) overburden areas.

CASE HISTORY \# 1
radem profiles over canadian jamieson mine, timmins, ontario.

Scale	$1^{\prime \prime}=20^{\circ}$; $1^{\prime \prime}=200^{\circ}$
	Annapolis 21.4 kcs
	Panama 24.0 kcs
0	True Cross-Over
0	Indicated Cross-Over

n Massive Sulphides
Sizes of ore lenses - 105,000, 135,000 and 280,000 tons Cnly one of the ore lenses outcrops Overburden is shallow over mineralized area.

CASE HISTORY \# 1

RADEM AND DUAL FREQUENCY VERTICAL LOOP TRAVERSES OVER AN EXCELLENT CONDUCTOR BURIED AT MODERATE DEPTH (75'), TULLY TOWNSHIP, TIMMINS, ONTARIO.

VERTICAL LOOP
Scale $1^{\prime \prime}=20^{\circ}$
_. $\quad 1800 \mathrm{cDs}$
........ 480 cps
© True Cross-Overä

1
Graphitic conductor with 10% pyrite

Depth of overburden - 75°
Overburden extends for at least one mile in all directions

APPENDIX III
"SABRE" I. P. SPECIFICATIONS

The Sabre Portable Pulse Type instrument is a 500 watt unit capable of 3 or 4 hundred foot penetration as shown on the accompanying profiles. Very little reduction in anomaly intensity was noted over the northern limb of Noranda's Newman ore body, where it is covered by 100 feet of glacial till. Because of its light weight, the "Sabre" is ideal for reconnaissance work. Using a 400 foot Wenner array, Radem (V.L.F./E.M.), and Magnetometer readings can be taken, soil samples collected, and the chargability and resistivity determined by a 4 man crew simultaneously in open bush without pre-existing lines. Cut lines are necessary only in areas of high magnetic intensity where it is impossible to maintain a straight line by compass.

INSTRUMENT
SABRE - PORTABLE PULSE TYPE
500 WATTS $a=400$ WENNER ARRAY

NOTE
geological data cuurtesy of NORANDA EXPLORATION CO. LTO.

Evergreen Explonationd <tul.

APPENDIX IV

DECLARATION OF EXPENDITURES
－R．WOOLVERTON geologist，p．ENG．
－R．C．O＇BRIEN FIELD SUPERVISOR
－JOHN C．OSWALD \＆CO．，C．A．＇s ACCOUNTANTS：

635 － 789 W．FENDER ST．
－ 5424 halifax St．，burnaby 2，B．C．，CANADA，PHONE－299－6998
－P．O．BOX 604，SMITHERS，B．C．，CANADA PHONE－847－3523

VANCOUVER 1，B．C．，CANADA
Palisade Exploration Corporation Ltd．， coo Cyprus Explorations Corp．Ltd．． 510 West Hastings Street，
Vancouver 2．B．C．
INVOICE（David Project）
Geochemical and geophysical survey at Morrison Lake，B．C．， per contract as follows－

125 line miles \＄130／mile
365 man day room and board $\%$（7／day
$\$ 16,250.00$
$\frac{2,555,00}{18,805,00}$

Disbursements
Trans－Provincial Airlines Trans－Provincial Airlines Trans－Provincial Airlines B．C．Telephone Co．
Trans－Provincial Airlines Greyhound Lines Okanagan Helicopters Alpine Helicopters Trans－Provincial Airlines Greyhound Lines

Chg．告
782 806 836 854 864
R．W．\＃27
874
875
893
R．W．算28

140.00 V
142.00 V
135.00 V
20.50 V
207.70 V
8.65 V
1.745 .00 V
300.00 V
45.00 V
30.00 V

$\frac{2,773.85}{21,578.85}$
Less received on account furn Cyprus Explorations Corp．Ltd．－ 1970 October 30th December 9th

V－copies of invoices attached

E $\&$ E

Tran. Provincial Airlines Ltd.

Fis Report Number	CHARTER CONTRACT	AND TICKET	invorce Number

To (4) $\quad . \quad$................................. 5

Trans-Provincial Airlines Lrd.

Fit. Report Number	CHARTER AND CONTRACT TICKET	Invoica Number

Dote	Cosh	Phone
A/C T,	CF	Worrant or Reg. No.
Bose	Pilot	i ?
From:		
To (2)		
To (4)		

Contract Rate
Waiting Time $\$ 8$
Extro Landings $\$ 1$

Pilot Expenses

No 14878

Trans-Provincial Airlines Ltd.

9\% mpomer	CMARTER AND CONTRACT пCKET	Numico

Corge to: GYpRUS EFXPL CORP LTV.

fare 100		\$ 80.00
Contract Rote	Howrs ${ }^{\text {a }}$	
Woiting Time	- 3	
Extro Londings	-1	
Pilor Exponsos		
Other		
-	total cradoes	380

Trans-Provincial Airlines Ltd.

Trans-Provincial Airlines Ltd.

$$
\text { Supt } 10^{-x} \cdot \text { Set } 30^{-\pi}=19 \geq 0
$$

In account with \& hin pie 2 s.
Terms Box 6.35

Cyprus Exploration Corporation Lta. Vancouver 2, B. W. Hastings Street

$$
\text { aug } 12^{-2}-7 / \mathrm{m} \text { 182 } 19 \geq 0
$$

In uccrunt uith Ladier Fi.ier evectrintion Sin....n
Termu

Cyprus expl corp LTO

In account with Inoina Rives Experontion seswers
Terms Bnx 635 smitwats B.C.

th COASt AIR SERVICES LTD.

Charter and Contract Ticket

CYPRESS EXPLORATION CORP. LTD.,
$822-510$ W. HASTINGS ST., VANCOUVER 2, BC.

Invoice No K 2022

DATE SEPTEMBER 17, 1970

CONTRACT NO K800

WORK ORDER NO

TO: CHARGE FOR HIRE OF BELL 47G3B HELICOPTER
I THE HOUSTON AREA

CF-NOB AUG.30/70 FLIGHT REP ART NO. 3029
2:15 hrs.

2 hrs. . 15 ming. © $\$ 145.00$ per hr.

TOTAL AMOUNT DUE THIS INVOICE

+ ${ }^{\mathrm{NAG}} \mathrm{H}_{2}$ OKANAGAN HEUCOPTERS LTD.
HEAD OFFICE
VANCOUVER INTERNATIONAL AIRPORT
RICHMOND, B.C. RICHMOND, B.C.
waxter on not ocx 185

 ला०ण 2

BARRINGER RESEARCH Limited

DATE: October 1, 1970

PROJECT: 120-33

PERIOD COVERED:

PROGRESS BILLING:
SHIPPING REPORT:
WORK REPORT: 272-B
FED, SALES TAX: N / A
ONT. SALES TAX: N/A

AUTHORITY: Mr. Paul Sawyer - Your Proj. 143

TO: Geóchemical Analysis

107 Samples analysed for total copper
107 Samples analysed for total molybdenum
107 Soil sample preparation

@ $\$ 1.00$ each	107.00
@ $\$ 2.50$ each	267.50
@ $\$ 0.20$ each	21.40

BARRINGER RESEARCH limited

DATE: October 2, 1970

PROJECT: 120-33
. Cyprus Exploration Corp. Ltd., 1101-510 W. Hastings,
. Vancouver 2, B. C.

TERMS: NET
PERIOD COVERED:

PROGRESS BILING:
SHIPPING REPORT: WORK REPORT: 273-B

FED. SALES TAX: N/A
ONT. SALES TAX: N/A

Authoritr: Mr. C. McFall - Your Proj: 143 "David. Minerals"
ro: Geochemical Analysis
$\sqrt{3} 36$ samples analysed for total copper 33 § $\times 336$ Samples analysed for total moly. 336 Soil sample preparation a $\$ 1.00$ each
@ $\$ 2.50$ each
@ $\$ 0.20$ each

BARRINGER RESEARCH Limited

- Cyprus Exploration Corp. Searchlight Exploration Corp.
- 1101 - 510 West Hastings St. Vancouver, B. C.

AUTHORITY:
Mr. Neil A. Thomsen, your Proj. David Minerals
date: October 31,1970
PROJECT: 120.33
PERIOD COVERED:
PROGRESS BILLING:
SHIPPING REPORT:
WORK REPORT: $301-\mathrm{B}$
FED. SALES TAX: N/A
ONT. SALES TAX: NRA
TERMS: NET

TO: Geochemical Analysis
$\checkmark 414$ Samples analysed for total copper $\checkmark 414$ Samples analysed for total molybdenum $\checkmark 414$ Soil sample preparation

@ $\$ 1.00$ each	414.00
@ $\$ 2.50$ each	1.035 .00
@ $\$ 0.20$ each	82.80

1,531.80

\#143.
304 CARLINGVIEW DRIVE REXDALE, ONTARIO, CANADA PHONE: 416-677-2491
CABLE: BARESEARCH

ADVANCED TECHNIQUES ANE INSTRUMENTATION FOR THE EARTH SCIENCES
DATE: November 25,1970
PROJECT: 120.33

- Cyprus Exploration Corp. Ltd.

PERIOD COVERED: 1101 - 510 West Hastings St., - Vancouver 2, B. C.

PROGRESS BILLING:
SHIPPING REPORT:
WORK REPORT: 317-B
FED. SALES taX: N/A
TERMS: NET
ONT. SALES TAX: N/A
AUTHORITY: Mr. R. Woolverton/Mr. N. Thompson, your Project "David Minerals"

TO: Geochemical Analysis

STATEMENT OF PROJECT CHARGES
 (PER PRECEDING INVOICES)

Evergreen Explorations Ltd. - January invoice \$21,578.85
Trans-Provincial Airlines Ltd. 35.52

$"$	$"$	$"$	$"$	54.60
$"$	$"$	$"$	$"$	62.40
$"$	$"$	$"$	$"$	78.00
$"$	$"$	$"$	$"$	125.00
$"$	$"$	$"$	$"$	80.00
$"$	$"$	$"$	$"$	58.00
$"$	$"$	$"$	$"$	114.00
Indian River Exploration Services	$3,262.50$			
$"$	$"$	$"$	$"$	$2,420.53$
$"$	$"$	$"$	$"$	600.00
$"$	$"$	$"$	$"$	$2,400.00$

North Coast Air Services Ltd. 99.00
Alpine Helicopters Ltd. 326.25
Okanagan Helicopters Ltd. 900.85
Barringer Research Limited 395.90

$"$	$"$	$"$		$1,240.70$
$"$	$"$	$"$		$1,531.80$
$"$	$"$	$"$		$1,860.00$
				TOTAL

The undersigned considers the above charges applicable as assessment work.
R. W. Woolverton, P. Eng.

CYPRUS IMINES CORP.
Peyanding ou the results of the got mage whichare fothaming of aque with fuls. that we ahould dil the anamalies af 50 W with higle povered Mo Phaw eqpito tat by dinlhng if warran tol.

INTER OFFICE MEMO

CYPRUS EXPLORATION CORPORATION LTD.
 VANCOUVER OFFICE

To: C. A. Mark
From: J.B.P. Sawyer
Subject: DAVID MINERALS REPORT

I enclose for your information and Los Angeles office files a copy of the report on geophysical and geochemical work on the David Minerals property, by Roy Woolverton. We have also got a geological map and report which is mainly Gregg Jilson's work, a copy of which will be forwarded very shortly.

As will be evident from this report, there are no very strongly anomalous areas, however, the one zone at the north end of the property at around 50 W would seem to suggest that we should do a little further checking before abandoning this prospect. I would like to have your comments on this data. If you agree that some further checking is in order, I would suggest a detailed McPhar I.P. survey over this limited portion of the property followed by drill testing of significant anomalies. This could be completed before the anniversary date so that we could reach a decision without embarking on a second year.

JBPS/jel
Encl.
c.c. Mr. W. O. Irish

